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MVHBF*: A Network that Approximates
Multi-Valued, Vector-Output Mappings

(*MVHBF=Multi-Valued HyperBasis Function network)

Masahiko Shizawa
ATR Human Information Processing Research Laboratories
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0. Introduction (multi-valued mappings in inverse problems).
1. A mathematical formalism: multi-valued, vector-output function approximation.
2. The basic structure:h -valued, Scalar-output MVRN.

3. MVHBF: A function approximation network that combines unsupervised and
supervised learning for multi-valued function approximation.

4. Applications (computer vision, inverse kinematics, sensor fusion, biological
information processing, e.t.c.).

5. Conclusions and future research directions.

Presentation at ATR Symposium on Face and Object Recognition, Jan. 17, 1995.



Inverse models of a forward single-valued mapping is generally a
multi-valued mapping.
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.. Learning of inverse models from examples must be a
multi-valued function approximation.




Need of multi-valued function approximation:
function approximation of inverse of a quadric function
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version of two-valued MVRN



Applications of multi-valued function approximation network
(1. A supervised learning technique h

1.1 Learning in computer vision (learning of vision modules from examples).
1.2 Learning of inverse kinematics.

- 1.3 Learning in direct sensor-actuator coordination.
1.4 Learning in sensor fusion problems (e.g. multiple target detection).

1.5 Learning in nonlinear inverse problems in general.

J

[ 2. A tool for modeling and analyzing numerical data )
2.1 Reconstruction of complex overlapping surfaces from sparsely distributed data.

2.2 General tool for data analysis and modeling. y

\

3. A tool for modeling biological information processing
3.1 Learning of multiple and ambiguous perception and perceptual transparency.

3.2 Model of multiple overlapping transparent surfaces perception.

L3'3 Model of consciousness: choosing or deciding one output out of h possible outputs)




A mathematical formalism of h -valued, vector-output mapping

Logical representatlon

y=f&x)vy=fix)v---vy=f(x)

Logical disjunction of h mappings

. Algebraic representation —— s
T S|y o) @By - fix) =

Direct algebraic representation of h -valued function
® denotes Kronecker's tensor product. x € R",y e R”

Network representation-

Multi-Valued Function Approximation
~ MVRN, MVHBF, MVNN, MVxxX, ...
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h -valued, scalar-output MVRN
~Direct representation of h -valued scalar function ~

h
Ay =T £0)= BP0+ yEP (@) +-+ Y T EP(x)+ " =0
k=1

(h mappings: y= f;(x) (j.:l,2,---,h))

The equation of h -fold hypersurface =h -degree algebraic equation with respect to y.
-

—Linearization: elementary symmetric polynomials—

FP(x)= (=" f.(x) f,(x)- - f,(x),
FEP(x)=> > f(x)f (x),

il :1 i2 :il +1
h

FP(x) ==Y £(x)

i=1




Standard Regularization of h -Valued Function

| N 2 h
E(h) [E(h)’ Fé(h)’. o P;l(h)] — Z{A(h)(x(i)’ y(i))} + Zlk I'SkEc(h)Hz
[ k=1

Error term Smoothness term

~Euler-Lagrange equation - ~
| 5,F?h>, =0 >
k
N
k—1 N

200 AV @y (x = x,)) + ASSE (x) = 0
< i=1
~Solution of E-L equation ~

N
~ k=1
Ec(h)(x) =—A 12(%)) A" (X iys Yy VK (X, X )
i—1

Weight parameters:
r(h) — _//L—IA(}Z)(x(i), y(l))

l

A k-1
Ec(h)(x) = zri(h)()’(i)) K(x,x )
i=1

[Multi-Valued Regularization Network]

. .




Numerical solver of h-degree algebraic equation

f(x)



Learning algorithms of Multi-Valued Regularization Networks

r N "
N-dimensional linear system: ) )
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[Dimension of the linear system is invariant to multiplicity h.j
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Multi-Valued HyperBF Network (MVHBF) (Scalar-valued MVHBF)

Basis functions: multivariate Gaussians of arbitrary covariances

exp{——(x tu)) Z(J)(X_ t(jﬂ}
(] :1727'”>M)

K y(Xt),2)) = \/(277:)” detX
)

M
' ion:  r(h) — -
Intermediate representation F, (x) = Zrk,jK(j)(X’t(j)’z(j)) (k=1,2,---,h)
=1

N
2
Energy function for minimization: E(h)[E(h), F;(h),' . ',F;l(h)] = Z{A(h)(x(i),y(i))}



MVHBF(Multi-Valued Hyper-Basis Function Network):
A function approximation network that combines unsupervised and
supervised learning for multi-valued function approximation.
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Domain manifold
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Decomposition Network
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Tensor producttepresentation
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Learning of linear weights
Linear system for learning linear weights: ~ K™§® +z" = () (hM)-dim.

D1TD1 DlTDz DlTDh—
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EM algorithm [Dempster 1977] for learning of centers and
covariances of Gaussian basis functions
EM algorithm for Gaussian Mixture Density Estimation [Ghahramani & Jordan 1994]

E-step (Expectation): Computation of contribution of the j-th basis function to
I-th data
1 1 T | h = 8ij
8ij = exp) =5 (Xo) — b)) 2 (X — L) TS
./det Z(j) 2 Egl_j
j=1
M-step (Maximization): Re-estimation of center and covariance

N N T
zhifxO’) 2 My (X = )Xy =t 5)

1 _ =1 1 _ 1=l

t Hh- XN 2 ()~ l N
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Density estimation in combined input-output space for function
approximation [Ghahramani & Jordan 1994]

Input—x——

Input-Output Space R’

" Basis functions N
Output
> i
> /5
manifold
\_

The approximation power is limited
because it is basically a piecewise linear
approximation.

It is difficult to evaluate the input-output
mappings for multi-valued functions.

(1) It is computationally burdensome to
compute multi-fold integrals for
regression in high dimensions.

(2) It is computationally burdensome to

\estimation.

find local maxima for maximum likelihood

J

Not suitable for real-time implementation.




Comparison between conventional unsupervised learning techniques
(e.g. density estimation) and MVHBF in regard of function
approximation

unsupervised learning multi-valued func. approx.
(density estimation) (MVHBF)
learning nonlinear regression linear regression(output) +
methods | (input+output) | nonlinear regression(input)
evaluation of multi-fold integral for regression / ggren'gggﬁgenedfomard
! ' finding local maxima for MLE ,
. mapping J (+numerical methods)
T approximation | Jow (piecewise linear) high (smoothness)
| power
suitable computer program / feedforward network +
implementation | recurrent network numerical methods
realizable general relation h -valued mapping

mapping




Applications of MVRN and MVHBF

1. Computer vision / Sensor fusion : locating multiple objects from multiple sensors.

An application of 2-valued, 2-vector-output MVHBF-.

2. Inverse kinematics: Learning of inverse kinematic mapping from hand posture to
link parameters for a 3-link planar manipulator.

It is possible to represent singularity and change of multiplicity h of inverse mapping.




Learning in Computer Vision: Levels of Utility of the Learning Methods

Levels Models Solution Examples

0 available analytical solution unnecessary

1 available numerial methodns un'necessary
| 2 available learning artificial examples

:% 3 | unavailable learning controlled examples

|

4 unavailable learning uncontrolled real

| examples

Levels 0, 1 --- conventional approaches of computer vision
Level 2 --- neural programming

Level 3 --- recent results in computer vision
[Murase & Nayer] [Poggio et.al.] [Weng et.al.]

Level 4 --- unsupervised learning, MVHBF



Complementary nature of the two approaches

Computational Vision (CV) CompUtational Learning (CL)
(Learning from examples)

Physical_ (photome’gric, Regularization theory
geometric) constraint

: Fundtion approximation
Image representation Neural network

/Feature detection ' |
Uniqueness, ambiguity / Statistical estimation methods

Statistical pattern recognition

Unification of constraints s\ I :
~ ' clustering techniques
\ 7 (clustering es)
Problems , \Q‘ i Optimization techniques
[/ /
780%

}
)
\

lll-posed problem /‘\\\
Noise/Quantization/Uncertainty N\ Problems
lll-defined problems '\\ Feature detection (scale, invariance)

(non-rigid, unknown structure,etc)

Real-time applications
Segmentation
Non-existence of analytical solutions

Integration of learning modules

Ambiguous relations in learning



Figure 4: The result of learning a module of motion transparency
(a) A section of input-output mapping using analytical solution, (b) A section of input-

output mapping using two-valued MVRBF
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Example: Two-dimensional localization of two

bright points from Gaussian photo receptors.

A 218, FEE  Two bright points, equal brightness.
Y52 Res . 518  Five photo receptors.
KRBEIRORLY VR A5 IR EERE=2.0)

PSF of photo receptors is a uniform Gaussian with s.d.=2.0.

[:@ﬁﬁ%uﬁ,%ﬁ%ﬁﬁﬁbtw!j

There is no analytical solution for this inverse problem!

(FBOEOOHET— 5 x €[0.030], yE[1.0,1.0] )
IC—#E5 > 4 LIZ10,000{B 4. _
The number of training data was 10,000.

2y NT— o ORER  —BEIROH Y XEHK2 4 318

Basis functions: 243 Gaussian functions with arbitrary covariances.
SBPIINTUZL . BHEREFEMT7ILTU XL
Learning algorithm: Linear regression + EM algorithm. -
BEERETEY hI— TV DEAEFE
Learning of weight parameters with linear regression.

EM7ILO) XL TEEBEOMNE EMRKEFE FEE I —1#5 > 4 4)
Learning of centers and covariances of basis functions with EM.

SXRBRBICQ, BERSUCREIEARMTITMES 1L
2HEAOBEWSRI Bl S, )

A

hi3—OEHYT721—-—V 3 RETHS.
This is a sensor fusion problem.

(SHED 7= 8 D7 — & AR Examples for eQaIuation. D
FEART I (0.0,-1.0)75(3.0,1.0)F CHEEEEIEE

Obj #1: Translational constant motion.
MR 2 1 HEEZERFETEY IC—B Obj #2: Circular orbital motion.

fmRE U TSREDFBERRFE 5N/, Accurate results are obtained.
| R EEBBOMEMEDS A Problem: Initial values of basis functions.

-2~
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Figure 6: Localization problem for two bright points from five photo receptors
(a) Arrangements of photo receptors and orbits of two bright points for evaluation, (b)

Evaluation results of the learning networ%\
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( Conclusions
1. MVHBF that learns multi-valued, vector-output mappings was proposed.

2. applications to inverse problems including computer vision, inverse kinematics, e.t.c. are
discussed.

3. Simulation results are presented for multiple objects localization and learning of
invese kinematics problem.

(Future directions

1. Improvement of learning methods for more robust and accutate approximation.
2. Automatic determination of the global multiplicity h of the mapping.

3. Theoretical foundations and algorithms of the learning of point-wise multiplicity changes.
- _
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