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Abstract 

In the analog Hopfield network and the mean field theory (MFT) of the 

Boltzmann machine, bifurcations of solutions occur during the course of the 
annealing procedure. In this report, we investigate the MFT bifurcation pro-

cesses when MFT is applied to traveling salesman problems (TSPs). A TSP 
has two types of symmetries, i.e., cyclic and reverse. These symmetries af-
fect the bifurcation structure. This report also describes some features of the 

MFT annealing procedure. The algorithm does not necessarily give unique 
solutions, and it does not guarantee the optimal solution. Consequently, MFT 
annealing has a non-deterministic property and results in "not-so-bad" solu-
tions, in general. To overcome the limitations, we also propose a couple of 
modified algorithms. 
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1 Introduction 

The analog Hopfield network always converges to a local minimum of its Lyapunov 
function. [1] When the slope of the sigmoidal output function becomes large, the 
Lyapunov function is nearly equal to the energy function, which has a quadratic 
form of the state variables. By utilizing this feature, the Hopfield network can be 
used for solving combinatorial optimization problems defined as a minimization of 
the quadratic energy function.[2] 

Peterson and Anderson[3] showed that the Hopfield network is equivalent to the 
mean field theory (MFT) of the Boltzmann machine. The Lyapunov function of the 
Hopfield network corresponds to the free energy function in the MFT. This implies 
that the Hopfield network finds a local minimum of the free energy function in the 
MFT. 

Wilson and Pawley[7] reported that the Hopfield network is not a good algo-
rithm for solving combinatorial optimization problems when the problem scale is 
not very small. Neural network approaches need some additional mechanisms for 
relatively large scale problems. One of them is a gradual slope enlarging of the 
sigmoidal output function, i.e., a gradual lowering of the system's "temperature," 
which corresponds to a well-known annealing mechanism. This is the mean field 
annealing (MFA) algorithm.[4, 6] The free energy function has a unique minimum 
at high temperature. On the other hand, it has a lot of minima at low temperature, 
which correspond to local minima of the quadratic energy function. Then, as the 
temperature is gradually lowered, bifurcations occur and new minima are generated. 

In this report, we investigate bifurcation processes of the MFT solutions when 
MFT is applied to traveling salesman problems (TSPs). A TSP has two types 
of symmetries, i.e., cyclic and reverse. These symmetries affect the bifurcation 
structure. This report also describes some features of the MFA procedure. The 
algorithm does not necessarily give unique solutions, and it does not guarantee the 
optimal solution. Consequently, MFT annealing has a non-deterministic property 
and results in "not-so-bad" solutions, in general. To overcome the limitations, we 
also propose a couple of modified algorithms. 
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Mean field theory 

Many NP-complete optimization problems can be described as a quadratic energy 
minimization problem for binary variables Sn(= 0 or 1): 
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1 N N 

E(S) =— L Wnm品品+LJふ，
2 n,m=l n=l 

(2.1) 

where Wnm = Wmn・In this formulation, constraints are treat.ed as soft constraints. 
The values of the parameters Wnm and ln are determined for each problem. In the 
MFT, analog variable Vn E [O, 1], which represents the probability that the binary 
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variable Sn takes the value 1, is introduced. Then, the free energy is given as follows: 

F(V) = E(V) + T・I:[Vn log Vn + (1 -¼ 砂log(l-¼ 砂十log2], (2.2) 
n 

where T corresponds to the temperature in statistical mechanics. A minimum of the 
MFT free energy, which corresponds to an equilibrium point in statistical mechanics 

with the energy (2.1), satisfies the stationary condition of the free energy function: 

広＝一 LWnmVm-Jn, 
m 

1 
Vn = G(U砂三 1 + e-Un/T. 
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The solution of this MFT equation can be obtained by using the a叫 ogHopfield 

network[l]: 

dUn(t) BF 

dt 
T =--=—広(t) -I: Wnm Vm(t) -心 (2.4a)avn 
Vn(t) = G(Un(t)), (2.4b) 

or the asynchronous MFT equation. 
At high temperature (T→ oo), the free energy (2.2) is dominated by the entropy 

term, i.e., the second term of the r.h.s. of (2.2), and there is a unique minimum. 

At low temperature (T→ 0), the free energy function F (V) is nearly equal to the 
energy function E(V). In addition, local minima of the energy function occur at 
the hypercube corners (Vn E {O, 1}) if Wnn = 0. Therefore, at low temperature, 
there are local minima of the free energy function (2.2) that correspond to those of 
the original energy function (2.1). If the temperature is fixed at a low value, which 
local minimum is found is dependent on the initial condition. 

In order to get a good local minimum of the energy function (2.1), mean field 
annealing (MFA) can be used. First, the MFT equation (2.3) is solved at high 
temperature, and a unique minimum is obtained. Then, after the temperature is 
slightly lowered, the MFT equation is solved starting from the higher temperature 

solution. By continuing this process, one can get a low temperature solution that 
corresponds to a local minimum of the energy function (2.1). During the course of 
temperature lowering, bifurcations occurs and new minima are generated. These 
bifurcation processes are dependent on the structurally stable symmetries in the 
problem. 

3 Symmetries in TSP 

Let us consider the case of TSPs. An energy function for a TSP is given by 

E(V) 
N N 1 

＝ー L Wa,n;b,m Va,n Vb,m + L Ja,n Va,n + E。， 
-、 a,b,n,m=l a,n=l 
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1 
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2 I: Dab兄，n(Vi,(n+l)+ Vi,(n-1)) (3.1) 
a,b,n=l 

+ 4 [L(L Va,n -1)2 + L(L Va,n -1)2 + 2喜 (1-Va,n) , 

where N is the numb~r; cities, V0,n re;re;ents the probabGity that the Lesman 
visits city a at then-th visit, and Dゅ denotesthe distance between city a and city 

b. The free energy function is defined as: 

F(V) = E(V) + T・L[Va,n log Va,n + (1 -Va,n) log(l -Va,n) + log 2]. (3.2) 
a,n 

＼
 

The energy and free energy functions are invariant under the N-th order cyclic 

transformation: V ----+~ ょ:viv(m = 1, …, N -1), where ('7炉V)a,n= Va,n+m, and 
the N-th order reverse transformation: V一露ly(m = 0, 1, ... N -1), where 

（叫ぎV)a,n= Va m-n・Due to these symmetries, a solution of an N-city TSP has 2N 
equivalent representations. 

There is a symmetric stationary solution Vs of the free energy function for any 
T: vs a,n = v; (a,n = 1, …, N). vs is a stationary solution of the reduced free energy 
function: 

A 
凡/N = LDab½ ぷ＋万[NI:(Va -1/N)2 + (I: Va -1)2 + 2 I: Va(l -Va)] 

a,b 

+T L[Va log Va+ (1 -Va) log(l -Va)]. (3.3) 

Since TJ['1lvs coincides with vs, vs has the N-th order cyclic symmetry. Moreover, 
since R,[N]Vs 

m coincides with VS, vs has the N-th order reverse symmetry. Since the 

free energy function (3.2) has a unique minimum at high temperature, the unique 

minimum must be vs. Below the critical temperature, this symmetry breaks down 

and partially symmetric solutions or non-symmetric solutions appear. 

In what follows, we consider a bifurcation process that occurs at V = V* and 
T = Tc, Let us assume that V* has the N-th order cyclic symmetry. Although N 

is the number of cities, the following discussion can be expanded to the case where 
N is a divisor of the number of cities. The bifurcation point satisfies the stationary 

condition: 8F/8Va,nlv•,Tc = 0. Near the bifurcation point, the free energy (3.2) can 

be expressed as a Taylor series with respect to t5Va,n = V a,n V* a,n, and E = T-T, ぶ

F(V* +'5V, Tc+ c) = F(V*, 匹） + ! L Ma,n;b,m6Va,n6%,m 
2 a,b,n,m 

1 1 
十一こ叫，n鱈＋— I:a[2Ja,nov; 心＋… (3.4) 
3! a,n 4! a,n 

1 
十ELb[l ]a,n6Va,n + -E戸 [2]a,n6V:ふ＋…，

a,n 2 a,n 

where Ma,n;b,m = Wa,n;b,m +t5a,b6n,mTc/ (Va~n (1-va~n)), a[l ]a,n = Tc (2Va~n —1)/(Va~n(l
Va~n))2, a[2]a,n = 2Tc(3(Va~n)2 -3Va~n + 1)/(Va~n(l -Va~n))3, b[l]a,n = log(Va~n/(1 -
Vふ））， andb[2]a,n = 1/ (V: ふ(1-V: ふ））．

4 

9̀
I1 



Because of the invariance under the N-th order cyclic transformation, the cur-
vature matrix of the free energy function, M, has the symmetry: 

Ma,n;b,m = Ma,(n+k);b,(m+k) = Ma,N;b,(m-n) (k = l, ... , N). 

Then, M is commutative with T乳 eigenvectorsof the curvature matrix M are also m 

eigenvectors of the N-th order cyclic transformation 7[N]_ The eigenmodes of M m 

are characterized by the N-th roots of 1: 

a(k) = exp(21rki/N), a(k)八'=1, a(k) = a(k)―1 = a(-k), k E f N, (3.5) 

where「N= {0, 土1,…，土(N/2-1), N/2} for even N, and rN = {O, 士1,…，土(N-
1)/2} for odd N. The eigenvector of M associated with a(k) can be written as: 

va(k)・a(kt (a, n = 1, …，N). Then, the reduced eigen equation for va(k) is written 

as N 

こ叫）a,bvb(k) =屈(k) (a=l, …，N), (3.6) 
b=l 

where D(k)a,b = I:1;;=1 Ma,N;b,na(kt. By using the fact that M is a real sym-
metric matrix, it can be proved that n (k) is also a real symmetric matrix and 
O(k) = 0(-k) holds. This implies that va(玉） = Va (k) and eigenvectors of M, 
(va(k)a(kt) and (va(k)o:(-kt), have the same real eigenvalue, so that an eigen-
value corresponding to complex o:(k) is doubly degenerate and an eigenvalue cor-
responding to real a(k)(= 1 or -1) is simple. Let va(r, k) and入(r,k)be the r-th 
(r = 0, 1, …，N -l) eigenvector and the corresponding eigenvalue of (3. 6), respec-
tively. Then, oVa,n can be expressed using the eigenmode coordinate Zr,k as: 

N-1 

叩，n= I: 区Zr,k・(va(r,k)・a(kt) 
kEI'N r=O 

(a,n = 1, …，N). (3.7) 

Since 6Va,n is real and va(r, k) =島(r,k) = Va(r, -k), 各，k= Zr,-k holds. In terms of 
the eigenmode coordinate Zr,k, the N-th order cyclic transformation becomes 

Zr,k --t~ ょ~]各，k = a(k)m各，K (m = 1, …, N-1). (3.8) 

When the solution V* has the N-th order reverse symmetry, the N-th order reverse 

transformation for the eigenmode coordinate Zr,k becomes 

Zr,k―→冗闘戸=x(r, k)a:(k)m孟，K (m = 0, 1, ... , N -l). (3.9) 

The value of x(r, k) is + 1 or -1, and it is called the reverse symmetry index. 

4 Bifurcations in TSP 

4.1 Symmetry breaking bifurcation 

First, we consider a case where V* has the 5th order cyclic and reverse symmetries, 
a complex o:(1) becomes a zero eigenvalue mode, and x(r, 1) = 1. The indices a and 
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r are neglected for convenience. The free energy function (3.4) is described in terms 

of eigen coordinate { z叶k= 0, 土1,士2}as: 

F(V* + 8V, Tc+ E)/5 = 
1 1 
―入(O)z5+〉,(2)ゑ・2硲+Eb[l]zo +—Eb[2](畷+2(均z1+均硲））
2 2 
1 

+-a[l](z8 2 2 
3! 

+ 6zo(詞＋芦） + 3(z心 +z心+z1砂十Z渇）） (4.1) 

1 
冒 a[2]{z6+ 12翡（麟＋恥） + 12zo(討＋尋＋碍＋晨）

+6((ぇ:iz1)2+ (z了2z2)2+ 4(芝1z1)(乏:2z2))+ 4(zr z2 + zrえ'2+ z1芝芸＋乏了1zJ)}+ ... , 

where a[l]n = a[l] (n = 1, …, 5), and so on. Only th・ e mvanant combmat10ns under 
the 5th order cyclic and reverse transformations appear in (4.1). By considering 
the leading order terms in (4.1), the non-zero eigenvalue modes z。andz2 are of 
order 1:, and the zero eigenvalue mode z1 is of order 1:112 at the stationary point. 
By assuming that z1 is of order 1:112, the stationary conditions for z。andz2 can be 
solved successively, and z。andz2 can be expressed in terms of z圧

zo = C6~1五 +d翌 (z1z1) + C6:{E(z1z1) + C6~(z1z1戸+ Cci~{ (zf + zf) +… (4.2a) 

z2 = c~~lzr + C今~lzr + Ectl zf + ct~zr (ゑ1z1)+ ... , (4.2b) 

where c(s)'s are coefficients of order Es/2 which can be determined by considering 

the terms of order Es/2 in fJF / 8咋=0. Substituting (4.2) into (4.1), one can get the 

effective free energy for the zero eigenvalue mode zじ

1 1 1 
F(z1) =—年（忌叫＋ー屯（乞1z1)2 + -d3国＋畔）＋…，

2 4 5 
(4.3) 

where di/5 = 2b[2] -2a[l ]b[l ]/入(0),d2/5 = a[2] -2a[1]2 /入(0)-a[l門／入(2),and 

d3/5 = 5a[lド/(8入(2)2)-5a[l]a[2]/(12入(2))+a[3]/24. This effective free energy func-
tion is composed with the elementary invariant combinations, (z1z1) and (zf + z『)，
because of the invariance under the 5th order cyclic and reverse transformations. 

The leading order terms, E(乏口） and (い丁 in(4.3), are invariant under the con-

tinuous transformation: z1~ei0釘 (0 :S 0 < 21r); the leading order solution is 
continuously degenerate. However, the higher order term, (zf +畔）， whichis not 

invariant under the continuous transformation, breaks this degeneracy. Defining a 

polar coordinate by釘=,占 thefree energy (4.3) can be written as 

↑

¥

l
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•V\’ 

1 1 2 
F('Y, ¢) = -d1q2 +ーd214+ -d3"f5 cos 5¢+… 

2 4 5 

The stationary conditions: oF/81 = 0 and oF/8¢= 0, have a symmetric solution: 

(4.4) 

1 = 0 (4.5) 
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for any E. If (Edi/ d砂く 0,there is another set of solutions: 

,=喜+O(t:) 

cp = jn /5 (j = 0, 1, ... , 9) . 

(4.6a) 

(4.6b) 

In addition, by considering the curvature matrix of (4.4), the stability of the solutions 

(4.5) and (4.6) can be determined. If d匡>0, (4.5) is stable and all of (4.6) are 

unstable. If d1E < 0, (4.5) and half of (4.6) are unstable, and the other half of (4.6) 
are stable. In the latter case, if d3 < 0 (> 0), j:even (odd) solutions of (4.6) are 
stable. Let us denote j:even (odd) solutions by 

z~[J] = 咋 叫J/5

zr[J] =誓加J/5)+(i疇） (J=O,l, …，4). 

(4.7a) 

(4.7b) 

Under the 5th order cyclic and reverse transformations, a j :even (odd) solution is 

transformed to another j:even (odd) solution. Moreover, it is proved that they have 

a 1st order reverse symmetry: 

喜叫l= zf[Jl 

芯[J]z『[J]= zf[J] 

for m[J] = 2J (mod 5), 

for m'[J] = 2J + 1 (mod 5). 

(4.8a) 

(4.8b) 

Therefore, the cyclic symmetry is broken while the reverse symmetry is preserved; 

this is a cyclic symmetry breaking bifurcation. 

Four types of cyclic symmetry breaking bifurcation diagrams are illustrated in 

Figure 1. In Fig. la, where d1 > 0, 屯>0, a minimum with the 5th order cyclic 

symmetry for T > Tc becomes a saddle point and five minima appear together with 

five saddle points for T < Tc. In Fig. ld, where d1 > 0, 必く 0,a minimum with 

the 5th order cyclic symmetry for T >冗 becomesa saddle point, and there are 

ten saddle points without the cyclic symmetry for T > Tc, Fig. 1 b is the case: 

d1 < 0, 必>0, and Fig. lc is the case: d1 < 0, あく 0.All of the solutions have the 

reverse symmetry. 

三＼．、
a 

~/ 
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Figure 1 
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4.2 Possible bifurcations 

Here, we describe all of the possible bifurcations in the MFA procedure for a TSP. 
They are classified by the symmetry of the eigenvector that corresponds to the zero 

eigenvalue mode of the free energy curvature matrix at the bifurcation point. 

• N = 1 case 
If V* has no symmetry, i.e., N = 1, a saddle-node bifurcation occurs. 2N 
equivalent minima appear or disappear simultaneously. This type of bifurca-

tions are most typically observed. 

• o:(O) case 
When V* has the N-th order cyclic symmetry and no reverse symmetry, and 
one of the eigenvectors that correspond to o:(O) (= 1) becomes a zero eigenvalue 
mode, a saddle-node bifurcation occurs. If V* also has the reverse symmetry 
and the corresponding x is 1, the reverse symmetry is preserved. If the cor-
responding x is -1, a pitchfork bifurcation (or, a reverse symmetry breaking 

bifurcation) occurs. 

• o:(N /2) case 
When N is even and one of the eigenvectors that correspond to o:(N/2)(= -1) 
becomes a zero eigenvalue mode, a pitchfork bifurcation occurs. 

• o:(K) case (cyclic symmetry breaking) 
Almost the same argument as in Sec. 4.1 can be given for general N and 
K (=f. 0, N /2) if there is no common divisor for K and N. In this case, the 
bifurcation diagrams are the same as in Fig. 1 except that five equivalent 
solutions are replaced by N equivalent solutions. If V* also has the reverse 
symmetry, it is preserved, in general. However, there is an exception, that 
is, when N is odd and the reverse symmetry index x is -1. In this case, 
the relation like in (4.8) does not hold, and the reverse symmetry is broken. 

As a result, the N solutions in the bifurcation diagrams are replaced by 2N 
solutions with no symmetry. 

• partial cyclic symmetry breaking 
Let us assume that the greatest common measure of N and K is Q (> 1). Let 
R = N / Q and P = K / Q. In this case, a partial cyclic symmetry breaking 
bifurcation occurs. Intuitively, this type of bifurcation occurs due to the fact: 
o:(J<)R = 1. The bifurcation diagrams are the same as in Fig. 1 except that 
the five solutions without the cyclic symmetry in Fig. 1 are replaced by R 
solutions with the Q-th order cyclic symmetry. The solutions with the Q-th 
order cyclic symmetry may bifurcate through another cyclic symmetry break-
ing bifurcation. The effect of the reverse symmetry is the same as in the a(}〈)
case above. 

9
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5 Features of MFA procedure 

In Sec. 4, local descriptions of the MFA bifurcation processes are shown. In this 
section, the MFA procedure, which is a series of bifurcations, is discussed. 

1. Non-deterministic feature 
Figure 2a is a typical example showing a bifurcation diagram of a 5-city TSP, 
where Vぃ(i= 1, …, 5) of every minimum are plotted against temperature. 
Figure 2b is the corresponding free energy diagram. When T > 0.69, there is 
a unique minimum vs with the 5th order cyclic and reverse symmetries. At 
T~0.69, and 0.67, saddle-node bifurcations occur, and ten minima appear 
simultaneously. At T~0.615, a cyclic symmetry breaking bifurcation occurs, 
and vs bifurcates into five minima without the cyclic symmetry but with the 
1st order reverse symmetry. Because of the reverse symmetry, there are only 
three cascades observed in Fig. 2a. At T~0.61, a reverse symmetry breaking 
bifurcation occurs, and each of the five minima with the 1st order reverse 
symmetry collides with saddle-points and eventually becomes a saddle-point. 
After this bifurcation, the annealing solution disappears like in Fig. ld. At 
this temperature, there exist two sets of minima, which are generated through 
saddle-node bifurcations. The free energy levels of those minima are lower 
than that of the disappearing minima as Fig. 2b shows. In this case, due 
to the instability of the disappearing bifurcation point, which minimum is 
found is ambiguous, even though the procedure is deterministic. This implies 
a non-deterministic property of the deterministic MFA procedure. 

2. Free energy crossing 
We can observe this phenomenon in Figures 3a and 3b, which are the bi-
furcation diagram of another 5-city TSP and the corresponding free energy 
diagram, respectively. At T~0.61, the symmetric minimum disappears and 
the annealing solution changes to one of the minima that appear at T~0.67. 
However, the free energy levels of these annealing minima and the new born 
minima that appear at T~0.60 cross one another and the free energy level 
of the annealing minima becomes higher than that of the new born minima. 
After the crossing, the annealing solution turns into a local minimum. In fact, 
the new born minima correspond to the optimal solution and the annealing 
minima do not correspond to any of the valid Hamilton passes. In this case, 
the MFA deterministically results in a failure. 

Accordingly, the MFA procedure does not necessarily give a unique minimum 
solution, even though the procedure is deterministic. And, it does not guarantee 
the optimal solution, either. Adverse situations have been found to occur more often 
as the number of cities becomes large. Therefore, the MFA has a non-deterministic 
property and results in relatively good, i.e., "not-so-bad" solutions, in general. Care-
ful annealing does not necessarily improve these properties. 

，
 



Let us briefly discuss the convergence. Figure 2c shows the convergence time that 
corresponds to the bifurcation diagram shown in Fig. 2a. The ordinate indicates the 
number of rounds until the difference of the MFT solution 6V in a round becomes 
smaller than 10-6. In a round, all the variables are updated exactly once. When 

a cyclic symmetry breaking bifurcation or a reverse symmetry breaking bifurcation 
occurs, it takes a long time to converge. However, the latter is much shorter than 

the former. 

↑
'
 

6 Algorithm modifications 

6.1 Suppressing cyclic symmetry breaking 

Cyclic symmetry breaking bifurcations are quite time consuming for convergence, 
because the free energy has quite a flat surface around the bifurcation point. We 

can eliminate cyclic symmetry breaking bifurcations by clamping the tour starting 

city, like: V1,o = 1, ½,n = 0 (n = 1, ... , N). This means the salesman starts from 
city 1. Figure 4a is the modified bifurcation diagram for the same 5-city TSP as in 
Fig. 2. Figure 4b shows the convergence time. Since only reverse symmetry break-
ing bifurcations occur with this modification, the convergence time becomes much 
shorter than that in the original MFA shown in Fig. 2c. Although this technique 
changes the free energy function (3.2) when T > 0, it does not worsen the obtained 
solutions. In fact, it improves them. 

In Table 1, we compare the modified MFA with the original MFA. The tempera-
ture is decreased as: c5T = 10-3, and the convergence is determined as: c5V = 10-6. 

The parameter A is set to be 1.5 ~ 1.6 in the original MFA, and 1.8 ~ 1.9 in the 
modified one. We prepared five testbeds for evaluation; they are 10-city, 20-city, 30-
city, 40-city, and 50-city TSPs. Each testbed consists of 100 sets of city allocations 

that are randomly generated in a unit square. The annealing procedure starts at a 

fixed temperature for all city allocations; Tinit = 1.5 for the 10 ~ 40 city testbeds, 
and孔nit= 0.8 for the 50-city testbed. In each column of the table, the three figures 
denote the number of valid tours obtained among the 100 sets, the averaged tour 
length, and the averaged convergence time (divided by 104 for displaying conve-
nience), respectively. The tour length and the convergence time are averaged over 
the cases where valid tours are obtained. ＇ 

,̀＇ 

Table 1 

□ o I 20 I 3Q_J 4o 50 

100 96 98 91 88 
original 3.571 4.695 5.861 6.640 7.313 

3.47 3.20 2.74 2.51 1.92 

98 99 96 99 93 
modified 3.561 4.661 5.690 6.548 7.261 

1.27 1.42 1.48 1.57 1.30 
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The convergence time is much shorter in the modified algorithm. If we employ 
more rough annealing, i.e., use a bigger oT, this improvement of the convergence 
time becomes more prominent. Moreover, the solutions of the modified algorithm 
are better than those of the original one. 

6.2 MFT from a saddle point 

The disappearance of the annealing solution and saddle-node appearances of the 
other mimima that can be observed in Figures 2a and 3a are very typical phenom-
ena. The minima generated through saddle-node bifurcations do not disappear, in 
general. Therefore, if the disappearing point, Ted and V叫isknown, the MFA is 
nothing but a procedure that obtains an MFT solution starting from Vd at the 

fixed temperature Tt 
Although there is no general way of obtaining Ted without the annealing proce-

dure, we can instead obtain the first cyclic symmetry breaking bifurcation temper-
ature Tf. When the unique symmetric minimum Vs disappears through a cyclic 
symmetry breaking bifurcation as in Fig. 3a, だ=Tf and Vd = vs. When the 
minima, whose cyclic symmetry has been broken, disappear through a reverse sym-
metry breaking bifurcation as in Fig. 2a, Ted is a little lower than Tf and yd is close 
to vs. The symmetric solution vs can be obtained with the reduced free energy 

(3.3), which is represented by N。variablesand converges much faster than the orig-
inal free energy (3.2). By using the fact that vs is stable in the free energy (3.2) 

for T >冗 andunstable for T < Tf, we can estimate Tf through a rough tempera-
ture lowering. The stability of the symmetric solution can be found by calculating 
the minimal eigenvalue in the reduced eigen equation (3.6). Since the disappearing 

temperatureだislower than Tf, we can obtain Ted by conducting an annealing pro-
cedure starting from Tf. Alternatively, Ted can be approximated just as a slightly 
lower temperature than Tf. Vd can be approximated as the symmetric solution at 

the approximated T d 

The above-mentioned approximation procedure needs a much smaller computa-
tion time than the original MFA procedure. After we can approximate the disappear-
ing point, it is sufficient to obtain the MFT solution starting from the approximated 
Vd at the approximatedだ withoutthe annealing procedure. Furthermore, we can 
select the best among many MFT solutions obtained by putting small random terms 
on the initial condition. This algorithm is faster and can achieve better results than 

the MFA procedure. 
Let us show some experimental results. In the experiment, Ted is estimated at 

(0.8-Tf), and冗 isobtained by evaluating the minimal eigenvalue of the free energy 
curvature. By starting from the neighborhood of the approximated disappearing 
point, ten MFT solutions are obtained and the best among them is selected. When 
this algorithm ¥Vas applied to the above-mentioned 10-city TSPs, 95 tours were 

obtained and the average tour length was 3.536. As for 20-city TSPs, 90 tours were 
obtained and the average tour length was 4.574. These results are a little better than 
that of the original MFA shown in Table 1. If more MFT solutions are obtained, 
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the results must even improve. 

7
 

Conclusion 

In this report, we investigated the MFT bifurcation processes when MFT is applied 
to TSPs. Due to the cyclic and reverse symmetries of the TSP energy function, some 
special bifurcations occur. And those bifurcation processes result in the properties 
of the MFA procedure. The MFA has a non-deterministic property, even though the 
procedure is deterministic. Moreover, it does not guarantee the optimal solution. 
The cyclic symmetry breaking bifurcations and the reverse symmetry breaking bi-
furcations, which are typically observed in the MFA, are quite time consuming for 
convergence. 

In this report, we also proposed a couple of modified algorithms. One is an 
algorithm that clamps the tour starting city to eliminate the time-consuming cyclic 
symmetry breaking bifurcations. The other is an annealing-free algorithm, where 
the MFT solutions are obtained starting from the symmetric saddle point. These 
algorithms are much faster than the original MFA, while the obtained solutions are 
better than those of the MFA. 

The MFT bifurcation diagrams and the "non-deterministic" and "non-optimal" 
properties of the MFA procedure are almost eq叫 tothose for the Potts spin. This 
result was briefly mentioned in our previous report. [5] 
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