
Internal Use Only 

非公開

TR-H -147 0048 

Projection Invariants of 

(n~2)-Dimensional Subspaces in 

n-Dimensional Projective Space 

Akihiro SUGIMOTO 

1995.5.11 

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 合 0774-95-1011

ATR Human Information Processing Research Laboratories 

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan 

Telephone: +81-774-95-1011 

Facsimile: +81-77 4-95-1008 

c(梱ATR人間情報通信研究所



Projection Invariants of (n -2)-Dimensional 

Subspaces in n-Dimensional Projective Space 

Akihiro SUGIMOTO 

ATR Human Information Processing Research Laboratories 

Soraku-gun, Kyoto 619-02, Japan 

e-mail: sugimoto@hip.atr.co.jp 

Abstract 

When we observe a subject under investigation, we often obtain only a certain part of the 

original information, that is, information projected, from a space where the original informa-

tion exists, to its subspace. We are then required to deal with such partial information to 

investigate the subject. When original information is subject to a given class of admissible 

transformations, projection invariants, functions in terms of the projected information whose 

values are unaffected by the class of admissible transformations, provide an essential relation-

ship between the original information and the projected one. This paper presents a study on 

projection invariants under the conditions that then-dimensional projective space is projected 

into the (n -1)-dimensional space and the class of admissible transformations involves projec-

tive transformations. We show the existence of a projection invariant derived from (n + i + j) 

linear subspaces of dimension (n -2) arranged in the letter H, where i and j are given integers 

such that 1 ::; i ::; j ::; n -i. The nonsingularity condition, i.e., the condition under which the 

projection invariant is nonsingular, is also given. 

Key Words: projection invariants, admissible transformations, interpretation vector, inter-

sections of hyperplanes, nonsingularity condition. 
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1 Introduction 

When we observe a subject under investigation, we often obtain only a certain part of the 

original information, that is, information projected, from a space where the original infor-

mation exists, into its subspace. We are then required to deal with such partial information 

to investigate the subject. For instance, in observing objects in three dimensions, we obtain 

visual information that was projected onto the retina from the 3-dimensional Euclidean space; 

we have to recognize the objects by making use of only the projected information on the 

retina. Since the projection causes a deficiency of information, the problem of recovering the 

original information is ill-posed; therefore, in general, we cannot uniquely recover the original 

information from the projected information. In addition, when a transformation acts on the 

original information, the projected information before and after the transformation differs. In 

other words, the projected information significantly varies, depending on the transformation 

to which the original information is subject, even for the same original information. Thus, it 

is important to find properties, if any, that essentially connect the original information with 

the projected one. 

When original information in a space is subject to a given class of admissible transforma-

tions, functions, which are defined in terms of the projected information and whose values are 

unaffected by the class of admissible transformations, provide an essential relationship between 

the original information and the projected one. In this paper, we term such functions projec-

tion invariants. When we cannot directly treat the original information, projection invariants 

play an important role in investigating properties of the original information. For example, 

the appearance of an object's shape in the image plane significantly depends on the view-

point; how to deal with numerous different images of the same object is a crucial problem in 

computer vision. Since projection invariants, which can be calculated from information in the 

image plane, have the same value for the same object, they aid in identifying one object out of 

many and they allow us to effectively tackle the object recognition problem, one of the most 

important problems in computer vision [2], [3], [7], [10],[11], [12]. (In fact, the importance of 

projection invariants has been continually emphasized since the origin of the field of computer 

vision in the 1960s.) 

On the other hand, invariants were a very active mathematical subject in the latter half of 
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the 19th century [5]. However, the deficiency of information caused by a projection was not of 

concern there. Namely, invariants were not derived through projections; they were derived by 

dealing not with the projected information, but with the original information itself. Therefore, 

the invariants [1], [4], [8], [9] studied then are nothing but those of admissible transformations 

themselves. In contrast to this, in practice, we often face situations in which we have to get 

at the essence of the original information by way of the projected information, and we cannot 

deal with the original information itself. For example, consider a situation where we have to 

recognize objects in three dimensions through visual information. Accordingly, investigating 

the existence of projection invariants is very significant from a practical point of view. 

In this paper, we investigate the existence of projection invariants under the conditions that 

linear subspaces of dimension (n-2) in the (rzー1)-dimensionalprojective space were projected 

from the n-dimensional projective space by the projection of a certain class and the inverse 

images of these subspaces with respect to the projection are subject to projective general linear 

transformations (in then-dimensional projective space). We are mainly interested in deriving 

projection invariants in a concrete fashion in terms of coefficients of the equations (in the 

(n -1)-dimensional projective space) representing the subspaces of dimension (n -2). 

The main theorems, which are given in§3, state that (1) for given integers i and j such that 

1 :s; i :::; j :s; n -i, we have a projection invariant derived from (n + i + j) linear subspaces 

of dimension (n -2), where the (n + i + j) subspaces are the intersections of the adjacent 

hyperplanes of (n + i + j + 1) hyperplanes arranged in the letter H; and (2) the projection 

invariant is nonsingular, i.e., well-defined and nondegenerate, iff (COND) below is satisfied 

by n subspaces among the (n + i + j), i.e., n aligned intersection subspaces of the adjacent 

hyperplanes, which include the horizontal part of H, in the arrangement (we always have four 

cases). 

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the ho-

mogeneous coordinates of (n + 1) hyperplanes that determine the n subspaces of 

dimension (n -2). 

In this paper, when an arrangement of hyperplanes or linear subspaces of dimension (n -2) 

has the same topology as the letter H, we say, "they are arranged in the letter H"; hence, they 

could n-dimensionally exist. (1) indicates that we have a projection invariant of (n + i + j) 
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subspaces of dimension (冗ー2)arranged in the letter H (accordingly, the (n + i + j) subspaces 

could冗-dimensionallyexist). It should be noted that the number of (n -2)-dimensional 

subspaces in the left part of His 2i, whereas that in the right part is 2j; and, furthermore, the 

arrangement is symmetrical with respect to the horizontal part of H. In addition, the number 

of projection invariants of this kind in the n-dimensional projective space is l?」(n-l?」） (see 

Page 9 for the notation). (2) implies that our projection invariant is almost always nonsingular 

when we randomly choose (n + i + j + l) hyperplanes in the n-dimensional projective space. 

This is because the homogeneous coordinates of (n + l) hyperplanes randomly chosen in the 

n-dimensional projective space are linearly independent in general. 

This paper is organized as follows. In§2, we formulate the problem to solve. In§3, the results 

of this paper, i.e., the existence of projection invariants and the nonsingularity condition for 

our projection invariants, are presented as two theorems. Their proofs are given in§4. In this 

paper, we assume that the correspondence of subspaces over projections is known. Henceforth, 

we sometimes use "invariants" shortly, instead of "projection invariants". 
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2 Problem Formulation 

Let pn be the n-dimensional projective space over a certain field F. In applications to 

computer vision, we us叫 lyhave F = R (the real number field). We discuss the case of 

F = R in this paper, but the same discussion can be applied to other fields. We assume 

n 2 3 throughout this paper. Note that if not explicitly stated, the coordinates of a point are 

understood to be homogeneous. 

Letting c = (1, 0, 0, ... , 0) T (E P門， weconsider the set of mappings : pn -{ c}→ pn-1 

as follows. 

:F := {fp I P E PGL(n -1)}, 

where fp : pn -{ c} --t :pn-l is represented by an n x (n + 1) matrix Fp: 

Fp = (O p)  (PE PGL(n -1)), 

and PGL(n-1) denotes the projective general linear group of degree (n-1) over R. Therefore, 

when we put x E pn -{c} and X = fp(x), then we have 

pX = Fpx (p E R*), 

where R * denotes the set of nonzero real numbers. In this paper, we are interested in the class 

F of mappings: pn -{ c}→ pn-1; we call an element ofデ aprojection. We assume that we 

can deal with only X, i.e., the image of x projected by JP, where J p is derived from a given 

PE  PGL(n -1) as seen above. It should be noted that, when we denote by I the unit matrix 

of degree n, ¥:/ F p is expressed by 

Fp = P F1・

If we restrict pn -{ c} and pn-l to the n-dimensional vector space over R that excludes the 

origin (its coordinates in pn are c) and hyperplane : 呪=O; and to the (n -l)-dimensional 

vector space over R, respectively, f 1 (E :F) then coincides with the central projection where 

the projection center is the origin and where the projection hyperplane is x1 = 1 (see Fig. 1). 

Furthermore, in the case of n = 3, the central projection realizes the pinhole camera model 

that is widely used in computer vision. 
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Let T be the set of projective transformations that act on an element of pn -{ c }: 

T = {T I T : pn -{ C}→ pn, TE PGL(n) } . 

For Sこpn-{c}, we de恥 e

冗：= {TJTET; T(x)=Jc, VxES}. 

Since冗 formsa group, we set冗 tobe the class of admissible transformations for S. In 

addition, we put 

fp(S) := LJ {fp(x)}. 
XES 

In accordance with the notations introduced above, we formulate our problem, namely, the 

problem of finding a function that is defined in terms of the images of S projected by f p and 

whose values are unaffected by'Ts, i.e., the class of admissible transformations for S. 

Problem 2.1 Let fp Eデ andS (こ pn-{ c}) be given. Find a natural number N and a 
N 

function Inv : fp(S) x fp(S) x・ ・ ・x fp(S) —• R such that, 

for VT E冗，

Inv (Jp(x), fp(x), ... , fp(x)) Inv (Jp(T(x)), fp(T(x)), ... , fp(T(x))), 

where x ES. ロ

Function Inv is a projection invariant under the conditions that the projection is achieved 

by f P, and the class of admissible transformations is冗 fora given S. Our aim in this paper 

is, for given f p and 5, to find natural number N and function J nv in Problem 2.1. 

For¥/ f p E F, linear subspaces of dimension (n -2) in pn -{ c} are projected into linear 

subspaces of dimension (n -2) in P n-l by f p; and we can deal with the projected subspaces 1. 

Hence, we set fp to be JP., that is, JP. derived from an arbitrary P* E PGL(n -1); and 5 to 

be the set whose elements are N linear subspaces, which n-dimensionally exist, of dimension 

(n -2) in pn -{ c }. We then focus on finding a function having the following properties: 

1 Let f P,, f p2 E :F, then an image of a point in pn -{ c} projected by f Pi is connected to that projected by 

another projection fp2 through a projective transformation in pn-l (an element of PGL(れー 1);to be more 

precise, P1PごorAP1-り．
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1) it is de且nedin terms of the coefficients of the equations that determine the N projected 

subspaces of dimension (n -2); and 2) its value remains invariant even if the inverse images 

with respect to f P. are transformed by any admissible transformation, i.e., any element of Ts-
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3 Results 

The results of this paper are presented as Theorems 3.1 and 3.2. Their proofs are postponed 

until the next section. 

For a linear subspace of dimension (n -2), 

(3.1) 
n-1 
I: a氏ふ = 0, 
氏=O

in pn-l (its coordinate system is (X。,Xい・..,Xn-1戸）， where

n-1 
I:a氏2 =I-。
氏=0

叫 ER),

we obtain a vector (a。,a1, ・ ・ ・, an-l戸thatis determined by the coefficients of the equation. 

We call this vector the interpretation vector for the subspace. The interpretation vector is the 

homogeneous coordinates of the subspace. 

Remark 3.1 We can only determine vector (a。,a1,,,. ,an-1汀upto a scaling factor when we 

actually observe linear subspace (3.1) in pn-1. However, we can eliminate this indeterminacy 

by setting a criterion such as a。=1 or the normalization of the vector. 口

A linear subspace of dimension (nー 2)in S is uniquely determined as the intersection of a 

pair of hyperplanes in pn -{ c} (see Fig. 2). Thus, we represent an element of S as a pair of 

hyperplanes in pn -{ c }. For a linear subspace of dimension (n-2) in pn -{ c} determined by 

two hyperplanes 1 and 2, we denote by n12 the interpretation vector for the projected subspace 

of dimension (n -2) in pn-l_ 

For two integers i and j such that 1~i~j~n -i, we define the following sets of 

hyperplanes in pn -{ c}. 

D11 {L11, Lb, ... , Llふ

D12 {L21, L22, ... , L2ふ

[2Rl {Rl1, Rlj-i, ... , Rl凸

[2R2 {R21, R2J-i, ... , R2小

De {Ci, C2, ... , Cn+l-i-j}, 

where 11入， 12入， Rlμ,R2μ, Cv (入 E{l, 2, ... , i}; p E {l, 2, ... , j}; v E {l, 2, ... , 冗+1 -i -j}) 

are all natural numbers; and any two of [27 (r E {Ll,L2,Rl,R2,C}) are disjoint. Note 
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that IDLkl + IDcl + IDRR.I = n + l (k, e E {1, 2}). It is important to remark that we as-

sume that the order of elements of [27 (T E {11, 12, Rl, R2, C}) makes sense. Namely, 

hyperplanes in [27 are assumed to be aligned with the order of the elements by which DT 

is defined. This sh叫 dbe applied to the union of [27's such as叫 U恥. Here, we as-

sume that (n + l) different hyperplanes [2Lk U De U 伽 inpn -{ c} are given, where 

k, £E {1, 2}; and n linear subspaces of dimension (n -2) are observed in P n-l, all of 

which are the images of the intersections of the adjacent hyperplanes in叫 U臭 U叫 pro-

jected by JP •. We then consider the interpretation vectors, れ応Lk2,・ ・ ・, 四 k;-1Lk;,凡 Kぶ1'叫 C2,

...'ncn-i-jCn+l-i-j'れCn+l-i-J凰，れ恥閏1'...'匹厨1,for the n intersection subspaces; and 

define an n x n matrix N印，f?c,n取 whosecolumn vectors are these: 

N印，nc,知：= [ n圧 Lk2I・ ・ ・I nu;-1Lk; I n1鱈 1Inc心 I・・・I

ncn-i-jCn+l-i-j I ncn+l-i-j囮 jIn恥恥ー1I・・・In如 U1]・ 

We attach'(prime) to the notations above when an admissible transformation has acted on 

S. 

Theorem 3.1 For two integers i and j such that 1 s; i s; j s; n-i, let叫，叫虞如，f212

above be given sets of hyperplanes in P n -{ c}, and let these sets be arranged in the letter H 

(see Fig. 3). Suppose that rankN叫墨知=n (k, f E {1, 2}). For (n + i + j) linear subspaces 

of dimension (n -2) that are the intersections of the adjacent hyperplanes in the arrangement, 

we then have, independent of f P., 

(3.2) 

rankN' 
S]Lk ,Slc,S?Rl 

detN nLi,S?c,S?Ri・detN nL2,n訊 R2

detNnLi,S?c,nR2・detNnL2,n訊 Rl

n, 

detN'・detN' 如 ,ftc,f?R1 f?L2,ftc瓜 2
detN'・detN' f?L1 ,Ste ,f?R2 f?L2 ,Ste ,f?R1 

口

Theorem 3.1 shows that for any element of :F (which is a projection from pn -{ c} to pn-l) 

there exists a projection invariant, independent of the element, 

(3.3) Invij := 
detN nu,f2c,f2Ri・det.l¥T叩，f2c,f2R2

detN加，Dc,DR2・detNnL2,応，f2R1
(1 S i S j S n -i) 

for (n + i + j) linear subspaces of dimension (n -2), all of which are the intersections of the 

adjacent hyperplanes of (冗十 i+ j + 1) hyperplanes (in pn -{ c}) arranged in the letter H 
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(see Fig. 3). It is important to remark that we accordingly have (n + i + j) linear subspaces of 

dimension (n-2) arranged in the letter H (hence, the (n+i+j) subspaces could n-dimensionally 

exist); and also to remark that the number of subspaces in the left-upper part of H is equal 

to that in the left-lower part: i. Whereas, the number of subspaces in the right-upper part of 

H is equal to that in the right-lower part: j. Namely, the arrangement is symmetrical with 

respect to the horizontal part of H. 

In summary, for V f p E F, when we set S to be the set whose elements are N linear 

subspaces of dimension (n-2) in pn -{ c} arranged in the letter H, N and Inv in Problem 2.1 

are respectively given by N = n + i + j and (3.3), where i and j are given integers such that 

l~i~j~ れ一 i.We should note that n + 2~N~2几

Remark 3.2 Since i + j = n is possible, we could have IDcl = 1. Namely, for the linear 

subspaces of dimension (n -2) arranged in the letter H, the part that corresponds to the 

horizontal part of H could be empty. ロ

For each i, we have~i = (n一 2i十 1)inva日ants.Taking芍mm拭ryinぃ⑳国如叫叩 iC邸

n 
be any of 1 :S i :S l -J. Hence, the number2 5 of invariants of this kind in pn -{ c} is given 

2 

by 

冴J

~- L~i 
i=l 

ー l%」(n-言J)'
n n 

where l-」denotesthe maximum integer not greater than -. 
2 2 

Furthermore, we give the nonsingularity condition for I nvij (1~i~j 三冗ー i), i.e., the 

necessary and sufficient condition making I nvij nonsingular. Here, we define "an invariant 

is nonsingular" as "the value of the invariant is not 0, CX) or 0/o". Nonsingularity can be 

regarded as nondegeneracy and well-definedness. As we can see, the nonsingularity condition 

for an invariant ensures that the values of the invariant are numerically stable when they are 

calculated in practical situations. The next theorem indicates that the nonsingularity condition 

for invariant I nvij is almost always satisfied, when we randomly choose (n+i+ j + l) hyperplanes 

2In particular, we have lり」 invariantsfor 2n linear subspaces of dimension (n -2); whereas we have only 

one invariant for (n + 2) linear subspaces of dimension (n -2). 
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in pn -{c}. This is because the homogeneous coordinates of (n + 1) hyperplanes that were 

randomly chosen in pn -{c}, are linearly independent in general. Note that (n + i + j + l) 

hyperplanes arranged in the letter H could⑰ -dimensionally exist. 

Theorem 3.2 [Nonsingularity condition] 

Let (n十 i+ j + l) hyperplanes, where (n + i + j) linear subspaces of dimension (n -2) 

exist, be arranged in the letter H (see Fig. 3). Invij in (3.3) is nonsingular iff (COND) below is 

satisfied by n subspaces among the (n十 i+ j) subspaces, i.e., 冗 alignedintersection subspaces 

of the adjacent hyperplanes, which include the horizontal part臭 ofH, in the arrangement 

(we always have four cases). 

(COND) Not singular is an (れ十 1)x (n + 1) matrix whose column vectors are the homo-

geneous coordinates (in pn -{ c}) of (n + l) hyperplanes that determine the n 

subspaces of dimension (n -2). ロ
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4 Proofs 

The proofs for Theorems 3.1 and 3.2 are given here. 

For a linear subspace of dimension (n -2) in pn-l, we consider the hyperplane on which 

both c and the subspace exist (see Fig. 4). We refer to this hyperplane as the interpretation 

hyperplane for the subspace. It is easy to see that for a linear subspace of dimension (冗ー 2)

in pn-1, any linear subspace of dimension (n -2) in pn -{ c} that exists in its interpretation 

hyperplane is projected to the subspace (in pn-l). It should be remarked that we use the 

interpretation hyperplane of (instead of "for") a linear subspace of dimension (冗ー2)when the 

subspace is not in pn-1, but in pn -{c}. 

For a linear subspace of dimension (n -2) in (Pn-l), its interpretation vector is obtained 

as a result of applying3 f P.-T to the homogeneous coordinates of the interpretation hyperplane 

for the subspace. This can be understood in the following way. Namely, for a linear subspace 

(3.1) of dimension (n -2), let X (X =J 0) be the coordinates (in pn-1) of any point in 

the subspace and put X = p*-1 X (= (喜瓜..., Xn-1戸） • Then, (1, ぇ。，ふ．．．．，えn-1)T

is the inverse image of X with respect to f P.. (In other words, a point in pn -{ c} with 

coordinates (1, 喜ふ，．．．，えn-1汀isprojected to the point (with coordinates X) in pn-l by 

f P ..) Moreover, put a= (a。,a1, ・.. , an-1戸anda= P五(=(ii。,ii1・ ・ ・, iin-1戸）. then (3.1) is 

rewritten as 

(4.1) (o, a。，釘，・ • ・, an-1汀.(l,.,Y。，ふ，...,xn-1戸=0. 

(4.1) represents the hyperplane on which both c and subspace (3.1) exist. Hence, (4.1) is the 

mterpretation hyperplane for subspace (3.1); (0, a。，祖，..., cin-1汀isthe homogeneous coordi-

nates (or equivalently the normal vector) of the interpretation hyperplane. From a = P心＝

p*-T凡 (o,a。，祖， ~)T... , an-I , we can see that mterpretation vector a is obtained by applying 

J P.-T to the homogeneous coordinates of the interpretation hyperplane for subspace (3.1). 

As seen above, we have represented a linear subspace of dimension (n -2) in S as a pair 

of hyperplanes in pn -{ c }. Thus, for an intersection subspace of two hyperplanes, we next 

consider the relationship between the interpretation vector for the projected intersection sub-

space and the homogeneous coordinates (in pn -{ c}) of the two hyperplanes. Let hyperplane 

3For a square matrix P, p-T is (PT戸 orequivalently (P-1戸
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刀(r;= 1, 2) in pn -{ c} be the set of points with coordinates x satisfying 

aT/・X = 0, 

where 

叫=(aT}O , aT/1 , ... , aT}n) T ; aT}o E R *, aT},. E R (托 E{1,2, ... ,n}). 

Then x, the coordinates of a point that exists on both hyperplanes 1 and 2 (hence, the point 

exists in the (n -2)-dimensional intersection subspace of the two hyperplanes), satisfies 

2 

(4.2) こ附(ari・x) = 0, 
ry=l 

whereμ11 (77 = 1, 2) are real numbers. By fixing the values ofμ11 (77 = 1, 2) so that c satisfies 

(4.2), we obtain the interpretation hyperplane of the intersection subspace of two hyperplanes 

1 and 2: 

(a20a1 -a10aり・X = 0. 

Therefore, a20 a1 -a10 a2 is the homogeneous coordinates of the interpretation hyperplane of 

the intersection subspace of hyperplanes 1 and 2; we obtain F p;T (a砂 1-a1oa砂whenwe 

observe the subspace in pn -{ c} determined by ary's (TJ = 1, 2). It is important to note 

that we have indeterminacy of a scaling factor between the vector F P.-T (a20 a1 -a10 a砂and

the interpretation vector n12 that we actually obtain as a result of observing the subspace. 

Therefore, defining 

a12 := Fp.-T (a砂 1-a1oa』,

we have 

(4.3) n12 = P(1,2) a口 (P(l,2)ERり・

Here, P(i,2) is a scaling factor and its value is not known. In line with treatingれ 12,we de且ne

an n x n matrix !VJ叫，9立 R£(k,/J, E {1, 2}) as a counterpart of N. 印，nc,n証

(4.4) ]VJ叫恥，知：= [a恥 Lk2I・ ・ ・I au;-1Lk; I auぶ1I ac1C2 I・ ・ ・I 

acn-i-jCn+l-i-j I acn+l-i-j囮jI a恥匹1I・..I a恥 RP.1]・ 
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(4.3) and (4.4) yield 

(4.5) detN印，I1c,知 Pke・detJ'vf nLk ,nc ,n恥

where 

i-1 n-i-J j-1 

釦：= P(Lk;,C1)• P(Cn+l-i-J恥） ・IIP(Lk",Lk"+1l・II P(c",c"十1).II P(恥 +1,恥）・
氏=l 氏=l 氏=l

We again attach'(prime) to the notations above when an admissible transformation has acted 

on S. Accordingly, we obtain4 

LHS of (3.2) 

RHS of (3.2) = 

detNlnLi,Dc,DRi・detMnL2,Dc,DR2 

detNJ紅 1,nc,DR2・detM虹叫Rl'

detM如，De,倅 1・detM如，Dc,DR2

detM如，Dc,DR2. detM如，Dc,DR1.

Now, to prove Theorem 3.1 it su缶cesto show the following lemma (applying the results of 

four combinations of k and R, in Lemma4.1 to the two equations above, completes the proof of 

Theorem 3.1). 

Lemma 4.1 Let a point (with coordinates x) in S change its coordinates to x'after an 

admissible transformation T (E冗） as follows: 

(4.6) 入x'= Tx 

Fork,£E {1, 2} we have, independent off P., 

(.¥ER*). 

ヽ

7
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4

 

(

‘

／

ー

＼

rank.l¥lf印，nc,nRl= n 

detT・II 知。 ・detM叫斑知

K.EI'ke 

＝⇒ rankJVI' S?Lk ,Ste ,S?Re =n, 

II vT/・II心。 ・detNI叫，f2c,f2取，

ryEYkl 氏EI'kl

where 

Yk£:= DLk u De u DRe, 

r屈：= nu u臭 un瞑ー {L柘，R針｝．

4LHS and RHS stand for the left-hand side and the right-hand side, respectively. 
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Proof: It follows from the definition of !VI叩 忍 知 that

(4.9) detM叫如知
1 - - . -1 Mod2(n). . detA 

detP* 
() II心。 叫 虞 知 ・

K-EI'k1 

Here, (n + 1) x (n + 1) matrix Anu,Dc,DRe is defined by 
讐

ー

Anu,Dc, 知：= [ au1 I au2 I・ ・ ・I au; I ac1 I・ ・ ・I acn+1-H I a瞑 j I・ ・ ・I aRe1 ]; 

and, for a natural number n, Mod2 is a function such that 

Mod,(n)~{ : 

n: even 

n: odd. 

Similarly, after admissible transformation T, we define (n + l) x (n + l) matrix 

A' S?u,S?o,S? 瞑 ・ー [a五1I aしk2I・ ・ ・I aしkiI aらI・・ ・I a~n+l-H I a知jI .. ・I a知1] . 

When a point in Sis subject to a transformation of (4.6), ar,, the coordinates of hyperplane 

r;, is subject to 

(4.10) I 
a = -T 

1) 
VT  1) a T/) 

where v17 (rJ E Ykc) are nonzero real numbers. We then obtain 

(4.11) detM' ilu,Stc,Stru 

(-1)Mod2(n) 
． 

detP* 
rr心・detA加，尻知
KEI'ke 

(-1) Mod2 (n) 1 
．．  

detP* detT 
II四.II似 ・detA.nu,ftc,ft瞑 9

ryEht KEI'ke 

since (4.10) yields 

i 

detA' nLk ,nc,f2Rt 
1 ． 

detT 
IT v71・detAnu,f?c知・

ryEYke 

Note that a~。# 0 (K, E国 issatisfied since TE'Ts. (4.9) and (4.11) immediately yield (4.8). 

It is clear that (4.8) is independent off P •. 

Since a"0 # 0 (K, E I'H), it follows from (4.9) that rankM叩，nc,S?Re= n is equivalent to 

rankA。Lk,S?C扉 t= n + 1. Hence, we have (4. 7) from (4.11) since v17 # 0 (7/ E Yke) and 

a~。# 0 (尻 EI'ke). 口

14 



Remark 4.1 (4.9) shows that detA。u,nc,nRe= 0 is equivalent to detA1叫，rlc,nRl= 0 (k, e E 

{1,2}). Namely, n subspaces in pn  - {c} (the intersection subspaces of the adjacent hy-

perplanes in DLk U De U伽） share a common point in pn-l through the projection f P. iff 

detA叫叫Rt= 0 (see Observation4.l below). We assume that detA叫 向 知 ナ 0is sat-

isfied by (n + 1) hyperplanes that determine these n subspaces (intuitively, this assumption 

is equivalent to the random choice of (n + 1) hyperplanes). Moreover, Lemma4.1 indicates 

that if detA叩，nc,n取ヂ 0holds, we can guarantee that these n subspaces after any admissible 

transformations never share a common point in pn-l through the projection f P •. ロ

We now turn to the proof of Theorem 3.2. From (3.3) it is easy to see that I nvij is nonsingular 

iff the values of the determinants of N叩，f2c,f2取 (k,f, E {1, 2}) are not zero. Hence, the 

necessary and sufficient condition under which Invij is nonsingular is that the values of the 

determinants of NI知珈庫lare not zero (see (4.5)). Observation 4.1 below indicates that when 

n linear subspaces of dimension (n -2) in pn-l do not share a common point, the value of the 

determinant of Mnu,nc,n瞑 isnever zero. This argument yields Theorem3.2 (see Remark4.l). 

． 
Observat10n 4.1 Let n different linear subspaces T (T = 1, 2, ... , n) of dimension (n -2) in 

pn-1 be 

n-1 

~aT,cふ= 0, 
K=O 

where 

n-1 

区a冗 2 ::/: 0 
氏=0

They do not share a common point in pn-l iff 

a10 a ro 

a11 a内

det 

a1" a 
T" 

a1 n-1 
a Tn-l 

(aT≪E R). 

a no 

an1 

a n" 

a nn-1 

=I 0. 

ロ
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5 Conclusion 

We have investigated the existence of projection invariants under the conditions that the 

projection from pn -{ c} to pn-l is achieved by an element of F, and the class of admissible 

transformations is冗， whereS is the set whose elements are linear subspaces of dimension 

(n -2) in pn -{ c }. For given integers i and j such that 1~i~j~ 冗— i, we derived 

projection invariant, independent of the element of F, I叫 jin (3.3) from (n+i+ j) subspaces 

of dimension (n -2), where these subspaces are the intersections of the adjacent hyperplanes 

of (n + i + j + l) hyperplanes arranged in the letter H. Accordingly, the (n + i + j) subspaces 

are also arranged in the letter H (hence, the (n + i + j) subspaces c叫 dn-dimensionally exist). 

Note that the number of subspaces in the left-upper part of H is i, whereas that in the right-

upper part is j; and the arrangement is symmetrical with respect to the horizontal part. Let us 

remark again that the horizontal part could be empty since i + j = n is possible. In addition, 

the number of invariants of this kind in pn -{ c} is l?」(n-l?」）．

Furthermore, the nonsingularity condition for Invij, i.e., the necessary and sufficient condi-

tion making Invij nonsingular, was given. Invij is nonsingular iff (COND) below is satisfied 

by n subspaces among the (n + i + j) subspaces, i.e., n aligned intersection subspaces of the 

adjacent hyperplanes, which include the horizontal part恥 ofH, in the arrangement H above 

(we always have four cases). 

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the homo-

geneous coordinates (in pn -{ c}) of (n + l) hyperplanes that determine the n 

subspaces of ( n -2) d1mens1ons. 

The nonsingularity condition guarantees that J nvij is not only well-defined but nondegenerate; 

it also ensures that the values of I nvij are numerically stable when they are calculated in 

practical situations. We should remark that this condition is almost always satisfied when we 

randomly choose (n + i + j + l) hyperplanes in pn -{ c}. 

The values of I⑰ Vij depend on the order of linear subspaces of dimension (nー 2)in the 

computation (see (3.3)). Namely, a different ordering of the subspaces, i.e., associating indices 

with the subspaces in a different way, can yield different values of Invij・If the values of Jnvij 

are insensitive to the order, then we need not establish the subspace correspondence in a certain 

•\ 
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sense. vVe can thus avoid being concerned with every possible ordering of the subspaces from 

which I nvij is computed; projection invariants get more useful in applications. To make them 

insensitive to the order, we should derive order-independent projection invariants from Invij 

such as j-invariant [8] in the case of four collinear points or p2-invariant [6] in the case of five 

coplanar points. Since I nvij is in a similar form of cross ratio, it would be possible to derive 

an order-independent invariant from I nvij・Elaboration of deriving such invariant is left open 

for future research. Also left for future research is investigating the existence of projection 

invariants under another projection class. 
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Fig. 1: Central projection attached at origin o (n = 3) 
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Fig. 2: Linear subspace of dimension (n -2) determined as a pair of hyperplanes (n = 3) 
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Fig. 3: Arrangement H of (n + i + j + l) hyperplanes and linear subspaces of dimension (n -2) 

as the intersections of the adjacent hyperplanes (the numbers in ellipses represent hyperplanes; 

the lines and the dashed lines represent linear subspaces of dimension (n -2)) 
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Fig. 4: Subspace i and the homogeneous coordinates (or equivalently the normal vector) of its 

interpretation hyperplane (n = 3) 
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