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Abstract

When we observe a subject under investigation, we often obtain only a certain part of the
original information, that is, information projected, from a space where the original informa-
tion exists, to its subspace. We are then required to deal with such partial information to
investigate the subject. When original information is subject to a given class of admissible
transformations, projection invariants, functions in terms of the projected information whose
values are unaffected by the class of admissible transformations, provide an essential relation-
ship between the original information and the projected one. This paper presents a study on
projection invariants under the conditions that the n-dimensional projective space is projected
into the (n —1)-dimensional space and the class of admissible transformations involves projec-
tive transformations. We show the existence of a projection invariant derived from (n + i+ )
linear subspaces of dimension (n —2) arranged in the letter H, where ¢ and ; are given integers
such that 1 <¢ < j < n—1. The nonsingularity condition, i.e., the condition under which the

projection invariant is nonsingular, is also given.

Key Words: projection invariants, admissible transformations, interpretation vector, inter-

sections of hyperplanes, nonsingularity condition.
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1 Introduction

When we observe a subject under investigation, we often obtain only a certain part of the
original information, that is, information projected, from a space where the original infor-
mation exists, into its subspace. We are then required to deal with such partial information
to investigate the subject. For instance, in observing objects in three dimensions, we obtain
visual information that was projected onto the retina from the 3-dimensional Euclidean space;
we have to recognize the objects by making use of only the projected information on the
retina. Since the projection causes a deficiency of information, the problem of recovering the
original information is ill-posed; therefore, in general, we cannot uniquely recover the original
information from the projected information. In addition, when a transformation acts on the
original information, the projected information before and after the transformation differs. In
other words, the projected information significantly varies, depending on the transformation
to which the original information is subject, even for the same original information. Thus, it
is important to find properties, if any, that essentially connect the original information with
the projected one.

When original information in a space is subject to a given class of admissible transforma-
tions, functions, which are defined in terms of the projected information and whose values are
unaffected by the class of admissible transformations, provide an essential relationship between
the original information and the projected one. In this paper, we term such functions projec-
tion invariants. When we cannot directly treat the original information, projection invariants
play an important role in investigating properties of the original information. For example,
the appearance of an object’s shape in the image plane significantly depends on the view-
point; how to deal with numerous different images of the same object is a crucial problem in
computer vision. Since projection invariants, which can be calculated from information in the
image plane, have the same value for the same object, they aid in identifying one object out of
many and they allow us to effectively tackle the object recognition problem, one of the most
important problems in computer vision [2], [3],[7],[10],[11],[12]. (In fact, the importance of
projection invariants has been continually emphasized since the origin of the field of computer
vision in the 1960s.)

On the other hand, invariants were a very active mathematical subject in the latter half of



the 19th century [5]. However, the deficiency of information caused by a projection was not of
concern there. Namely, invariants were not derived through projections; they were derived by
dealing not with the projected information, but with the original information itself. Therefore,
the invariants[1], [4], [8], [9] studied then are nothing but those of admissible transformations
themselves. In contrast to this, in practice, we often face situations in which we have to get
at the essence of the original information by way of the projected information, and we cannot
deal with the original information itself. For example, consider a situation where we have to
recognize objects in three dimensions through visual information. Accordingly, investigating
the existence of projection invariants is very significant from a practical point of view.

In this paper, we investigate the existence of projection invariants under the conditions that
linear subspaces of dimension (n—2) in the (n— 1)-dimensional'pro jective space were projected
from the n-dimensional projective space by the projection of a certain class and the inverse
images of these subspaces with respect to the projection are subject to projective general linear
transformations (in the n-dimensional projective space). We are mainly interested in deriving
projection invariants in a concrete fashion in terms of coefficients of the equations (in the
(n — 1)-dimensional projective space) representing the subspaces of dimension (n — 2).

The main theorems, which are given in §3, state that (1) for given integers ¢ and j such that
1 <¢<j<n-—1 wehave a projection invariant derived from (n -+ ¢ + j) linear subspaces
of dimension (n — 2), where the (n + i + j) subspaces are the intersections of the adjacent
hyperplanes of (n + 4 + j + 1) hyperplanes arranged in the letter H; and (2) the projection
invariant is nonsingular, i.e., well-defined and nondegenerate, iff (COND) below is satisfied
by n subspaces among the (n + i + j), i.e., n aligned intersection subspaces of the adjacent
hyperplanes, which include the horizontal part of H, in the arrangement (we always have four
cases). |

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the ho-

mogeneous coordinates of (n + 1) hyperplanes that determine the n subspaces of

dimension (n — 2).

In this paper, when an arrangement of hyperplanes or linear subspaces of dimension (n — 2)
has the same topology as the letter H, we say, “they are arranged in the letter H”; hence, they

could n-dimensionally exist. (1) indicates that we have a projection invariant of (n + % + j)



subspaces of dimension (n — 2) arranged in the letter H (accordingly, the (n+ 4+ j) subspaces
could n-dimensionally exist). It should be noted that the number of (n — 2)-dimensional
subspaces in the left part of H is 27, whereas that in the right part is 27; and, furthermore, the
arrangement is symmetrical with respect to the horizontal part of H. In addition, the number
of projection invariants of this kind in the n-dimensional projective space is | % | (n - L%J) (see
Page 9 for the notation). (2) implies that our projection invariant is almost always nonsingular
when we randomly choose (n + i+ j + 1) hyperplanes in the n-dimensional projective space.
This is because the homogeneous coordinates of (n + 1) hyperplanes randomly chosen in the
n-dimensional projective space are linearly independent in general.

This paper is organized as follows. In §2, we formulate the problem to solve. In §3, the results
of this paper, i.e., the existence of projection invariants and the nonsingularity condition for
our projection invariants, are presented as two theorems. Their proofs are given in §4. In this
paper, we assume that the correspondence of subspaces over projections is known. Henceforth,

we sometimes use “invariants” shortly, instead of “projection invariants”.



2 Problem Formulation

Let P™ be the n-dimensional projective space over a certain field ¥. In applications to
computer vision, we usually have F = R (the real number field). We discuss the case of
F = R in this paper, but the same discussion can be applied to other fields. We assume
n > 3 throughout this paper. Note that if not explicitly stated, the coordinates of a point are
understood to be homogeneous.

Letting ¢ = (1,0,0,...,0)T (€ P™), we consider the set of mappings : P™ — {c} — P}

as follows.
F = {fp| PEPGL(=1)},
where fp : P* —{c} — P™"! is represented by an n x (n + 1) matrix Fp:
o= (o] P ) (PePaLm-1),

and PGL(n—1) denotes the projective general linear group of degree (n—1) over R. Therefore,

when we put z € P" — {c} and X = fp(x), then we have
pX = Fpz (peRY),

where R* denotes the set of nonzero real numbers. In this paper, we are interested in the class
F of mappings : P"—{c} — P"7!; we call an element of F a projection. We assume that we
can deal with only X, i.e., the image of @ projected by fp, where fp is derived from a given
P € PGL(n —1) as seen above. It should be noted that, when we denote by I the unit matrix

of degree n, VFp is expressed by
Fp = PF].

If we restrict P™ — {c} and P""! to the n-dimensional vector space over R that excludes the
origin (its coordinates in P™ are ¢) and hyperplane z; = 0; and to the (n — 1)-dimensional
vector space over R, respectively, f; (€ F) then coincides with the central projection where
the projection center is the origin and where the projection hyperplane is z, = 1 (see Fig. 1).
Furthermore, in the case of n = 3, the central projection realizes the pinhole camera model

that is widely used in computer vision.



Let 7 be the set of projective transformations that act on an element of P™ — {c}:
T = {T|T:P"—{c} —P", TePGL(n) }.
For S C P™ — {c}, we define
Ts = {T|TeT; T(z)#ec, Ve S}

Since Ts forms a group, we set 7s to be the class of admissible transformations for S. In
addition, we put
fe(8) = U {fe(=)}
xTes
In accordance with the notations introduced above, we formulate our problem, namely, the
problem of finding a function that is defined in terms of the images of S projected by fp and

~whose values are unaffected by 7g, i.e., the class of admissible transformations for S.

Problem 2.1 Let fp € F and S (C P" — {c}) be given. Find a natural number N and a
N

function Inv : fp(S) x fp(S) x -+ x fp(S) — R such that,
for VT € Tg,

Inv (fe(z), fp(z),..., fe(z)) = Inv(fp(T(x)), fe(T(2)),. .., fp(T())),

wherex € S. ' O

Function Inv is a projection invariant under the conditions that the projection is achieved
by fp, and the class of admissible transformations is 75 for a given S. Our aim in this paper
is, for given fp and S, to find natural number N and function Inv in Problem 2.1.

For Vfp € F, linear subspaces of dimension (n — 2) in P™ — {c} are projected into linear
subspaces of dimension (n —2) in P™""! by fp; and we can deal with the projected subspaces!.
Hence, we set fp to be fp,, that is, fp, derived from an arbitrary P. € PGL(n —1); and S to
be the set whose elements are N linear subspaces, which n-dimensionally exist, of dimension

(n —2) in P* — {c}. We then focus on finding a function having the following properties:

'Let fp,, fp, € F, then an image of a point in P™ — {c} projected by fp, is connected to that projected by
another projection fp, through a projective transformation in P*~* (an element of PGL(n ~ 1); to be more

precise, PP, or PyPY).



1) it is defined in terms of the coefficients of the equations that determine the IV projected
subspaces of dimension (n — 2); and 2) its value remains invariant even if the inverse images

with respect to fp, are transformed by any admissible transformation, i.e., any element of 7.

——



3 Results

The results of this paper are presented as Theorems 3.1 and 3.2. Their proofs are postponed

until the next section.

For a linear subspace of dimension (n — 2),

n—1
(3.1) daX. = 0,
x=0
in P™~! (its coordinate system is (Xo, X1, ..., Xn_1)"), where

n—1
>oal # 0 (e €R),
k=0

we obtain a vector (ag,ay,...,a,_1)T that is determined by the coeflicients of the equation.
We call this vector the interpretation vector for the subspace. The interpretation vector is the

homogeneous coordinates of the subspace.

Remark 3.1 We can only determine vector (ag, a1, ...,an_1)" up to a scaling factor when we
actually observe linear subspace (3.1) in P™~!. However, we can eliminate this indeterminacy

by setting a criterion such as ag = 1 or the normalization of the vector. O

A linear subspace of dimension (n — 2) in S is uniquely determined as the intersection of a
pair of hyperplanes in P* — {c} (see Fig.2). Thus, we represent an element of S as a pair of
hyperplanes in P™ — {¢}. For a linear subspace of dimension (n—2) in P™— {c} determined by
two hyperplanes 1 and 2, we denote by 1,5 the interpretation vector for the projected subspace
of dimension (n — 2) in P™~L. |

For two integers 7 and j such that 1 < ¢ < j < n — 4, we define the following sets of

hyperplanes in P — {c}.

‘QLI = {Lll, ng, s ,Lli},

QL? = {L21, LQQ, ce ,LQ,L'},
QRl = {le,le_l,...,Rll},
QR? = {RQJ, R2j_1, v ,RQl},

QC = {Clcha"'7Cn+l—i—j}7

where L1),L2y,R1,,R2,,C, (A € {1,2,...,i};p e {1,2,....5hve{l,2,....,n+1—i—3})

are all natural numbers; and any two of 2. (7 € {L1,L2,R1,R2,C}) are disjoint. Note



that [Qne| + [2c] + |2re) = n+ 1 (k¢ € {1,2}). It is important to remark that we as-
sume that the order of elements of 2, (r € {L1,L2,R1,R2,C}) makes sense. Namely,
hyperplanes in {2, are assumed to be aligned with the order of the elements by which {2,
is defined. This should be applied to the union of (2,’s such as (21, U {Jc. Here, we as-
sume that (n + 1) different hyperplanes 2z U £2c U g, in P™ — {c} are given, where
k£ € {1,2}; and n linear subspaces of dimension (n — 2) are observed in P!, all of
which are the images of the intersections of the adjacent hyperplanes in {2p; U £2¢ U {25, pro-
jected by fp,. We then consider the interpretation vectors, 7y, Ly, - - - » Lk;_1Lki» T8Lk;C1> T2C1 Cas
MG iCryriejs TCn i RA;, TVRE;RY 15 - - - TPRARE;, TOT the n intersection subspaces; and

define an n X n matrix Ng,, 05 0s, Whose column vectors are these:

nLgc, | oo, ||

NQLk,QC,QRz = [ Tk Lko I e { TLk;_1Lk;

NCp i jCny1oicj ] NCrp1-i—;RE; ’ MRe;RY 1 l | TRe;RL, } .

We attach ' (prime) to the notations above when an admissible transformation has acted on

S.

Theorem 3.1 For two integers 7 and j such that 1 < i < j <n—1, let £2ry, 22, 2c, {211, 212
above be given sets of hyperplanes in P* — {c}, and let these sets be arranged in the letter H
(see Fig. 3). Suppose that rankNg , og.0s, =1 (k,£ € {1,2}). For (n+i+ j) linear subspaces
of dimension (n — 2) that are the intersections of the adjacent hyperplanes in the arrangement,

we then have, independent of fp,,

' _
rankNo o on = ™

/ ’
dethLhQC,QRl ) detNQLz,Qc,QRz detNQLl,Qc,Qm ) detNQLzyﬂc,Qaz

(3.2)

/ /
detNQLth,Qm ’ detNﬂLz,Qc,Qm detNﬂLl,nc,Qm ’ detNQm,Qc,Qm

a

Theorem 3.1 shows that for any element of F (which is a projection from P™ — {c} to P™!)

there exists a projection invariant, independent of the element,

detN -detN, .
(3.3) Inv,ij — 2u1,020,02r:1 AUV 0, 06,28 (1 <i<j<n-— Z)
detNoy,; 20,2, * 4€tNap, 06,0n,

for (n + 14+ j) linear subspaces of dimension (n — 2), all of which are the intersections of the

adjacent hyperplanes of (n 4 ¢ + j + 1) hyperplanes (in P™ — {c}) arranged in the letter H



(see Fig. 3). It is important to remark that we accordingly have (n + i+ j) linear subspaces of
dimension (n—2) arranged in the letter H (hence, the (n+i+j) subspaces could n-dimensionally
exist); and also to remark that the number of subspaces in the left-upper part of H is equal
to that in the left-lower part: 7. Whereas, the number of subspaces in the right-upper part of
H is equal to that in the right-lower part: j. Namely, the arrangement is symmetrical with
respect to the horizontal part of H.

In summary, for Vfp € F, when we set S to be the set whose elements are /N linear
subspaces of dimension (n—2) in P — {¢} arranged in the letter H, N and Inv in Problem 2.1
are respectively given by N = n+ 1+ j and (3.3), where 7 and j are given integers such that

1<i<j3<n—1i Weshould note that n+2 < N < 2n.

Remark 3.2 Since i + j = n is possible, we could have |{2¢| = 1. Namely, for the linear
subspaces of dimension (n — 2) arranged in the letter H, the part that corresponds to the

horizontal part of H could be empty. O

For each 7, we have &; = (n — 21 + 1) invariants. Taking symmetry into consideration, ¢ can

be any of 1 <7 < [g—j Hence, the number? = of invariants of this kind in P™ — {c} is given

by

n

L5)
= ;fi
= 121 (n=151),

where ng denotes the maximum integer not greater than g—

Furthermore, we give the nonsingularity condition for Inv;; (1 <7 < j <n —1), Le., the
necessary and sufficient condition making Inv;; nonsingular. Here, we define “an invariant
is nonsingular” as “the value of the invariant is not 0, co or 0/p”. Nonsingularity can be
regarded as nondegeneracy and well-definedness. As we can see, the nonsingularity condition
for an invariant ensures that the values of the invariant are numerically stable when they are
calculated in practical situations. The next theorem indicates that the nonsingularity condition

for invariant Inv;; is alimost always satisfied, when we randomly choose (n+i+j+1) hyperplanes

2In particular, we have | 3] invariants for 2n linear subspaces of dimension (n — 2); whereas we have only

one invariant for (n + 2) linear subspaces of dimension (n — 2).



in P* — {c}. This is because the homogeneous coordinates of (n + 1) hyperplanes that were
randomly chosen in P™ — {c}, are linearly independent in general. Note that (n +7+ 5+ 1)

hyperplanes arranged in the letter H could n-dimensionally exist.

Theorem 3.2 [Nonsingularity condition]

Let (n+ 1+ j + 1) hyperplanes, where (n + 7 + j) linear subspaces of dimension (n — 2)
exist, be arranged in the letter H (see Fig. 3). Inv;; in (3.3) is nonsingular iff (COND) below is
satisfied by n subspaces among the (n+1i+ j) subspaces, i.e., n aligned intersection subspaces
of the adjacent hyperplanes, which include the horizontal part £2¢ of H, in the arrangement
(we always have four cases).

(COND) Not singular is an (n + 1) X (n + 1) matrix whose column vectors are the homo-

geneous coordinates (in P™ — {c}) of (n + 1) hyperplanes that determine the n

subspaces of dimension (n — 2). O

10
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4 Proofs

The proofs for Theorems 3.1 and 3.2 are given here.

For a linear subspace of dimension (n — 2) in P™"!, we consider the hyperplane on which
both ¢ and the subspace exist (see Fig.4). We refer to this hyperplane as the interpretation
hyperplane for the subspace. It is easy to see that for a linear subspace of dimension (n — 2)
in P"! any linear subspace of dimension (n — 2) in P™ — {¢} that exists in its interpretation
hyperplane is projected to the subspace (in P™71). It should be remarked that we use the
interpretation hyperplane of (instead of “for”) a linear subspace of dimension (n —2) when the
subspace is not in P™!, but in P" — {c}.

For a linear subspace of dimension (n — 2) in (P™"1), its interpretation vector is obtained
as a result of applying® f p-T to the homogeneous coordinates of the interpretation hyperplane
for the subspace. This can be understood in the following way. Namely, for a linear subspacé
(3.1) of dimension (n — 2), let X (X 3 0) be the coordinates (in P™!) of any point in
the subspace and put X = P7!X (: (XO,Xl,...,Xn_l)T). Then, (1, Xy, X1, ..., X,_)T
is the inverse image of X with respect to fp,. (In other words, a point in P* — {c} with
coordinates (1, Xg, X1, ..., X,_1)7 is projected to the point (with coordinates X) in P! by
fe..) Moreover, put a = (ag, a1, ...,an-1)" and @ = Pra (: (Go, a1 ..., Zzn_l)T) then (3.1) is
rewritten as

(41) (OJaOadlw"van—l)T'(17X0aX1a"'7Xn—1)T = 0.

(4.1) represents the hyperplane on which both ¢ and subspace (3.1) exist. Hence, (4.1) is the
interpretation hyperplane for subspace (3.1); (0, ag,ds,...,@,—;)T is the homogeneous coordi-
nates (or equivalently the normal vector) of the interpretation hyperplane. From a = P Tg =
P7TF;(0,Gg, @1, - . .,dn-1)T, we can see that interpretation vector a is obtained by applying
fp-T to the homogeneous coordinates of the interpretation hyperplane for subspace (3.1).

As seen above, we have represented a linear subspace of dimension (n — 2) in S as a pair
of hyperplanes in P™ — {¢}. Thus, for an intersection subspace of two hyperplanes, we next
consider the relationship between the interpretation vector for the projected intersection sub-

space and the homogeneous coordinates (in P™ — {c}) of the two hyperplanes. Let hyperplane

3For a square matrix P, P~T is (PT)~! or equivalently (P~1)T.

11



n(n =1,2) in P" — {c} be the set of points with coordinates = satisfying

where |

Ay = Gy, gy ooy O ) 5 Gy € RY, 0y €ER (£ €{1,2,...,1}).

Then x, the coordinates of a point that exists on both hyperplanes 1 and 2 (hence, the point

exists in the (n — 2)-dimensional intersection subspace of the two hyperplanes), satisfies

2
(4.2) Z pi (@ ) = 0,
n=1
where p, (7 =1,2) are real numbers. By fixing the values of u, (7= 1,2) so that c satisfies

(4.2), we obtain the interpretation hyperplane of the intersection subspace of two hyperplanes

1 and 2:
(agoal — aloag) -z = 0.

Therefore, ag,a; — a1,a2 is the homogeneous coordinates of the interpretation hyperplane of
the intersection subspace of hyperplanes 1 and 2; we obtain Fp-r (aza; — ai,a) when we
observe the subspace in P™ — {¢} determined by a,’s (n = 1,2). It is important to note
that we have indeterminacy of a scaling factor between the vector F'p-t (ag, a1 — aj,a2) and
the interpretation vector no that we actually obtain as a result of observing the subspace.

Therefore, defining

ap = Fp-r (ay,a1 — ay,aq),
we have | |
(4.3) N2 = pP1,2) @12 (0(1,2) € R").

Here, p(1,9) is a scaling factor and its value is not known. In line with treating n5, we define

an n X n matrix Mo, oq.0s, (k€ € {1,2}) as a counterpart of N, 0c,08,:

(44)  Moygc,a = |Gumik || @ue_ e | uke, | acio, ||

AC,ei—iCny1oioj I QCrt1-i-jRY | ARERL -1 l T | ARreoRE, } .

12



(4.3) and (4.4) yield

(4.5) detNQkanC,Qm = P- det,/w_QLk,_QC’_Qm7
where
i—1 n—t—j 7—1
Py = PLki,C1) " P(Crgrmizs RE) H P(Lkx,Lker1) * H P(Cr,Crt1) H P(Rexs1,RLx)-
k=1 k=1 r=1

We again attach ’ (prime) to the notations above when an admissible transformation has acted

on S. Accordingly, we obtain*

LHS of (3.2) =

det N[nm c,2r1 " detMQLg 2c,{2Rr2

3
detM_QLl 20, m2 dEtMQLz,Qc,Qm

/ !
det MQLl $20,02r1 det Mﬁm ,$2¢,42r2

RHS of (3.2) =

7 7
det MQLl f2¢,{2r2 det MQL2 L2¢,82R1

Now, to prove Theorem 3.1 it suffices to show the following lemma (applying the results of

four combinations of £ and £ in Lemma4.1 to the two equations above, completes the proof of

Theorem 3.1).

Lemma 4.1 Let a point (with coordinates «) in S change its coordinates to x’ after an

admissible transformation T' (€ Tg) as follows:
(4.6) Al = Tz (AeR").

For k,2¢ € {1,2} we have, independent of fp,,

(4'7) rank]\/[QLk,Qc,QRe =n = ra‘nk‘]\/‘[}?m,ﬂcﬂm
(4.8) detT - J] awo- detMp oonn, = I vn- 1] o

KET e €T ke K€l
where

Tio = 20U R2cU (g,

Fkg = QLk U .QC U .QRg - {Lkl,Rgl}

=n,

’ det‘]\/‘[QLkaCaQRl’

“LHS and RHS stand for the left-hand side and the right-hand side, respectively.

13



Proof: 1t follows from the definition of Mg, o .0, that

1 oda(n
(—1)1\/[ d2( ) . H a’/‘iO . detrA.QLk,-QC,-QRZ'

4.9 det M .
( ) € QLk:-QCvQRZ detP* celne

—

Here, (n+ 1) X (n+ 1) matrix Ag,, oc.0q, 18 defined by

A-QLk,-QC,-QRz = [G’Lkl , ALk, ] T , ark; ’ ag, I J AC, 4y i J AR, } , are, ]1

and, for a natural number n, Mod, is a function such that

0 n: even
MOdQ(TL) =
1 n: odd.

Similarly, after admissible transformation 7', we define (n+ 1) X (n + 1) matrix

A/rsz,rzc,rzm = [a£k1 [aib [ - iaiki ‘ alol | - ,a/cnﬂ_,-_j faiuj [ aiul ].

When a point in S is subject to a transformation of (4.6), a,, the coordinates of hyperplane

7, is subject to
-T
(4.10) a, = v, T a,,

where v, (n € Tyy) are nonzero real numbers. We then obtain

(_1)Mod2(n

)
! !
(411)  detMp, 000, = e TFI Gy~ A€t A0, 06,20,
* K€L ke

(_1)M0d2(n) 1 /
- detP,  detT IT vor I ax, - detAny, ac,0n

UISIEY: KET ke

since (4.10) yields

1
! _ - . 1
detAQLkﬂc,Qm ~ detT H Un detA-QLkaCy-QRl‘ i
€T ke .

Note that al,, # 0 (k € I'k) is satisfied since T € Ts. (4.9) and (4.11) immediately yield (4.8).
It is clear that (4.8) is independent of fp,.

Since ae, # 0 (kK € Ik), it follows from (4.9) that rankMp,, oo ns, = 7 is equivalent to
rankAp, nonr, = n + 1. Hence, we have (4.7) from (4.11) since v, # 0 (n € i) and

ay, # 0 (k€ L) O

14



Remark 4.1 (4.9) shows that detAp, 00,05, = 0 is equivalent to detMo, ng,0., =0 (k, ¢ €
{1,2}). Namely, n subspaces in P™ — {c} (the intersection subspaces of the adjacent hy-
perplanes in f2r, U f2¢ U 2g,) share a common point in P*~! through the projection fp, iff
detAp,, 0o2r, = 0 (see Observation4.1 below). We assume that detApn, og .0, 7 0 is sat-
isfied by (n -+ 1) hyperplanes that determine these n subspaces (intuitively, this assumption
is equivalent to the random choice of (n + 1) hyperplanes). Moreover, Lemma4.1 indicates
that if detAp,, nq.ng, 7 0 holds, we can guarantee that these n subspaces after any admissible

transformations never share a common point in P™~! through the projection fp,. O

We now turn to the proof of Theorem 3.2. From (3.3) it is easy to see that Inv;; is nonsingular
iff the values of the determinants of Ng,, no.os, (k¢ € {1,2}) are not zero. Hence, the
necessary and sufficient condition under which /nv,; is nonsingular is that the values of the
determinants of M., 0,025, are not zero (see (4.5)). Observation 4.1 below indicates that when
n linear subspaces of dimension (n— 2) in P™~! do not share a common point, the value of the

determinant of Mg, ng g, 1S never zero. This argument yields Theorem 3.2 (see Remark 4.1).

Observation 4.1 Let n different linear subspaces 7 (7 = 1,2,...,n) of dimension (n — 2) in

P! be
n—1
Z a;,. X. = 0,
xk=0
where
n—1
a2 # 0  (a, €R).
k=0

They do not share a common point in P! iff

alo PPN a‘To s ano
all PN aTl e anl
det # 0.
al'c e a‘T,; e an,c
aln—l e aTn—l e ann—l
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5 Conclusion

We have investigated the existence of projection invariants under the conditions that the
projection from P™ — {c} to P™! is achieved by an element of F, and the class of admissible
transformations is Tg, where S is the set whose elements are linear subspaces of dimension
(n —2) in P™ — {c}. For given integers ¢ and j such that 1 < ¢ < j < n — i, we derived
projection invariant, independent of the element of F, Inv;; in (3.3) from (n+¢+ j) subspaces
of dimension (n — 2), where these subspaces are the intersections of the adjacent hyperplanes
of (n+ i+ 7+ 1) hyperplanes arranged in the letter H. Accordingly, the (n + i+ j) subspaces
are also arranged in the letter H (hence, the (n+ 17+ j) subspaces could n-dimensionally exist).
Note that the number of subspaces in the left-upper part of H is ¢, whereas that in the right-
upper part is j; and the arrangement is symmetrical with respect to the horizontal part. Let us
remark again that the horizontal part could be empty since 7 + j = n is possible. In addition,
the number of invariants of this kind in P™ — {c} is | §] (n - I_%J)

Furthermore, the nonsingularity condition for Inwv;;, i.e., the necessary and sufficient condi-
tion making Inv;; nonsingular, was given. Inv;; is nonsingular iff (COND) below is satisfied
by n subspaces among the (n + 1 + j) subspaces, i.e., n aligned intersection subspaces of the
adjacent hyperplanes, which include the horizontal part {2¢ of H, in the arrangement H above
(we always have four cases).

(COND) Not singular is an (n+ 1) X (n + 1) matrix whose column vectors are the homo-

geneous coordinates (in P™ — {c}) of (n + 1) hyperplanes that determine the n

subspaces of (n — 2) dimensions.

The nonsingularity condition guarantees that /nv;; is not only well-defined but nondegenerate;
it also ensures that the values of Inv;; are numerically stable when they are calculated in
practical situations. We should remark that this condition is almost always satisfied when we
randomly choose (n + 1+ j + 1) hyperplanes in P"™ — {c}.

The values of Inv;; depend on the order of linear subspaces of dimension (n — 2) in the
computation (see (3.3)). Namely, a different ordering of the subspaces, i.e., associating indices
with the subspaces in a different way, can yield different values of Inv;;. If the values of I NV

are Insensitive to the order, then we need not establish the subspace correspondence in a certain
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sense. We can thus avoid being concerned with every possible ordering of the subspaces from
which Inwv;; is computed; projection invariants get more useful in applications. To make them
insensitive to the order, we should derive order-independent projection invariants from Inv;;
such as j-invariant [8] in the case of four collinear points or p*-invariant [6] in the case of five
coplanar points. Since /nv;; is in a similar form of cross ratio, it would be possible to derive
an order-independent invariant from Inv;;. Elaboration of deriving such invariant is left open
for future research. Also left for future research is investigating the existence of projection

invariants under another projection class.
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Fig. 2: Linear subspace of dimension (n — 2) determined as a pair of hyperplanes (n = 3)
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Fig. 3: Arrangement H of (n+14+j +1) hyperplanes and linear subspaces of dimension (n —2)
as the intersections of the adjacent hyperplanes (the numbers in ellipses represent hyperplanes;

the lines and the dashed lines represent linear subspaces of dimension (n — 2))
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Fig. 4: Subspace 7 and the homogeneous coordinates (or equivalently the normal vector) of its

interpretation hyperplane (n = 3)
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