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Abstract 

The concept of combining modular neural networks has been recently exploited 
as a new direction for the development of highly reliable neural network systems in 
the area of artificial neural networks. In this paper we present an efficient method of 
combining the modular networks based on fuzzy logic, especially the fuzzy integral. 
This method nonlinearly combines objective evidences, in the form of network outputs, 
with subjective evaluation of the reliability of the individual neural networks. Also, for 
more effective aggregation, we adopt the extension of the fuzzy integral with ordered 
weighted averaging operators. The experimental results with the recognition problem 
of on-line handwriting characters show that the performance of individual networks 
could be improved significantly. 

1 Introduction 

In the past several years, there has been a tremendous growth in the complexity of the 

recognition, estimation and control problems expected from neural networks. In solving 

these problems, we are faced with a large variety oflearning algorithms and a vast selection 

of possible network architectures. After all the training, we choose the best network 

with a winner-takes-all cross-validatory model selection. However, recent theoretical and 

experimental work indicates that we can improve performance by considering methods for 

combining neural networks [1, 2, 3, 4, 5, 6]. One of the key issues of this approach is how 

to combine the results of the various networks to give the best estimate of the optimal 

result. There are a number of possible schemes for automatically optimizing the choice of 

individual networks and/or combining architectures. 

A straight-forward approach is to decompose the problem into manageable ones for 

several different subnetworks and combine them via a gating network that decides which 

of the subnetworks should be used for each case. Hampshire and Waibel [7] have described 

a system of this kind that can be used when the decomposition into subtasks is known 

prior to training, and Jacobs et al. [3] have also proposed a supervised learning procedure 
for systems composed of many separate networks, each of which learns to handle a subset 

of the ,complete set of training instances. The subnetworks are local in the sense that the 

weights in one expert are decoupled from the weights in other subnetworks. However, there 

is still some indirect coupling because if some other network changes its weights, it may 

cause the gating network to alter the responsibilities that get assigned to the subnetworks. 

*Tel: +81-7749-5-1076 Fax: +81-7749-5-1008 E-mail: sbchochip.atr.co.jp. 

ー



2
 

An alternative one is to independently generate a number of networks for possible gen-

eralizers and utilize all of them for obtaining robust output. While a usual scheme chooses 
one best network from amongst the set of candidate networks based on a winner-takes-all 

strategy, this approach keeps multiple networks and runs them all with an appropriate 

collective decision strategy. This is different from the aforementioned "adaptive mixtures 

of local experts" [3], in the sense that here networks do not decompose the task but 

learn globally the same task with different points of view. Several methods for combining 
evidence produced by multiple information sources have been applied in statistics, man-

agement sciences, and pattern recognition [8, 9]. A general result from the previous works 

is that averaging separate networks improves generalization performance for the mean 

squared error [6]. If we have networks of different accuracy, however, it is obviously not 
good to take their simple average or simple voting. 

To give a solution to the problem, this paper presents a fusion method that consid-
ers the difference of performance of each network in combining the networks, which is 

based on the notion of fuzzy logic, especially the fuzzy integral. This method combines 

the outputs of separate networks with importance of each network, which is subjectively 
assigned as the nature of fuzzy logic. Also, we demonstrate the superior performance of 

the presented method and compare with conventional averaging methods by thorough ex-
periments. Although a serious theoretical investigation is beyond the scope of this paper, 

we will demonstrate the effectiveness of the method by experimental results on a difficult 

OCR problem. For more details, refer the forthcoming publications made by the author 

[10, 11, 12]. 
The rest of this paper is organized as follows. Section 2 formulates the modular neural 
networks and considers possible methods for combining them. In section 3, we present 

the proposed architecture combining the modular neural networks with the fuzzy integral, 

and extends it with ordered weighted averaging (OWA) operators. Shown in section 4 are 

results with the recognition of on-line handwriting characters. 

2 Backgrounds 

2.1 Neural Network as Bayes Classifier 

A neural network can be considered as a mapping device between an input set and an 
output set. Mathematically, a neural network represents a function F that maps I into 
O; F :I→ 0, or y = f(x) where y E O and x E J. Since the classification problem is a 
mapping from the feature space to some set of output classes, we can formalize the neural 

network, especially two-layer feedforward neural network trained with the generalized delta 

rule, as a classifier. 

Fig. 1 shows a two-layer neural network classifier with T neurons in the input layer, 
H neurons in the hidden layer, and c neurons in the output layer. Here, Tis the number 

of features, c is the number of classes, and His an appropriately selected number.1 The 

network is fully connected between adjacent layers. The operation of this network can 

be thought of as a nonlinear decision-making process: Given an unknown input X = 
(xぃx2,... , XT) and the class set n = {wi,w2, ... ,we}, each output neuron estimates the 

1There has been a long debate as to how to determine H as appropriate for any given problem. This 
has motivated the development of several constructive training techniques, such as Fahlman's Cascade 
Correlation. 
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Figure 1: A two-layered neural network architecture. 

probability P(叫X)of belonging to this class by 

P(叫X)sef{t,w霊1(t,疇;Xj)} (1) 

where叫り isa weight between the jth input neuron and the kth hidden neuron, 叫悶 isa 
weight from the kth hidden neuron to the ith class output, and f is a sigmoid function 
such as f(x) = 1/(1 + e→) • The neuron having the maximum value is selected as the 
corresponding class. The key point is the training process determining the weight values, 

疇 andw累
On the other hand, the outputs of neural networks are not just likelihoods or binary 
logical values near zero or one. Instead, they are estimates of Bayesian a posteriori prob-
abilities [13]. With a squared-error cost function, the network parameters are chosen to 
minimize the following: 

E[苫は(X)-d;)2 l 
where E[・] is the expectation operator, {Yi(X) Ii= 1, ... ,c} the outputs of the network, 
and { di I i = 1, ... , c} the desired outputs for all output neurons. Performing several 
treatments in this formula allows it to cast in a form commonly used in statistics that 
provides much insight as to the minimizing values for Yi(X): 

(2) 

E[エ他(X)-E [dilX])2] t E [喜var[di IX]] (3) 

where・E [di[X] is the conditional expectations of di, and var [di[X] is the conditional 

vanance of di・
Since the second term in (3) is independent of the network outputs, minimization of the 

squared-error cost function is achieved by choosing network parameters to minimize the 
first expectation term. This term is simply the mean-squared error between the network 

outputs防(X)and the conditional expectation of the desired outputs. For a 1 of M 
problem, di equals 1 if the input X belongs to class Wi and O otherwise. Thus, the 
conditional expectations are the following: 

E[dilX] ＝ 

＝ 

C 

こ鱈（叫X)
j:=::l 

P(叫X) (4) 
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Figure 2: The modular neural network scheme combined by fusion method. 

which are the Bayesian probabilities. Therefore, for a 1 of M problem, when network 

parameters are chosen to minimize a squared-error cost function, the outputs estimate the 

Bayesian probabilities so as to minimize the mean-squared estimation error. 

2.2 Modular Neural Networks 

The network presented in the previous section trains on a set of example patterns and 
discovers relationships that distinguish the patterns. A network of a恥itesize, however, 

does not often load a particular mapping completely or it generalizes poorly. Increasing 

the size and number of hidden layers most often does not lead to any improvements. 

Furthermore, in complex problems such as character recognition, both the number of 

available features and the number of classes are large. The features are neither statistically 
independent nor unimodally distributed. 

The basic idea of the modular network scheme is to develop n independently trained 

neural networks with relevant features, and to classify a given input pattern by utilizing 

combination methods to decide the collective classification [1, 14] (see Fig. 2). Then it 
naturally raises the question of obtaining a consensus on the results of each individual 

network or expert. 

In the meantime, we shall sketch how the modular neural network scheme generates 

an improved regression estimate [6]. Suppose that we have two finite data sets whose 

elements are all independent and identically distributed random variables: a training data 

set A = {(xm, Ym)} and a cross-validatory data set CV = {(x1, y1)}. Further suppose 
that we have used A to generated a set of functions, F = fi(x), each element of which 
approximates J(x). We would like to show that the MNN estimator, fMNN(x), produces 

an improved approximation to J(x). 

Define the misfit of function fi(x), the deviation from the true solution, as m心）三
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J(x) -Ji(x). The mean square error can now be written in terms of m;(x) as 

MSE[fi] = E[m:J. 

The average mean square error is therefore 

- 1 n 
MSE= -
n 

~E[m7]. 
i=l 

Define the MNN regression function, fMNNに）， as

l n l n 
fMNNに）三一Li心） = J(x)--L四 (x).

n i=l n i=l 

If we now assume that the mi(x) are mutually independent with zero mean, we can 
calculate the mean square error of fMNNに） as 

MSE[fMNNi = E [ (旦；mJ] 

=~E[ご囀＋王［〗叫m;]
= ;;JE [シ『l+ t I:E[加 ]E[叫

i=l i-:/-j 

= tE[塁］，
which implies that 

MSE[JMNNl 
1 
= -MSE. 
n 

This is a powerful result because it tells us that by averaging regression estimates, we 

can reduce our mean square error by a factor of n when compared to the population 

performance. 

2.3 Synergy Methods 

There might be two general approaches to combining the modular neural networks: One 

is based on fusion technique and the other on voting technique. In the methods based 

on the fusion technique, the classification of an input X is actually based on a set of real 

value measurements: 

P(叫X), 1:Si:Sc. 

They represent the probabilities that X comes from each of the c classes under the condi-

tion X. In the modular network scheme, each network k estimates by itself a set approx-

imations of those true values as follows: 

P只叫X), 1~i~c, 1~k~n. 

One simple approach to combine the results on the same X by all n networks is to use 

the following average value as a new estimation of combined network: 

l n 
P(叫X)=一LPk(w;IX), 1 :S i:::; c. 

n 
k=l 

(5) 
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We can think of such a combined value as an averaged Bayes classifier. This estimation 

will be improved if we give the judge the ability to bias the outputs based on a priori 

knowledge about the reliability of the networks: 

n 

P(叫X) =~ 叫ぶ（叫X), 1::; i::; c, 
k=l 

n 

where~ 料=1. 
k=l 

(6) 

(7) 

Another alternative is to use the maximum value of? 託叫X)denoted by Pm(叫X),to 
replace the correspondent average value. Since区：=1肛（叫X)ヂ1,we use the following 
normalized values as the new estimations: 

P(叫X)=
凡（叫X)
こ戸Pm(叫X)'

1~i~C. (8) 

The other method based on voting techniques considers the result of each network as 
an expert judgement. A variety of voting procedures can be adopted from group decision 

making theory: unanimity, majority, plurality, Borda count, and so on. In particular, we 

will introduce the two of them: majority voting and Borda count. 

The majority voting rule chooses the classification made by more than half the net-

works. When there is no agreement among more than half the networks, the result is 
considered an error. To appreciate the network performance, let's assume that all neural 

networks arrive at the correct classification with a certain likelihood 1 -p and that they 

make independent errors. The chances of seeing exactly k errors among n copies of the 

network is then 

(~)炉(1 -pr-k 
which gives the following likelihood of the majority rule being in error 

(9) 

,t;, (;) p"(1-p)"-'. (10) 

It can be shown by induction for odd n (or separately for even n) that provided p < 1/2, 
(10) is monotonically decreasing in n. In other words, if each network can get the correct 

answer more than half the time, and if network responses are independent, then the more 

networks used, the less the likelihood of an error by a majority decision rule. In the limit 
of infinite n, the coordinated error rate goes to zero. 

For any particular class c, the Borda count is the sum of the number of classes ranked 
below c by each network; Let Bj(c) be the number of classes ranked below the class c 

by the jth network. Then, the Borda count for class c is B(c) = I:J=I凡(c).The final 
decision is given by selecting the class label whose Borda count is the largest. 

3 Fuzzy Approach to Network Fusion 

In this section, we shall describe the neuro-fuzzy architecture that utilizes the fuzzy in-

tegral for combining the modular neural networks. This method might produce better 

classification results, especially when we can assign the importance to each network. 
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3.1 Overview of Fuzzy Integral 

The fuzzy integral is a nonlinear functional that is defined with respect to a fuzzy measure, 
especially 9>.-fuzzy measure introduced by Sugeno [15]. The ability of the fuzzy integral 

to combine the results of multiple sources of information has been established in several 
previous works [16, 17, 18]. In the following we shall introduce some definitions of it and 

present an effective method for combining the outputs of multiple networks with regard 
to subjectively defined importances of individual networks. 

Definition 1: A set function g : 2X→ [O, 1] is called a fuzzy measure if 
1) g(0) = 0, g(X) = 1, 
2) g(A) ::S g(B) if AC  B, 
3) If {A占こ1. ・ 1san increasmg sequence of measurable sets, then 

_lim g Ai = g(.lim Ai), 
t→OO 
（） 

2→OO 

Note that g is not necessarily additive. This property of monotonicity is substituted for 
the additivity property of the measure. 
From the definition of a fuzzy measure g, Sugeno introduced the so-called g,¥-fuzzy 

measures satisfying the following additional property: For all A, B C X and An B = 0, 

g(A U B) = g(A) + g(B) +入g(A)g(B),for some入＞ーl.

It affords that the measure of the union of two disjoint subsets can be directly computed 
from the component measures. 

Example 1: Consider the following case of Y = {y1, Y2孔13}together with density values 
g1 = 0.34, 炉=0.32, and g3 = 0.33. Using the equation 14 (which will be introduced 
below), the Sugeno measure g must have a parameter入satisfying0.0359氾+0.3266入—
0.001 = 0. The unique root greater than -1 for this equation is入=0.0305, which 
produces the following fuzzy measure on the power set of Y: 
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90.03os(A) 

゜0.34 0.32 
0.33 

0.6633 
0.6532 

0.6734 

1.0 

As expected, the subset of criteria {y1, y3} is more important for confirming the hypothesis 

than either subsets {Y1,Y2} or {Y2, 即｝．
Using the notion of fuzzy measures, Sugeno developed the concept of the fuzzy integral, 

which is a nonlinear functional that is defined with respect to a fuzzy measure, especially 

g,¥-fuzzy measure [15, 16, 17]. 

Definition 2: Let X be a finite set, and h : X → [O, 1] be a fuzzy subset of X. The 
fuzzy integral over X of the function h with respect to a fuzzy measure g is defined by 

h(x)og(・) = max[min(minh(x),g(E))] 
ECX xEE 

= sup [min(a,g(ha))] 
咋 [D,1]

(11) 
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where ha is the a level set of h, 

加={x I h(x) 2 a}. 

The following properties of the fuzzy integral can be easily proved [17]。

1) If h(x) = c, for all x EX, 0~c~1, then 

h(x) o g(,) = c. 

2) If h心） :S h2位） for all x E X, then 

加(x)og(-):S加(x)og(-).

3) If { Ai I i = 1, ... , n} is a partition of the set X, then 

n 
h(x) o g(・) 2 :qiax ei, 

i=l 

(12) 

where ei is the fuzzy integral of h with respect to g over Ai, For further details on the 

properties of the fuzzy integral and associated fuzzy measures for aggregating information, 
see the recent publication made by Yager [18]. 

To get some intuition for the fuzzy integral we consider the following interpretation. 
h(y) measures the degree to which the concept his satisfied by y. The term minyEE h(y) 

measures the degree to which the concept his satisfied by all the elements in E. Moreover, 

the value g(E) is a measure of the degree to which the subset of objects E satisfies the 

concept measured by g. Then, the value obtained from comparing these two quantities in 

terms of the min operator indicates the degree to which E satisfies both the criteria of the 

measure g and minyEE h(y). Finally, the max operation takes the biggest of these terms. 

One can interpret the fuzzy integral as finding the maximal grade of agreement between 
the objective evidence and expectation. 

3.2 Fuzzy Integral for Network Fusion 

The calculation of the fuzzy integral when Y is a finite set is easily given. Let Y = 

{Y1, Yか．．．，珈}be a恥iteset and let h : Y → [O, 1] be a function. Suppose h(y1) 2: 
h(ぬ） 2: ... 2: h(珈）， (ifnot, Y is rearranged so that this relation holds). Then a fuzzy 
integral, e, with respect to a fuzzy measure g over Y can be computed by 

n 
e = max [min (h(yi), g(Ai 
i==l 

)）］ (13) 

where A=  {Y1, yか．．．，防｝．
Note that when g is a g,¥-fuzzy measure, the values of g(Ai) can be determined recur-
sively as 

g(A1) = g({y1}) = g1 

g(Ai) = i + g(Ai-1) + >-/g(A-1), for 1 < i~n. 

入isgiven by solving the equation 

n 

入十 i= Il(l十入gり
i=l 

(14) 

where入E(-1,+oo), and入ヂ 0.This can be easily calculated by solving an (n -1)st 
degree polynomial and finding the unique root greater than -1. Thus the calculation of 
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Determine 
the final class 

Compute 
the fuzzy integral 
for the class 

Calculate hk{y;) 

Determine 9k ({y;}) 

Figure 3: Algorithm of the network fusion by the fuzzy integral. 

the fuzzy integral with respect to a 9>--fuzzy measure would only require the knowledge of 

the density function, where ith density, i, is interpreted as the degree of importance of 
the source Yi towards the final evaluation. 

Let Q = {w1,wぁ...'凸}be a set of classes of interest. Note that each Wi may, in fact, 
be a set of classes by itself. Let Y = {Y1, Y2, ... , 珈}be a set of neural networks, and 
A be the object under consideration for recognition. Let hk : Y→ [O, 1] be the partial 
evaluation of the object A for class wk, that is, hk(防） is an indication of how certain we are 
in the classification of object A to be in class Wk using the network yぃwherea 1 indicates 
absolute certainty that the object A is really in class Wk and O implies absolute certainty 

that the object A is not in Wk, 

Corresponding to each Yi the degree of importance, i, of how important Yi is in the 
recognition of the class Wk must be given. These den_sities can be subjectively assigned by 

an expert, or can be induced from data set. The l's define the fuzzy density mapping. 

Hence入iscalculated using (14) and thereby the 9>--fuzzy measure, g, is constructed. 

Now, using (13) to (14), the fuzzy integral can be calculated. Finally, the class Wk with 

the largest integral value is chosen as the output class. Fig. 3 illustrates the details of 

how the consensus is formed. 

Example 2: Using the Example 1, how the consensus decision is performed by the fuzzy 

integral can now be described for a two class problem, which discriminates handwriting 

characters 6 and 4. Suppose that we obtain the network outputs for an input image as 

shown in Fig 4: h(y1) = 0.6, h(y2) = 0.7, and h(y3) = 0.1, for class l. For class 2, 
h(y1) = 0.8, h(y2) = 0.3, and h(y3) = 0.4. The following table shows how the consensus 
is formed, where H(E) = min(h(yi),g(Ai)). 

Class 

1 

2 

h(yi) g(Ai) H(E) max[H(E)] 

0.7 g({ぬ｝）＝炉=0.32 0.32 

0.6 g({Y2, 狛｝）＝厨十gl十入g2針=0.66 0.6 ✓ 
0.1 g({Y2,Y1,Y3}) = 1.0 0.1 

0.8 g({yi}) = g1 = 0.34 0.34 

0.4 g({y1, ぬ})= gl +厨+.¥gl砂=0.67 0.4 ✓ 
0.3 g({且嘉ぬ})= 1.0 0.3 
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Figure 4: A simple example of network outputs for a two class problem. 

Finally, the class 1 is selected as output. In the meantime, in case that we use the weighted 

average instead of the fuzzy integral, the class 2 is chosen as the correct class because the 

class 2 yields 0.5 (0.34 X 0.8 + 0.32 x 0.3 + 0.33 x 0.4) whereas the class 1 produces 0.46 
(0.34 x 0.6 + 0.32 x 0.7 + 0.33 x 0.1). This example shows how the minute differences of 
i conspire so as to dramatically change the performance compared to simple averaging. 

3.3 Extension of Fuzzy Integral with OWA Operators 

In [18] Yager extended the fuzzy integral with two special families of OWA operators, 

S-OWA-AND and S-OWA-OR. 

Definition 3: A mapping F from 

r→ J(where I= [O, 1]) 

is called an OWA operator of dimension n if associated with Fis a weighting vector W, 

―

―

 
Wiwz
…

Wn 

―

―

 
．
＝
 w
 

such that 

l)WiE(0,1) 

2) Li凱 =1
and where 

F(a1, a2, ・・・,an)= vV由 +w山＋・..+w占，
where bi is the ith largest element in the collection a1, a2, ・・・,aか

In [19] Yager shows how different assignment of the weights allows implementation of 

different quantifiers. For example, W*, with W1 = 1 and罰=0, i =I-1 provides the max 
operator. W* with Wn = 1 and T'Vi = 0 for iナngives us the min operator. In addition, 
凱=1/n gives us the average 1/叫こai,This shows the more of the weights near the 
bottom the more "and-like" the aggregation while the more of weights near the top the 

more "or-like" the aggregation. 

There are two special families of OWA operators which are useful for extending the 

fuzzy integral [18]. These are called the S-OWA-AND and S-OWA-OR operators. The 

S-OWA-AND operators are defined such that 

1-a 
瓦(a1'...'an)= L釘十 amin ai, 

n 



11 

The S-OWA-AND operators provide for and-like aggregations. In the formulation for the 

fuzzy integral we can obtain the effect of S-OWA-AND operators by replacing minx EE h(x) 

with 
1-a 
Card£~ 叩）+ a min h(x). 

ぉEE xEE 

The parameter a lies in the unit interval. 
and-like aggregation. 
On the contrary, S-OWA-OR operator provides for an or-like aggregation. This oper-

ator is defined such that 

The closer a is to one the more it becomes 

1 -/3 
島(a1,・・・,an)= -~ 釘＋釦naxai

n i i 

This provides for an or-like aggregation. Here again the parameter /3 lies in the unit 

interval and the closer f3 is to 1, the more like a pure or the operation. This S-OWA-OR 
operator can be used to provide a further generalization of the fuzzy integral. Let us 

denote min(minxEE h(x), g(E)) as H(E). The value of the fuzzy integral is requiring that 
at least one subset E of X satisfy H(E). With n the cardinality of X we can change the 
aggregation to 

1 -/3 
了― ~H(E)+/3 翌茂 H(E).
EcX 

With this change, depending on the choice of (3, we are requiring that some or few of the 

E satisfy H(E) rather than just one. 

4
 
Experimental Results 

In order to give an idea of practical application of the presented method to pattern recog-
nition, a data set of handwriting characters was used as a source of both training and test 
samples. Handwriting characters were inputed to the computer (SUN workstation) by a 

Photron FIOS-6440 LCD tablet, which samples at the rate of 80 dots per second. The 

tasks were to classify Arabic numerals, uppercase letters, and lowercase letters collected 

from 13 different writers. The writers were told to draw the numerals and letters into 

prepared square boxes in order to facilitate segmentation. 

An input character consists of a set of strokes, each of which begins with a pen-

down movement and ends with a pen-up movement. Several preprocessing algorithms 

were applied to successive data points within each stroke to reduce quantization noise and 

fluctuations due to the writer's pen motion. The processes used were wild point reduction, 
dot reduction, hook analysis, three point smoothing, peak preserving filtering, and N 

point normalization [20]. Data points, representing single characters, were resampled with 
a fixed number of regularly spaced points. Then, a sequence of preprocessed data points 

was approximated by a sequence of 8-directional straight-line segments—the chain code, 
as used by Freeman [21]. 

To evaluate the performance of the proposed method, we implemented three different 

networks, each of which is a two-layered neural network having a different number of input 

neurons and 20 hidden neurons. NN1, NN2 and NN3 have 10, 15, and 20 input neurons, 

respectively. In each case, the network makes a decision based on its resolution. For 

example, NN1 uses sparsely sampled inputs, and in doing so is able to overcome variations 

in input noise. NNぁ oncomparison, uses a finer view of the input image. The selection of 

the features is largely adhoc and no attempt was made to find an optimal coding scheme 

although this is an important issue in character recognition schemes. Our objective here is 
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Table 1: The recognition rates of the fuzzy integral for different densities (%) . 

Case 

1

2

3

4

5
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1
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1
2
1
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Numeral 

78.4 

79.0 

78.8 

79.4 
79.8 

80.2 

Upper 

71.6 

73.4 
72.2 

73.8 

74.0 

75.2 

Lower 

65.4 

66.8 
64.8 

69.2 

66.2 

70.4 
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Table 2: Fuzzy densities and the corresponding入．

Subject 

Numerals 

Uppercases 

Lowercases 

0

7

0

 

3

4

7

 

1

4

4

3

 

g

3

3

3

 

．
．
．
 

0

0

0

 

g 2 

0.3330 

0.3312 

0.3321 

g 3 

0.3230 

0.3240 

0.3312 

入

-0.0149 

0.0003 
-0.0009 

to evaluate and compare different fusion methods through an example which has a certain 

complexity and practical significance. 
Each of the three networks was trained by the EBP algorithm with 40 samples per 

class, validated with another 500 samples, and tested on ten sets of additional samples 

collected from different 10 writers: The training process was stopped when the recognition 

rate over the validation set was optimized. This process and early stopping mechanism 

were adopted mainly for preventing networks from overtraining. The initial parameter 

values used for training were: Learning rate is 0.4 and momentum parameter is 0.6. An 

input vector is classified as belonging to the output class associated with the highest output 
activation. Each of the fo且owingexperiments consisted of 10 trials in which the different 

data were made from different writers. 

First, the behavior of the fuzzy integral of a function h with respect to a g>,-fuzzy 

measure, g is examined. Table 1 shows these results. Here, each case shows a set of fuzzy 

densities corresponding to three networks and the recognition rates of numerals, uppercase 

letters, and lowercase letters using the fuzzy integral on the three networks. Using (14), 

the Sugeno measure g must have a parameter入satisfying0.006氾+0.11入— 0.4 = 0. The 
unique root greater than -1 for this equation is入=3.109. 

As expected, the recognition results in the table depend on the g values. When the g 
values change, the new fuzzy integral value will change depending on how these changes 

are balanced with respect to the source corresponding to the fuzzy integral value. We 

assigned the fuzzy densities gi, the degree of importance of each network, based on how 
good these networks performed on validation data. We computed these values as follows: 

i Pi 
g=-―・dsum 
LjPj 

， (15) 

where Pi is the performance of network NNi for the validation data and dsum is the desired 

sum of fuzzy densities. The real values of these densities with the corresponding入are

shown in table 2. ・ 

Table 3 reports the results of network fusion using the fuzzy integral on three different 

networks for numerals. In this table the value in the parentheses represent the confidence 
of the evaluation result. As can be seen, cases 2 and 3 were misclassified by NN 3 and NN 2, 
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Table 3: Results of network fusion using the fuzzy integral on three different networks for 

numerals. 

Data 

index 

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
 

Actual 

class 

5

6

8

2

7

9

7

7

1

0

7

4

9

3

7

5

2

8

0

9

0

4

9

4

8

 

NN1 

5 (0.9859) 

6 (0.9968) 

8 (0.9999) 

2 (0.9922) 
8 (0.0162) 

8 (0.0001) 
6 (0.0137) 

2 (0.1342) 

1 (0.9999) 
6 (0.7116) 

1 (0.1794) 

4 (0.9998) 

9 (0.9965) 

3 (0.9987) 

8 (0.0365) 
5 (0.9311) 

8 (0.3470) 
8 (0.9899) 

1 (0.0353) 
9 (0.7519) 
8 (0.8032) 

4 (0.9997) 

9 (0.9989) 

4 (0.9998) 

8 (0.9998) 

Partial decision 

NN2 

5 (0.8995) 

6 (0.9985) 
0 (0.0022) 

2 (0.9998) 

8 (0.0087) 

7 (0.1195) 

7 (0.9903) 

7 (0.9677) 
1 (0.9972) 

6 (0.4098) 

8 (0.0003) 

4 (0.9999) 

9 (0.9958) 
3 (0.9912) 

0 (0.0460) 
3 (0.1304) 

2 (0.9983) 

0 (0.9669) 

4 (0.0004) 

9 (0.3799) 
0 (0.9994) 

9 (0.9170) 

1 (0.9944) 

4 (0.9999) 

0 (0.9882) 

NN3 

5 (0.9941) 

5 (0.3301) 
8 (0.9996) 

2 (0.9920) 

7 (0.9615) 

7 (0.4780) 

7 (0.9988) 

7 (0.0023) 

1 (0.9993) 
8 (0.8098) 

1 (0.0080) 
9 (0.9964) 

8 (0.0740) 

3 (0.9999) 

7 (0.4831) 

3 (0.6245) 

8 (0.2092) 

8 (0.6815) 

4 (0.0004) 
9 (0.9540) 
0 (0.9993) 

4 (0.9871) 
9 (0.9902) 

4 (0.9995) 
8 (0.8353) 

Fuzzy integral 

decision 

5 (0.9598) 

6 (0.6877) 
8 (0.6668) 

2 (0.9946) 

7 (0.3205) 

7 (0.1991) 
7 (0.6630) 

7 (0.3233) 
1 (0.9988) 

6 (0.3753) 

1 (0.0625) 

4 (0.6694) 

9 (0.6691) 

3 (0.9966) 

7 (0.1610) 
5 (0.3265) 

2 (0.3327) 
8 (0.8384) 

1 (0.0118) 
9 (0.6953) 

0 (0.6662) 

4 (0.7099) 

9 (0.6705) 

4 (0.9997) 

8 (0.6204) 
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Table 4: Means and standard deviations of recognition rates (%) . 

Numeral Uppercase Lowercase 

Nets Mean S.D. Mean S.D. Mean S.D. 

NN1 82.6 6.36 73.2 8.95 73.9 7.73 

NN2 81.2 7.16 68.6 9.14 71.8 8.86 

NN3 81.0 7.15 70.8 10.60 72.1 9.30 

NNau 77.6 6.31 72.1 8.93 74.7 10.01 

Voting 84.9 8.31 74.0 9.28 74.6 7.97 
Average 86.9 7.24 75.2 9.95 78.2 8.85 

Fuzzy 88.1 7.14 76.1 9.85 80.3 7.24 

respectively. However, in the final evaluations they were correctly classified. In cases 5 
and 17, one network with strong evidence overwhelmed the other networks, producing 

correct classification. Furthermore, in case 15, the fuzzy integral made a correct decision 

despite that the partial decisions from the individual neural networks were completely 

inconsistent. The effect of misclassification by the other networks has given rise to small 

fuzzy integral values for the correct classification in this case. 

Table 4 summarizes the recognition rates of numerals, uppercase letters, and lowercase 
letters for the three networks and the representative synergy methods like majority voting, 

average, and the fuzzy integral. All results are averaged over ten different sets of the data. 

In this table, NN 1 to NN3 represent the three individual networks, and NNau a large 
network trained with all the features used by each network. 

Although the network learned the training set almost perfectly in all three cases, the 

performances on the test sets are quite different. Furthermore, we can see that the perfor-
mance did not improve by training a large network with considering all the features used 

by each network. This is a strong evidence that modular neural network might produce 
better result than conventional single network approach. The following test can further 

support to determine whether the fuzzy integral method is superior to the conventional 
method or not. 

For a given test problem, let ft denote the solution at convergence for method a using 
test data i. To test whether methods a and b have the same mean solution value, we 

compute the following statistic: 

t= 
《歪

｀叫ー元）2
(16) 

where n = 10, Xi = J『-fl, and 歪 =¼E『~l 叩. (In this case the method b is of the fuzzy 
integral.) From this value we can reject the null hypothesis that H。：歪 :s;0 in favor of the 
alternative that歪>0 with significance level a, where a= <!?(t) and <!>(t) can be obtained 

from the table of percentage points of the t-distribution. 

Since it follows t-distribution, an a point can be computed as the threshold ta, where 

a could be 95, 99.95 or 99.9%, Then, if 

ltl > ta (17) 

the null hypothesis is rejected at a 100% -a level of significance, i.e., the fuzzy integral 

method is superior to the conventional method. Otherwise, the null hypothesis is accepted, 

i.e., we cannot say the fuzzy integral method improves the performance significantly. 

ヽ

l 

＼ 

芦
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Table 5: t-test. (degree of freedom = 9, to.as = 1.833, to.02s = 2.262, to.o1 = 2.821. "A" 
stands for Average method, and "WA" for Weighted Average. "Yes" indicates that the 
hypothesis is rejected for the task at the associated level of significance.) 

Significance Level 
Task t 5% 2.5 % 1% 

Numerals (A) -2.908 Yes Yes Yes 

Numerals (WA) -2.575 Yes Yes No 

Uppercase (A) -2.193 Yes No No 

Uppercase (WA) -1.300 No No No 

Lowercase (A) -3.806 Yes Yes Yes 

Lowercase (WA) -3.361 Yes Yes Yes 

Table 5 shows the results of the test with n = 10 for all three tasks. In this comparison, 
灯isof the fuzzy integral, and f? of the average method as mentioned in the equation 
(5) or the weighted average method in (6). These methods were chosen for comparisons 
because they had produced the best results among the conventional methods mentioned 

in this paper. In this comparison, the degree of freedom is (n -1) = 9, and the threshold 
t。witha = 95, 97.25, and 99% is 1.833, 2.262 and 2.821, respectively. It is seen from 
table 5 that all the values of t, except for the weighted average of the uppercase letter 

task, are greater than ta with a = 95%. Therefore, for all the cases except that, "no-
improvement" hypothesis is rejected at a 5% level of significance. Similarly, other cases 
can be tested. This is a strong evidence that the proposed method is superior to the 
conventional methods. 

Table 6 shows the confusion matrices of the network outputs for the numeral recog-

nition task. The performance for the combined outputs is much better than either of 

the individual networks, leading to a reduction in error rate significantly. vVe also see a 

strongly diagonal confusion matrix for the combined output, indicating that complemen-

tary nature of the confusions made by the individual networks. 

Fig. 5 shows the recognition rates of the presented method with the OWA operators 
for the three tasks. The results indicate that the performance of the fuzzy integral might 

be enhanced if we select the a and (3 parameters appropriately. 

5 Concluding Remarks 

This paper has presented a neuro-fuzzy architecture that produces an improved perfor-

mance on real-world classification problem, especially handwriting character recognition. 
One of the important advantages of the method is that not only is the classification 

results combined but that the relative importance of the different networks is also consid-

ered. The experimental results for classifying a large set of on-line handwriting characters 

show that it improves the generalization capability significantly. This indicates that even 
these straightforward, computationally tractable approach can significantly enhance pat-

tern recognition. 

Future efforts will concentrate on refining the feature extraction to capture more in-

formation, and testing the efficacy of this fuzzy neural system on larger data sets. The 
complementary nature of the neural network and the fuzzy logic lead us to believe that a 

further refined fuzzy neural system will significantly improve the state-of-the-art pattern 
recognizers, especially in noisy environments. 
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Table 6: Confusion matrices of the three individual networks and the combined output for 
the numeral recognition task. Each vertical column is labeled by the target output, and 

each horizontal row represents the output by the network. .
4
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l
”
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Figure 5: The recognition rates with OWA operators. 
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