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Abstract 

It is generally believed that humans localize sound in the horizon-
tal plane using the Interaural Time Difference(ITD) and Interaural 

Amplitude Difference(IAD) between the signals received at the two 
ears. In tlus research the performance of an acoustic localization de-

vice composed of a front end binaural simulator and back end neural 
network classifier is evaluated. 

First a small binaural database of speech, clapping, and music 
sounds was recorded using the ATR Head and Torso Simulator. Us-

ing the data, three different neural networks were trained to localize 
sounds using ITD, IAD and both ITD and IAD cues. Results pre-
sented indicate that the optimal window lengths for both ITD and 

IAD cue computation are of the order of lOOms. The network using 

both ITD and IAD cues outperformed those using just ITD or IAD 

information alone. Finally the construction of a para且elreal time 
acoustic localization device is described. 
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Introduction 

Most animals need to be able to localize the source of a sound. For example, 

rapid accurate sound localization can aid survival in a hostile environment 

or enable prey to be caught in the dark. An important question then is 

how does an animal determine the location of a sound source? Different 

animals solve this problem in different ways (for example cats have movable 

pinna, owls have asymmetric pinna, etc). In this report the sound source 
localization problem is examined through the construction of a human-like 
binaural localization device. 

An obvious aid to sound source localization is the fact that humans have 

two directionally sensitive ears whose directions of maximum sensitivity are 

different. Thus sound from the right will sound louder in the right ear than 
the left. This interaural amplitude difference (IAD) is one potential sound 

source localization cue. Indeed, researchers have discovered cells in some 

animal brains that are sensitive to such level differences. Figure 1 shows 

the IAD for the signals received inside the left and right pinna of an artifical 

head simulator [11] for a sound source located on the right. 
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Figure 1: Left(top) and right(bottom) ear waveforms recorded inside an ar-

tificial head for a sound source located on the right. 

Another important cue for sound source localization arises because of the 

spatial separation of the ears. This spatial separation results in a location 
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Figure 2: Interaural Time Difference. 

dependent interaural time delay(ITD) between the signals received at the 

two ears. Thus a signal coming from the right will reach the right ear just 

before the left and visa versa (Figure 2). Again, as evidence for the use of 

ITD, biological studies have shown the existence of ITD sensitive coincidence 
detectors in the brains of some animals. 

It should also be noted that humans are able to localize sounds from 
just the signal received at a single ear [5]. It is believed that this monaural 
localization capability arises from the shape of the pinna which produces 

spatially dependent spectral notches in the resulting auditory signal. Humans 
are presumably capable of separating such pinna induced spectral notches 

6
 



from those arising naturally due to the spectral characteristics of the source. 
However, a study of monaural localization was outside the scope of this 

research, which was concerned only with binaural localization. 
Using an artificial human binaural simulator, the aim of this work was 

to construct and eva.luate an acoustic localization device using both ITD 

and IAD information. Envisaged applications for such work include the con-

struction of cameras capable of automatically focussing on selected sound 

sources, alarm systems capable of detecting the location of noisy intruders 
and directionally selective microphones. 

1 ITD and IAD -Further Considerations 

1.1 Interaural Time Delay(ITD) 

Assuming far field (i.e. that the acoustic wavefront is planar at the ears) then 

the relationship between the ITD(T) and the wavefront angle of incidence(0) 
can be approximated by the formula, 

d 
T = -sin0 

C 

where d is the head diameter and c the sound velocity of sound in air (see 

Figure 2). If the distance of the sound source from the head is greater than 
lm, then any error introduced into T by the far field assumption will be less 

than 1 %. It should be obvious that the ITD is theoretically independent of 
both the sound spectral characteristics and the distance of the sound from 

the head (assuming far field). However it should also be noted that any 

estimate of ITD may well depend on both. 

Although ITD is clearly an important cue for sound source localization it 
does have several major practical limitations. First, it is unable to distinguish 
between sounds arising from in front of and behind the head. As show in 
Figure 3 it is not possible distinguish between two sounds arising at angles of 
incidence 0 and 1r - 0. Without apriori knowledge of sound source location, 
or additional cues, it is not possible to resolve this front back ambiguity using 
ITD alone. 

Secondly, the value of ITD is very small(the maximum delay depends on 

the size of the head, but is typically around G701Ls). Thus high sampling 
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Figure 3: The front back ITD ambiguity 

frequencies are required to obtain reasonable angular resolution. Also, ITD 

does not vary linearly as a function of angle (see Figure 4). Figure 5 shows 

the angular error, corresponding to a time delay estimation error of土lOμs.If 
the time delay is known modulo士lOμs,then 0 will be between 0min and 0max・ 
The value of 0max -0min for different values of 0 is shown in Figure 5. The 
error decreases between士(80-90) degrees because of the a priori knowledge 

of the maximum possible delay; if the maximal time delay is 670μs, and the 

time delay estimate is 665 /-ls, then the actual time delay must lie between 

655 and 670 f-lS, not 655 and 675 f-lS. 

Clearly angular resolution is a function of the angle of incidence, being 

greatest directly in front of the head (0 degrees) and progressively decreasing 

towards the side of the head (80 degrees). For the construction of a fixed 

acoustic localization device uniform resolution, independent of sound source 

location, is preferable(although obviously if the device is rotatable then this 

is not a problem). 

A third problem with ITD lies with its estimation. Typically ITD is 

extracted from the cross-correlation function of the signals received at the 
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two ears, i.e. if Xr and x1 are the received signals then the resulting cross-

correlation function R(T), computed over some finite interval T, is given by 

the equation 
T 

R(T) =~ 叩 (t)町(t+ T) (2) 
t=l 

In noise free, anechoic conditions the offset of the largest peak in the 
cross-correlation function corresponds to the ITD. However, depending on 
the spectral characteristics of the signal, multiple ambiguous peaks can arise 
at multiples of the dominant spectral component periodicities (a phenome-
nen known as phase ambiguity [3]). As the frequency increases so does the 
number of ambiguous peaks. Figure 6 shows this phase ambiguity effect for 
several different sinusoidal inputs ranging from 500 to 200GHz. As a con-
sequence it can make sense to ignore high frequencies by low pass filtering 

the input signals prior to cross-correlation. Another way of reducing the ef-

feet of such ambiguities is to replace the input signals with their envelopes. 
In humans, where the received signals are split into frequency bands prior 
to processing, envelope extraction is believed to occur only for those bands 

greater than about 1.4kHz, where phase ambiguity effects are greatest. On 

the other hand, reducing the signal bandwidth can actually enhance ambigui-
ties. For example, in figure 7, which shows the cross-correlation of the sum of 

the sinusoids in figure 6, there are no ambiguous peaks. The optimal choice 
of filter thus depends on both the signal and noise spectral characteristics. 

1.2 Interaural Amplitude Difference(IAD) 

The IAD is a complex non-linear function of both the location and spectral 
content of the sound source. The IAD arises partially from that fact that 
the ears are separated by the head, resulting in a location and frequency 

dependent head related transfer function(HRTF) between the two auditory 
signals. Essentially the head produces a shadow, resulting in a relative signal 
attenuation at the ear farthest from the source. Due to diffraction effects the 
extent of this attenduation increases with frequency, producing to a first 

approximation a low pass transfer function between the near and far ear 

auditory signals. An example of a HRTF [4] is shown in Figure 8. Another 

factor in the HRTF is the shape of the ear pinna, which also give rise to a 
frequency and spatially dependent directional gain. 
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Figure 8: The measured HRTF of a human subject plotted as a function of 

angle and frequency. 

1.3 Learning the mapping between ITD, IAD and an-

gle of incidence 0 

The aim of this work was to study the use of ITD and IAD for angle esti-

mation, both separately and together. In particular the question as to how 
to combine these two cues is an important subject of current research. It is 
known that humans solve this problem [6], but it is not yet known how. 

Neural networks were chosen to learn the mapping between both ITD, 

IAD and angle of incidence. Given the highly nonlinear nature of the map-
ping from IAD to angle, the use of a neural network seemed a logical choice. 

For ITD on the other hand it could be argued that a simple peak picking 
algorithm would suffice. In practice however it was found that noise and 
reverberation effects led to significant errors with such a simple peak pick-
ing approach. Hence it was decided to employ a neural network for both 

mappings. An advantage of this is that ITD and IAD information can be 
combined by simply inputing the joint feature vector to a single network. 
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Figure 9: The Neural Network Description. 

1.4 The Neural Network 

The neural network chosen was a simple backpropagation network of the form 
shown in Figure 9a). The network had 3 layers, an input layer, a hidden layer 
and an output layer. Each unit of the hidden layer was fully connected to 
all the inputs and outputs units. Figure 9b) shows a unit which takes the 
weighted sum of its inputs (il, i2, i3 are the inputs, wl, w2 and w3 are 
the unit weights) plus a bias weight(wO) and passes it to a sigmoid transfer 

function to calculate the output 0: 

1 
F(x) = 

1 + e-X (3) 

Gradient descent was used for network learning (for more details about the 

algorithm and the way the network was built, see Appendix A and [12]). 

1.5 Extracting ITD and IAD cues from the acoustic 

waveform 

The first problem in extracting ITD and IAD information from the waveform 
is that of signal detection; i.e. deciding when the signal is present. The 
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approach taken here was to use a simple threshold on the resulting cross-

correlation peak height. 
The second problem is that of deciding which parts of the acoustic wave-

form to use for localization purposes. There is evidence from the studies 
of both humans[REF] and animals[REF] that the initial transient portions 
of the waveform are the most important for localization purposes. This is 
known as the Franssen effect [9]and was demonstrated most clearly by an ex-

periment performed at AT&T Laboratories, Murray Hill. In that experiment 
a tone signal was fed into two loudspeakers, the first speaker radiating only a 

short transient and then falling silent. The second speaker radiated a slightly 
delayed and softly turned-on steady tone. In a reverberant environment, lis-
teners invariably perceived the tone as coming from the silent speaker and 
were amazed when the demonstrator pulled the plug on this loudspeaker. 
The idea that humans can use just the initial transient portion of a sound 
to evaluate the incident direction make sense, since only this portion of the 
sound is guaranteed to be free of reflected energy. 

The above implies that ideally the windows for computing the ITD and 
IAD cues should be centered upon sound initial transients occuring in the 

recorded binaural waveforms. However, in practice accurate location of such 

transients can be problematic. Mistakes by the window positioning algorithm 
can have adverse effects on localization performance. In order to make our 
system as robust as possible a very simple window positioning algorithm 

was employed. First, each waveform file was split into 10 frames. For the 

clapping files each frame was positioned to contain a single clapping, while 

the speech and music files were simply split into 10 equal sized frames. For 
each correspon_ding binaural frame pair the position of the left and right ear 

waveform maxima were found. The window for computing the IAD and ITD 
cues was then centered at the time corresponding to the biggest of the left 

and right maxima. Thus 10 ITD and IAD cues were obtained from each 
binaural waveform pair. 
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2 Experiments 

Recording a binaural sound database 

A head and torso simulator (Type 4128 from Bruel & Kjaer) was used to 
simulate human binaural hearing(for more details about the simulator, see 

[11]). Sound recorded by microphones in the simulator, or manikin, were 

pre-amplified and then digitized using a 48 kHz, 16 bit A/D converter. The 

resulting digitized signals were then fed via a DAT-link to a workstation 

filesystem. 

Binaural waveforms were recorded in the variable reverberation chamber 

at ATR. The recorded sounds comprised of human speech, spoken by the 

author, human clapping and music played from a cassette player. Sounds 

were generated from 10 different positions at approximatley equally spaced 

angles around the front of the manikin and at approximately equal distance 

from the manakin. For each of the 10 positions, 5 sentences, 3 different pieces 

of 30s music and 10 clapping were recorded. The reason for recording such a 

wide range of different sounds was to attempt to prevent the neural networks 

from learning the sound spectral characteristics themselves, as opposed to the 

ITD or IAD cues. Half the recorded waveforms were set aside for training 

the neural networks and the other half set aside for testing. 

Three different neural networks were built. The first received just IAD 
cues, the second just ITD cues and the third both ITD and IAD cues. 

2.1 
． 

Localization with just the IAD Cues 

2.1.1 Computation of the IAD cue 

The goal of the experiment was to see how the recognition rate for the IAD 

network varied according to the length of window used to compute the IAD 

cues. 

A single IAD cue (i.e. a single network input vector) was computed by 

extracting two vectors : ℃ f and叫oflength N, from the binaural waveforms 

X/ and Xr at a selected time t(see section 1.5), i.e. 

t
l
t
r
 

x

x

 

加(t),叩(t+l),... ,: 町(t+ N)] 

に(t),、叩(t+ 1), ...'叫(t+ N)] 

15 

(4) 
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IAD input vectors 
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Figure 11: A typical IAD network input vector 

where xr(-) is the right binaural waveform and叩(・)the left binaural wave-

form. The corresponding network input vector IADt (w) was then computed 

as the log of the ratio of the power spectra of吋andx; 

IADt(w) = 2log ( 
/X{(w)/ 

/X/(w)/) . 
(5) 

Xl(w) and入了(w)both had 32 spectral bins, with w ranging from O to the 
Nyquist frequency. 

Figure 11 shows a typical IAD network input vector. 

2.1.2 Experimental Results 

The graphs in Figure 12 shows how the recognition ra.te varied for training 

window lengths varying geometrically from 1 to 680ms. Each curve is made 

from a fixed training window length: Six identical networks were trained with 

six different window lengths (20, 40, 85, 170, 340, 680ms). Each network was 
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then tested using all the different window lengths. 

The results show that networks trained using short window lengths(i.e. 20 

and 40ms) gave good localization results when tested using the same window 

length but were unable to generalize to longer window lengths, despite the 

fact that the S/N ratio of the IAD feature increases with increasing window 
length. Networks trained using intermediate window lengths (i.e. 85 and 
l 70ms) showed much better stability across the range of different window 

lengths. Of particular interest is the fact that the network trained using the 

85 ms window gave consistently better performance over the 100 to 680 ms 
window length range than the networks trained using the 680 ms window. 

The reason for this may well be that IAD cues computed using the 85 ms 
window were more noisy than those computed using the 680 ms window. 
Consequently the 85ms network learnt a more robust set of boundaries than 

the in the 680 ms network case. From these results it would seem that the 
optimum window length is around 100 to 200ms . 

2.2 Localization with just the ITD cues 

2.2.1 Computation of the ITD cue 

Just as in the previous experiment the goal here was to find the optimal 

window length, but this time for computing the cross-correlation function 

between the input signals. The ITD cue extracted from the binaural wave-

form at time t(ITDりwasdefined as 

t+N 

ITDt(r) = L叩(n)訊.(n+ r) 
n=t 

-T  max ＜ T < T  _ max (6) 

where N is the window length and叩(-)): 叩(・)the left and right binaural 
waveforms respectively. The maximum delay Tmax was fixed at 55 sample 

periods for all window lengths. The value ofびmaxwas chosen to cover ap-
proximately twice the range of physically possible delays(the factor of two 
being an arbitrary "safety factor"). Figure 13 shows a typical input vector. 

2.2.2 Results of the Experiment 

With the ITD network it was found that the localization results improved 

with window length. Figure 14 shows the average localization performance 
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over all three sound types (i.e. speech, music and clapping) for varying 

window lengths. As in the IAD case, 6 identical networks were trained with 

different window lengths(20, 40, 85, 170, 340 and 680ms) and then tested 

using all 6 window lengths. 
The most likely explanation for the results is that the cross correlation 

estimates become less noisy when computed using longer windows. The 
reason being that the noise is less correlated than the sounds being localized. 

Note also that none of the results got better than 85%. A reason for this 
may be insufficient training of the networks(both the ITD and IAD networks 
were trained using 32 iterations, but obviously the IAD network was much 
smaller having only 32 inputs, while the ITD network had 111). 

From the point of view of the performance / computation tradeoff a value 
of around 200ms for the window length seemed optimal. This agrees nicely 

with similar results in the literature using cross correlation vectors and peak 

picking algorithms for localization. 
Although only the average localization performance over all 3 sound types 

is plotted in Figure 14, when analysed individually it was found that the 
music was far more difficult to localize than either the clapping or the speech. 

Localization performance for the music never got above 51 %. This may well 

have been due to the large high frequency content of the music sounds (see 

sect10n 1.1). 

2.3 Experiment 3: Localization using both ITD and 

IAD cues 

2.3.1 Goal of the Experiment 

The goal of this experiment was to determine if both ITD and IAD cues can 
be combined to obtain a more accurate determination of sound direction. 
The input vector to this joint ITD /IAD network comprised simply of the 
concatendated ITD and IAD feature vectors. No additional information was 

provided to the network in the form of the joint feature partition boundary or 
relative "importance" weightings to attach to either of the two sub features. 
The network was thus free to interpret the joint ITD /IAD vector as it felt 

fit. 
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2.3.2 Results of the Experiment 

As in the previous experiments six different networks were trained using 
six different window lengths. All the networks were then tested using all the 
window lengths. As before all the networks learned to localize the sounds 
with varying degrees of accuracy. As a general rule performance increased 
with window length. For the longer windows the performance increased only 

very slightly when compared to that of the best ITD and IAD results at the 

same window length. It was only at the shorter window lengths that the 
use of both cues showed significant performance increases over the single cue 

case(see 12b), 14b), and 15b)). Since the use of shorter window lengths is 
important for real time localization these results are significant in suggesting 
a definite advantage in using both ITD and IAD cues in combination. 

． 
Conclusion 

The results show that both IAD and ITD are important cues for sound source 

localization. In addition it was found that networks using a combination of 

both IAD and ITD cues outperformed those using either ITD or IAD cues 

alone. One important aspect of using both cues is that it allows good local-
ization performance with shorter window lengths. Thus for the construction 
of real time localization systems it would appear that the use of both cues 
would be advantageous. The final section of this report describes the con-

struction of one such real time localization device designed to exploit the 
above findings. 

3 The Construction of a Real Time Local-

ization Device 

The aim was to construct a localization device capable of exploiting both 
ITD and IAD cues in near real time. The system architecture was inspired 

by Konishi's description of the parallel pathways in the owl's brain, along 

which ITD and IAD cues are separately processed [1], prior to combination 
at a higher level brain center. 

In [1), Konishi describes how in the owl's brain acoustic signals from both 
ears are fused to produce a single spatial perception. Since different combi-
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nations of signal timing and intensity differences cause the owl to turn its 

head in predictable directions, Konishi argued that both ITD and IAD cues 

must somehow be combined to produce a single spatial percept. On physical 
examination of the brains from several owls he found in the lower regions of 

the brain neurons sensitive only to interaural time differences (in the magno-
cellular nucleus) and other neurons sensitive only to intensity differences (in 
the angular nucleus). Tracing the pathways he found that time and intensity 
difference cues are processed separately and then converge at a higher brain 

level (the lateral shell of the midbrain auditory area). 
This model of processing inspired us to build a parallel modular system 

with different modules corresponding loosely to different brain regions, in 
the sense that each module was assigned a specific task or cue. The path-
ways joining the brain regions were crudely modelled using a message passing 

network. The higher region of the brain was implemented by a center con-

troller, receiving the outputs of the lower level ITD and IDA pathways. The 
advantages of this modular parallel approach were speed, flexibility and ex-

tensibility. The next subsection provides a brief description of the various 

modules currently implemented. 

3.1 Brief Description of the Different Modules 

This subsection describes the various modules currently implemented in the 
real time acoustic localization device. Each module runs on a separate work-

station, all the modules communicating via RPC based messages. 

3.1.1 Signal Acquisition Module 

The task of this module is simply to establish a connection from the computer 
to the external A/D converter and acquire the binaural acoustic signal from 
the head and torso simulator. At each cycle a single binaural signal frame is 
output. 

3.1.2 Binaural Signal Separation Module 

At each cycle this module receives a binaural signal frame from the signal 
acquisition module, separates the left and right components and then outputs 
two separate monoaural signal frames. 
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3.1.3 Sound Level and Cue Separation Module 

This module receives the left and right monoaural signals and performs sound 
detection using a simple level threshold. If a sound is detected the left and 
right signals are duplicated, one left-right pair being sent to the ITD pathway, 

the other left-right pair being sent to the IAD pathway. 

3.1.4 Spectrum Analysis Modules (IAD pathway) 

There are two separate spectral analysis modules, one for the left signal and 

one for the right. Each module computes its input signal power spectrum 
using a standard FFT based approach. 

3.1.5 Spectral Averaging and Dimensionality Reduction Modules 

(IAD pathway) 

There are two separate modules, one for left power spectrum and one for the 
right power spectrum. The input power spectra dimensionality is reduced 

to the dimensionality of the IAD network input vector by smoothing and 
downsampling in frequency. 

3.1.6 Spectral Log Difference Module (IAD pathway) 

This module computes the spectal log difference between the dimensionality 
reduced left and right power spectra. The output of this module is the IAD 
network input vector. 

3.1.7 IAD Neural Network Module (IAD pathway) 

The IAD network is as described in subsection 2.1. It evaluates the direction 
of a sound using IAD cues. 

3.1.8 Peak Holding Module (ITD pathway) 

There are two of these modules, one each for the left and right monoaural 

signals. These two modules perform the peak holding technique described 

by Kaneda in [10]. The power of the waveform is determined and passed to 

a peak holder, the level of which attenuates over time. Finally the output is 
differentiated and passed on to the cross correlator module. 
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3.1.9 Cross Correlator (ITD pathway) 

This module cross correlates the outputs from the two peak holding modules. 
The resulting cross correlation vector becomes the ITD network input vector. 

3.1.10 ITD Neural Network (ITD pathway) 

The ITD network is as described in subsection 2.2. It evaluates the direction 
of a sound using ITD cues. 

3.1.11 ITD and IAD cue fusion (High Level Center) 

This module combines the outputs of the ITD and IAD networks to produce 

a single location percept. 

3.1.12 Graphical Interface (System Utility) 

This module can interactively display system parameters on the screen or log 
them to a file for later analysis. 

3.2 Results 

Over 20 workstations are employed to run both the modules described above 

and some additional experimental modules not described here. A typical 
screen display is shown in figure 17. The graphs represent the input and 

output of the various system modules. The image of the head displays a 

recognized sound source direction by moving to face in that direction. Ideally 

the head would be able to track a moving sound source in real time as it 
moves about the head and torso simulator. Although the system does make 

mistakes it is able to track suitably loud sounds with a delay of about 5 

seconds between the utterence of a sound and motion of the head on the 
screen. 
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Figure 16: A Description of the Algorithm 
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Figure 17: The screen display seen when the localization device is running 
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3.3 Further study 

Much remains still to be done. In particular future work should employ a 
front end auditory model to simulate the kind of signal processing performed 
within the human auditory system. Also different ways of computing the 
ITD and IAD features should be investigated. Most important however is the 
study of how ITD and IAD cues are best combined. For example, one possible 

alternative to simply concatenating the cues prior to network classification 

would be to use the output of the IAD network to somehow constrain the 

search space of the ITD network. Many other possible solutions exist for 
what is clearly an important problem for future research. 

Conclusion 

This study has demonstrated the importance of both IAD and ITD cues for 
sound source localization. Localization using a combination of both cues ap-

pears particularly advantageous when using short analysis window lengths. 

The construction of a real time localization device went part way to demon-

strating the feasability of the proposed algorithms. However, much remains 
to be done before anything near human like performance levels are attained. 
Although other approaches such as microphone arrays also exist, which may 
provide better localization results, the approach presented in this report has 

the advantage of perhaps providing some insight into the human localization 
process. 
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A The Neural Network 

This section describes how a network is built and the different network pa-
rameters. For more details about Aspirin or about the gradient descent 

algorithm, see [12]. 

A.1 Description of a Network 

To build a network, first a description file is created, where each network 
layer is completely described. Below is a sample of such a file : 

#define Nlnp 111 
#define NHid 30 
#define NOut 10 

DefineBlackBox W 

｛ 
OutputLayer-> Angle 
Input Size-> Nlnp 
Components-> 

｛ 
PdpNode3 HidenLayer [NHid] 

｛ 
InputsFrom-> $INPUTS 

｝ 
PdpNode3 Angle [NO叫

｛ 
InputsFrom-> HidenLayer 

｝｝｝  

With this file, a C-program and an executable file can then be automat-
ically generated. 
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A.2 Learning parameters 

Gradient descent is used to make the network learn. The weights are updated 

according to the formula: 

8E 
△ Wji(t) = -a-—+, △ Wji(t -1) 

如 ji
(7) 

where Wji is the weight of the connection from node i to node j, E the total 

error, a the learning rate, and 1 the momentum. Hence, the weight change 
of a particular weight is not simply proportional to the contribution of that 
weight to the total error, there is an additional inertia term in the equation. 
The value of a was fixed to 0.01 and 1 to 0.9. The number of iterations for the 
learning was kept constant to try and ensure consistency across experiments. 
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B The parallel implementation 

For the parallel implementation of the acoustic localization algorithm the p4 
parallel programming system by Ralph Butler and Edwing Lusk (ARGONNE 
NATIONAL LABORATORY) was used. Although this package supports 

process management, cluster management, global operations, timing func-

tions, debugging functions, memory management and monitor building the 

message passing facilities were the most heavily used part of the package. 

The localization algorithm was divided into a number of elementary pro-

cesses (see section 3) each process being executed on a single machine. In 

total, twenty workstations in the HIP Sun Spark Station network were used 
to execute the program. 

A single executable file was created. When executed the program first 
examines a host machine table and then copies and starts itself running on 
each host in the table. Thus multiple copies of this executable are spawned 

across the network. Since each host has a unique id, each individual exe-

cutable performs different functions using conditional branches based on its 
host id. Thus although a single program containing all the procedures and 
functions for all the various modules is distributed over the network, each 
individual process only executes an appropriate portion of that program. 
Process syncronization is achieved using message passing. 
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