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Abstract

This paper provides a study on the structure-from-motion problem under the conditions
that two planes independently and rigidly move in three dimensions and that, for given two
perspective images, the correspondences of points in the planes are known. A typical approach
to this problem involves segmenting the images into regions each of which has only one plane,
and then determining the normal vector of each plane and the motion of the plane. In this
paper, however, we take a different approach where the images need not be segmented: we
directly handle the images in which two planes exist. We show that we can generally determine
the normal vectors of the two planes and the two motions when we observe 17 points, where
the tensor product of two transformation matrices and its decomposition play the central role.
We first determine the tensor product and then decompose it into the two transformation ma-
trices. Here the tensor product is expressed as a pair of its symmetric part and its alternating
part. We also clarify the cases where the tensor product cannot be determined. It is shown
that when the two planes share the same rotation, we cannot determine the alternating part
if the two normal vectors are parallel or the two translation vectors are parallel. Furthermore,
we show that unless at least four points exist in each plane such that no three of them are
collinear, we cannot determine the symmetric part; whereas at least seven points are needed
in each plane to determine the alternating part.

Key Words: structure from motion, planes, transformation matrix, tensor product, sym-

metrization, alternization, critical conditions.
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1 Introduction

The importance of motion estimation in computer vision has long been emphasized. There is
a long list of applications in sensing, modeling, and interpretation of motion and structure from
feature correspondences among images observed at different times. It includes target tracking,
vehicle navigation, robot guidance and the monitoring of dynamic industrial processes. As a re-
sult, the structure-from-motion problem has been studied in several paradigms [1], [5], [19], [20],
and a number of algorithms for this problem have been proposed. Some are feature-based and
some are optical-flow-based. In this paper, we focus on the feature-based approach.

In the feature-based approach, two or more images are used for computing structure and
motion of a point set in 3-D; the correspondences of points among the images are assumed to
be known. Two cases are distinguished to apply a structure-from-motion algorithm: i) points
in 3-D are coplanar and ii) they are noncoplanar. The first case is equivalent to handling a
plane in 3-D; whereas the second one is equivalent to handling general points in 3-D.

As for structure and motion of a plane, Tsai-Huang [15] defined the eight “pure parameters”
in terms of the normal vector of a plane and motion parameters, and showed that the pure
parameters can be linearly computed from eight point correspondences in two images and
from them the motion parameters can be computed by solving a sixth-order polynomial of
one unknown only: the number of solutions never exceeds two. Tsai-Huang [18] improved the
computational task. This showed that motion parameters can be linearly computed from four
point correspondences in two images, and proposed a linear algorithm where singular value
decomposition of a matrix consisting of the eight pure parameters, called the transformation
matriz in this paper, plays the central role. Longuet-Higgins [10] showed the same results in a
different form. It also analyzed the ambiguity incurred by a special relation between the two
viewpoints. Tsai-Huang[17] further extended the results to the case where three images are
available, showing the uniqueness of the sohition.

As for general points in 3-D, Longuet-Higgins [8] showed that we can determine structure
and motion from eight point correspondences in two images, and proposed a linear algorithm,
called the 8-point algorithm, for computing structure and motion. Longuet-Higgins [9] showed
that points in a special configuration, called a critical surface, do not allow us to determine

the structure and motion. Tsai-Huang [16] independently proposed a similar algorithm based



on singular value decomposition. Zhuang-Huang—Haralick [22] unified the two algorithms in
terms of the essential matrix. The case where more than eight points in two images are avail-
able, was investigated in [21]; and an algorithm based on the method of least squares was
proposed to obtain the optimal solution. Lee[7] treated points in a special configuration to
reduce the number of required points, showing that we can determine structure and motion
from six point correspondences in two images such that four of the six points are coplanar.
For cases where more images are available, a factorization methodv[ll}, [14] was proposed un-
der orthographical /paraperspective projection. Here also, singular value decomposition of a
matrix, which is derived from a number of images, plays the central role. Christy-Horaud [3]
proposed a method for solving the Euclidean reconstruction problem with a perspective camera
by incrementally performing a Euclidean reconstruction with the factorization method.

These algorithms are all based on the assumption that only a single object exists in the
images. In other words, the segmentations are already executed in stages prior to using the
algorithm. However, as pointed out in [2], [6] or [13], segmentation is one of the most crucial
problems in computer vision. To avoid the segmentation problem, we must directly handle
images in which plural objects exist, without knowing which feature point belongs to which
object in the image. Costeira-Kanade [4] proposed a method, in the factorization scheme,
for segmenting and recovering the motion and shape of multiple independently moving objects
from a set of feature trajectories tracked in a sequence of images. However, it is assumed in the
method that the projection is orthographically performed. Shizawa [12] investigated the case
where two (general) 3-D objects exist in the images, showing that we can generally determine
the structures of the two objects and the two motions when we observe 35 point correspon-
dences in two perspective images. In line with Shizawa[12], in this paper we investigate the
case where two planes exist in the perspective images.

This paper addresses the study on the structure-from-motion problem under the conditions
that two planes independently and rigidly move in 3-D and that, for given two perspective
images, the correspondences of points in the planes are known. We show that we can generally
determine the normal vectors of the two planes and the two motions when we observe 17 points,
where the tensor product (in the sense of tensor algebra) of two transformation matrices and its

decomposition play the central role. We first determine the tensor product and then decompose



it into the two transformation matrices. Singular value decomposition of a transformation
matrix leads to determining (almost uniquely) the normal vector of a plane and the motion
parameters. The tensor product is expressed as a pair of its symmetric part and its alternating
part. The symmetric part has 36 independent unknowns and each point correspondence gives
three linear homogeneous constraint equations to them. In contrast, the alternating part has 18
independent unknowns and each point correspondence gives one linear homogeneous constraint
equation to them. Therefore, in general, we can uniquely determine each part up to a scale
factor with linear computation. We then give a procedure to decompose the symmetric part
and the alternating part together into two transformation matrices. This procedure makes
full use of constraint equations to determine the two transformation matrices. Using all of the
constraint equations leads to a computationally simple procedure as well as a robust one with
respect to noise. The decomposition procedure is divided into two steps: one is determining
each column vector of the transformation matrices up to an unknown scale factor and the
other is determining the scale factors there to determine the transformation matrices. Here
the ratio of the scale factors incurred in determining the symmetric part and the alternating
part, plays an important role in uniquely determining the transformation matrices. We also
clarify in what cases we cannot determine the symmetric part or the alternating part. It is
shown that when two planes share the same rotation, we cannot determine the alternating
part if the normal vectors of the two planes are parallel or if the translation vectors of the
two planes are parallel. We then show that unless we have at least four points in each plane
such that no three of them are collinear, we cannot determine the symmetric part; whereas
at least seven points are needed in each plane to determine the alternating part. Accordingly,
now we can directly handle images in which two planes exist; we can determine motions and
structures of the two planes without executing segmentation.

This paper is organized as follows. In Section 2 we briefly review a case concerning only one
plane. Here we introduce a transformation matriz that is derived from the normal vector of
a plane and its motion parameters. In Section3 we derive constraint equations on the coor-
dinates of two images of a point that exists in one of two planes, where the tensor product
of transformation matrices plays the central role. The tensor product is decomposed into its

symmetric part and its alternating part; each part is investigated separately where the sym-



metrization and the alternization enable us to reduce the number of unknowns. We then pay
attention to the conditions, which we call the critical conditions, where we cannot determine
the symmetric part or the alternating part, and clarify them. Two cases are distinguished:
the case where two planes themselves do not allow us to détermine the symmetric part or the
alternating part and, the other case where points in a special configuration do not allow us
to do so. In Section4 we give a procedure to decompose the symmetric part and the alter-
nating part together into two transformation matrices. In Section 5 we present our algorithm
for computing transformation matrices from given point correspondences. In this paper, we
assume that two planes independently and rigidly move around a fixed view point and that

the correspondences of points in the planes between two images are known.

2 Projection and plane transformation

In preparation for further investigation, here we briefly review a case where only one plane

is concerned.

2.1 Projection into image plane

Let us consider a calibrated pinhole camera model with focal length f. Then we may assume
that the camera performs a perspective projection whose origin O coincides with the center of
the lens and whose Z-axis is aligned with the optical axis; Z = [ is the image plane. In this
model!, the coordinates X = (XY, Z)T of a point in 3-D are projected to = (Z,9)" in the

image plane, where

N~

i=i%, =]

We embed the image plane in P?, the projective plane over the real number field R, so that
the Euclidean coordinates & are expressed by the homogeneous coordinates = = (&,7,1)".
We then obtain the relation between Euclidean coordinates X of a point in 3-D and the

homogeneous coordinates x of its image in P2

x = 1 X (Lt e RY),

1'We use a column vector and denote by z* the transportation of a vector z.



where ¢ depends on the point and its value is unknown. 1/, is sometimes referred to as the
depth of the point. Note that R* denotes the set of non-zero real numbers. Accordingly, by
embedding the image plane in P?, we can directly handle the Euclidean coordinates of a point
with an unknown scale factor. Henceforth, if not explicitly stated, the coordinates of a point

in the image plane are understood to be homogeneous.

2.2 Plane transformation

Let a plane in 3-D be
n-X = 1 (2.1)

In this paper, we call n the normal vector of the plane. We suppose that a point in plane (2.1)

is subject to a rigid motion as follows:
Y = RX +t, (2.2)

where R is a rotation matrix and ¢ is a translation vector. Here X and Y are the Euclidean
coordinates of a point before and after a motion, respectively. Combining (2.1) with (2.2), we

obtain
Y = (R +t nT) X,

Hence, for the homogeneous coordinates of two images (before and after the motion) of a point

in plane (2.1), we have
y = & (R+tn")z  (s€R). (2.3)

We remark again that x here depends on the point; its value is unknown. Defining a 3 x 3

matrix M, referred to as the transformation matriz in this paper,
M = R+tn',
and hiding the scale factor k, we can rewrite (2.3) as

[y]Ma = 0, (2.4)



since neither  nor y is a zero vector. Here, for & = (71, T, 23)T in general, [z ] is defined by

0 —x3 =z
(z] = z3 0 -z
—I2 T 0

The homogeneous coordinates of two images (before and after a motion) of a point in a
plane satisfy (2.4); this is the constraint equation when only one plane is concerned. The
transformation matrix M has nine parameters; (2.4) are linear homogeneous equations with
them. As we can see, each point in a plane gives two independent constraint equations in
(2.4). Accordingly, with four point correspondences, in general, we can uniquely determine M
up to a scale factor. Once M is known, we can (almost uniquely) determine [18] the rotation
matrix R, the translation vector t and the normal vector n of the plane, where singular value
decomposition of M plays the central role (depending on the number of different singular
values of M, we have indeterminacy in recovering them). We focus on (2.4) to investigate the

case where two planes exist in 3-D.

Remark 2.1 The length of n does make sense since we set the constant term of a plane
equation to be 1. We can also discuss the case where a plane is expressed in another form; the

results below hold true. We use plane equation (2.1) in line with [15], [18] and [17]. 0

3 Constraint equations derived from two moving planes

In this section, we derive constraint equations on the coordinates of two images (before and
after a motion) of a point in one of two planes, where the tensor product plays the central role.
The equations are linear with respect to independent parameters; the parameters together
form a covariant tensor of degree 2. We thus decompose the tensor into its symmetric part

and its alternating part; we then discuss each part separately.

3.1 Tensor product constraint

We assume that two planes 1 and 2 independently and rigidly move in three dimensions
where a motion of a plane is characterized as that of a point in the plane (see Fig. 1). Let the

transformation matrices of planes 1 and 2 be M? and M?2, respectively. Then, the coordinates



x and y of two images (before and after a motion) of a point in plane 1 satisfy
[y]M'z = 0. (3.1)
For a point in plane 2, the coordinates of its two images before and after a motion satisfy
[y]M*z = 0. (3.2)

Accordingly, when we observe two images (before and after a motion) of a point that exists

on plane 1 or 2, their coordinates satisfy (3.1) or (3.2), which is expressed by
[yI Mz ®@[y]| M’z = O. (3.3)

Here, for any linear spaces L1 and Lo, L; ® L, denotes the tensor product of L; and L,. Our
alm in this paper is, for given correspondence pairs of {z,y}, to determine M' and M? in
(3.3).

It is essential that we regard both = and y in (3.3) as contravariant vectors, and both M!

and M? as covariant vectors. Therefore, (3.3) is expressed in the form of
9 9
SoS DO = 0 (pge{l,2,3}),

where Iy, is a covariant tensor of degree 2, and both ¢ » and nP* are contravariant tensors of
degree 2. It should be noted that I'y, (as the tensor product of M* and M?) are unknown
parameters whose number is 81, whereas (* (as the tensor product of z’s) and 7P (as the
tensor product of y’s) are both known; the equation is linear and homogeneous in I'y,. Since
any tensor of degree 2 can be uniquely expressed as the sum of its symmetric part and its
alternating part, the tensor above is decomposed into its symmetric part and its alternating

part. Namely, instead of directly handling (3.3), we use the following:

the symmetric part of the LHS of (3.3) = O

the alternating part of the LHS of (3.3) = O.
Here LHS stands for the left-hand-side. We denote by S and A the symmetric part and the
alternating part of the LHS of (3.3), respectively. It is important to note that for each point,
(3.3) gives nine equations, six of which are possessed by S; the other three are possessed by
A. We also remark that 45 of the 81 unknown parameters I, appear in S and the other 36

appear in A.



3.2 Symmetric part of the tensor product

The symmetric part S of the LHS of (3.3) is expressed by

S = {[y]Mlm®[y]M2:z:+[y]M2:c®[y]M1m}. (3.4)

N |

Defining
Tijke = M, Mfg (i,7,k,¢ € {1,2,3}),

we then obtain the (p, q)-component?, denoted by S?4, of S:

P = Tijke ([y]”i[y]‘”';[y]”"[y]‘”) et (pa€{1,2,3)). (3.5)

where M%7 or M;; denotes the (4, )-component of a matrix M and z* denotes the k-th com-
ponent of a vector . Note that SP? = S?. A superscript index is used for a contravariant
vector; a subscript index is used for a covariant vector. In (3.5), we use Einstein summation
convention: a repeated index, which appears both “above” and “below”, implies the summa-
tion from 1 to 3. This is applied to equations below. We can see that the indices ¢ and j in
(3.5) are symmetric to each other since exchanging i and j results in the same term in = and
y. We can also see that the indices £ and £ in (3.5) are symmetric to each other. Therefore,

we may symmetrize ¢ and j, and & and £, respectively, which yields
SM = w(Z,]a k, E) T(zj)(k 1] [y]p(z [y ]Iqu) x(kxf)

Here (- - ) implies the symmetrization of the indices there except for those in |- - |; T jyke s,

thus, defined by

1

Tijwe = ST (Tijie + Tiine + Tijor, + Thiers) -
¥(i,4,k, £) is a function such that
1 ifi=jandk=/¢
V(i,5,k,0) == {4 ifitjandk#L

2 otherwise.

*The (p, g)-component of Ly ® Ly is the product of the p-th component of L; and the g-th of Ls.



Accordingly, the condition that the symmetric part of the LHS of (3.3) = O, reduces to
Vi, 7,k 0) T )k [y PC [y )¢9 = 0o (p<q;pqge{l,23}). (3.6)

Here T{;;)x¢y are independent unknowns whose number is 36; (3.6) are linear homogeneous
equations with T{; )k ¢). For each point correspondence, we have six cases in choosing p and ¢
in (3.6); however, the following theorem shows that only three of them are independent. We
thus can, in general, uniquely determine 7';;yx¢) up to a scale factor with linear computation
if we have 12 point correspondences. It is important to remark that the symmetrization of :

and j, and that of ¥ and £ reduced the number of independent unknowns from 45 to 36.

Theorem 3.1 Let u, v, w € R? and

O = —{[u]ve[u]w+[u]w[u]v}.

O

We denote by ©,, the (p,q)-component of © (p,q € {1,2,3}). Then, we have Opq = Oyp.

Furthermore, ©,, = 0 gives only three independent equations.

Proof: ©,4 = O, is obvious from the definition. Letting f = [u]v and g = [u]w, we have

Hence the third components of f and g are expressed as a linear combination of its first

component and second one, respectively, with common coefficients:

fa=afi+Bfn gi=ag +Bg.

We then have

O3 = f303
= (afi+pBf2)(ag+Bg)

= o’ O + 208612 + §° O,

In the same way, @23 and ©;3 are respectively expressed as a linear combination of @1, @4, and
©1,. Accordingly, nine equations ©,, = 0 (p,¢ € {1,2,3}) reduce to only three independent

ones. O



3.3 Alternating part of the tensor product

We now turn to the alternating part A of the LHS of (3.3). A is expressed by

A = AlyIMze(y]Me - [y| Mz [y] M'z}. (3.7)

N | k=

We investigate A from a point of view different from that in the previous section. Namely, we
discuss A in the context of exterior algebra. For u, v € R3, their exterior product u A v is

related to their tensor product as follows:
UAV = URU—vOuU.
By using the exterior product, we can rewrite (3.7) as

A = {(y/\Mla:)/\(y/\]\/[2w)},

N —

which we can further rewrite in terms of the determinant of a matrix:
1 1 2
A = §~det[M9:|M z|yly.
Accordingly, the condition that the alternating part of the LHS of (3.3) = O, reduces to
det[M'z | Mz |y] = 0, (3.8)

since ¥ is not a zero vector. By using notation Tjjx., We can rewrite (3.8) as

3
S e(ijoli,5) - Tyreataty’ ™) = o, (3.9)
i,j=1

i#]
where ¢ is a function defined by
o(i,7) = {1,2,3} - {i,7} (i # 75 4,7 € {1,2,3});
for i,j, k € {1,2,3}, ¢ is defined by
- 1 if (ijk) is an even permutation of (123)
e(ijk) =
—1  if (ijk) is an odd permutation of (123).

Note that in this case, in order to stress 1 # j, we dare to write the summation symbol with
respect to indices 7 and j which are neither symmetrized nor alternized. We can see that the

indices ¢ and j in the LHS of (3.9) are alternating since exchanging i and j results in a reversal

10



of the sign of the same term in @ and y. Whereas exchanging k£ and £ results in the same term;
indices k£ and £ are symmetric to each other. Thus, we may alternize ¢ and j, and symmetrize

k and ¢ in the LHS of (39), which YleldS
w(ihja k, E) j 17](k € x(ka:Z) y (0.9) . (310)

Here [- - -] implies the alternization of the indices there; Tf; jj(x ¢ is, therefore, defined by

1
Tujikey = o0 (Tijue — Tyire + Tigor, — Thax) -

(3.10) is the constraint equation derived from A = O. Tj;;ke are independent unknowns
whose number is 18; (3.10) is the linear homogeneous equation with 17 5)(key- Each point corre-
spondence gives an equation in the form of (3.10). We thus can, in general, uniquely determine
Tijikey up to a scale factor with linear computation if we have 17 point correspondences. It
is important to remark that the alternization of ¢ and j, and the symmetrization of k¥ and ¢
reduced the number of independent unknowns from 36 to 18 in this case.

Combining this with the result in the previous section, we obtain the following theorem.

Theorem 3.2 Let the tensor product Tyjxe of two transformation matrices, M! and M?, be
decomposed into its symmetric part S and its alternating part \A. Then, S reduces to T'; jy 1)
that has 36 independent entries; .4 reduces to T7; ) ¢y that has 18 independent entries. In addi-
tion, in general, we can uniquely determine T7; j)x¢) up to a scale factor with linear computation
if we have 12 point correspondences (see (3.6)); whereas we need 17 point correspondences to

uniquely determine Tf; jjx ¢ up to a scale factor (see (3.10)). O

It should be noted that the two scale factors incurred in determining 7% jy(x ¢ and Tiijyke) are

different in general.

Remark 3.1 (3.8) indicates that three vectors Mz, M*x and y are coplanar. In other words,
y cannot be any vector in P2. Hence, the alternating part imposes the “coplanarity condition”
on y from a geometrical point of view. Whereas we may geometrically interpret the symmetric
part as the “parallel condition” on the y coplanar with Mz and M?z. This is because, if the
concerned point is in plane 1, then y is parallel to M!x; if the point is in plane 2, then y is

parallel to M?zx. O

11



3.4 Critical conditions in determining each part

So far, we have discussed the general case. In other words, we have assumed that we are
given two planes such that they enable us to uniquely determine T';jyxe and T} ke up to
a scale factor, respectively. We have also assumed that we are given point correspondences
such that they enable us to determine T(; jyx¢) and T; ke)- Here, we investigate the condition,
which we call the critical condition, where we cannot uniquely determine 7' ;)¢ OF T[ij)k2)-
Two cases may be distinguished. One is the case where two planes themselves do not allow us
to determine T{;jyk s or Tjijjke). The other is the case where points in a special configuration

do not allow us to do so. We investigate each case separately in the subsequent sections.

3.4.1 Critical condition for two planes

To investigate the critical conditions for two planes, i.e., conditions such that two planes
themselves do not allow us to uniquely determine T'; e or Tjijke) up to a scale factor,
respectively, we may assume that the points in each plane are distributed randomly. Namely,
the points in each plane have no special configuration. Therefore, we may focus on any special
relation among the normal vectors of the two planes and motion parameters, i.e., translation
vectors and rotation matrices, of the two planes. If rotations of the two plvanes differ, we may
expect that we can determine 77; jyx¢ and Tli )k since different rotations imply the general
case of two moving planes. Thus, we may concentrate on the case where two planes share the
same rotation, and the normal vectors of the two planes and the translation vectors satisfy a
special relation. A special relation could be considered in several ways; below, however, only
“parallelism” and “perpendicularity” are considered. And we show that we can almost always
determine T{; jyx¢); Whereas a case exists where we cannot determine T; jj(x ¢).-

When two planes share the same rotation, in order to analyze indeterminacy of T'(;;yxe or
Tii )k ¢» we should first note that the rotation need not be considered, since the rotation only
plays the role of changing the “representation” of points. In other words, the orientation of
the optical axis does not play any role. Hence, it suffices to assume that the two planes are

translated with R = I. We recall that a transformation matrix M is expressed by
M = I+tnT

in this case, and T; ;¢ is derived from the symmetric part of the tensor product of two

12



transformation matrices; while T; )k ¢) is derived from the alternating part. As we can see, for
a plane, the normal vector n and the translation vector ¢ play an equivalent role in ;)& ¢:
whereas they do not in Tj;;jx¢. Remember that we have four vectors in R®: two are normal
vectors and the other two are translation vectors. We denote by n! the normal vector of plane
i (1=1,2) and by t* the translation vector of plane 7 (i = 1,2).

We first discuss the case of T(;jyx¢. Imposing parallelism or perpendicularity on any two
(or more) of n!, n? t! and t* does not matter in determining T{; jx¢. This is because we
obtain the symmetric part by adding, to the tensor product of two transformation matrices,
its transportation; this addition leads to no serious cause in determining T; jyx¢). (This is not
the case with Tj; jjk¢), as we will show shortly.) Therefore, we can (almost) always determine
Tajyke- It should be noted that we cannot deny the possibility of the existence of a special
relation different from parallelism or perpendicularity where we cannot determine T; ;) ¢), but
concerning such a special relation is beyond the scope of this paper.

We now turn to the case of T; ;. We obtain the alternating part by subtracting from the
tensor product, its transportation. This subtraction causes indeterminacy of T7; jx¢) when n'
and n? are parallel or ¢! and t? are parallel. The following theorem states that for two planes
1 and 2 such that n! and n? are parallel, we cannot determine Tij)k o)+ It also states that for
two planes moving in the same direction (namely, ¢! and #? are parallel), we cannot determine
Tt sk ey- Accordingly, now that all the constraint equations are homogeneous in 7j; jx¢), if we
observe that the number of zero-eigenvalues of the coefficient matrix to determine TT; ;1 ¢ is not
three, then we can completely deny two cases: one is the case where the observed two planes
are translated to the same direction with the same rotation; the other is the case where the
normal vectors of the two planes are parallel. We note that “the number of zero-eigenvalues is
three” does not always imply the two cases above. This is because the theorem below ensures

only the sufficient condition; it does not ensure the necessary condition.

Theorem 3.3 Suppose that two planes 1 and 2 share the same rotation. Also suppose that
the correspondences of two images (before and after the motions) of P (P > 17) general points
in plane 1 or 2, are known. Let A be the coefficient matrix of P x 18 to determine Ti 0 (see

(3.10)). If (i) t* = at! or (ii) n? = fnl, then

rank A = 15.

13



In particular, when both (i) and (ii) hold, and « - § = 1, then rank A = 10.

Proof: The proof of this theorem will be given in Appendix A. o

3.4.2 Critical condition for point configuration

In contrast to the above section, even though two planes allow us to determine T e)
and T )k ), we may have a case where the choice of points leads to indeterminacy of Tiusee
or Tj;5ke)- Here we are interested in the case where points in a special configuration cause
indetérminacy of Tiijykey or Tjijjke- In this section, we assume that two planes themselves
allow us to uniquely determine T'; ¢ and T j)(ke) UP to a scale factor, respectively.

Indeterminacy of T jywe) Or Tjijyke) is equivalent to the existence of at least one spurious
solution of (3.6) or (3.10). Therefore, we obtain a critical condition from the properties we
have under the assumption that we have no spurious solution of (3.6) or (3.10). Below, we
only discuss the number of points we need in each plane. Points in another configuration that
cause indeterminacy of T 5)xe) or Tj; k¢ are not considered in this paper.

The theorem below states that unless we have at least four points in each plane such that
no three of them are collinear, we cannot determine T\; jx¢). It also states that if we do not
have four points in a plane, then the number of spurious solutions increases by two every time
the number of points in the plane decreases by one.

On the other hand, we give a conjecture below with respect to T7; jjx¢). (We obtained this
conjecture through our simulation results (cf. Fig.2); we have not proved it.) It implies that
unless we have at least seven points in each plane or have four points in each plane such that
no three of them are collinear, we cannot determine 7\;j)x¢). It also implies that if we do not
have seven points in a plane, then the number of spurious solutions increases by one every

time the number of points in the plane decreases by one.

Theorem 3.4

(1) Let P, and P, be the number of points in planes 1 and 2, respectivelv. If we uniquely

determine T; ;)¢ up to a scale factor, then we have

P +P > 12

min(Pl, PQ) > 4,

14



and four points in each plane such that no three of them are collinear.

(2) Suppose Py + P, > 12 and P; < 3. We suppose that we have four points in plane 2 such
that no three of them are collinear. We also suppose that three points in plane 1 are
not collinear if P, = 3. Let S be the coefficient matrix of 3(P, + P2) X 36 to determine

Tiijyke) (see (3.6)). Then, we have
dim (KerS) = 9-2P,
where KerS denotes the kernel of matrix S.
Proof: The proof of this theorem will be given in Appendix B. 0

Conjecture 3.1

(1) If we can uniquely determine T ;)¢ up to a scale factor, then we have

hA+PR > 17,

HliH(Pl, PQ) > 7,

and four points in each plane such that no three of them are collinear.

(2) We suppose P, + P, > 17 and P, < 6. We also suppose that we have four points in plane

2 such that no three of them are collinear. Then, we have
dim (KerA) = 8- Py,
where A is the coefficient matrix of (P; + P,) x 18 to determine Tj; jjc¢) (see (3.10)). O

Remark 3.2 P, = 0 indicates that all observed points exist in only plane 2; this is equiv-
alent to the case where one plane alone exists. In this case, we have dim (KerS) = 9 and

dim (Ker 4) = 8. O

We suppose that P, < 6 and P, + P, > 17. Combining Theorem 3.4 and Conjecture 3.1, we
can estimate the possible number of points in plane 1 just by counting the dimensions of KerS
and KerA. Note that dim(KerS) and dim(IerA) coincide with the number of zero-eigenvalues
of S and A, respectively, since S and A are both coefficient matrices of linear homogeneous

systems. Let s and a denote the number of zero-eigenvalues of S and that of A, respectively;
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we use notation (s,a). Tablel shows the possible number of P), depending on the number
of zero-eigenvalues of S and A. We remark that this table shows just a possibility. It may

be possible to estimate another number of P based on other critical conditions (if any) not

concerned in this paper.

4 Decomposition into two transformation matrices

In Section 3, we showed that if we have at least 17 point correspondences, we can generally
determine T(; j)ke) and Tj;j)ke). Here we discuss how we obtain two transformation matrices
from computed Ti;jyke) and Tjijke)- We recall that Ti; ke and Tj; ke have an unknown
scale factor, respectively, and that the two scale factors are different from each other. Let

T(i 5) ke and T[i jlkey be computed as T(; e and Tj; jjke), Tespectively. Then we have

A

Tapwe = pTupwe  (pERT),

Tijwey = TTigwg (T €RY).

We should first note that an arbitrary vector in R and that in R!® together are not always
decomposed into two 3 x 3 matrices. We say two vectors, one in R3¢ and the other in R!®, are
decomposable if they are decomposed into two 3 x 3 matrices. To see whether or not f’(ij)(k 0
and T[i jl(ke) are both decomposable, we only have to verify the following equations for all

1,7, k, £ and their primes:

Tajywe - Twjywey = Twpwe  Tayyre), (4.1)

A ~

Tijeey - Ty ey = T jiwe - Tuiee), (4.2)

where 4, j, k, £,4', 5/, k', £ € {1,2,3}. (4.1) and (4.2) are the immediate results of the fact that
T(i j)(key and T[i jl(ke) are both tensors of degree 2. The two equations are both quadratic in
T(ij)(k ¢) Or T[ij)(k ¢. Below, we assume that both (4.1) and (4.2) are satisfied. We then consider
how to decompose T(—,;j)(kg) and T[.,;j](kg) together into two transformation matrices M and M?2.
We remark that each of M* and M? has a scale factor; we cannot determine the two scale
factors due to homogeneity.

The decomposition procedure is divided into two main steps: determining every column

vector of M or M? with an unknown scale factor; and determining the scale factors there
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to uniquely recover M! and M? up to a scale factor, respectively. In preparation for further

investigation, we define 3 x 3 matrices, which together form a partition of T(ij)(k ¢y and T[.L-j](k,_;):

Uy = (Tzz (kk)) Uz := (T(ij)(kk))a

U= (Tunwe),  Us= (Taneo);

Vo= (i) Ver= (Thsien)
where 7 and j together are indices for the column-numbers, and k and ¢ together are for the
row-numbers. In the first step, we use Uy, U; and V3; in the second step, we use the other
three. In the subsequent sections, for simplicity, we assume that no entry of M and M? is
zero. Note that when some of them are zero, based on the procedure below, we can devise a

similar procedure to obtain M! and M?.

Remark 4.1 M" and M? together have 18 entries whereas we have 54 (= 36 + 18) quadratic
constraint equations in them. This implies that we need not necessarily use all the constraint
equations to determine them; instead, we may solve a simultaneous quadratic equation system
with 18 unknowns. However, solving such a system is not an easy computational task and,
furthermore, we may have a number of spurious solutions (theoretically, we may have 2® solu-
tions). Such a method is far from practical. In contrast to this, our decomposition procedure
below uses all the constraint equations. This makes the procedure computationally simple well

as robust with respect to noise. It also gives a unique solution. m)

4.1 Determining column vectors

From the definition, we can see that

. pM}kM +M]1kM
2 ?

<MM MM)
Vs = 5 :

For two matrices N} and N, of the same size, we define Nl/N2 as a matrix of that size such
that an entry of Nl/N2 is obtained by dividing its correspondent entry of N} by that of NV,.

Putting

wh.= 22
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we have, for k € {1, 2,3},

MZ, ML MZ My, M M,
- .- 2k 2k 3k 3k 1k 1k
the k-th row of W ( MM ME T ML MZ, T ML, > ’
LM M MG M ME M,
ME o MY MG My Mg My )’

the k-th row of W? =

14
where ¢ = £ Moreover, by defining
T
Ml Ml ’
1 2k ~1 1k
Top 1= —— Fap = =5 , (4.3)
MY M,
M2 M?
2 2k ~2 ik
Top i= o= T 1= —==, (4.4)
Mg’ M3,
we obtain the following simultaneous algebraic equations with five unknowns:
{
2 1
Tok T Tak = Wa
ok + o = Wi
1 1 .
s vt T Wia
Tok T3k Tok Tk : (4.5)
2 1
Tok ~ T2k = oW
=2 =1 —
T3k — T3k = pWh
1 1
2 T = Wi
3 TR Tak T

We have exactly two solutions of (4.5), and the two solutions are essentially equivalent. This
can be understood in the following way. If (rd., 7., r%, 72, ©) is a solution of (4.5), then
(ri., 72, ra, 7L, —) is also a solution. Hence, we have at least two solutions (it is easy to
see that the two are essentially equivalent). On the other hand, the first five equations are
reduced to an equation of degree 4 in ¢ and the other four unknowns are linearly related to
. We thus have at most four solutions. Two of the four are found to be spurious by the sixth
equation. This is because (4.5) gives six algebraically independent equationsin 73, , 71, r3,, 72,
and ¢. Accordingly, the number of solutions is exactly two; they are essentially equivalent.
Note that the case where the four solutions are all found to be spurious, implies that we cannot
decompose T(ij)([c ¢ and T[ij]([c o together into M* and M?; this contradicts our assumption. It
is important to remark that we easily obtain the two solutions of (4.5) since we can symbolically

solve the first five equations in (4.5).
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For each k& (€ {1,2,3}), we can uniquely determine the k-th column vector of M! up to a
scale factor from r}, and 7}, ; whereas we determine the k-th column vector of M? from 73,
and 7%,. Note that the column vectors of M? are independently determined; we have eight
combinations in constructing M! from the column vectors. This should also be applied to M ?2.
However, ¢ enables us to uniquely construct M and M? from the column vectors. This is
because the value of ¢ is independent of k (i.e., for any k € {1,2, 3}, the same value of ¢ is
obtained by solving (4.5)) and because only the same value of ¢ is permitted in M! and M?.

Therefore, we determine every column vector of M or M? with an unknown scale factor:

M' = [ymi|mmy|ymi], (4.6)
M? = [yim} |4 m] |y mi], (4.7)

where m}, m? are known vectors and ~}, 72 are unknown (i = 1,2, 3).
In the next section, we determine scale factors v} and +? by using Us, Uy and Vy; we uniquely
determine M and M? up to a scale factor, respectively. Note that ¢ is already determined;

the case where the sign of ¢ is reversed reduces to the same results.

4.2 Determining the scale factors

Defining W3 := U, and W* := Uy + ¢ V,, we see that

ML M2+ M} M?
W3 — ik il il ik 4.
(p 5 , (4.8)

M M2, + ML M2
W4 — (p ik 362 14 ]k). (49)

(4.6) and (4.7) respectively allow us to express M}, and M2 as
Millc = ’YI} (mllv)u
]V[z?:@ = ’Y? (m%)h
where (m}); denotes the i-th component of m} and (m?), the £-th of m?2. Substituting these

into the (k¢)-th row ((k£) = (23),(31),(12)) of (4.8) and (4.9), we then obtain simultaneous

linear equations with two unknowns pv}~Z and pvy} v2:

(mg)i (m})

(my)i (mf);

: PV + s o e = Wi
2 (4.10)
(my): (m}); (myp)i (m});
e 2( ov v = Wheai
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where (14) = (11),(22),(33) in the top equation; (ij) = (23),(31),(12) in the bottom
equation. (4.10) gives six equations; it is an overdetermined system of linear equations In
pvivs and pv; 7. Note that at least two equations in (4.10) are independent. No solution
in this system implies that we cannot decompose T(ij)(k ¢ and T[ij](k ¢ into M and M?; this
contradicts our assumption. Hence, the six equations in (4.10) reduce to only two independent
ones. Accordingly, we can determine pvyi~7 and p~v; v2 by solving (4.10).

We now have the values of pvi~2 and pvi~? ((k£) = (23),(31),(12)). Taking ratios of -
them, we obtain v : 43 : ¥4 and 42 : 42 : 42, which yield unique M! and M? up to a scale

factor, respectively.

Remark 4.2 From a theoretical point of view, two of the six equations in (4.10) are sufficient
to obtain p~i~# and pv; v, and the others are redundant; whereas from a practical point of
view, it is better to use all six equations via the method of least squares to obtain the solution.

Using all of the equations leads to robustness of the solution with respect to noise. O

5 Description of algorithm

In Section 3, we showed that if we have at least 17 point correspondences, we can generally
determine 1(; )¢ and Thisik ), and that they are independently determined as the solution
of a linear homogeneous system, respectively (see (3.6) and (3.10)). T¢jykey and Tiijjke)
are uniquely determined up to a scale factor, respectively. In Section4, we showed how to
decompose T(; )(xe) and T} jyx ¢y together into transformation matrices M I and M? where each
column vector of M! and M? is first determined up to a scale factor, and the scale factors
there are then determined to uniquely recover M?! and M? up to a scale factor, respectively.
Note that ¢ plays an important role in constructing M*' and M? from the column vectors.
Based on these results, here we describe an algorithm for computing transformation matrices
from given point correspondences.

We assume that we are given the coordinates of two images (before and after a motion)
of a point in one of two planes. We also assume that the given point correspondences allow
us to uniquely determine 7';;x¢) and Tj;;ke) up to a scale factor, respectively. If the given
point correspondences do not allow us to determine Ty; ;)¢ and Tk o) ,b we then may shift

our attention to the results in Section 3.4; we estimate a configuration of given points or a
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relation among the translation vectors and the normal vectors of two planes.
The following algorithm is obtained for computing M and M? from given point correspon-

dences {x;,y,};-,. We recall that once a transformation matrix is known, we can (almost
uniquely) determine [18] the rotation matrix, the translation vector and the normal vector of
the plane, where singular value decomposition of the transformation matrix plays the central
role. We should note that P > 17 and at least seven points exist in each plane. We should

also note that 7,7, k&, ¢ € {1, 2,3}.
Step 1 [Determining the symmetric part and the alternating part]

(1): Create a 3P x 36 matrix S such that the (g, (i )(k £))-component .S, (; jyx o) is

Ssp-2iiee = V(5,50 [y, ] [y, "W 2l )
Ssp-vikn = D550 [y, 170 [y, )P 2l 2D (p=1,2,...,P),
Sy = 5,k 0 [y, 1" [y, ]P0 2k 20

where x z}, 22, 23)T. Also create a P x 18 matrix A such that the (p, [¢ j](k £))-
p = UIppdpdp V2R

component Ap[; jx¢) 1S
Apige = V00,5, k0 zFzdyct) (p=1,2,...,P).

(2): Compute an eigenvector that corresponds to the zero-eigenvalue of STS; let T(ij)(k 0
be the eigenvector. Also compute an eigenvector that corresponds to the zero-
eigenvalue of ATA:; let T[ij](ke) be the eigenvector. (QR decomposition may be

useful.)

Step 2

Create 3 x 3 matrices Uy, Uy, Us, Uy, V3 and Vj from T(ij)(k ¢ and T[ij](k 0.

Step 3 [Determining each column vector]
2U;
1): wh.==2,
( ) U1 ’
2V3
W2 .= 2=,
Uy

(2): For each k (€ {1,2,3}), solve (4.5); let (r3;, 73, 12, 75, ) be a solution (we have

two solutions which are essentially equivalent).



(3): For k (€ {1,2,3}),

T

1. 1 1 1 .

my = yToks e s
T3k

T
2. (1,2 1
my = LT 5 | -
T3k

(¢ should be the same here and the ¢ should be used in the next step.)

Step 4 [Determining the scale factors]

(1) : W3 = UQ;
W4 = U4 + 2 K/4

(2): For each (k&) (€ {(23),(31),(12)}), solve (4.10); let pyi~7 and pv; vZ be the

solution. (The method of least squares may be useful.)
(3): Compute v} : i : 4t and 4% : 43 1 3.

(4): Construct M* and M? (cf. (4.6), (4.7)). O

6 Conclusion

We have investigated the structure-from-motion problem under the conditions that two
planes independently and rigidly move and that, for given two perspective images, the corre-
spondences of points in the planes are known.

We showed that we can generally determine the normal vectors of the two planes and the
two motions when we observe 17 points, where the tensor product of two transformation
matrices and its decomposition play the central role. Our procedure for determining them
is divided into two parts: one is to determine the symmetric part and the alternating part
of the tensor product, and the other is to decompose the two parts together into the two
transformation matrices. Note that singular value decomposition of a transformation matrix
leads to determining (almost uniquely) the normal vector of a plane and the motion parameters.

In the first part, we decomposed the tensor product of the two transformation matrices into
its symmetric part and its alternating part, and investigated each part separately where the
symmetrization and the alternization enabled us to reduce the number of unknowns. The sym-
metric part has 36 independent unknowns and each point correspondence gives three linear

homogeneous constraint equations to them. In contrast, the alternating part has 18 inde-
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pendent unknowns and each point correspondence gives one linear homogeneous constraint
e(iuation to them. Therefore, in general, we can uniquely determine each part up to a scale
factor with linear computation. In addition, we geometrically characterized the constraint on
the alternating part as a “coplanarity condition” on the coordinates in the second image, and
the constraints on the symmetric part as a “parallel condition”.

In the second part, we gave a procedure to decompose the two parts together into two
transformation matrices. The procedure makes full use of the consfraint equations in order
to determine two transformation matrices from the two parts. Using all of the constraint
equations leads to a computationally simple procedure as well as a robust one with respect
to noise. It also gives a unique solution up to a scale factor (eliminating the scale factor is
impossible due to homogeneity). Our decomposition procedure has two main steps: one is
determining every column vector of the transformation matrices with an unknown scale factor,
and the other is determining the scale factors there to uniquely recover the two transformation
matrices up to a scale factor, respectively. Here the ratio of the scale factors incurred in
determining the symmetric part and the alternating part plays an imp‘ortant role in uniquely
constructing the transformation matrices.

We also investigated some critical conditions, namely, conditions that do not allow us to
determine the symmetric part or the alternating part. Two cases were distinguished: one is
the case where two planes themselves do not allow us to determine the symmetric part or
the alternating one, and the other is the case where points in a special configuration do not
allow us to do so. In the first case, we showed that when two planes share the same rotation,
we cannot determine the alternating part if the two normal vectors are parallel or the two
translation vectors are parallel. In the second case, we showed that unless we have at least
four points in each plane such that no three of them are collinear, we cannot determine the
symmetric part. Whereas we gave a conjecture for the alternating part: unless we have at least

seven points in each plane or have four points in each plane such that no three of them are

collinear, we cannot determine the alternating part. Furthermore, we showed that when the

number of points in one of two planes does not reach the critical number (4 for the symmetric
part; 7 for the alternating part), we can estimate the possible number of points in the plane

just by counting the number of zero-eigenvalues of the coefficient matrices to determine the
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two parts. We should remark that we have not investigated all critical conditions. In other
words, in the first case we focused only on parallelism and perpendicularity, and in the second
case we discussed only the number of points we need in each plane. Some other conditions (if
any) may cause indeterminacy in the symmetric part or the alternating part. Investigation of
other critical conditions is left open in this paper.

Throughout this paper, we also assumed that we are given the coordinates of two images
(before and after a motion) of a point in one of two planes. This assumption is crucial in a
certain sense because in practical situations, we have no way of knowing whether or not given
points exist in one of two planes. As we have seen, when we determine the symmetric part
and the alternating part (see (4.1) and (4.2)), we can determine whether or not a given set of
point coordinates was obtained from two planes. However, this is not an easy computational
task; we have a number of combinations. Instead, during the decomposition procedure, we
may make use of the redundancy of the number of constraint equations in order to check it.
Theoretical considerations on this problem are left open for future research.

Implementation details and practical efficiency of the proposed algorithm will be reported

later.
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Fig. 1: Two independently and rigidly moving planes
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values (-log)

20; -

values (-log)

20},
15 15
10 10
5 5
- 'l.O' ST eigenvalue number = e '10 TETT eigenvalue number
Pl =7 Pl =6
values (-log) values {(-log)
200 ., | 200, .,
15 15
10 10
5 5
z '1'0 T eigenvalue number z .1'0' 1t 5 eigenvalue number
Pl =5 Pl =4
values (-log) values (-log)
200, .., 200, ..,
15 15
10 10
5 S
o~ + igenvalue numb ta :
5 10 T5 elgenv: exr z o TETT eigenvalue number
Pl =3 Pl =2
values (-log) values (-log}
20 - - 200, ..., ..
15 15
10 10
5 5
RPN i alue numb i 1 umb
5 10 75 . ergenv number z n 75 eigenvalue number
Pl - 1

PI:O

Fig. 2: P, and eigenvalues of A (P, = 17 — Pj; two planes and two motions were randomly

chosen and fixed, points were randomly generated at each time)
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Table 1: Estimation of possible number of P;
P+P, > 17 and P, < 6 are assumed where P; denotes the number of points in plane i (i = 1, 2).
s and a denote the number of zero-eigenvalues of the coefficient matrices in determining the

symmetric part and the alternating part, respectively.

(s, a) Py
(1,2) 6
(1,3) 6 or 5
(1,4) 4
(3,5) 3
(5,6) 2
(7,7) 1
9,8) 0
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A  Proof of Theorem 3.3

Let z be a vector in R'® that is obtained by aligning the entries of Tj; ;jx,¢)- Here we align the
entries in the order such that [ij](k¢) = [23](11),[31](11),[12](11),[23](22),...,[12](12).
We can then rewrite (3.10) in the form of a linear homogeneous system (in entries of z) as

follows:
Az = 0. (A1)

Since A is a P x 18 matrix and P > 17, rank A = 15 is equivalent to dim (Ker A) = 3. As we

can easily see, to prove dim (Ker A) = 3, it suffices to show (I) and (II) below.

(I) We have three linearly independent nontrivial solutions of (A.1).

(IT) Any other solution of (A.1) is expressed as a linear combination of the three solutions.
Since R = I, we have
M' = I+t (nh)T,
M* = T+t (n?)T
Thi jj(k o) 18, therefore, reduced to
1
Tujen = ththning + 3 [0 (£2nF — thnl) + Gie (3} — thn})
=0 (i —thnd) = G (i —tind)],  (A2)
where 0; denotes the Kronecker delta (64 = 1 for ¢ = k and = 0 otherwise). This is the
[¢ j](k £)-component of a solution of (A.1). For two cases, (i) t? = at! and (i) n? = fn?, we
show (I) and (II).
Casei (t?=cat!) : Since t* = at!, we can hide ¢? in (A.2). The [i j](k ¢)-component of

a solution is then rewritten as

Héik(an? —ng) + 6i£(ani — n,lc)} t;

B

Tiigwe =
- {5jk(an3 —ng) + &e(ani — n;{)} tﬂ .
Here t* = (¢4, ¢5,¢4)" and n' = (n},ni,ni)". R = I indicates that y = x + t* if a point

is in plane 1; y = x + t2 if it is in plane 2. In either case, we have

tl tl 1 vl
2 té x1$1y2 -2 t% x1x1y3 —4 —2§ $1$2y1 +4 —21 3;13;23/3 +4 % $1x3y1 —4 ;—1351:r3y2 = 0

30



(see (3.10)). Hence

z =<Ovt1-—7:10000000001751—17510—175101#)T
1 Y3 2yaa)7a77”22a217a23a321

is a solution of (A.1). In a similar way, we have two other solutions, both of which are
linearly independent of each other and independent of z;:

1 1 1 1 1 1 1 1 1 1 B
22 = O, 0,0, 0,0,0,tQ, —tl,o,—§t3,0, 5751,0, §t3,'2—t2,0, 0’0 3

1 1 1 1 1 1 1 1 1 1 T
z3 = 07070a_t3a0)t1>0,0’07§t2)_§t1a0707070707§t31_§t2 '

We thus have three linearly independent solutions of (A.1); (I) is established. Any other

solution z* is expressed as a linear combination of z;’s:

3
z* = -EZ(ang—ni)zs,
2 s=1
which yields (II).
Case ii (n? =fn!) : Since n? = fBn', we can hide n? in this case. The [i, j](k £)-

component of a solution is then rewritten as
T B il L5 (842 — 1) — S (B2 — D)) 1l
ilke) = /Bt[itj]nkn£+4[{ ik (Bt; —1;) — 66 (Bt — 1)} ng
+ {0 (B2 — t1) — 050 (B2 — t})} mi].

It is easy to see that 2z; (i = 1,2,3) below are three linearly independent solutions of

(A.1). Any other solution z* is expressed as their linear combination:

from which (II) follows.

Z = (ﬂ”i tas, Bnitar — Ats, By bra + Aby,
0,0,0,
0,0,0,
0,0,0,
5(5”3 tag — Aty), 5(5”3 31 + Aty), 55713 t12,

1 o 1 o 1 o
5(5 ny tos + Ats), 55”% t31, 5(5”% i — Ah)) .
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z; = (0,0,0,

Bny tos + At Bng t31, Bns tp — Aty,

0,0,0,

5(5”3 tas — Aty), 5(5713 ta1 + Aty), 5Bn3t,

0,0,0,

1 .. 1, ., 1 .

55 ny tog, "2—(5 ny s — Ats), 5(5 ny tiz + Ata) ),
zi = (0,0,0,

07 O’ 0’

Bng tos — Aty, Bn; ta1 + Aty, Bn} t12,

1 o 1 o 1 v

5(5@ tos + At3), 55”% t31, 5(5 nj 1y — Aty),

1 o 1 o 1 o

55 ny tas, 5(5 ny ta — Ats), 5(5 n} s + Aty),

O) 07 0)’
where £;; := t} 12 — t1¢7 and At; = §¢7 — t}

As we can see, when t2 = at!, n? = fn! and a-8 = 1 hold, two planes cannot be distinguished.
In other words, we are in the situation where the two planes appear to coincide with each other
and they completely share the same motion. Therefore, dim (Ker 4) = 8 from Conjecture 3.1,

which is equivalent to rank A = 10. This completes the proof of Theorem 3.3.

B Proof of Theorem 3.4

We first show (1). Py + P, > 12 is obvious due to Theorem 3.2.

In order to show the others, we should recall the discussion in Section 2.2 for the case of one
plane alone. That is, when one plane is concerned, we can uniquely determine a transformation
matrix up to a scale factor if we have “general” four point correspondences. Here “general”
implies that no three of the four points in a plane are collinear. This is because three collinear
points give only four independent constraint equations in (2.4). Therefore, if we can determine
a transformation matrix, then we have at least four point correspondences and we have four
points such that no three of them are collinear.

Now we turn to our case where two planes are concerned. Since Ty; ;) is derived from two
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transformation matrices, we cannot determine 7; ;) ¢) unless the two transformation matrices
are determined. For each plane, we cannot determine its transformation matrix unless we have
“general” four points. Therefore, if min(P;, P») < 4 or we have no “general” four points in
each of the two planes, then we cannot determine T{; ;yx ). This completes the proof of (1).
We next prove (2). The assumptions indicate that we can uniquely determine M? up to a
scale factor; whereas we cannot determine M!. Since each point in plane 1 gives two indepen-
dent constraint equations in (2.4), we have (9 — 2P;) linearly independent solutions when we
regard (2.4) as a linear homogeneous system (in entries of M*). Let M! (s =1,2,...,(9-2P,))
be the (9 — 2P;) linearly independent solutions. Then, any other solution M! is expressed as
a linear combination of M!’s. Note here that we do not align the entries of M! to derive a
vector; instead, we directly use each entry and the ‘.‘solution” is used for each entry in this
case. From Msl and M2, we can derive T(Sij)(ke) as a counterpart of Ti;;yke. And T(Sij)(u)
satisfies (3.6). In other words, if we regard (3.6) as a linear homogeneous system in T(; jy(x¢),
then T(sij)(k ¢’ are all of the solutions. Since T(Sij)(u) is linear in entries of M}, we can see that
T(S; kD) ’s are linearly independent solutions and any other solution T; ;¢ is expressed as the

linear combination of T(Si fke's- This yields (2).
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