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Abstract 

In the analog Hopfield network and the mean field theory model of the 
Boltzmann machine, there occur bifurcations of solutions according to the 

symmetry of the energy function. This also holds in the Potts neural net-

work. In this report, we investigate the bifurcation processes of the Potts 

mean field theory equation applied to traveling salesman problems and show 

some limitations of the annealing procedure. As an alternative approach, we 

propose a nonequilibrium version of the Potts neural network model, which is 
called Chaotic Potts Spin (CPS). We show experimental results for a compar-

ison with the mean field annealing and the Potts mean field annealing. We 

also describe a modified algorithm in which a heuristic method is employed. 
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ー Introduction 

The analog Hop且eldnetwork always converges to a local minimum of its Lyapunov 
function, and when the slope of the sigmoidal output function becomes large, the 
Lyapunov function is nearly equal to the energy function. By utilizing this fea-
ture, the analog Hopfield network can be applied to combinatorial optimization 
problems defined as a minimization of the quadratic energy functio叫2]The a叫 og
Hopfield network is equivalent to the mean field theory (MFT) of the Boltzmann 
machine. The Lyapunov function of the Hopfield network corresponds to the free 
energy function of the MFT.[4] Wilson and Pawley[lO] reported that the Hopfield 
network is not a good algorithm for solving combinatorial optimization problems 
when the problem scale is not very small. Neural network approaches need some 
additional mechanisms for relatively large scale problems. One of them is a grad-
ual slope enlarging of the sigmoidal output function, i.e., a gradual lowering of the 
system's "temperature," which corresponds to a well-known annealing mechanism. 
This is the mean field annealing (MFA) algorithm.[4, 9] During the gradual tern-
perature lowering, there occur many bifurcations of the MFT solutions. We have 
investigated the bifurcation processes in the MFA procedure.[7] Our result implies 
the MFA has some limitations. 

Nozawa[3] showed that the chaotic version of the Hopfield network can find the 
optimal solution of small scale traveling salesman problems (TSPs) almost 100% of 
the time. His model is based on an Euler difference equation of the Hopfield network 
with a self-loop, which is equivalent to the Chaotic Neural Network (CNN) model 

proposed by Aihara et al. [1] It has been known that an Euler difference equation 
derived from a differential equation system with a self-loop has a chaotic solution 

even if the original differential equation system has stable solutions. 
In the TSPs, graph bisection problems, N-Queen problems and so on, neural 

network representations have a common structure, i.e., for some variables, their 
summation must be 1. Focusing on this property, Peterson and Soderberg[5] em-
ployed a Potts spin system in the MFA approach. Their Potts neural network can 
be applied to fairly large scale problems.[6] 

In this report, we briefly discuss the bifurcation processes of the Potts MFT 
applied to TSPs. The Potts mean field annealing procedure has some limitations in 
obtaining the optimal solution. As an alternative approach, we propose a chaotic 
version of the Potts neural network. This is called Chaotic Potts Spin. Some 
experimental results and a modification are also described. 
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Potts neural networks 

Some of the NP-complete optimization problems can be described as a quadratic 
energy minimization problem for (M x N)-dimensional Potts spin variables S a,n (= 
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0 or 1): 
1 M N M N 

E(S) =—区こ Wa,n;b,mSa,ぶ，m+こLia,ふ，n, (2.1) 
2 a,b=l n,m=l a=l n=l 

where the constraints: I:;:=l Sa,n = l (a= 1, …, NJ) must be satisfied and Wa,n;b,m = 

Wb,m;a,n holds. The values of the parameters Wand I are determined for each prob-
lem. In the MFT of the Potts spin model, analog variables Va,n E [O, 1], each of 

which represents the probability that the binary variable Sa,n takes the value 1, are 

introduced. These analog variables must satisfy the following constraint: 

iい =1
n=l 

(a= l, ... , M). (2.2) 
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where T corresponds to the temperature in the statistical mechanics. A minimum of 

the MFT free energy function, which corresponds to an equilibrium in the statistical 

mechanics of the Potts spin, satisfies the stationary condition of the free energy 

function: 

Ua,n = L Wa,n;b,mい+fa,n 
b,m 

e-Ua,n/T 
Va,n = Hn(Va) ='C""""'¥ _rr l'T', 

(2.4a) 

(2.4b) 

which is called Potts MFT equation. The solution of this equation can be obtained 

by using the continuous-time Potts spin model, which is a differential equation 

system: 

dUa,n 
T =-

dt 
Ua,n + L vVa,n;b,m½,m + Ia,n 

b,m 
e-Ua,n/T 

Va,n =尾(Ua)= -、一

(2.5a) 

(2.5b) 

or the asynchronous Potts MFT equation, which is a difference equation system: 

Ua,n(t) = LWa,n;b,m闘，m(t-1) + fa,n 
b,m 

Va,n(t) =恥(Ua(t))

¼,m(t) =¼,m(t -1) for b ::/ a. 

(2.6a) 

(2.6b) 

(2.6c) 
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In the continuous-time model (2.5), the free energy (2.3) is the Lyapunov function 
that always decreases over time, and the MFT equation (2A) is satisfied at the 

stable stationary points (minima). If we assume 

w a,n;a,m =0 for any a,n,m, (2.7) 

this also holds for (2.6). 
In the high temperature limit (T→ oo), the free energy (2.3) is dominated by 

the entropy term, i.e., the second term of the r.h.s. of (2.3a), and there is a unique 
minimum. In the low temperature limit (T→ 0), the free energy function F (2.3a) is 
nearly eq叫 tothe energy function E (2.3b). In addition, the minima of the energy 
function occur at the hypercube corners (Va,n E {O, 1}) if Wa,n;a,n = 0. Therefore, in 
the low temperature limit, there are local minima of the free energy function (2.3) 
that correspond to those of the original energy function (2.1) for binary spins. If the 
temperature is fixed at a low value, which local minima are found by using (2.5) or 
(2.6) is dependent on the initial condition. 

In order to get a good local minimum of the energy function (2.1), MFT anneal-
ing can be used. First, the MFT equation (2.4) is solved for a high temperature, 
and a unique minimum is obtained. Then slightly lowering the temperature, the 
MFT equation is solved starting from the higher temperature solution. Continuing 
this process, one can get a low temperature solution which corresponds to a local 

minimum of the energy function (2.1). This algorithm[5] is called Potts mean field 
annealing (PMA). 
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TSP and PMA bifurcations 

A Potts spin energy function for an N-city TSP is defined as: 

1 N a N N  / 3N N  

E(V) =—こ叫Va,n(½,n+l +½,n-1) +ー 2 
2 

L(こVa,n 1) + L L Va,n Va,m, 
a,b,n=l 2 n=l a=l 2 a=l呼 m

(3.1) 
where Va,n represents the probability that the salesman visits city a at then-th visit, 
and Da,b denotes the distance between city a and city b. 

The Potts MFT equation (2.4) has a unique minimum in the high temperature 
limit and a lot of minima in the low temperature limit. Therefore, during the 
course of temperature lowering, there occur bifurcations that generate new minima. 
These bifurcation processes are dependent on the structural stable symmetries in 
the problem. 

In TPSs, there are two types of symmetries: cyclic symmetry and reverse symme-
try. Due to these symmetries, a solution of an N-city TSP has 2N equivalent repre-
sentations. These two types of symmetries affect PMA bifurcation processes. Local 

bifurcation processes in the PMA for a TSP are classified as follows: saddle-node 
bifurcations; reverse symmetry breaking bifurcations; cyclic symmetry breaking bi-
furcations. Let us show a typical bifurcation diagram. Figure la shows an example 
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5-city TSP. Figure le shows its bifurcation diagram, where Vぃ(i= 1, …，5) of ev-
ery minimum are plotted for each temperature. Figure ld shows the corresponding 
free energy diagram. In Figure lc, we can observe a cyclic symmetry breaking bi-
furcation at T~0.32, where a single minimum bifurcates into 5 minima. Since 
each bifurcated minimum preserves the reverse symmetry, there are 3 cascades ob-
served in Figure lc. We can also observe a reverse symmetry breaking bifurcation 
at T~0.29, where each minimum bifurcates into two nonsymmetric minima. At 
T~0.27, 0.21, and 0.19, we can observe saddle-node bifurcations, where 10 nonsym-
metric minima simultaneously appear. It is important to note that stable solutions 
may disappear through a bifurcation. 

The PMA procedure is a series of the above-mentioned local bifurcation processes 
and has the following features. 

• free energy crossing 
We can observe this phenomenon in Figure ld. In Figure ld, the free energy 
levels of the annealing solution and the new born minima that appear at 
T~0.27 cross each other and the free energy level of the annealing solution 
becomes higher than that of the new born minima. In fact, the new born 
minima correspond to the optimal solution shown in Figure la. In this case, 
the PMA fails to obtain the optimal solution, and results in a semi-optimal 

solution shown in Figure lb. Moreover, sometimes the PMA deterministically 
results in a failure that does not correspond to any of the valid Hamilton 
passes. 

• deterministic/ non-deterministic 
When the annealing solution disappears at some temperature, and there are 
two or more distinctive minima at this temperature, the PMA may become a 
non-deterministic procedure. 

Accordingly, it can be said that the PMA is, in general, a non-deterministic proce-
dure to obtain a "not-so-bad" solution. 

4 Chaotic Potts Spin 

4.1 Model description 

If we apply the Euler method to the continuous-time Potts spin model (2.5), a 
difference equation is obtained: 

叫 (t)= kU",.(t -1) + (1 -k) (こ爪，n;b,mい (t-1) +I",") (4.la) 

e―Ua,n(t)/T 

Va,n(t) = Hn(Va(t)) = I:m e-Ua,m(t)/T' (4.lb) 

where k = 1-ot/r and c5t denotes the time interval. The original differential equation 
system always converges to a local minimum of the free energy (2.3). However, 
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this difference equation often oscillates or produces chaos. If we choose W to be 

Wa,n;a,n > 0 and Wa,n;a,m = 0 (m # n), (4.1) often exhibits chaotic solutions. We 
thus call the difference equation system (4.1) the Chaotic Potts Spin (CPS). Roughly 
speaking, the strength of chaos is determined by the self-loop Wa,n;a,n > 0 and the 
time interval parameter of the Euler method O < 1 -k < l. When Wa,n;a,n is large 
and 1-k~1, the chaos is strong. On the other hand, when Wa,n;a,n is small and 1-k 
is small, the system tends to converge. Therefore, the parameter k is a "stabilizer" 
parameter. The equation (2.6) is a special case of the Euler difference equation (4.1) 
where k = 0, and the system easily becomes chaotic when the self-loop is positive. 
Peterson and Soderberg[5] mentioned this feature. 

界．＇）＇
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4.2 CPS for TSPs 

Let us apply the CPS approach to the TSP energy function (3.1). From (3.1), (2.2), 
(2.3b), and (4.1), the CPS equation for a TSP is defined as a dynamical system: 

Ua,n(t) = kUa,n(t -1) + L D贔(½,(n+l)(i-1) +½,(n-l)(i -1)) 
b 

+a(l -k) L½,n(t -1) -/3(1 -k)Va,n(t -1) 
b 

e-Ua,n(t)/T 

Va,n(t) =広(Ua(t))='""'_rr /+¥l'T', 

(4.2a) 

(4.3b) 

where D贔=(1 -k)Da,b for convenience. In this case, Wa,n;a,n = a -(3. Therefore, 
when a is larger than /3, the CPS may be chaotic. 

Let us show an experimental result. Figure 2a shows the result of the CPS 
applied to the famous 10-city problem.[2] In a "sweep," all of the variables are 
updated once and only once. The ordinate denotes the solution obtained at each 
step (sweep). The indices 1, 2, …, 5, and 6 denote the optimal solution, the 2nd 
best, …, the 5th best, and all the other valid tours, respectively. When no circle 
is plotted, no valid tour is obtained at that sweep. Figures 2b and 2c show the 
time-series of the variable Vi1 and the energy function (3.1), respectively. As these 
figures show, each variable moves chaotically, and the optimal and the semi-optimal 
solutions are retrieved over time. 

In the following, we compare our CPS approach with the PMA, the CNN, and 
the Ising (binary) spin MFA. A result of the CPS or the CNN is the best tour it finds 
during the whole sweeps. We prepared five testbeds for evaluation; they are 10-city, 
20-city, 30-city, 40-city, and 50-city TSPs. In each problem, the city locations are 
randomly generated in a unit square. Some normalization is also done. Each testbed 
consists of 100 sets of city allocations. Table 1 shows the results. 
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Table 1 

20 I 30 40 50 

CPS 100 100 100 100 100 
(3.459) (4.318) (5.252) (5.967) (6.940) 

PMA 82 85 96 94 86 
(3.467) (4.325) (5.167) (5.602) (6.185) 

CNN 90 97 96 96 92 
(3.578) (4.635) (5.778) (6.775) (7.603) 

MFA 74 65 66 96 94 
(3.628) (4.960) (7.517) (8.267) (10.431) 

In each column, the upper number and the lower number denote the number of valid 

tours and the averaged tour length for valid tours, respectively. For example, in the 

case of the PMA for 20-city TSPs, among the 100 sets of city allocations, valid tours 
are obtained for 85 sets, and the average tour length over the 85 tours is 4.325. Of 

course, the ability of each procedure depends on the value of its parameters. As for 

the CPS, they are shown in Table 2. In general, as the number of sweeps becomes 
large, the ability of the CPS becomes better. 

Table 2 

#city parameter values 
10 a= 2.7, (3 = 0.5, k = 0.7, T = 0.042, #sweep= 1000 
20 a= 3.0, (3 = 0.5, k = 0.7, T = 0.035, #sweep= 1000 
30 a= 3.3, (3 = 0.6, k = 0.7, T = 0.029, #sweep= 1500 
40 a= 3.5, (3 = 0.7, k = 0.7, T = 0.024, #sweep= 2000 
50 a= 3.7, (3 = 0.8, k = 0.7, T = 0.020, #sweep= 2000 

Since the analog Hopfield network corresponds to the MFT without the annealing 
mechanism, the MFA is a better algorithm than the Hopfield network. Wilson and 

Pawley[lO] reported a quite discouraging result for the Hopfield network in the case 

N 2: 10. Table 1 shows that even with the MFA, the Ising spin model is not so good 

an algorithm for a fairly large number of cities. In the MFA, the possible solution 

with T = 0 will be on the N x N dimensional hypercube corners whose number is 

2氾 Onthe other hand, in the PMA, the possible solution with T = 0 will be on 
the N dimensional hypergrid whose number is N N. Therefore, the dimension to be 

searched is smaller in the PMA than in the MFA. We consider that this merit also 

holds in the CPS. Therefore, as Table 1 shows, the Potts spin models are better 
than the Ising spin model (MFA). 

The PMA deterministically fails to obtain the optimal solution when crossing of 

the free energy level occur. Even in such a case, the CPS, which is a nonequilibrium 

dynamical system, has the possibility to find the optimal solution. Actually, for 

10-city TSPs, the CPS can obtain the optimal solution at a 98% rate. This merit 

is also true when the CNN[l] is compared with the Hopfield network. However, as 

the number of cities increases, even a nonequilibrium CPS cannot find the optimal 

solution, because of the expanse of the space to be searched. In the CPS, with 
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its nonequilibrium property, even if some part of the solution is good, some other 
part can be somewhat random. Therefore, with a relatively large number of cities, 
the CPS becomes inferior to the PMA. On the other hand, although the PMA 
sometimes fails to obtain any of the valid tours, the CPS can always obtain valid 
tours for every problem. Accordingly, our CPS approach is fairly good at obtaining 
the optimal solution for small scale problems and any semi-optimal solutions for 
relatively large scale problems. 

Notice that our CPS approach is significantly dependent on the system's tem-
perature T, because it does not employ the annealing procedure. Although the best 
temperature value varies according to the city allocation, we fixed it in the above 
experiment for a practical reason. If we tune the temperature for each problem, the 
CPS ability can be greatly improved. 

4.3 CPS with heuristics 

In our CPS approach, a solution tends to have some good parts and some bad/random 
parts in it; this is due to its nonequilibrium dynamics. Therefore, a local optimiza-
tion method can improve the obtained solutions. We choose the 2opt algorithm as a 
local optimization method. The initial state of the modified CPS is a solution of the 
2opt. Every time a solution is obtained by the CPS, it is improved by the 2opt, and 
the result is the best solution among the improved solutions. This modification does 
not affect the processing time very much. Table 3 shows the experimental results. 
The first column is the basic CPS result with random initial states. The second 
column is the modified CPS result. Here, the initial 2opt solution is excluded for 
evaluation. The third column is the PMA result. The fourth column is the PMA 
result improved by the 2opt. The averaged tour length of the PMA is only for the 
valid tours it obtains. If the length of the CPS is averaged over the same allocations 
as in the PMA, the results are slightly improved. The fifth column is the result of 
the single 2opt. 

CPS 

Table 3 

I CPS+2opt 11 PMA I PMA+2opt II 

10 3.459 3.458 3.467 3.460 3.480 

20 4.318 4.228 4.325 4.244 4.333 

30 5.252 4.943 5.176 5.029 5.100 

40 5.967 5.440 5.602 5.530 5.652 

50 6.940 5.941 6.185 6.072 6.226 

2opt 

Although the CPS dynamics is chaotic, some good partial parts (variables) con-
tinue over a long time. In such cases, the CPS can improve only the other bad 
parts, which is a local search in a domain subspace. This is the merit of the CPS; 
consequently, the CPS can make an improvement when its initial state is set to be 
as good as a 2opt solution. The ability of the modified CPS is better than that 
of the PMA, and it can obtain the optimal solution for every 10-city TSP. On the 
other hand, the PMA solution cannot be similarly improved by the 2opt. 

L

S

 

¥
1
,
＇-

8
 



5 Conclusion 

The mean field annealing approaches, including the MFA and the PMA, are very 
powerful algorithms for combinatorial optimization problems. However, due to their 
bifurcation properties, they may fail to obtain the optimal solution even for a small 
scale problem. As an alternative approach, we proposed a nonequilibrium dynamical 
system whose name is Chaotic Potts Spin. As for very small scale problems, our CPS 
can solve them almost 100% of the time. As for relatively large scale problems, the 
CPS is inferior to the PMA but the CPS can obtain any of the semi-optimal solutions 
for every problem. CPS is inferior because, with its nonequilibrium dynamics, there 
is some random part left in almost every solution it obtains. To deal with this 
problem, we propose a CPS combined with local optimization heuristics, namely, 
2opt heuristics. With this modification, the CPS becomes better than the PMA. 

Our CPS is a fast algorithm. Actually, in the experiment described in Sec. 4.2, 
the CPS is faster than the PMA, the CNN and the MFA. Furthermore, by modifying 
the Potts neural network hardware[8], we believe it will not be very difficult to 
implement the CPS algorithm into hardware. In fact, implementation of the MFA 

is considered to be more difficult, because our computer simulation shows that the 
annealing procedure is quite sensitive to its precision, and this is a weak point of a 
hardware implementation. 

，
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