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Abstract 

Representational approaches to animal behavior (e.g., [1, 5]) posit 
that complex group behavior results from complex representations of 
events within the central nervous systems of individual animals. I 
present the results of a simulation of foraging behavior in groups of 
organisms, in which simple behavioral rules at the individual level 
result in the emergence of "probability matching" to food sources, a 
complex group behavior observed in various species. The success of 
the simulation reaffirms the notion that representations of an environ-
ment can occur at the level of the group, and suggests that models of 
complex behaviors observed in groups should begin with the simplest 
possible rules at the individual level. 

ー



1 Introduction 

Naturalists commonly observe "probability matching" among groups of var-
ious species. Presented with multiple sources of food in an environment, 
individ叫 squickly divide into groups proportionate to the density of food 
available from each source (see [1], chapter 11, for an overview). It is impor-
tant to note that the overall density of food is what determines the size of 
the groups. Given two sources dispersing morsels of equivalent magnitudes at 
equivalent rates, the animals divide into two groups of approximately equal 
numbers clustered around each of the sources. If the amount of food available 
from one source increases, due to an increase in either its rate of dispersal 
or the magnitude of the morsels of food, the size of the groups of animals 
changes proportionately. 

Gallistel [1] (among others, e.g., [5]) has explained such behavior as the 
result of very complex and specific representations of the food source char-
acteristics in the central nervous systems of individual organisms: 

[Results suggest] that birds accurately represent rates, that they 
accurately represent morsel magnitudes, and that they can multi-
ply the representation of morsels per unit time by the representa-
tion of morsel magnitude to compute the internal variables that 
determine the relative likelihood of their choosing one foraging 
patch over the other. (p. 358) 

Are the complex mathematical abilities Gallistel and others describe truly 
crucial for the apparent rationality of, for example, ducks? Could animals 
instead follow simple rules, with the result that the probability of food density 
would be represented in the distribution of the group, rather than the central 
nervous system of each individual? Animals may follow a rule as simple as 
"go to the closest morsel of food." Morsel magnitude might be reflected 
in the size of the groups formed simply because it takes longer to eat large 
morsels, resulting in a larger number of visible morsels near a source of larger 
food. 

Indeed, the equations that describe a system are not always necessary 
to model it. For example, reaction-diffusion equations (see [9], especially 
chapters 14 and 15) predict patterns of diffusion in various systems (e.g., 
slime molds). But those systems can be simulated in cellular automata using 
simple, locally-defined rules. 
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In this paper, I demonstrate that it is not necessary to attribute complex 
representations of an environment at the level of the individual organism in 
order to explain complex group behavior. The approach of my simulation 
draws heavily on Simon's [8] notions of "satisficing" (rather than maximiz-
ing) algorithms, as expressed by Gigerenzer and his colleagues [2, 3], and 
Reynolds'simulations of flocking behavior [7] using simple rules at the in-
dividual level (e.g., try to stay within a certain distance of your neighbors 
without colliding with them). 

In this simulation, I define a simple environment (a grid representing a 
pond), and various numbers of organisms (see Figure 1). For the sake of 
clarity, I will call the organisms "ducks" throughout this paper. In addition, 
food sources disperse food at given rates and of given magnitudes. In the 
simulation, individual ducks follow simple rules and principles of collision 
avoidance. Using only simple rules, it is possible to observe the same sort 
of behavior found in groups of ideal free ducks: when the simulated ducks 
interact, "probability matching" emerges. 

2 Simulation 1: A nonrepresentational ap-

proach 

Gallistel [1] presents a computational model that accurately predicts the 
behavior of foraging animals (actually, Myerson and Miezin's model [6]).1 
However, the model assumes that individual organisms are able to represent 
the food density at each food source. Thus, its accuracy is the result of its 
circularity: probability matching occurs because animals can represent and 
compare the food densities of multiple food sources. But what if we begin 
with a simpler behavioral model? Gallistel's model does not consider the 
possible contribution of the structure of external factors (other than food) 
on the behavior of animals (e.g., the distance between sources, the behavior 
of other animals). 

1Their computational model consists of a set of equations which predict probability 
matching by individual organisms. To my knowledge, neither Myerson and Miezin nor 
Gallistel have conducted any simulations. 
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2.1 Method 

2.1.1 Environment 

In the first simulation, the environment was a 28 by 28 grid (the "pond") 
with two sources of food. The sources'locations were fixed. Source 1 was 
located at the center of the top edge of the pond. Source 2 was located at 
the center of the bottom edge. Three characteristics of the sources could be 
specified at the beginning of the simulation: the rate of dispersal from the 
source (actually the interval between dispersals, so that a rate of "2" is less 
than a rate of "1"), the size of the area into which food from a source could 
appear, and the magnitude of the "morsels" of food. For this simulation, 
when a duck made contact with a morsel of food, the duck would remain 
stationary until it was finished "eating." Eating time, in update cycles, was 
defined as the magnitude of a morsel of food; given a morsel of magnitude 5, 
a duck eating that morsel would remain stationary for 5 update cycles. 

At the beginning of a simulation, a specified number of ducks was ran-
domly distributed throughout the pond. At each time step, or cycle, food 
was distributed from a source if the cycle number was divisible by the its 
rate of dispersal. The constraints on dispersal were that the food could be 
randomly placed within a specified area around the source, and had to be 
placed on an empty point in that area. Subsequently, the locations of the 
ducks were updated in random order, in accordance with the rules described 
in Section 2.1.2 

2.1.2 Individual rules and constraints 

Duck behavior was determined by two rules: 

1. If a duck contacts food, it remains stationary for a number of cycles 
equivalent to the magnitude of the morsel of food. 
Otherwise: 

2. Approach the nearest morsel of food. 

Initially, I defined five rules for individual ducks to follow that I thought 
would result in probability matching behavior. One rule involved seeking 
eating ducks when there was no available food. While such rules make the 
simulator more visually interesting, and possibly more realistic (since the ,＇ ，
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ducks do not stop moving when there is no food in the environment), they 
are redundant. Eliminating them yields the same result. Therefore, I used 
only these two rules. 

In addition, I used two general principles of object avoidance: 

1. If a duck is about to collide with another duck, the lesser of the vertical 
and horizontal components of its heading is modified (or one is chosen 
randomly if they are equal): 

(a) If the component is less than that of the duck's current position, 
it is decremented. 

(b) If the component is greater than that of the duck's current posi-
tion, it is incremented. 

(c) If the component is eq叫 tothat of its current position, it is 
incremented or decremented (determined randomly). 

2. If a collision is still imminent, the duck stops. 

Without principles of object avoidance, a duck cannot avoid other, possi-
bly stationary, ducks between it and a piece of food, and must "wait" for the 
others to move (although even with these principles, they must sometimes 
wait, if all points adjacent to them in the direction of the food are occupied 
by other ducks). 

2.1.3 The simulator 

The simulator was written in C on a Sun workstation, and uses the X Win-
<low libraries for graphics. The program is launched from a command line, 
where the number of ducks, the number of food sources (1 or 2), and the rates 
and magnitudes of each source can be specified. Figure 1 shows an example 
of the simulator screen. The squares at the top (labeled "81:rate+", etc.) 
are buttons. The user can click on these to increase or decrease the rate and 
magnitude characteristics of each source interactively during a simulation. 
The effects can be observed visually in the "pond" area as well as quanti-
tatively in the area below. The user can also add morsels of food directly 
into the pond by clicking on an empty location. The simulator also produces 
ASCII output recording the state of the simulator at each cycle. 
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Figure 1: The simulator window. Parameters are set to those described in 
the second example for Simulation 1. The optimal numbers of ducks would be 
10 at source 1 and 20 at source 2. The simulation in the top panel used only 
the nonrepresentational rules described in Section 2. In the representational 
simulation (lower panel), each duck acted on representations of food density 
at each source. Note that in the lower panel many ducks are crossing the 
pond, and that many more morsels of food are available. This is due to ducks 
switching sources when the density of the opposite source becomes greater 
than that of the current source. More rules and constraints would be required 
to prevent ducks from, e.g., ignoring food close to them in order to go to the 
denser・source. Thus, the simpler rules yield better results. 
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2.2 Results 

It is important to note that the results of the simulation are entirely de-

termined by the rules I defined. However, computing the probability for 

each duck's behavior quickly becomes a very difficult problem. The size of 
the pond, the distance between the sources, the size of the area a source 

disperses food into, the rate and magnitude values for the sources, and the 
number of ducks interact in a complex fashion. 

Note the relationship between magnitude and rate of dispersal. A change 

in magnitude will not have any effect unless the magnitude is approximately 

a multiple of the rate, since food dispersed at time t can be consumed by time 

t + magnitude + 1 (the minimum time for a duck to move to an adjacent 
morsel of food is one update cycle). For a duck to change sources, the only 
food available in the environment must be from a different source. This 

condition must remain true until the duck is closer to the new source's food 
than any new food from its original source, since the duck will seek the 
closest food. Therefore, for the system to converge on the distribution of 

ducks predicted by food density, food can be neither too plentiful (in which 

case ducks have no reason to change sources), nor too scarce (in which case 

food will be consumed by a duck close to a source before other ducks can 
change sources). However, by varying only rate or magnitude, it is possible 
to observe behavior which closely resembles probability matching. 

2.2.1 Differences in rate 

Once a proper balance between the number of ducks and the magnitude of 

morsels has been found,2 one can observe probability matching after changing 
the rate of one source. Here is a representative example: 

Given two sources with magnitudes of 30, one source with a rate 
of 2, and another with a rate of 10 (5 times slower than the first), 

a group of 30 ducks forms two groups of approximately 25 (near 

2By trial and error so far -which is quite easy, since one can interactively adjust 
parameters during a simulator run. Please note, though, that there are wide ranges and 
combinations of parameter settings that "work." Parameter adjustments are necessary 
only when the chosen combinations make food too scarce or too plentiful at one or both 
sources. 
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Figure 2: Effects of differences in rate (magnitude set to 10 for both 

sources; one source's rate set to 10, and the other's set 5 times faster to 2; 

30 ducks) on the distribution of ducks (averages of 50 simulations by cycle). 

Results from Simulation 1, using only behavioral rules, are presented in the 
left column (A). Results from Simulation 2, where a representation of food 

density was added to the behavioral rules, are presented in the right column 

(B). The plots on the top row show the number of ducks closest to the denser 
(faster) source, i.e., the number of ducks in the half of the pond closest to that 

source. The plots on the bottom row show the number of ducks within the 

actual area the into which the denser source was distributing food. In each 

case, the optimal number of ducks at the denser source is 25. Note that the 
nonrepresentational simulation yields a result closer to the predicted result 
in both measures. 
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Figure 3: Effects of differences in magnitude (rate set to 5 for both 

sources; one source's magnitude set to 40, and the other's set to 80; 30 
ducks) on the distribution of ducks (averages of 50 simulations by cycle). 

Results from Simulation 1, using only behavioral rules, are presented in the 

left column (A). Results from Simulation 2, where a representation of food 
density was added to the behavioral rules, are presented in the right column 

(B). The plots on the top row show the number of ducks closest to the denser 

source, i.e., the number of ducks in the half of the pond closest to that 

source. The plots on the bottom row show the number of ducks within the 

actual area the into which the denser source was distributing food. In each 
case, the optimal number of ducks at the denser source is 20. Note that the 

nonrepresentational simulation yields a result closer to the predicted result 
in both measures. ， 



the first source) and 5 (near the slower source) within 100 update 
cycles. 

2.2.2 Differences in magnitude 

The effects of magnitude are harder to model, as mentioned in section 2.2 
For the difference between sources'magnitudes to affect the distribution of 
ducks, it must be so large that food from the source with the larger mag-
nitude remains available long enough that ducks at the opposite source can 
get closer to it before more food is distributed from the opposite source. 
Thus, food density is difficult to calculate, and is a function of not just rate 
and magnitude. The "swimming speed" of the ducks, and the distance be-
tween the sources also come into play. If magnitudes are set sufficiently high, 
however, the relative contributions of those secondary factors decrease, and 
probability matching emerges. For example: 

Given two sources with equal rates of 5, one source with a magni-
tude of 80, and another with a magnitude of 40 (or, 16 x rate vs. 
8 x rate), a group of 30 ducks forms two groups of approximately 
20 (near the first source) and 10 after between (approximately) 
100 and 300 update cycles. 

¢
 

2.2.3 Discussion 

Although it is not clear how to equate update cycles with real time -with, 
e.g., the real swimming and eating rates of ducks -the difference between 
convergence times for rate and magnitude differences are similar, in general, 
to those observed with real animals. Harper [4] found that distributions 
of real ducks matched differences in rate within approximately 90 seconds. 
The same group of ducks matched differences in morsel magnitude within 
approximately 300 seconds. Compare these numbers with Figures 2 and 3: 
differences in rate were matched after approximately 100 cycles, and differ-
ences in magitude were matched after approximately 300 cycles. 
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(A) Nonrepresentational rules 

゜゚
4
 s

 
e
 

c
 ゚

y
 ゚

c
 

3
 e

 

oat 

o

d

 

2

p

 

u
 ゚゚

ー

゜

0

0

 

0
 

0
 

3

2

1

 

お
s
u
e
p
oi i
s
e
s
o
p
 i
u
e
w
e
 >
o
w
 

30 

0

0

 

2

1

 

」

a
s
u
a
p
.l'ef 
i
u
a
w
a
 >
o
w
 

(B) Rules modified to represent density 
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Figure 4: Effects of differences in rate (magnitude set to 10 for both 
sources; one source's rate set to 10, and the other's set 5 times faster to 2; 30 
ducks) on the amount of movement in the system (i.e., the sum of squares 
based on change in position for each duck; averages of 50 simulations by 
cycle). Results from Simulation 1, using only behavioral rules, are presented 
in the left column (A). Results from Simulation 2, where a representation of 
food density was added to the behavioral rules, are presented in the right 

column (B). The plots on the top row show the amount of movement in the 
half of the pond near the denser (faster) source. The plots on the bottom 
row show the amount of movement within the actual area the into which 
the denser source was distributing food. Note that the total movement in 
the representational simulation is substantially greater than that in the non-
represenational simulation. Note also that a much greater proportion of the 
movement in the representational simulation occurs distant from the food 
sources. As can be seen in Figure 1, unrealistic behavior emerges in the 

representational simulation -e.g., ducks pass up nearby food to move to the 
denser source. 
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(A) Nonrepresentational rules 
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(8) Rules modified to represent density 
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Figure 5: Effects of differences in magnitude (rate set to 5 for both 

sources; one source's magnitude set to 40, and the other's set to 80; 30 
ducks) on the amount of movement in the system (i.e., the sum of squares 
based on change in position for each duck; averages of 50 simulations by 

cycle). Results from Simulation 1, using only behavioral rules, are presented 

in the left column (A). Results from Simulation 2, where a representation of 

food density was added to the behavioral rules, are presented in the right 

column (B). The plots on the top row show the amount of movement in the 
half of the pond near the denser source. The plots on the bottom row show 

the amount of movement within the actual area the into which the denser 
source was distributing food. As in the previous figure, there is more total 

movement in the representational simulation. 
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3 Simulation 2: A representational approach 

In order to compare the results of Simulation 1 with the representational 
approach, I modified behavior rule 2. Instead of simply seeking food, ducks 
computed the current density of food at both sources, and then sought the 
closest morsel of food at the source with the highest density (density was 
simply the number of available morsels available at a source multiplied by 
the source's density). In every other respect, Simulation 2 was identical to 
Simulation 1. 

3.1 Results and discussion 

The results of Simulation 2 were usually similar to those of Simulation 1, 
except that it was even more susceptible to small changes in magnitude 
differences. This was clear from observing the simulator; there was much 
more movement in general, and at any given time, there were many more 
ducks in the area between sources. Also, the modified rule caused ducks to 
ignore the closest food -even immediately adjacent food -when the current 
density of the opposite source was greater than that of their location. 

Simulations and 1 and 2 were conducted 50 times each on the two rep-
resentative parameter settings described in Simulation 1. All simulations 
lasted 500 cycles. The average number of ducks at each source at each up-
date cycle for the simulations with differences in rate are presented in Figure 
2. The average number of ducks at each source at each update cycle for the 
simulations with differences in magnitude are presented in Figure 3. 

The amount of movement in the Simulation 2 is compared with that of 
Simulation 1 in Figures 4 and 5, using the settings of the two representative 
examples reported in Simulation 1. 

I cannot draw any strong conclusions from the relative instability and 
non-intuitive behaviors (e.g., bypassing food) introduced by attributing a 
representation of food density to the ducks. While it demonstrates that the 
rules used in Simulation 1 are made less effective by the addition, I have 
not yet completed an implementation of the complete model described by 
Myerson and Miezin [6] (for various reasons, but especially because it is not 
clear to me how to extend it to a group of animals rather than isolated 
individuals). Thus, the change to Rule 2 in Simulation 1 is perhaps not a 
valid implementation of the representational model. 
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I have conducted preliminary simulations with slightly modified versions 

of the rules, in an attempt to come closer to Gallistel's model. For example, 
instead of specifying that ducks change sources if the other source is denser, 

ducks calculated the density of each source, and then chose to switch sources 
probabilistically. This was accomplished by calculating the current density, 
d, of both sources and the proportion of food at source 1. Then a random 

number between O and 1, r, was generated, and the preferred source was 
determined by the rule: 

Source 1 is preferred if r is greater than the proportion of food at 

source 1; 
Otherwise 2 is preferred. 

This change did not increase the stability of the system. When I changed 
the rules so that ducks did not compute the current densities but instead 
used the rates and magnitudes specified to calculate single densities for each 

source that did not attend to momentary changes, the system became less 

stable, in terms of the amount of movement and divergence from predicted 

distributions. The next step would be to weight the probabilities based on 

the distance of the sources from the duck (although this adds distance as a 
new factor -one that is not part of the representational model) or to give the 

ducks the ability to represent longer-term goals. With the current represen-
tational rules, ducks often change direction several times before reaching a 

source, since the density of each source changes almost every cycle. The cru-
cial point is that it becomes more difficult to simulate probability matching 

when calculations and representations are incorporated into the behavior of 

the individual ducks (see Figure 1 for a comparison of behavior when repre-
sentational and nonrepresentational rules are used): simulating a model like 

Gallistel's will require devising a set of behavioral rules in an ad hoc fashion 

to control behavior when, for example, the closest food is not at the denser 

source. That one can devise a set of rules that outperforms the mathematical 
model suggests that the model is unnecessarily complex. 

4 Caveats and Conclusions 

In these preliminary simulations, only two rules were used. Ducks were rep-

resented as single pixels, and I made no attempt to model any physical con-
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straints on duck behavior (e.g., given a change in desired heading, how long 

does it take to turn, and what is the turning radius?). Nor have I considered 
pragmatic constraints that would exist in a real environment (e.g., line of 

sight; ducks were given the ability to determine which morsel of food in the 
-environment was closest to them -even when there were other ducks directly 

between them and the food). 
Gallistel's [1] explanation of probability matching in groups takes into ac-

count evidence about the behavior of individual animals in .isolation. Individ-

ual animals such as rats appear to determine subjective reward magnitudes 

when faced with multiple sources of food. The probability of food dispersal 
from a source predicts how long they will wait at that source before checking 

another. Another possible aspect of duck behavior I have not considered is 
how long ducks will stay at a source without eating, even if there is more 

food available from it than another. 
It is possible that the resemblance of the simulations to the behavior of 

real animals is simply an artifact of an extremely simplified environment and 

overly-simple definitions of individ叫 behavior.Given the similarities of the 

current simulation to real behavior, this seems unlikely. However, simulations 
with more elaborately defined environments and simulations of the behavior 

of individual organisms in isolation are needed to test these possibilities. 
In the meantime, the current results support the notion that optimal indi-

vidual representations are not necessary to explain complex group behavior. 

Quantitatively-equivalent, "satisficing" algorithms, based on interactions be-
tween individuals, require us to attribute less complexity at the individual 

level. While explanations based on such algorithms may not turn out to be 
accurate, they should be considered along with more complex explanations. 

Finally, the simulator itself is a useful tool for preliminary tests of predictions 
about the behavior of real organisms. 
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