
TR -H -126

An Evolutionary Approach to
Program Transformation

and Synthesis

Sung-Bae Cho
Thomas S. Ray

1994.2.7

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 ft 0774-95-1011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-774-95-1011

Facsimile: +81-774-95-1008

c(株）ATR人間情報通信研究所

An Evolutionary Approach to Program Transformation and

Synthesis*

Sung-Bae Cho and Thomas S. Ray

ATR Human Information Processing Research Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

January 31, 1995

Abstract

Efficiency is a problem in automatic programming-both in the programs pro-
duced and in the synthesis process itself. This paper presents a framework for using
evolutionary mechanisms to guide program synthesis. A particular implementation of
the framework, called Tierra, is described. Given a naive program and some limits on
system resources, Tierra generates mutated programs and evolution proceeds by nat-
ural selection as the programs compete for CPU time and memory space. By applying
the evolutionary mechanisms, Tierra has guided the automatic implementation of an
efficient self-replicating program. The system is under continuing development, it is
viewed more as a research tool than a prototype programming assistant, however, the
performance of the system at present gives some hope for the ultimate feasibility of
such systems.

1 Introduction

Since the early days of computing, effort has been put into automating more and more

of the programming process. The ultimate objective of automatic programming would

allow a user to simply say what is wanted and have a program produced completely

automatically. However, fully automatic programming is too big a problem to be solved

in a single step. In order to provide avenues of attack, res~archers have cut the problem
down in a number of different ways.

1.1
．．

Automatic programmmg rev1s1ted

A variety of approaches have been taken in facing this problem, including extending lan-

guage development to higher level languages [1, 2], many attempts involving the applica-
tion of artificial intelligence techniques like deductive synthesis [3, 4], and using transfor-
mations to support program construction [5, 6]. This section reviews each of the three

approaches briefly.

First, the archetype of a higher level language is SETL, which supports most of the

standard constructs of any Algol-like programming language. In addition, it supports two

*This work was supported by grants CCR-9204339 and BIR-9300800 from the United States National
Science Foundation, a grant from the Digital Equipment Corporation, and by the Santa Fe Institute,
Thinking Machines Corp., IBM, and Hughes Aircraft.

ー

2

convenient universal data structures: tuples and sets. For example, a mapping is treated

as a set of 2-tuples. SETL also supports the use of universal and existential quantifiers in

a program. For example, the following is the form for a SETL statement for performing

some computation on every element of the set S.

(Vx E S) ... end V;

The goal of providing such expressive facilities is to free the programmer from having to

think about the detailed design of data structures. This decrease in what the programmer
has to worry about is a key to the productivity gains that should be obtained by the use

of higher level languages.
Second, deductive program synthesis is based on the observation that constructive

proofs are equivalent to programs because each step of a constructive proof can be inter-

preted as a step of computation. A constructive theorem prover can be used to derive a

program from its specification as follows. Suppose that the program to be derived takes
an input x and produces an output y. Further, suppose that the specifications of the
program state that a precondition P(x) should be true of the input and that a postcondi-

tion Q(x, y) will be true of the output. This specification is converted into the following

theorem, which is given to the theorem prover.

むヨy[P(x)⇒ Q(x, y)]

The process of constructive proof, in effect, discovers a method for finding y for any given

X.

Finally, a program transformation takes a part of a program and replaces it with a

new transformed part. Programmers are encouraged to postpone questions of efficiency

and first write their programs as clearly as possible. These programs are then transformed

into efficient versions by applying transformations. Typically, a program transformation

is correctness preserving, in that the new part of the program computes the same thing as
the old part. The purpose of a transformation is to make the part better on some scale,

e.g., more efficient or more concrete. For example, a transformation might be used to

replace "X**2" with "X*X."

1.2 Evolutionary approach

One serious problem in automatic programming is efficiency, both in the programs pro-

duced and in the synthesis process itself. The efficiency problem arises because many

target programs, which vary in their time and space performance, typically satisfy one
abstract specification. There have been extensive works to devise several sophisticated

techniques to address this problem, and the main drawback of current techniques is their
inflexibility.

They work beautifully within their domain of expertise and not at all even a fraction

outside of it. The only way to stretch a program generator beyond its intended domain is to

manually modify the code produced by the generator. How~ver, this is undesirable for two
reasons. First, with most generators, the code created is intended only for compilation and

is nearly unreadable. Modification of this kind of code is extremely error-prone. Second, a

key benefit of program generators is that the output program can be modified to keep up

with changing requirements by simply modifying the high-level input and rerunning the

generator. Unfortunately, once the output of the generator has been manually modified,
it has to be remodified each time the generator is rerun.

3

Figure 1: A typical procedure for evolutionary computation.

As a possible approach to solve the problem, this paper presents an evolutionary
program transformation system and briefly discusses the merits of this approach. The

methodology in detail can be found in Ray [7, 8, 9], and the software used is available

over the network or on disk (see Appendix A). This section describes some of the basic
mechanisms of the evolutionary computation with the genetic algorithm (GA).

Evolution is a remarkable problem-solving machine [10]. First proposed by John Hol-
land in 1975, GAs as one of computational implementations are an attractive class of

computational models that mimic natural evolution to solve problems in a wide variety of
domains. A genetic algorithm emulates biological evolutionary theories to solve optimiza-

tion problems.
A GA comprises a set of individual elements (the population) and a set of biologically

inspired operators defined over the population itself. According to evolutionary theories,
only the most suited elements in a population are likely to survive and generate offspring,

thus transmitting their biological heredity to new generations. In computing terms, a

genetic algorithm maps a problem onto a set of strings, each string representing a potential
solution. The GA then manipulates the most promising strings in its search for improved

solutions. A GA operates through a simple cycle of stages:.

1. creation of a population of strings,

2. evaluation of each string,

3. selection of best strings, and

4. genetic manipulation to create the new population of strings.

Figure 1 shows these four stages using the biologically inspired terminology. The
evolutionary approach to program transformation takes pieces of programs as such strings.

2 System Structure

The work described here takes place on a virtual computer known as Tierra (Spanish for

Earth). Tierra is a simulator for parallel computer of the MIMD (multiple instruction,

4

三
,

,

，

，

，

STACK

RAM

Figure 2: Structure definition to implement the Tierra virtual CPU.

multiple data) type, with a processor for each piece of program. Parallelism is imperfectly

emulated by allowing each CPU to execute a small time slice in turn. Each CPU of this
virtual computer contains two address registers, two numeric registers, a flag register to

indicate error conditions, a stack pointer, a ten word stack, and an instruction pointer.

Figure 2 shows the structure of each virtual CPU. Computations performed by the Tierran

CPUs are probabilistic due to flaws that occur at a low frequency (see Section 2.2.4).

The instruction set of a CPU typically performs simple arithmetic operations or bit

manipulations, within the small set of registers contained in the CPU. Some instructions
move data between the registers in the CPU, or between the CPU registers and the RAM

(main) memory. Other instructions control the location and movement of an instruction
pointer (IP). The IP indicates an address in RAM, where the machine code of the executing

program is located.

The CPU perpetually performs a fetch-decode-execute-incremenLIP cycle: The ma-
chine code instruction currently addressed by the IP is fetched into the CPU, its bit

pattern is decoded to determine which instruction it corresponds to, and the instruction is

executed. Then the IP is incremented to point sequentially to the next position in RAM,

from which the next instruction will be fetched. However, some instructions like JMP,
CALL and RET directly manipulate the IP, causing execution to jump to some other

sequence of instructions in the RAM. ・

2.1 Languages and formalism used

Before attempting to set up a program synthesis system, careful thought must be given to

how the representation of a programming language affects its adaptability in the sense of
being robust to genetic operations such as mutation and recombination. The nature of the

virtual computer is defined in large part by the instruction set of its machine language.

The approach in this study has been to loosen up the machine code in a virtual bio-

computer, in order to create a computational system based on a hybrid between biological
and classical von Neumann processes.

In developing this new virtual language, which is called Tierran, close attention has

been paid to the structural and functional properties of the informational system of bi-
ological molecules: DNA, RNA and proteins. Two features have been borrowed from

t
_

！
ー
＇
ー
•

5

the biological world which are considered to be critical to the evolvability of the Tierran

language.
First, the instruction set of the Tierran language has been defined to be of a size that

is the same order of magnitude as the genetic code. Information is encoded into DNA

through 64 codons, which are translated into 20 amino acids. In its present manifestation,
the Tierran language consists of 32 instructions, which can be represented by five bits,

operands included.
Emphasis is placed on this last point because some instruction sets are deceptively

small. For example, RISC machines may have only a few opcodes, but they probably all
use 32 bit instructions, so from a mutational point of view, they really have 232 instructions.

Inclusion of numeric operands will make any instruction set extremely large in comparison
to the genetic code.

In order to make a machine code with a truly small instruction set, we must eliminate
numeric operands. This can be accomplished by allowing the CPU registers and the stack
to be the only operands of the instructions. When we need to encode an integer for some

purpose, we can create it in a numeric register through bit manipulations: flipping the low
order bit and shifting left. The program can contain the proper sequence of bit flipping

and shifting instructions to synthesize the desired number, and the instruction set need
not include all possible integers.

A second feature that has been borrowed from molecular biology in the design of the
Tierran language is the addressing mode, which is called address by template. This is

illustrated by the Tierran JMP (jump) instruction. Each JMP instruction is followed by

a sequence of NOP (no-operation) instructions, of which there are two kinds: NOP _Q and

NOP _l, Suppose we have a piece of code with five instruction in the following order: JMP
NOP _Q NOP _Q NOP _Q NOP _l. The system will search outward in both directions from

the JMP instruction looking for the nearest occurrence of the complementary pattern:

NOP _l NOP _l NOP _l NOP _Q, If the pattern is found, the instruction pointer will move

to the end of the complementary pattern and resume execution. If the pattern is not

found, an error condition (flag) will be set and the JMP instruction will be ignored.
The Tierran language is characterized by two unique features: a truly small instruction

set without numeric operands, and addressing by template. Otherwise, the language
consists of familiar instructions typical of most machine languages, e.g., MOV, CALL,

RET, POP, PUSH, etc. The complete instruction set is listed in Table 1.

2.2 . Tierra simulator

The Tierra simulator needs a virtual operating system that will be hospitable to programs

to change by evolution. The operating system will determine the mechanisms of interpro-
cess communication, memory allocation, and the allocation of CPU time among competing

processes. Algorithms will evolve so as to exploit these features to their advantage. More

than being a mere aspect of the environment, the operating system together with the in-
struction set will determine the topology of possible interactions between individuals (see

Figure 3).

2.2.1 Time sharing

The Ti err an operating system must be multi-tasking (or parallel) in order for a community

of individual programs to live in the workspace simultaneously. The system doles out small

slices of CPU time to each program in the workspace in turn. The system maintains a

6

Table 1: Instruction set for the language used.

[Category

No operation nap―° no operation
nop_l no operation

Calculation sub_ab subtract bx from ax, ex = ax -bx
subぶ c subtract ex from ax, ax = ax -ex
mc_a increment ax, ax = ax + 1
inc_b increment bx, bx = bx + 1
dec_c decrement ex, ex = ex -1
m． c_c increment ex, ex = ex + 1

zero set ex register to zero, ex = 0

orl flip low order bit of ex, ex¥1

shl shift left ex register, ex < = 1

Memory management push_ax push ax on stack
push_bx push bx on stack
push_cx push ex on stack
push_dx push dx on stack
pop_ax pop top of stack into ax
pop_bx pop top of stack into bx
pop_cx pop top of stack into ex
pop_dx pop top of stack into dx
mov_cd move ex to dx, dx = ex
mov辿 move ax to bx, ・bx = ax
movjab move instruction at address in bx to ax

IP manipulation iLcz if (cx==O) execute next instruction

jmp move ip to template

jmpb move ip backward to template

call call a procedure
ret return from a procedure

Biological & Sensory adr address of nearest template to ax

adrb search backward for template
adrf search forward for template

mal allocate memory for daughter cell
divide cell division

げ叫四三 Operation

7

OPERATING ENGINE

Time sharing

MEMORY MANAGEMENT

ENGINE

Memory allocation
The reaper

WORKSPACE

a population of
self-replicating programs

EVOLUTION ENGINE

Mutation

Figure 3: Overview of the system framework.

circular queue called the slicer queue. As each program is born, a virtual CPU is created

for it, and it enters the slicer queue just ahead of its mother, which is the active program at
that time. Thus the newborn will be the last program in the workspace to get another time

slice after the mother, and the mother will ge~the next slice after its daughter. As long
as the slice size is small relative to the generation time of the programs, the time sharing

system causes the world to approximate parallelism. In actuality, we have a population

of virtual CPUs, each of which gets a slice of the real CPU's time as it comes up in the

queue.

The number of instructions to be executed in each time slice may be set proportional

to the size of the program being executed, raised to a power. If the slicer power is equal

to one, then the slicer is size neutral, the probability of an instruction being executed does
not depend on the size of the program in which it occurs. If the power is greater than one,

large programs get more CPU cycles per instruction than small programs. If the power is
less than one, small programs get more CPU cycles per instruction. The power determines

if selection favors large or small programs, or is size neutral. A constant slice size selects

for small programs.

2.2.2 Memory allocation

The Tierran computer operates on a block of RAM of the real computer which is set aside
for the purpose. This block of RAM is referred to as the workspace. In most of the work

described here the workspace consisted of about 60,000 bytes, which can hold the same

number of Tierran machine instructions. Each program occupies some block of memory
in this workspace.

The Tierran operating system provides memory allocation services. Each program has

exclusive write privileges within its allocated block of memory. This membrane is described

as semi-permeable because while write privileges are protected, read and execute privileges

are not. A program may examine the code of another program, and even execute it, but

it cannot write it over. Each program may have exclusive write privileges in at most two
blocks of memory: the one that it is born with which is referred to as the motlier cell, and a

8

second block which it may obtain through the execution of the MAL (memory allocation)

instruction. The second block, referred to as the daughter cell, may be used to grow or

reproduce into.
When Tierran programs divide, the mother cell loses write privileges on the space of

the daughter cell, but is then free to allocate another block of memory. At the moment of
division, the daughter cell is given its own instruction pointer, and is free to allocate its

own second block of memory.

2.2.3 The reaper

Evolving programs in a fixed size workspace would rapidly fill the space and lock up the
system. To prevent this from occurring, it is necessary to include mortality. The Tierran

operating system includes a reaper which begins killing programs from a queue when the
memory fills to some specified level. Programs are killed by deallocating their memory, and

removing them from both the reaper and slicer queues. Their dead code is not removed

from the workspace. ―

In the present system, the reaper uses a linear queue. When a program is born it

enters the rear of the queue. The reaper always kills the program at the front of the

queue. However, individuals may move ahead or back in the reaper queue according to

their success or failure at executing certain instructions. When a program executes an
instruction that generates an error condition, it moves one position ahead in the queue,

as long as the individual ahead of it in the queue has not accumulated a greater number
of errors. Two of the instructions are somewhat difficult to execute without generating an

error, therefore successful execution of these instructions moves the program back in the
reaper queue one position, as long as it has not accumulated more errors than the program

below it. The effect of the reaper queue is to cause algorithms which are fundamentally
:fl awed to rise to the top of the queue and die. Vigorous algorithms have a greater longevity,
but in general, the probability of death increases with age.

2.2.4 Mutation

In order for evolution to occur, there must be some change in the program being generated.

This may occur within the lifespan of an individual, or there may be errors in passing along
the program to offspring. In order to insure that there is genetic change, the operating

system randomly flips bits in the workspace, and the instructions of the Tierran language
are imperfectly executed.

Mutations occur in two circumstances. At some background rate, bits are randomly
selected from the entire workspace and flipped. This is analogous to mutations caused
by cosmic rays, and has the effect of preventing any program from being immortal, as it

will eventually mutate to death. The background mutation rate has generally been set
at about one bit flipped for every 10,000 Tierran instructions executed by the system. In

addition, while copying instructions during the replication of programs, bits are randomly

flipped at some rate in the copies. The copy mutation rate is the higher of the two, and

results in replication errors. The copy mutation rate has generally been set at about

one bit flipped for every 1,000 to 2,500 instructions moved. In both classes of mutation,

the interval between mutations varies randomly within a certain range to avoid possible
periodic effects.

In addition to mutations, the execution of Tierran instructions is flawed at a low rate.
For most of the 32 instructions, the result is off by plus or minus one at some low frequency.

，
 SELF-EXAM I 1111

find 0000 (start) -> bx
find 0001 (end) -> ax
calculate size -> ex

REPRODUCTION I 1101
allocate daughter -> ax

call 0011 (copy procedure)
cell division
jump 0010

COPY PROCEDURE I 1100
save registers to stack

1010

move [bx] -> [ax]
decrement ex

if (cx==O) jump 0100
increment ax & bx

jump 0101
1011

restore registers
return

1110

Figure 4: A flow chart for the ancestor program.

For example, the increment instruction normally adds one to its register, but it sometimes
adds two or zero. The bit flipping instruction normally flips the low order bit, but it
sometimes flips the next higher bit or no bit. The shift left instruction normally shifts all
bits one bit to the left, but it sometimes shifts left by two bits, or not at all. In this way,
the behavior of the Tierran instructions is probabilistic, not fully deterministic.

It turns out that bit flipping mutations and flaws in instructions are not necessary

to generate genetic change and evolution, once the community reaches a certain state
of complexity. Genetic parasites evolve which are sloppy replicators, and have the ef-

fect of moving pieces of code around between pieces of programs, causing rather massive
rearrangements of the program.

3 A Case Study

3.1 Self-replicating program

We have used the Tierran language to write a single self-replicating program which is 80

instructions long. This program is referred to as the "ancestor," and Figure 4 illustrates
how it looks. The ancestor is a minimal self-replicating algorithm, and no functionality
was designed into the ancestor beyond the ability to self-replicate, nor was any specific

10

evolutionary potential designed in.

The ancestor examines itself to determine where in memory it begins and ends. The
ancestor's beginning is marked with the four no-operation template: 1・1 11, and its ending
is marked with 1 1 1 0. The ancestor locates its beginning with the five instructions:

ADRB, NOP _Q, NOP _Q, NOP _Q, NOP _Q. This series of instructions causes the system

to search backwards from the ADRB instruction for a template complementary to the

four NOP _Q instructions, and to place the address of the complementary template (the
beginning) in the bx register of the CPU. A similar method is used to locate the end.

Having determined the address of its beginning and its end, it subtracts the two to

calculate its size, and allocates a block of memory of this size for a daughter cell. It then

calls the copy procedure which copies the entire program into the daughter cell memory,

one instruction at a time. The beginning of the copy procedure is marked by the four

no-operation template: 1 1 0 0. Therefore the call to the copy procedure is accomplished
with the five instructions: CALL, NOP _o, NOP _Q, NOP _l, NOP _1. When the program

has been copied, it executes the DIVIDE instruction, which causes the program to lose

write privileges on the daughter cell memory, and gives an instruction pointer to the
daughter cell (it also enters the daughter cell into the slicer and reaper queues). After this

first replication, the mother cell does not examine itself again; it proceeds directly to the
allocation of another daughter cell, then the copy procedure is followed by cell division, in

an endless loop.
Forty-eight of the eighty instructions in the ancestor互reno-operations. Groups of

four no-operation instructions are used as complementary templates to mark six sites for
internal addressing, so that the program can locate its beginning and end, call the copy

procedure, and mark addresses for loops and jumps in the code, etc.

3.2 Results

Evolutionary runs of the simulator are begun by inoculating the workspace of about 60,000

instructions with a single individual of the 80 instruction ancestral genotype. The pas-
sage of time in a run is measured in terms of how many Tierran instructions have been
executed by the simulator. The original ancestral cell executes 839 instructions in its first

replication, and 813 for each additional replication. The initial cell and its replicating

daughters rapidly fill the workspace to the threshold level of 80% which starts the reaper.

Typically, the system executes about 400,000 instructions in filling up the workspace with
about 375 individuals of size 80. Once the reaper begins, the memory remains filled with
programs for the remainder of the run.

The efficiency of the program generated can be indexed in two ways: the size of the

program, and the number of CPU cycles needed to execute one replication. Clearly, smaller
programs can be replicated with less CPU time, however, during evolution, programs also

decrease the ratio of instructions executed in one replication, to program size. The number
of instructions executed per instruction copied, drops substantially. The smallest limiting
program size seen has been 22 instructions (see Figure 5).

The increase in efficiency of the replicating algorithms is even greater than the decrease

in the size of the code. The ancestor is 80 instructions long and requires 839 CPU cycles

to replicate. The program of size 22 only requires 146 CPU cycles to replicate, a 5. 75-fold
difference in efficiency.

Programs present at the end of some runs were examined and found to have evolved
an intricate adaptation. The adaptation is an optimization technique known as unrolling

こ
~

11

80

0

0

6

4

az1s E
B
A
0
0」
d

20

ヘヽヽ ヽヽ ヽf ヽヽ ＼ヽ ヽ＼ J ヽ 蝙ヽヽヽ△

゜
2

3

4
 Evolutionary time step

Figure 5: A comparison of optimization of program size as the evolution goes on.

the loop. The central loop of the copy procedure performs the following operations: 1)

copies an instruction from the mother to the daughter, 2) decrements the cx register which

initially contains the size of the parent program, 3) tests to see if cx is equal to zero, if so
it exits the loop, if not it remains in the loop, 4) increment the ax register which contains

the address in the daughter where the next instruction will be copied to, 5) increment the
bx register which contains the address in the mother where the next instruction will be

copied from, 6) jump back to the top of the loop.
The work of the loop is contained in steps 1, 2, 4 and 5. Steps 3 and 6 are overhead.

The efficiency of the loop can be increased by duplicating the work steps within the loop,
thereby saving on overhead. Programs from the end of some long runs had repeated the

work steps two or three times within the loop.
Unrolling of the loop results in a loop which uses 18 CPU cycles to copy three instruc-

tions, or six CPU cycles executed per instruction copied, co:mpared to 10 for the ancestor.
The program of size 22 also uses six CPU cycles per instruction copied. However, the

program exploiting the unrolling the loop uses three extra CPU cycles per loop to com-

pensate for a separate adaptation that allows it to double its share of CPU time from the
global pool (in essence meaning that relatively speaking, it uses only three CPU cycles

per instruction copied). Without this compensation it would use only five CPU cycles per

instruction copied.

3.3 Discuss10n

A wide variety of programming systems make use of program transformations as part of

their knowledge representation and automation apparatus. They use transformations to

improve the efficiency of a program. The input to the system is a clear but inefficient

program; the output is a program that is much more efficient but usually much less clear.

The system operates by applying a small number of powerful transformations to merge

information from different parts of the input program and then redistribute it into a more

efficient modularization.

12

Obviously, it is necessary to point out a couple of problems in the program trans-

formation and synthesis and how the evolutionary approach works them out. In the
use of transformations, it is important to be able to verify that the transformations are
correctness-preserving, i.e., that the transformation process does not alter the intended

behavior of a program. The evolutionary approach guarantees the property with the ap-
propriate criteria given for selection process. This means that the user is only required to

supply the fitness criteria instead of the sophisticated transformation rules.
Another paramount problem in using program transformations is choosing which trans-

formation to apply in situations where several are applicable. This requires the system to

have some control structures that allow it to search all possible transformational paths,

creating a variety of output programs. Besides, for each new application, the user is

encouraged to define syntactic and semantic extensions of the transformation rules that

capture the natural control structures and data abstractions of the application area. In

the evolutionary approach, however, there is no need for the user to specify the transfor-
mation knowledge manually. Evolution process might give a way to automatically find the
efficient rules.

4 Concluding remarks

Efficient program synthesis is a problem that draws on program synthesis technology and.
analysis of algorithms. As an exercise in program synthesis, the evolutionary framework

offers a focus on automatically guiding the production of efficient programs. It allows

global optimizations based on an overall view of the uses through evolutionary process.
In this paper, we have described a preliminary system base.don the framework.

We hope that evolutionary techniques for program transformation can be utilized to
provide a practical programming tool and have started the modification of systems to

accomplish this. These systems will put more control back with the user requiring him/her

to have an intuitive idea of the development of his/her algorithm leaving to the system of
task of implementing this development correctly.

Acknowledgements

The authors would like to thank Dr. K. Shimohara and Dr. Y. Tohkura at ATR HIP

laboratories for continuous encouragement.

Appendix A. Getting the Tierra system

The complete source code and documentation is available by anonymous ftp at:
tierra.slhs.udel.edu [128.175.41.34] or
life.slhs.udel.edu [128.175.41.33]

as the file tierra/tierra. tar. Z. The source code compiles and runs on either DOS or

UNIX systems. If you do not have ftp access, the complete UNIX/DOS system is also

available on DOS disks with an easy insta且ationprogram._ For the disk set, contact the
second author.

私

．

い

ー

』

』
I
f
~

、9
,，
w
.
.
，
山
．
，
．
ー

5
1
1
,

＂
＂n
'
,
K
I
I
|
k
,
:
1
1
1
1
9

卜
，
＇
H
K
,
i
1
,
1
’
1
,

＇

13

References

[1] L. A. Rowe and F. M. Tonge, "Automating the selection of implementation struc-
tures", IEEE Trans. on Software Eng. SE-4 (1978) 494-506.

[2] E. Schonberg, J. T. Schwartz and M. Sharir, "An automatic technique for selection
of data representations in SETL programs", ACM Trans. on Prog. Lang. and Sys. 3

(1981) 126-143.

[3] Z. Manna and R. Waldinger, "A deductive approach to program synthesis", ACM
Trans. on Prag. Lang. and Sys. 2 (1980) 90-121.

[4] R. C. Waters, "The programmer's apprentice: a session with KBEmacs", IEEE Trans.
on Software Eng. SE-11 (1985) 1296-1320.

[5] M. Broy and P. Pepper, "Program development as a formal activity", IEEE Trans.

on Software Eng. SE-7 (1981) 14-22.

[6] T. E. Cheatham, Jr., "Reusability through program t~ansformations", IEEE Trans.
on Software Eng. SE-10 (1984) 589-594.

[7] T. S. Ray, "An approach to the synthesis of life", ArtiガcialLife II, Santa Fe Institute
Studies in the Sciences of Complexity, 2, CA: Addison-Wesley, 1991, pp. 371-408.

[8] T. S. Ray, "Evolution, complexity, entropy, and artificial reality", Physica D 75 (1994)
239-269.

[9] T. S. Ray, "An evolutionary approach to synthetic biology: zen and the art of creating

life", Artificial Life 1 (1994) 179-209.

[10] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey", IEEE Computer,
June 1994, 17-26.

	01
	02
	MX-4111FN_20201013_141636

