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While drawing a plane curve, the instantaneous tangential velocity of the hand decreases 

as the curvature increases [1, 2, 3]. This relationship is best described as a power law where 

velocity is proportional to the 1/3 power of the radius of curvature [3]. An identical power 

law is observed in planar motion perception [4, 5]. Although aspects of drawing [6, 7, 8, 9], its 

development [10], as well as the visual perception of motion [4, 5], show that the power law 

influences the organization of both perception and action, no adequate explanation for the 

specific 1/3 value has been offered. Here we show by way of affine differential geometry and 

human drawing data that the 1/3 power law means that curves are drawn with constant affine 

velocity. This theoretical finding suggests that the 1/3 power law results from approximations 

in visuo-motor transformations involving affine rather than Euclidean distances. 

Although the physical world which humans see and manipulate can be described by 

Euclidean geometry, there is reason to doubt that properties such as Euclidean distance and 

angles are faithfully reproduced in our internal representations. For example, judgments of 

static form show that the structure of human visual space [11, 12] as well as motor space 

[13] deviate from Euclidean geometry. Nonetheless, humans successfully interact with this 

Euclidean world and it can be questioned how these deviations from Euclidean geometry 

influence our behavior. In this paper we show that the well-known law relating figural and 

kinematic aspects of drawing -that Euclidean tangential velocity Ve is proportio叫 tothe 

radius of curvature R to the 1/3 power -can be explained by looking in the affine space 

rather than the Euclidean one. We show that if instead of com~uting the Euclidean velocity 
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we compute the affine one, a velocity which is invariant to affine transformations, then we 
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obtain that the curve is being draw with constant velocity. Moreover, it can be shown that 

the unique function of R which will give an affine invariant velocity is R1l3. This means that 

the velocity which was found experimentally is the unique one which tells that constant affine 

distances are traveled in a given time interval. Note that the planar motion of a point-light 

is perceived as uniform if the tangential velocity obeys the same 1/3 power law. This result 

can also be explained by the same proposed approach. 

Why affine invariance? In vision, affine transformations are obtained when a planar 

object is rotated and translated in space, and then projected into the eye (camera) via a 

parallel projection. This is a good model of the human visual system when the object is 

flat enough, and away from the eye, as in the case of drawing. Accordingly, affine concepts 

have been applied to the analysis of image motion and the perception of three-dimensional 

structure from motion [14, 15, 16, 17, 18]. Another way that affine invariance could arise is 

that the transforms from visual input to motor output could approximate the true Euclidean 

transformations [19] and do so with affine approximations. Although in this work we do not 

attempt to isolate the stage in visuomotor processing at which the a伍negeometry enters, 

the essential explanation of the 1/3 power remains the same. 

A planar curve may be regarded as the trajectory of a point p E [O, a] on the plane. 

For each value of p, a point C(p) = [ェ(p),y(p)] E R2 on the curve is obtained. Different 

parametrizations p give different velocities, but define the same trace or geometric curve. An 

important parametrization is the Euclidean arc-length v [20], which means that the curve is 

traveled with constant velocity. In this case the Euclidean length of a curve between v0 and 
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附 isし(Vo,叫=J:; dv, and the Euclidean velocity is defined via 

¼ 
dv 

：＝一
dt' 

where t stands for time. This is the classical definition of velocity, which relates the (Eu-

clidean) distance traveled with the time it takes to travel it. This is also the velocity as 

interpreted in the experiments of hand writing and planar point motion, where it was found 

that 

Ve= kRl/3, (1) 

where k is a constant and R is the radius of curvature. 

This arc-length v is Euclidean invariant. If a curve C is transformed to C via a rotation 

and a translation, that is, an Euclidean transformation, then dv = dv. From this we conclude 

that when distances are measured by le, they are Euclidean invariant. 

Suppose now that instead of only rotations and translations, we have affine transforma-

tions, which means that the curve can be stretched with different values in the horizontal 

and vertical directions. For the affine group, v is not invariant any more, dv =/ dv and 

le=/ fe. We can define a new notion of affine arc-length (s), and based on it an affine length 

(la), which are affine invariant [21, 22]. The affine arc-length is given by the requirement 

戸立1&s &s2 x = 1, which means that the area of the parallelogram determmed by the vectors 

岳and店isconstant. This gives the simplest affine invariant parametrization [23]. Based 

on this, we define the affine invariant distance as la(v0, 附）：=f悶ds,and the affine velocity 

as Va:=磨.The affine velocity relates the affine distance la with the time it takes to travel 

it. 
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Assume that the curve is parametrized via Euclidean arc-length v. Then, using the 

relation between an arbitrary parametrization and s [21], we have生=j-x- = ac ヂC 1/3 

dv ov ov2 I 
1f x虚 jl/3=厨/3

→ → 

, where T, N, and氏 =1/R are the umt tangent, umt normal, and the 

Euclidean curvature respectively. Therefore 

ds ds dv = K,1/3聞＝
1 

Va=-=-- -V  
dt dv dt Rl/3 e• 

For the case of handwriting velocity (1) we have that 

Va ex k, (2) 

which means that the curve is traveled with constant affine velocity. This means for example 

that a circle and an ellipse will be traveled at times proportional to k, since they are related 

by an affine transformation. 

We performed an experiment to determine if, as predicted, curves were drawn at constant 

affine velocity and that drawing time remained constant for shapes of equal affine length 

(Figure 1). Results showed that curves were drawn with constant affine velocity, but that 

shapes with equal affine lengths did not have equal drawing times (Figure 2). This apparent 

contradiction was resolved by examining errors in subjects'drawing, where it was found that 

cumulative error in reproducing the local shape could account for the increase in drawing 

times (Figure 3). 
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Figure Legends 

Figure 1. The sixteen shapes used in the drawing experiment. Each column contains 

four figures with equal affine length and corresponds to an affine-transformed hippopede 

(See [24]; polar equation ,2 = 4b(a -bsin2 0)). The 4 hippopedes were obtained with the 

values a = 4.3mm and b =急，!,迂，%for the columns left to right and each was rotated so 

that its long axis was vertically aligned. The area-preserving affine transformation used in 

obtaining the 4 rows was to stretch by an amount a in the vertical direction while compressing 

by an amount¼in the horizontal direction. The four rows, from top to bottom, correspond 

to values of a=l.2, 1.85, 2.5 and 3.25. Six subjects twice traced each of the sixteen shapes as 

carefully as possible for a period of 45 seconds. Position data was sampled at 205 HZ from a 

digitizing pad with 0.02 mm accuracy and was digitally filtered with a fifth order butterworth 

filter with a cutoff frequency of 10 Hz. Subjects reproduced the Euclidean perimeter with 

an average error of 0.6 mm (SD 1.3 mm) which showed no statistically significant variation 

with the amount of stretch or affine length. 

Figure 2. a) An example of corresponding instantaneous Euclidean and affine velocities 

(filtered at 1 Hz cutoff). Euclidean velocity is periodic with the drawing motion while affine 

2/3 
ve ocrty 1s roughly constant (units of velocity: Euclidean (皿門

sec' 
affine (~)). b) Aver-

ages of subjects'instantaneous affine and Euclidean velocities. Average instantaneous affine 

velocity (open marks) was constant for aH shapes while average instantaneo_us Euclidean 

velocity (filled marks) increased with the Euclidean perimeter (units of velocity: Euclidean 

（讐）， affine(mr;;,:13)). c) Average drawing time did not remain constant for shapes of equal 

｀ 正＼ 
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affine length, but increased for shapes with greater Euclidean perimeter. 

Figure 3. Subjects'errors in reproducing the local form of the presented shape were 

related to their increase in drawing time. This can be seen by plotting the drawing times 

versus the average error in the total radius of curvature. This error was defined as the the 

sum of the radius of curvature of the drawn shape minus the approximate numerical integral 

of the radius of curvature of the presented shape. For each affine length, as a increased the 

presented curve became straighter and the amount of miss-drawing increased due to subjects 

inability to match this straightness. Because affine velocity remained constant, this resulted 

in increased affine length and thus longer drawing times. 
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