
Internal Use Only 

TR -H -106 0028 

Eliminating spurious memories using 

a network of chaotic elements 

Shin Ishii 

1994. 10. 27 

ATR人間情報通信研究所
〒619-02京都府相楽郡精華町光台2-2 岱 07749-5-1011 

ATR Human Information Processing Research Laboratories 

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan 

Telephone: +81-7749-5-1011 
Facsimile: +81-77 49-5-1008 

非公開

c(掛ATR人間情報通信研究所



ー

Er . iminating spurious memories using 

a network of chaotic elements 

Shin Ishii 

ATR Human Information Processing Research Laboratories 

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan 

(TEL) +81 7749 5 1069 (FAX) +81 7749 5 1008 

(E-mail) ishii@hip.atr.co.jp 

Abstract 

A Globally Coupled Map (GCM) model is a network of chaotic 
elements that are globally coupled with each other. We have already 
proposed an associative memory system based on the GCM, which has 
a better ability than the Hopfield network. This success is obtained 
through the mechanism that a network state can escape from spurious 

memories with its chaotic dynamics. Therefore, our approach is not 
to reduce spurious memories, rather, it is to escape from them. 

In this paper, we propose a modified associative memory system, 
in which spurious memories are noticeably reduced. This is achieved 
by modifying the chaotic dynamics of the system, and not by modi-
fying its learning rule. With this improvement, our system's memory 
capacity and the basin volume are expanded in a great deal. Some 

experimental results in comparison with those of a neural network 
employing a nonmonotonic output function are also shown. 

Keywords: choas, globally coupled map, associative memory, 

nonmonotonic dynamics1 spurious memory 
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1 Introduction 

Recently, there have been many studies on artificial neural network models 
with nonequilibrium dynamics. They have been encouraged by recent bio-
logical experimental results of mammalian brains. In the cat visual cortex, 
for example, stimulus-specific synchronized oscillations have been reported 

by Eckhorn et al. (1988) and Gray and Singer (1989). Sakarda and Freeman 
(1987) reported that, in the rabbit olfactory bulb, limit cycle activities occur 

for perceptible specific odors but chaotic activities occur for novel odors. 
Based on the above-mentioned biological results, the spatiotemporal com-

plexity in recent nonequilibrium neural network models has mainly been 
attributed to the network's asymmetric connections, i.e., excitatory and in-
hibitory connections (Lie and Hopfield 1989; Yao and Freeman 1990; Gross-

berg and Somers 1991). A nonequilibrium neural network model was also 
proposed by Aihara et al. (1990); it was deduced from experiments with 
squid giant axons. This model's spatiotemporal complexity is not generated 

by the network structure, rather by the dynamics of each single neuron. Neu-
ral network models with asymmetric connections have also been investigated 
theoretically (Amari 1972a, b; Sompolinsky and Kanter 1986; Sompolinsky 

et al. 1988). 
From a physical viewpoint, studies have been made on nonlinear cou-

pled oscillators (Kuramoto 1991). The main interest of these studies has 
been the spatiotemporal complexity of certain physical systems such as spin 

glasses. Kaneko proposed several models, which were originally "fuzzifi-

cated" versions of the Cellular Automaton model investigated by Wolfram 

(1984). Kaneko's models are based on coupled chaotic elements. Each el-

ement evolves in time according to the logistic map, and the couplings are 
of the nearest neighbor type (Kaneko 1984), or of the global coupling type 

(Kaneko 1990). The latter model is called "Globally Coupled Map (GCM) 
model", and many of its interesting characteristics such as glassy attractors 
have been reported. 

All of the above-mentioned models intend to "mimic" biological neural 
network models or physical systems; further breakthroughs are needed to 
properly achieve this. 

On the other hand, from a technical viewpoint, it is important to imple-

ment nonequilibrium information processing like in the human brains. For 
example, let's think about the associative memory (Kohonen 1977), which is 

a key technology utilized in many technical fields such as pattern recognition 
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and database retrieval. Hopfield (1984) proposed a neural network approach 

to the associative memory, in which, an association process corresponds to 

minimization of the network's Lyapunov function. In this sense, his network 

employs equilibrium dynamics. His model also employs the auto-correlation 

learning rule (Hebb 1949). Since his work, many associative memory sys-

tems based on nonequilibrium neural network models have been proposed, 

many of which employ auto-correlation or mutual correlation learning rules. 

For example, Nara et al. (1993) proposed an associative memory system 

based on an asymmetric neural network with a mutual correlation learning 

rule. Hayashi (1994) proposed a system based on excitatory and inhibitory 

connections with a recurrent neural network learning method. Adachi et 

al. (1993) proposed a system based on the model proposed by Aihara et al. 

(1990) with an auto-correlation learning rule. 

Among these, we have already proposed an associative memory system 

(Ishii et al. 1994) based on Kaneko's GCM (Kaneko 1990). In our system, 

each element evolves in time according to a cubic map f(x) = ax3 -ax+ x 

instead of the logistic map f (x) = 1 -a丑 employedin the original GCM. 

The learning rule employed in our system is of the auto-correlation type. 

However, in our system, both the memory capacity and the basin volume 

for each memory are larger than in the Hopfield network (Hopfield 1984) 

employing the same learning rule. This result indicates that the chaotic 

dynamics employed in our system is more efficient than the steepest descent 

like dynamics employed in the Hopfield network. Nevertheless, even in our 

system, spurious memories, i.e., the network's equilibrium points that do not 

correspond to any of the proper memories, do exist. 

In this paper, we intend to eliminate spurious memories in our associa-

tive memory system only by modifying its dynamics. If we employ a strong 

learning method such as diagonal learning (Kohonen 1977), the system might 

be improved. However, our major interest lies in the dynamics. As a result, 

in our modified system, spurious memories are noticeably reduced, giving 

an even larger memory capacity and an even larger basin volume for each 

memory than the original system. Our research is inspired by Morita's work 

(Morita 1993), in which the Hopfield network was extremely improved by 

employing a nonmonotonic output function. Therefore, we compare our 

modified system with a variation of Morita's system experimentally. We 

give a somewhat intuitive interpretation as to why such improvement can be 

achieved in our new system. 
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Associative memory based on GCM 
f9 

We have already proposed a modified GCM model called "S-GCM" (Ishii et 
al. 1994), which is designed for information processing applications. Our S-
GCM employs the cubic map S-MAP instead of the logistic map employed in 

the original GCM. This modification makes it easy for each unit to represent 

one bit, i.e., -1 or 1. Our S-GCM has attractors called "cluster frozen at-
tractors". Therefore, our S-GCM can easily represent binary spatial patterns 

as its attractors. We have also described several of S-GCM's characteristics 

(Ishii et al. 1994). They are as follows. 

• Representation stability. The S-GCM falls into a cluster frozen attrac-

tor over a wide range of parameters, i.e., a representation of information 
is stable over parameters. 

• Retrieval ability. In the S-GCM, represented information can be pre-
served or broken by controlling the system's parameter values. 

These characteristics have shown that our S-GCM model can be applied 
to associative memory systems. In this section, we introduce our basic asso-
ciative memory system based on the S-GCM (Ishii et al. 1994). 

[Systemご］

}
 

€ 
N 

叫+1) = (1―t)h(叩(t))+ーI:!凸 (t))
N 

j=l 

(1) 

fi(x) = f(x; i) = a国— O'.jX + X X E [-1, 1] (2) 

In Eq. (1), 叩(t)denotes the i-th unit's value at time t, and N is the 
number of units. Each unit's dynamics is almost entirely given by the cubic 

function S-MAP (2); the portion described as a summation in Eq. (1) is de-

fined as feedback from the "mean-field". In this system, each unit's strength 
of chaos ai is diverse, and evolves in time, like: 

叫=ai + (ai -a min) tanh (/3糾）

N 

尻＝一XiI: O'jj的'
j=l 

(3) 

(4) 
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的＝ー戸閲N 
k=l 

where終E{ 1, -1} denotes the i-th bit of the k-th memorized pattern and 

M is the number of memorized patterns. That is, {り，…，e叫砂 E{1, -1}門
is a set of memorized binary patterns. /3 is a constant value. The learning 
method defined by equation (5) is of the auto-correlation type. 

Let us show an association process. When CF with 100 units memorizes 
five 100-bit binary patterns "A", "J", "P", "T", and "S", and the input binary 
pattern is a 35% reversed pattern of "A", it associates "A" after scores of 
transitions. Figure 1 shows this association process. In this figure, highly 
chaotic motions are observed at the early association stage. As time elapses, 
these motions become quiet, and the association is completed successfully 

when the system falls into a 4-cluster frozen attractor. 

It is well known that the memory capacity of the simplest Hopfield net-
work can theoretically be estimated at 0.138N (Amit et al. 1987). Exper-
imental results have shown that our system has a larger memory capacity, 
and it is estimated at 0.186N (Ishii et al. 1994). In the following, we com-

pare our system with the Hopfield network in terms of "success rate", which 

indicates how successfully the network can associate a target pattern, when 
the distance of initial states is known. Each network incorporates 100 units 
and memorizes five alphabet patterns. The distance of an initial state x(O) 

from a target pattern e is determined using initial overlap ol(y(O), e). Here, 
the overlap of a state X from a target pattern e is given by 

(5) 

1 N 

ol(y, t) = -
N こ応i=l (6) 

where y is a binary vector derived from the state vector x. Figure 2(a) 
and 2(b) show the results obtained for the target pattern "A" and "T", 
respectively. These figures indicate that our system has a higher success 

rate, i.e., a larger basin volume for each memorized pattern than the Hop:field 
network. 
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3 System to eliminate spurious memories 

3.1 Modification description 

Our system has a better ability as an associative memory system than the 
Hopfield network, although the two models employ the same auto-correlation 

learning rule. The reason is considered as follows; in our system, with its 
chaotic dynamics in an early association stage, a network state can escape 

from spurious memories. On the other hand, in the Hopfield network, with 
its steepest descent like dynamics, a network state can not escape from a 
spurious memory, i.e., a local minimum of the Lyapunov function. Neverthe-

less, even in our system, spurious memories exist, which inhibit the system 
from having an even larger memory capacity or an even larger basin volume. 

Now we propose a new system Cァ+,which is a dynamical system defined 

by Eqs. (1),(2),(5), and the following equations. 

a~= O'.mid + (O'.mid - O'.min) tanh(/3尻）

EI= -x訊
N 

u: = ui + I: びiiO(巧；a)--
ui 

j=l 
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O(x;a) = {~x 

if a>叩

if a < a1 
otherwise 

(11) 

where a~denotes a new value of the i-th unit's strength of chaos. The domain 

of a is set to be between two parameters CYmin :S a :S CYmax, and the other 

two parameter values are determined to be CYmi~< 釘く叫< CYmax• T is a 
parameter increasing gradually from 1 in time, 1.e., its initial value is 1 and 

7* ?: 1. Here, the evolution described in Eqs. (7),(8),(9),(10), and (11) is 

done once in every 32 time steps, i.e., at t = 32, 64, 96 ... In this sense, we 
describe this evolution without using t. 

Let us show the meaning of this modification, in short. Eqs. (3) and 

(4) have been changed into Eqs. (7),(8),(9),(10), and (11). However, Eq. 

(7) has almost the same meaning as Eq. (3). This alteration is only for 
an improvement of the system's ability, in fact. Additionally, if the output 
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function O(x; a) is an identical function, Eq. (9) is almost equivalent to a 
Euler difference equation of the Hopfield network's internal potential 

dU u N 
=--

dt T 
+ I: びijXj,

j=l 

(12) 

If T is constant 1, Eq. (9) resembles the definition of an internal poten-

tial (see Eq. (13)) in the mean field theory (Peterson and Anderson 1987), 
in which the network converges to a minimum of the network's Lyapunov 
function more rapidly than the Hopfield network (Sato 1994). On the other 

hand, in the Hopfield network employing Eq. (12), the network's equilibrium 
points become close to a corner of the domain hypercube as T becomes large. 

From this observation in resembling models, we consider that in our system, 
the system's mode becomes stable as T increases, which contributes to sup-
pressing chaotic motions in a later association stage. Further discussion will 
be done in the next subsection. 

Therefore, the most important modification is the existence of the output 
function 0. Figure 3 shows O(x)/x against a, schematically. As this figure 

shows, 0 is an identical function, when a is relatively large, i.e., the unit's 
state is very chaotic. On the other hand, 0 always returns 0, when a is 

relatively small, i.e., the unit's state is stable. Namely, 0 suppresses the 
output of a unit having a low a value. In section 5, we will discuss the 

meaning of this output function. 

3.2 Movement 

Let us show some examples of association processes. 

Figure 4(a) and (b) show time series of overlap in the modified system, 

when the initial overlap is set to be various values. When the overlap value is 
equal to 1, the system state is equivalent to the target pattern. On the other 
hand, when the overlap value is around 0, the state has no correlation with 

the target. In Figure 4(a) and 4(b), the C戸 withN = 256 units memorizes 
M = 32 random binary patterns (r = M/N = 0.125), and memorizes M = 
64 patterns (r = 0.250), respectively. The other parameters are set as amax = 
4.0, Omid = 3.85, Omin = 3.40, au = 3.70, a1 = 3.45, € = 0.10, T* = 1.02, and 
(3 = 2.0, and initial values are set as ai = 3.50, Ui = 0.0, and T = 1.0. Initial 
values for x are set as the initial overlap with the target being the specific 
value. The detailed manner for this coding is described in the previous paper 
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(Ishii et al. 1994). As Figure 4(a) shows, when the number of memorized 

patterns is relatively small, the system can easily associate a target even from 

initial states that are far from the target, and the time interval needed for 

each association is very short. On the other hand, as Figure 4(b) shows, when 

the number of memorized patterns is relatively large, the basin of attraction 

becomes small. In this case, if its initial state is relatively close to the target, 

the system can associate the target; if its initial state is far from the target, 

the system fails to associate it. The critical distance is about 0.56 (72 in 

Hamming distance) in this figure's case, and it turns out to be large enough. 

For comparison, Figure 5(a) and (b) show time series of overlap in the 

original system CF. Parameters are set as CTmax = 4.0, CTmin = 3.40, E = 0.10, 
and /3 = 0.10, and initial values are set as ai = 3.50. Figure 5(a) is for a 

relatively small number of memories (r = 0.125), and Figure 5(b) is for a 

relatively large number of memories (r = 0.250). As mentioned in section 2, 
we estimate the memory capacity of the CF to be about 0.186N, which is 
smaller than the number of memories in the case Figure 5(b) shows. However, 

actually, with such a large number of memories, basins of attraction can exist, 

although they are small enough. Nevertheless, in our old system the memory 

capacity and the basin volume are much smaller than in the modified system. 

Furthermore, the time interval needed for each association process is much 

longer than in the modified system. The association time depends on the 

parameter /3, in fact. If /3 is large, the association time becomes small. 

However, such a system almost always fails to make a proper association. 

Figure 6 shows a time series of the values of all units in CF+. Let's 

compare it with an association process of the CF shown in Figure 1. In our 
old system, when the system is able to make a proper association, the state 

becomes stable in a 4-cluster frozen attractor. On the other hand, in our new 

system, even when the system is able to successfully associate a memorized 

pattern, some chaotic movements remain. Since such chaotic movements are 

"localized" in two clusters and separated from each other as Figure 6 shows, 

we can extract a binary representation from the state by a coarse-viewing 
method. 

If T is constant 1, the system Cデ becomesmore unstable. Figure 7(a) 

and (b) show time series of overlap, when T* is set to be 1. As these figures 

show, the system's "global" chaotic motions remain, and the state often be-

comes far from the target because of its chaotic motions. If we utilize this 

phenomenon, it might be possible to make some chaotic associative memory 
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systems. Accordingly, the gradual enlarging of T described by Eq. (10) con-
tributes to stabilizing an association process of our new system, as mentioned 

in the previous subsection. 

4 Evaluation 

In this section, we evaluate several systems including our new system C:F土
They are: 

• Hopfield network in the mean field theory equation (MFT) 

• MFT employing a nonmonotonic output function (NM) 

• Our old system (C:F) 

• Our new system (C:F+) 

A rough description of the MFT is as follows. 

叫+1) = tanh(四 (t+ 1)) = tanh (/Jz;:a己 (t)) (13) 

where parameter f3 is set to be 2.0 in the following experiments. Here, we 

choose the MFT (Peterson and Anderson 1987) instead of the continuous-
time version, which is Hopfield's original model (Hopfield 1984). The reason 
is that the MFT is easier to treat and more efficient than the continuous-

time model (Sato 1994). Moreover, we choose the MFT equation with a 
nonmonotonic output function instead of l¥forita's original continuous-time 

model or his partial reverse method (Morita 1993) for the same reason. A 
rough description of the NM is as follows. 

叫+1) = g(~ 正 j(t))
J 

(14) 

9 (u) = (1 -exp (-cu)) (1 + K exp(c'(I u I -h))) 
1 + exp(-cu) 1 + exp(c'(lul -h)) 

(15) 

Since the Hopfield network employing a nonmonotonic output function g 

does not have a Lyapunov function in general, it is not proper to regard this 
model as a mean field theory equation. However, we consider that this model 
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works as well as Morita's original model. Parameters are set as c = 50, c'= 
15, h = 0.5, and K, = 0. All of the parameter values except K, are the same 

as Morita's (Morita 1993). In Morita's original paper, K, = -1 was used. 
In Figure 8, the association success rate of the NM is shown with variousん

values, when each initial state is a 1-bit reversed pattern of a target, with the 

number of units N = 128 and the number of memorized patterns M = 32. 
From observing this figure and for analysis simplicity, we determine K, = 0. 

Figure 9 shows the function shape of g with these parameter values. 
Parameter values of the CF and the Cデ usedin the following experi-

ments are the same as those shown above. 

4.1 Memory capacity 

In this subsection, we show an experimental result for the memory capacity 

of the four systems. Here, "memory capacity" means how many random 
patterns the network of N elements can store so that every memory has its 

own basin of attraction. 
Figure 10 shows the simulation results. Each network succeeds in mem-

orizing M random patterns, if the probability of bit-wise flips after some 
transient period is less than 1.5%, when the initial state is set to be one of 

the memorized patterns. According to a theoretical analysis (Amit et al. 
1987) of the simplest Hopfield network (Hopfield 1982), if the probability 
of bit-wise flips exceeds 1.5% before reaching an attractor, all memories be-

come useless, i.e., a phase transition occurs. In our old system, new system, 

and the NM, we can not observe such a distinguished phase transition. In 
these systems, memories become useless much more slowly as the number 

of memories increases. Figure 11 shows the rate of bit-wise flips in Cデ

after some transient period, with N = 512 and various numbers of memo-

ries. Moreover, in these three systems, there sometimes remain some chaotic 
movements. Therefore, this probability value is not so meaningful to deter-
mine the memory capacity; it is just a criterion for comparison. 

As Figure 10 shows, in each of the four systems, the memory capacity 
(rate) does not depend on the number of units N. In the MFT, it is estimated 

at about 0.125N, which agrees well with the theoretical result. The Cデ
has a much larger memory capacity of 0.186N, which is about 50% larger 
than that of the MFT. The NM has an even larger one of 0.216N, which is 

73% larger than that of the MFT. Moreover, in our modified system, it is 

about 0.273N, which is more than twice that of the MFT, and about 30% 
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larger than that of the old system. According to Morita's estimation (Morita 

1993), the Hopfield network employing a nonmonotonic output function has 

about a 0.32N memory capacity, which is much larger than our experimental 
result. This difference is maybe due to the difference of the memory capacity 
criterion. Actually, as mentioned in the previous section, in our old system, 
even when the number of memorized patterns exceeds the capacity, basins of 
attraction can exist, although they are narrow enough. This is also the case 

in the NM and the new system. 

4.2 Basin volume 

In this subsection, we compare the four systems in terms of the basin volume. 

Each of Figures 12(a),(b),(c), and (d) show the success rate of the four 

systems. "Success rate" means how successfully the network can associate 
a target pattern, when the distance of initial states is known as an overlap 

value. Each initial state is taken to have a smaller distance from the target 

than from any of the other memories. Figure 12(a) is for N = 512, .M = 64 
(r = 0.125). In Figure 12(b), N = 512, r = 0.250; in Figure 12(c), N = 

256, r = 0.125; and in Figure 12(d), N = 256, r = 0.250. According to 
our estimation in the previous subsection, r = 0.250 exceeds the memory 
capacity of the C:F and the NM. However, actually, some small basin of 
attraction exists near a target even in those systems, as Figure 12(b) and (d) 
show. 

As these figures show, the success rate of our new system is larger than 
that of the MFT, C:F, and the NM in every case. With a relatively small 
number of memories, our new system can associate a target pattern from 
very far initial states with a high success rate. Therefore, we conjecture that 

the basin volume in our new system is much larger than in any of the three 

other systems. 

4.3 Total basin volume 

In this subsection, we investigate the total basin volume of the four systems. 

Here, "total basin volume" means how large in total are the basins of at-

traction for all proper memories in the whole domain area. Or, it means 
the probability that a binary vector chosen at random belongs to a basin of 
attraction of any proper memory. Table 1 shows the results in percent with 
several conditions. 
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Table 1 

MFT C:F NM c;::+ 

N = 64, r = 0.125 14.3 3.5 99.8 96.5 

N = 256, r = 0.125 0.0 0.0 81.4 23.4 

N = 256, r = 0.250 0.0 0.0 0.4 0.3 

Table 1 shows that the C:F has a smaller total basin volume than the 

MFT, and that the Cデ hasa smaller one than the NM. Additionally, as 
the number of units increases, the total basin volume becomes small in the 
four systems. 

As the number of units increases, the domain area becomes huge, in 
an exponential order. On the other hand, the number of available memories 
increases much more slowly, in a linear order of N. Therefore, as N increases, 
the density of available memories becomes small. We consider this to be the 
reason why the total basin volume rate is small in the four systems with large 

N value. In the three systems except the MFT, some chaotic motions may 
remain, when the system fails to make a proper association. However, in 
most failure cases in Table 1, the system becomes stable at an illegal state, 
i.e., a spurious memory. Namely, Table 1 shows that in the Cデ， thebasin 

volume for spurious memories is larger than in the NM. This result indicates 

that there are more spurious memories in the C戸 thanin the NM. It seems 
that it contradicts the result shown in the previous subsection. Now, let us 

briefly discuss this phenomenon. 

According to a neuro-dynamics analysis by Amari and Maginu (1988), in 
the simplest Hopfield network, basins of attraction have a strange shape, i.e., 

like a starfish. Therefore, even if the initial state is very close to a target, the 
network may fail to associate it. The above-mentioned contradictory result 
suggests that this is also the case in the NM. In the NM, the probability that 

a random initial state belongs to a basin of a proper memory is larger than in 
the Cデ.However, because of the starfish like shape of basins, it often fails 
to make a proper association even when it starts at a close initial state from 

a target, which lowers its success rate. Actually, the NM often associates 

an unexpected memory that is not the closest memory to its initial state1. 
On the other hand, we consider that in the C:F+, basins of attraction have a 

1 Notice that in the experiments in section 4.2, all initial states are taken to be nearest 
from a target memory. Therefore, even though the NM can associate another memory 
besides the target, the result is an unexpected one. 
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sphere like shape. Therefore, it can associate a proper memory with a high 
success rate from an initial state with a relatively small distance from the 

target, although there are many spurious memories in its domain area. In 
this sense, we can say that in our c;:+, the "effective" basin volume is larger 
than in the NM. 

Accordingly, we can conclude as follows. In our new system, the memory 
capacity and the effective basin volume are much larger than in the old 

system. The success rate is also much higher. This is because in our new 
system, the dynamics is so improved that spurious memories located close to 
proper memories are almost entirely wiped out. 

5 Discussion 

In this section, we discuss the reason why such an improvement is achieved 

in our modified system. For this discussion, first we show an intuitive inter-
pretation of why spurious memories occur in the MFT. 

In the MFT, each unit evolves in time according to Eq. (13). When an 

internal potential Ui is large, we say the i-th unit is "obstinate". An obstinate 
unit is not easily influenced in its output by fluctuations in the values of other 

units. Because of the output saturation of the sigmoidal output function (see 
Figure 13) of the MFT, even if there is some small change in the summation 

区j叩 Xj,the output is not altered. This "obstinacy" tends to be generated 
when some part of a state matches one of the memorized patterns. On the 

other hand, with the sigmoidal output function, the output value of such an 
obstinate unit is large, i.e., the unit's influence on the other uni ts is large. 

As for a state at an early association stage, when one part becomes obstinate 
by matching a memorized pattern, and another part also becomes obstinate 

by matching another memorized pattern, their value does not change each 

other, and they attract the remaining part with their large output. In such a 
case, the state becomes stable at a mixed pattern of two or more memorized 

patterns. This is a so-called spurious memory in the MFT. In the case of 
the Hopfield network, this situation can be more serious, since an internal 

potential might take a large value, and at that time, the unit would not be 
able to change in its value any more. 

Accordingly, spurious memories occur because of the strong influence of 

the units that are obstinate , i.e., too stubborn to be influenced by the other 
units. If we want to reduce spurious memories, one way is to lower the in-
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恥 enceof obstinate units on the other units. In the NM, we employ the 
output function g shown in Figure 9, which does this control. With this 

control, the NM can successfully eliminate spurious memories as Table 1 
shows. However, an association result may differ from the expected pattern, 

since using the nonmonotonic output function g is nothing but ignoring some 
units'output. This interpretation suggests the reason why basins of attrac-
tion take a strange shape in the NM, as mentioned in the previous section. 

We consider that this description also holds in the Hop:field network employ-

ing a nonmonotonic output function, although Morita (1993) showed another 

intuitive interpretation for his system's success. 
In the CF, parameter alpha evolves in time according to Eqs. (3) and 

(4). When Ei is small, O'.i becomes small, and that means the unit becomes 
stable in its value. In such a case, we say the unit is obstinate. When a unit 

becomes obstinate, the unit is not easily influenced in its value by other units, 

since the unit's chaos is weak. On the other hand, such an obstinate unit 
strongly influences the other units through a alteration defined by Eqs. (3) 

and (4). This is almost the same situation with the MFT. An obstinate unit 
would not easily be influenced in its value, although it strongly in恥 ences

the other units'value. This is the reason why spurious memories occur in 

our old system C冗

Therefore, if we lower the influence of obstinate units on the other units, 
spurious memories can be eliminated. Hence, we introduce the function 

0 to suppress the in恥 enceof a unit being obstinate, i.e., having a low a 

value. With this control, our new system Cデ cannoticeably reduce spurious 
memories. 

We do not know the reason why the basin shape in our Cデ isbetter 

than in the NM. However, our conjecture is as follows. In the C戸， the
control done by the function O affects a unit's value x in an indirect manner. 

0 controls the parameter a through Eqs. (7),(8), and (9), and a alters x 

through Eqs. (1) and (2). This indirect control achieves a partial "anneal-
ing" like mechanism, which inhibits the basins from becoming a starfish like 

shape. This is not the case in the NM with its rather direct control by the 
nonmonotonic output function. 
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6 Conclusion 

In our old associative memory system CF, both the memory capacity and 
the basin volume are larger than in the Hopfield network employing the 

same learning rule. This success is obtained through the mechanism that 

a network state can often escape from spurious memories with its chaotic 

dynamics. However, even in our old system, spurious memories do exist. 

In this paper, we give an intuitive interpretation as to why spurious mem-

ories occur both in the Hopfield network and in our old system, in terms of 

the "obstinacy" of a unit. vVith this observation, we consider that if we lower 

the influence of an obstinate unit on the other units, we can reduce spurious 

memories. Hence, we propose a new modified associative memory system, 

which does this control through controlling the strength of chaos. With this 

control, our new system can almost entirely wipe out spurious memories lo-

cated close to proper memories. As a result, our new system has an even 
larger memory capacity and an even larger "effective" basin volume than not 

only the old system but also the MFT employing a nonmonotonic output 

function. 
Experimental results indicate that our new system's success rate is very 

high, even when the number of memorized patterns is relatively large. This 

success is more noticeable than in the MFT with a nonmonotonic output 

function. Accordingly, the system can generally associate a proper memory, 

which is actually the most important ability in associative memory systems 

from a technical viewpoint. 
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Figure 1 
An association process of the CF, with 100 units and 5 alphabet mem-

ories "A" " " "P" "T" and "S". J 
The upper figure : The initial pattern is a 35% reversed pattern of "A". 

As time elapses, the system state becomes close to the target pattern 
"A", and finally the system is able to successfully associate the target. 
The lower figure : A time series of all the units plotted every 32 time 

steps. The abscissa denotes the transition time (t = 32, 64, 96, …，32 X 

50) and the ordinate denotes the units'value. This graph corresponds 
to the binary spatial patterns shown in the upper figure. 

Figure 2 
Association success rate of the CF (solid line) and the Hopfield network 
(dotted line), when the initial overlap is set to be various values. Each 
network incorporates 100 units and memorizes five alphabet patterns. 

(a) The target is the pattern "A". (b) The target is the pattern "T". 

Figure 3 
The function shape of the function 0. 0 is an identical function, when 

a is relatively large. 0 always returns O , when a is relatively small, 

Namely, 0 suppresses the output of a unit having a low a value. 

Figure 4 

Time series of overlap in the Cア• O:max = 4.0, O:mid = 3.85, O:min = 
3.40, au = 3.70, a1 = 3.45, E = 0.10, 7* = 1.02, and /3 = 2.0. In ad-
dition, initial values ai = 3.50, Ui = 0.0, and T = 1.0. The abscissa 

denotes the time (t = 32, 64, 96, …, 32 X 100). 

(a) The number of memories is relatively small, N = 256, r = 0.125. 
The system can easily associate a target even from a far initial state in 

a short time period. 

(b) The number of memories is relatively large, N = 256, r = 0.250. 
When the initial state is relatively close to a target, the system can 

associate it. When the initial state is far from a target, the system fails 
to associate it. 
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Figure 5 

Time series of overlap in the CF. O:max = 4.0, O:min = 3.40, c = 0.10, 
and /3 = 0.10. In addition, initial values O:i = 3.50. The abscissa 

denotes the time (t = 32, 64, 96, …，32 X 500). 
(a) The number of memories is relatively small, N = 256, r = 0.125. 
When the initial state is very close to a target, the system can associate 
it, although it takes a long time period to complete the association. 

(b) The number of memories is relatively large, N = 256, r = 0.250. 
Although this memory number exceeds the memory capacity of CF, 
actually, the system can associate a target by starting from some initial 

states. 

Figure 6 
A time series of the values of all units in the C戸 plottedevery 32 

time steps. The abscissa denotes the time (t = 32, 64, 96, …，32 X 100). 
Even when the system can successfully associate a memorized pattern, 

some chaotic movements remain. However, the chaotic motions tend 
to disappear, helped by the T control defined by Eq. (10). 

Figure 7 

Time series of overlap in the c;:+, with T set to be constant 1. All 

parameter values are the same as in Figure 4(a) and (b) except T*. The 

abscissa denotes the time (t = 32, 64, 96, …，32 x 100). Comparing with 
Figure 4(a) and (b), in this system, "global" chaotic motions remain, 

which do harm to the making of a proper association. 

(a) N = 256,r = 0.125. (b) N = 256,r = 0.250. 

Figure 8 

The association success rate of the NM with various K, values. Each 

initial state is a 1-bit reversed pattern of a target, with N = 128 and 
M = 32. Notice that if K, = 1, the NM becomes exactly equivalent to 
the MFT. In a mean field theory approach, K, = -1, which is eq叫 to
the value used by Morita, is not a good parameter value. 



Captions 21 

Figure 9 
The function shape of the nonmonotonic output function used in the 

NM system. Parameter values are c = 50, c'= 15, h = 0.5, and /{, = 0. 
Using this output function is nothing but ignoring the output of units 

having a large internal potential. 

Figure 10 
The memory capacity of the MFT, the CF, the NM, and the C戸， with
various number of units. It seems that the capacity does not depend 
on the number of units. The estimated capacity values are, 0.125N for 
the MFT, 0.186N for the CF, 0.216N for the NM, and 0.273N for the 
c;::+. 

Figure 11 
The rate of bit-wise flips in C戸 aftersome transient period, with 

N = 512 and various numbers of memories. This figure does not show 

a distinguished phase transition, which is observed in the Hopfield net-

work. 

Figure 12 

The success rate of the MFT, the CF, the NM, and the C戸 whenthe 
distance of initial states is known as an overlap value. 

(a) N = 512, r = 0.125. Our Cデ canassociate a target in 100% 

even from far initial states. (b) N = 512, r = 0.250. Our C戸 has
a large effective basin volume, even with a relatively large number of 

memories. It seems that the CF and the NM also have a small basin 
volume, although the number of memories in this figure case exceeds 

their capacity. (c) N = 256, r = 0.125. (d) N = 256, r = 0.250. 

Figure 13 

Schematic figure of the sigmoidal output function employed in the MFT 

and the Hopfield network. When a unit's internal potential is large, the 

unit is regarded as being "obstinate" in the following sense: its output 

value is large, although it is not easily influenced in its value by the 

other units. 
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