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Abstract: In recent years, learning theory has been increasingly influenced 

by the fact that many learning algorithms have at least in part a 

comprehensive interpretation in terms of well established statistical 

theories. Furthermore, with little modification, several statistical methods 

can be directly cast into learning algorithms. One family of such methods 

stems from nonparametric regression. This paper compares nonparametric 

learning with the more widely used parametric counterparts and 

investigates how these two families differ in their properties and their 

applicability. 

1 Introduction 

This paper will investigate learning in a very restricted sense in that it only 

focuses on・a low level of learning, i.e., how to establish a transformation 

from input data to output data under a given performance criterion. In 

statistics, such a mapping is called regression if the output variables are 

continuous, and it is called classification if the outputs are discrete. In 

learning theory, the acquiring of such input-output mappings is called su-

pervised learning. Due to the focus on these topics, this paper will not 

address many of the other important questions in learning, for example, 

where the definitions of the input and output variables come from, whether 

they should be defined on a microscopic or macroscopic level, how 

performance criteria can be developed, and how learning modules can be 

arranged in a competitive and/or hierarchical way. Nevertheless, the input-

output mapping problem, formulated as the search for nonlinear 

correlation, is one of the main issues of the formation of structured 

processes, and despite the research progress in the recent years, many 

details have yet not been solved in a satisfying way. 
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The major difference between statistical data analysis of input-output 

mappings and the approach taken by learning theory is that statistical 

analysis tries to incorporate as much domain knowledge as possible to 

interpret the data, while in learning theory a "black box" approach is 

preferred. The notion "black box" expresses the desire for autonomy: Is it 

possible to have a general system that is fed with a stream of input and 

output data in order to "self-organize" to reflect the nonlinear correlation 

between inputs and outputs? The various forms of neural network 

architectures are an attempt to address this question, but so far no positive 

answer has been found. Every method has serious weaknesses in certain 

classes of problems, be it the perceptron on non linearly separable tasks 

(Minsky & Papert, 1969), the ordinary feedforward multi-layer neural 

network in terms of catastrophic interference, and the Boltzman machine in 

terms of learning speed. However, the understanding of the appropriateness 

of an algorithm for a given problem has always significantly advanced at 

the moment at which statistical theories could be found to apply. The 

Hopfield net (Hopfield, 1982) and the Boltzman machine (Hinton & 

Sejnowski, 1983), for instance, have their foundations in statistical 

mechanics, the Kohonen algorithm can be formulated as a Fokker-Planck 

equation (Ritter & Schulten, 1988), and multi-layer linear feedforward 

networks can be analyzed using linear regression methods. 

If statistical theories underlie the understanding of many learning 

algorithms, it is consistent to also try to derive learning algorithms directly 

from the statistical viewpoint by . grounding their development in a statisti-

cal framework from the very beginning. As an advantage, probabilistic 

assumptions of the learning framework are made, explicit (e.g., MacKay, 

1993, Jordan & Jacobs, 1993). A drawback, on the other hand, is that these 

algorithms often lose・the connection to a desired hardware, for instance, the 

neurons of a brain, and focus instead on a purely computational theory of 

learning. However, it might subsequently be possible to reconcile these 

theories with more biologically motivated processes by trying to find 

biological structures that approximate the computations of the developed 

method, as it has often been possible to find statistical methods which 

explain the behavior of biologically motivated algorithms. Even if this is not 

possible—or often also not intended—the insight into what is achievable by a 

certain learning theory will always provide valuable benchmark perfor-

mance for comparisons and will be useful in the development of artificial 

systems. 

ヽ
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The emphasis of this paper lies on a strand of statistical learning methods 

from nonparametric regression analysis. One of the key characteristic of 

these methods (as investigated in the current context) is their relatively 

large insensitivity to the structural complexity of the input-output function 

to be learned. The resulting advantages and disadvantages of 

nonparametric learning in comparison to the more well-known parametric 

methods will be the topic of this paper. Before starting this comparison, it 

should be noted that despite the attempt to review a certain amount of 

related work in the following sections, it is absolutely impossible to cover 

the vast literature on this topic. Hence, this paper can only attempt to 

briefly point to some references in the literature which could lead the 

interested reader to more information. 

2 Parametric vs. Nonparametric Learning 

," 
I 

In order to compare different learning approaches for input-output 

mappmgs, it is useful to base the comparison on properties which are 

generally accepted to be important for this type of learning. The following 

list is not meant to be complete, but it should cover a large number of the 

important issues: 

Autonomy: How many parameters of the learning approach need human 

or heuristic adjustment, like, for instance, learning rates? 

Bi as: Is the learning algorithm inherently biased towards certain 

solutions,. or, if desired, can bias be incorporated easily? 

Complexity Control: Can the learning approach use regularization to avoid 

overfitting? 

Consistency: Does the learning result become increasingly less biased 

when the number of learning experiences goes to infinity? 

Continuous Learning: Can the learning system be trained forever without 

reaching a limit of its adaptation capacity or degrading its performance? 

Capacity: How many parameters are required to represent a given 

amount of experience? 

Flexibility: How well can learning follow a dynamically changing 

environment? 

Generalization: How well does the learning box infer an appropriate 

output to an unknown input? 

Incremental Learning: Is learning possible in an experience by 

expenence way? 
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- Interference: Does previously learned knowledge degrade if new data is 

incorporated in the learning box? 

Interpretation: When opening the "black box", is it possible to interpret 

the way the correlation between input and output data has been 

established? In biological modeling as well as in statistical modeling, this 

is often a desirable property in order to gain a better understanding of 

the underlying processes. 

- Lookup Speed: How quickly can a response to a query be formed, i.e., 

what is the computational complexity of a lookup? 

- Scaling: How well does the learning approach scale when increasing the 

dimensionality of the problem? 

- Real-Time Learning: How quickly can the learning box extract the 

relevant information from new experien~es and incorporate it into its 

representation? 

- Statistical Measures: Is it possible to make q叫 itativeand quantitative, 

usually statistical statements about・the quality of what has been 

learned? 

This list of criteria forms the basis of most of the discussions in the 

following sections. Due to space limitations, however, not all the issues will 

receive the attention which they actually deserve. 

2 .1 Global Parametric Learning 

The most common approach to learning an input-output mapping has been 

to fit a glob al parametric function 

y = f(x, 0) (1) 

with finite length parameter vector e to the data (x,y). The fitting procedure 

minimizes some error function J such that e・= mjn(四） for all data pairs (x;,y) 

in a training set. Very often, J is a least squares criterion. If f is linear in 

the parameters e, least squares minimization corresponds to linear 

regression and the parameters can be calculated in closed form. ・In more 

interesting applications, however, f is nonlinear in the parameters and the 

error function J must be minimized iteratively. 

Parametric learning methods have found wide application in the form of 

neural networks, and most of the following discussions will relate to this. In 

neural networks, a weight matrix w is adjusted with the help of 

4
 



backpropagation or other methods to model the training data (e.g., Hertz, 

Krogh, & Palmer, 1992); the weights in w are another way to write the 

parameter vector e above. Ripley (1992) gives an extensive discussion of 

various forms of neural networks from a statistician's viewpoint. 

Advantages 

Generally, parametric learning has been very successful if the assumed 

str_ucture of the function f(x, 0) is sufficiently close to the function which 

generated the data to be modeled. However, in contrast to the approach of a 

statistician, who would spend a large amount of time on comparing 

different kinds of structures before deciding on a particular one, learning 

approaches avoid this problem. The hope is that a general structure rich 

enough to model a large fraction of all possible functions could take care of 

the model selection issue and automatically adjust to the given problem by 

means of a learning algorithm. The reason for such hope was based on the 

work of Kolmogorov (1957) and Sprecher (1965), who proved that a certain 

kind of network can exactly represent any continuous function g from 

[O, 1]"→沢'". This work was adapted to the standard neural network 

representation by Hecht-Nielson (1989), Cybenko (1989), Funahashi (1989), 

and others, who, in various steps of improvements of the theories, finally 

showed that a one-hidden-layer neural network can approximate any con-

tinuous function. 

An appealing advantage of parametric methods lies in the computational 
cost to perform a lookup, i.e., the generation of a predicted output yq to a 

new input xq; the speed of lookup is proportional to the complexity of the 

model structure and is us叫 ly rather fast. Two pleasant properties of 

parametric learning are also to be mentioned. The first one is the high 

degree of data compression which can be accomplished in reasonably cho-

sen networks. Second, there is a fair chance that the internal 

representations evolved by the parameters can be interpreted to some 

extent; examples are Hinton's (1986) "family relationship" network, or 

Zipser and Anderson's (1988) work in which hidden neurons modeled the 

activation characteristics as observed in neurons of parietal cortex of 

monkeys. Generally, however, it is hard to interpret the parameters of a 

complex parametric learning box: It has often been observed that training 

an initially randomized system on the same data anew leads to quite 

different values . of the parameters for every training run. 
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Disadvantages 

Despite this list of benefits of parametric learning, a variety of 

disadvantages remain. The proof of universal learning capability for 

continuous functions does not imply that the model selection problem in 

parametric learning was solved by sigmoidal neural networks: None of 

these results makes any statements about the appropriate size of the 

network for a given problem nor about whether it is possible to learn the 

weights. In order to ac~ieve acceptable generalization, which is at the heart 

of each learning system, the number of parameters must not be too large 

since this would significantly reduce the generalization quality due to 

overfitting of the data. On the other hand too few parameters will not 

suffice to approximate the data well enough. The work of Vapnik (1982) 

and Barron (1994), for example, addresses the issues of bounds on the 

generalization error in parametric learning and, hence, the selection of an 

appropriate number of parameters. 

A further problem which parametric learning methods have to face is the 

so-called "catastrophic interference". If learning takes place incrementally, 

nonuniform sampling of the input space often leads to a strong degradation 

of the mapping f in regions of the input space where good learning results 

were achieved before. In global parametric learning, training on any data 

point causes a change in all the parameters, i.e., it has a global effect. Hence, 

if a block of training data stems from only a small subregion of the entire 

input space, the global parametric learning system will tend to model this 

subregion very well by changing all its parameters in favor of modeling this 

subregion. In doing so, however, the performance degrades for other 

regions of the inputs space. A variety of methods have been suggested to 

avoid these properties, for example pre-training the network on more 

general data before finally incrementally training it on more specialized 

data, or trying to sharpen the receptive fields of the neurons to make them 

as local as possible. All these methods, however, are more or less of a 

heuristic nature and will be successful in some cases and fail in others. The 

structure of global parametric learning algorithms possesses the property of 

catastrophic interference as an inherent property, and it will remain a hard 

task to overcome this problem in a general and principled way without 

backing away from global learning methods. 

To complete the list of disadvantages of parametric learning, the problems 

of time-consuming iterative learning procedures as well as sensitivity 

towards some meta parameter settings has to be addressed. The latter 
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problem concerns parameters like learning rates, momentum terms, 

decreasing temperatures, regularization terms, etc., which are often tuned 

manually or by some heuristic processes (e.g., Hertz, Krogh, & Palmer). 

However, faster computer hardware and better algorithms (e.g., Sutton, 

1992; Jacobs, 1988) may overcome these problems in the near future. 

Iterative learning methods often suffer from getting captured in local 

minima, and the fact that they may have extremely slow convergence rates 

ha~been reported quite frequently and will not be addressed here. One 

particularly unfavorable side-effect of the time consuming training, 

however, is that the assessment of statistical quantities, such as measuring 

the generalization error by means of crossvalidation methods (Stone, 197 4; 

Wahba & Wold, 1975), becomes computationally expensive. For instance, 

the calculation of one crossvalidation error requires the retraining of the 

entire system, and in order to achieve statistically valid results several sets 

of cross validation must be performed. Thus, cross validation and other 

statistics (e.g., Cohn, 1993) become almost impossible to compute for 

complex parametric learning systems. As a final point it should be 

mentioned that in general many nonlinear global parametric learning sys-

tems lack a body of useful statistics to assess the quality of what has been 

learned by the learning box. 

2. 2 Local Parametric Learning 

In order to avoid some of the problems of global parametric learning, local 

parametric methods may offer an interesting solution. Instead of finding a 

complicated parametric function y = f(x, 0) which is capable of modeling all 

the data in the entire input space, the input space may be divided into 

many partitions. In each of the partitions, a much simpler parametric model 

can be sought to fit the data. If the number of partitions is fixed, one 

obtains a local parametric (or piecewise parametric) learning system, 

usually preferred to be of an additive form 

I 
'・"j y=I,J;(x,0;) (2) 

If the number of the partitions can grow, so can the number of parameters, 

and the learning method enters the realm of nonparametric learning, which 

is the topic of the next section. The function f need not have identical 

structure, and quite often they are again the sum or product of other simple 
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functions. Importantly, the J; are only valid for a subset of the inputs space 

and, in the case of the summation (2), they are zero elsewhere. 

Advantages 

The key intent of local parametric learning is to keep the constituent 

functions ft as simple as possible in order to remove the need for 

cumbersome iterative training and to avoid interference of the functions by 

ensuring that they are only locally valid. Moreover, if the f1 have simple 

statistical properties, the entire learning system may be characterized by 

statistical measures. 

The purest form of a local parametric learning system is a fixed-grid lookup 

table with a parametric function inside of each partition. It avoids any kind 

of interference during incremental learning since new training data only 

affects a parameter change in the partition it falls into. An overlapping 

fixed-grid lookup-table like Albus'Cerebellar Model Articulation Controller 

(CMAC) (Albus, 1975) is very close to this pure form, although parameter 

changes also affect neighboring partitions. As soon as the partitioning is 

allowed to change during learning, a global component is added to the local 

parametric learning system. This is the case for the most traditional 

members of local parametric learning systems, the spline methods (e.g., de 

Boor, 1978). Kohnen vector quantizers in which each template vector learns 

a local linear model of the input-output relation in addition of the input 

tessellation (Ritter et al., 1992) also have this global component. 

While in all the aforementioned approaches the global component results 

from the propagation of parameter changes over an increasing 

neighborhood of partitions (like in a diffusion process), there is a class of lo-

cal parametric learning systems which make explicitly use of a global 

process, a gating process, to learn the partitioning. A large field of such local 

parametric models are finite mixture models (e.g., Duda & Hart, 1973, 

McLachlan & Basford, 1988), in which the data are usually modeled from 

the viewpoint of maximum likelihood estimation. Recently, mixture models 

found increased attention for learning in the work of Jacobs et al. (1991), 

Nowlan (1991), Jordan & Jacobs (1994), Ghahramani & Jordan (1994), Zemel 

(1993), and several others. The reason for choosing this kind of a model for 

learning is grounded in the statistical accessibility of the approach. 

Moreover, mixture models can often be trained by Expectation-

Maximization (EM) algorithms, a reliable iterative maximum likelihood 
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estimation technique (Dempster et al., 1977). EM methods avoid the 

introduction of learning parameters like learning rates and, thus, provide an 

interesting tool for adding autonomy to learning systems. One other popular 

approach, radial basis function neural networks (Moody & Darken, 1988; 

Poggio & Girosi, 1990), can be of a local parametric nature. Such radial basis 

function networks model the data in terms of 

y= :2:cJ;(x,0) 
j 

(3) 

where the /; are functions which decay to zero in all directions from their 

center (e.g., Gaussians) and are thus local. The cj are found by fitting the 

data pairs (/;,Y)i by linear regression, which can be interpreted as the gating 

process in this approach. 

Disadvantages 

The advantages of local parametric learning systems are bought at the 

expense of either an inflexible, fixed a priori partitioning of the input space, 

or at the computational effort of finding an appropriate partitioning of the 

input space, essentially a classification problem. For instance, in some of the 

aforementioned mixture approaches, most of the "intelligence" of the 

learning system was deferred to this . classifier component. The good news 

becomes that both regression and classification problems can now be solved 

by just addressing the problem of classification for the partitioning; learning 

the function within a partition is by definition simple. The shortcoming, 

however, is that powerful classification techniques tend to be 

computationally complex such that the removal of complexity at the level of 

the individual partition was achieved by introducing new complexity at the 

gating level. Within this problem, the nastiness of interference re-appears. 

If the gating component is insensitive towards a nonuniform sampling of 

the input domain, interference will be avoided. The parametric nature of 

the gating component, however, makes this property rather unlikely. 

Interference problems will therefore persist in local parametric models 

unless the system uses a fixed grid partitioning, which has usually limited 

learning capabilities. Hence, the term "local" in local parametric learning 

systems which employ a gating process is slightly misleading. 

At last, the question remains of how many partitions should be chosen for a 

local parametric learning system. This question is similar to the question of 
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how many hidden neurons should be allocated for a neural network. Having 

too few partitions will result in a large bias of the model, having too many 

partitions will result in overfitting of the data. Nevertheless, since the 

training of the learning box is much faster than in global parametric 

systems, methods like crossvalidation for model selection become feasible, 

or if the local parametric model has a clear statistical. model, statistical tests 

like likelihood ratios or F-test may be used as well. 

2. 3 Nonparametric Learning 

In the previous sections, the implicit question arose of whether it is possible 

to not restrict a learning system to a certain number of partitions, hidden 

neurons, or similar quantities. It would be more reasonable to allocate re-

sources as needed, but still not to overfit the data with the current 

representation. In so doing, one enters the field of nonparametric learning 

techniques. There is no formal definition of nonparametric regression. The 

name "nonparametric" is to indicate that the function to be modeled consists 

of very large families of distributions which cannot be indexed by a finite-

dimensional parameter vector in a natural way (Hajek, 1969). Hence, the 

nonparametric estimation of the input-output correlation is c;,ften called 

"distribution-free", implying that no assumptions about the statistical 

structure are made. In Scott~1992) it is stated that in a nonparametric esti-

mate of an output Yq for a given input point xq, the influence of any other 

point xi* xq on the estimate of yq should asymptotically vanish when the 

estimate is based on a increasing number of data points. This latter defini-

tion emphasizes that nonparametric methods should become increasingly 

local with more experiences which assures the consistency of the learning 

method, i.e., the decrease of bias. However, the assumption of being local 

will not be fulfilled by all the methods discussed below. 

In the current context, an appropriate working definition will be that a 

nonparametric learning system can change the number of parameters used 

by the learning box. This may be achieved by (i) growing the number of 

parameters of the learning system and/or (ii) re-evaluating the parameters 

as a function of the inputs. It is useful to separate these two points in the 

following since they have different characteristics. 
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2.3.1 Fixed Number of Parameters 

The key ingredient of "Fixed number of Parameters Nonparametric 

Learning" (FPNL) is to re-evaluate a finite set of parameters of the learning 

system for every lookup point in order to cope with the theoretically in-

finitely large number of parameters of a nonparametric learning system. 

This finite parameter set belongs to a simple parametric model which is 

fitted to the neighboring data of the current query point. For this purpose, 

all the data encountered during previous learning trials must be stored in a 

memory, which is the reason that such techniques have often been termed 

memory-based learning (Stanfill & Waltz, 1986). It also explains that a 

FPNL system is not trained in the parametric sense: All data is simply 

stored in the memory, and only when it comes to creating an output for a 

given input is a computational process needed. Thus, "training" of FPNL sys-

tems is extremely fast. For a lookup for a• given query point, the 

contributing neighborhood must be determined and subsequently be 

processed by a local averaging method. The criteria of how to determine an 

appropriate size of this neighborhood and which averaging method to use to 

fit the data in this neighborhood are the major concerns in FPNL. 

The most popular functions to do the local averaging have been locally 

constant functions, locally linear functions, locally quadratic functions, and 

local splines. There is no limit to what is used as the local function,. but the 

goal is clearly to have as simple a parametric function as possible. Two 

types of neighborhoods exist, hard and soft neighborhoods. Hard 

neighborhoods select k-nearest neighbors to be included in the averagmg 

process. Soft neighborhoods weight the data according to the distance from 

the current query point by means of a smooth function whose maximal 

value is at the query point and which decays in all input dimensions to zero; 

(multivariate) Gaussians have often been chosen for this purpose. Soft 

neighborhood FPNL systems are also called kernel regression or kernel 

smoothers (Hastie & Tibshirani, 1990; Scott, 1992). 

The most well-known member of FPNL systems is the k-nearest neighbor 

system (Fix & Hodges, 1951; Duda & Hard, 1973; Eubank, 1988), a hard 

neighborhood method with the simplest of all local functions, the locally 

constant function. Parzen windows (Parzen, 1962), a technique for density 

estimation, can be interpreted as a kind of kernel regression. Another 

popular kernel smoother is the Nadaraya-Watson method (Watson, 1964; 

Nadaraya, 1964; Hardle, 1991). Hastie and Tibshirani (1990) give an 

extended bibliography on this topic. 
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Local polynomial models have been used for smoothing time senes rn 

Macauley (1931), Sheppard (1912), Sherriff (1920), and Whittaker and 

Robinson (1924). Crain and Bhattacharyya (1967), Falconer (1971), and 

McLain (1974) proposed weighted regression to fit local polynomials to 

data, i.e., a kernel smoother with a first order or higher order model. 

Cleveland (1979) analyzed locally weighted running line smoothers and 

made this method popular in nonparametric statistics. Farmer and 

Siderowich (1987, l 988a,b) applied local linear models for time series 

prediction. Cleveland ef al. (1988b) extended kernel regression with local 

linear models to the multivariate case. Atkeson (1992) introduced locally 

weighted regression (LWR) for learning・systems and gives a broad review 

of related literature. Schaal and Atkeson (1994a,b) extended the LWR 

approach by several statistical tools and demonstrated its usefulness in high 

dimensional spaces for learning control. 

Finally, there is a large body of literature on applying higher order 

polynomials to nonparametric regression. Cleveland et al. (1988a) discuss 

the use of quadratic models for locally weighted regression. Nonparametric 

spline methods, in particular cubic splines, were analyzed in the work of 

deBoor (1978), Wahba and Wold (1975), Silverman (1985), and numerous 

other papers; see Hastie and Tibshirani (1990) and Silverman (1985) for 

further references. 

Advantages 

FPNL systems are truly local learning techniques because there is no 

hierarchically higher process to create something like a partitioning of the 

input space. They remove any need for pre-defining a global structure of 

the learning box. The function to be learned is not represented by piecewise 

parametric models but rather by an "infinity" of parametric models— an 

individual model for every query point—in the same sense as a truncated 

Taylor series expansion gives a different representation for every basis 

point about which the expansion is carried 叫 Since FPNL systems are 

memory-based and always take all data into account for answering a query, 

they avoid interference problems. 

For an infinitely large number of data points, FPNL systems could become 

infinitesimally local in order to generate the correct answer to a query: In a 

deterministic system, the nearest neighbor would then be the best answer. 

For a finite number of stochastic data, however, some averaging over 
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several data points is necessary. In a hard weighting method, this raises the 

question of how many data points should be included in the averagmg 

process, or in the soft weighting method, how wide the smoothing function 

should be. Too large a neighborhood・will introduce too much bias in the 

predictions of the learning system, while too small a neighborhood will have 

too much variance and therefore bad generalization properties. These 

problems have been addressed primarily by crossvalidation methods, but 

many alternative techniques like F-tests, Mallow's Cp-test, the control of the 

equivalent degrees of freedom (Cleveland, 1979), likelihood ratio tests, and 

Akaike's information criterion can be applied (e.g., Cleveland et al., 1988b; 

Hastie & Tibshirani, 1990; Tibshirani & Hastie, 1987). When selecting the 

most appropriate neighborhood, a particular advantage of FPNL results 

from its very fast training: methods like leave-one-out crossvalidation can 

be performed at great ease since the point to be left out is just temporarily 

deleted from memory and an evaluation of the crossvalidation error is then 

performed with the reduced memory. 

In uni variate input spaces, the locality parameter is the only open 

parameter in the FPNL system. For multivariate input spaces, however, it 

becomes the distance metric. The distance metric can be conceived of as the 

matrix necessary to compute the Mahalanobis distance (e.g., Duda & Hard, 

1973) of each input point in memory to the current query point. By running 

the negative distance measure through an exponential function, the weight 

of the corresponding point in memory is computed. One obvious purpose of 

the distance. metric is to normalize each input dimension such that different 

units of the input dimensions are scaled appropriately. More interestingly, 

however, the distance metric is also able to adjust the importance of the 

individual input dimensions for the current problem. This, indeed, 1s a 

method for detecting features in input space. Unimportant input dimensions 

can be canceled by a zero entry in the appropriate elements of the distance 

metric matrix, while important dimensions receive a large entry. Methods 

to calculate the distance metric are usually based on cross-validation and 

use gradient decent techniques (e.g., Atkeson, 1992; Lowe, 1993). 

Distance metrics can be the same for all query points or they can be a 

function of the query point. Imagine a mapping from two input dimensions 

to one output dimension which can be depicted as a mountain landscape 

where the output dimension is the height of mountain. Assume furthermore 

that this landscape is a ridge of constant height, but that the slopes of the 

ridge are sometimes very steep and sometimes rather shallow. The ridge 

1 3 



also changes its direction as a function of the input space. If one wants to 

estimate the. height of the landscape from a finite data sample, a constant 

distance metric will not be very useful. For example, sometime the 

neighbors in the South and North are more important than those in the East 

and West, and sometimes vice versa. In such cases, a variable distance 

metric is required, a technique which is related to supersmoothing in 

statistics literature (e.g., Silverman, 1985; Fan & Gijbels, 1992). Local 

distance metrics can be calculated based on local versions of crossvalidation 

and other statistical methods (Schaal & Atkeson, 1994). Finding the locally 

best distance metric is a much faster process than finding the globally 

distance metric. However, the local distance metric must be recomputed for 

each query point while the global distance metric remains the same for all 

query points. 

In sum, the major advantages of FPNL systems is the removal of the 

necessity to predefine any kind of global structure for the learning box, the 

very fast training, and due to the truly local models, the avoidance of 

interference. This results in the very large flexibility of this approach. 

Disadvantages 

The price which must be paid for the appealing properties of FPNL is a 

larger memory requirement and often a larger computational effort during 

lookups. The first computational process to perform a lookup is the selection 

of the k-nearest neighbors. This can be done by means of k-d trees 

(Friedman et al., 1977; Omohundro, 1987), an O(logn) process (n is the 

number of data in memory). The computational overhead to create the k-d 

tree does usually not increase the training time of FPNL significantly. For 

soft neighborhoods, k-d trees can be used, too, in order to・determine the 

data points which are close enough to contribute to the local model at all. 

Then, the Mahalanobis distance and the weight for each contributing point 

must be calculated. Finally, the weighted data is submitted to the averaging 

process. In case of a locally constant model, this proceeds very fast. For 

higher order models, however, the computational cost increases notably. A 

linear model, for instance, requires a weighted regression analysis on the 

included data. A solution to these computational problems is to parallelize 

the formation of the weights and the regression equations: Each point in 

memory can be thought of as a receptive field which computes its 

contribution to the averaging process. The results of these receptive fields 
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are summed up and the remaining computations are normally not very 

significant any more. 

In general, higher order local model are computationally costly and a query 

becomes more expensive than in global or local parametric learning 

systems. This would vote for locally constant models as the most ap-

propriate way to do FPNL, e.g., as realized in the "Classification And 

Regression Trees" (CART) systems of Breiman et al. (1984). On the other 

ha_nd, locally constant models tend to be highly biased at the edges of the 

input space and generalize inappropriate for simple smooth functions. 

Linear models offer a better compromise for local averaging: They have a 

good balance of bias and variance, and the amount of data needed to ac-

complish accurate estimates of the parameters is still moderate m 

comparison to second order and higher models (Cleveland et al., 1988b). 

Local averaging in input spaces with many dimensions is said to suffer from 

the curse of dimensionality. This is illustrated in an example taken from 

Hastie and Tibshirani (1990). Suppose that points are uniformly distributed 

in a d-dimensional cube of unit edge length and that one wishes to 

construct a cube-shaped neighborhood capturing 10% of the data. The edge 

length of this subcube can easily be calculated to be 0.1¼. For a one-

dimensional space, the subcube has edge length 0.1, but for a 10-

dimensional space it has edge length 0.8. Hence, the concept of local in 

terms of percentage of data fails in high dimensions. This requires the use 

of smaller neighborhoods in local averaging in high dimensions and thus 

much more .data. However, such an argument only holds if one assumes that 

the input space has a uniform density. In many high dimensional problems, 

however, this is not the case. The data covers a subspace or submanifold of 

the entire state space since most of the regions in state space are 

impossible, for instance for physical reasons. On such submanifolds, the data 

is distributed much more densely and allows for local averaging methods. 

This property motivates the approach of Hastie and Tibshirani (1990) to 

seek a way out of the "curse of dimensionality" by means of "Generalized 

Additive Models", an approach which replaces the local multivariate 

averaging process by a sum of univariate (or low dimensional multivariate) 

averaging processes (similar too Friedman and Sttitzle's (1981) projection 

pursuit regression). The idea of these methods is to model the data with low 

dimensional projections of the entire state space. If the additive 

combination of the low dimensional functions spans the submanifold on 

which the data are distributed, the input-output correlation of the data can 
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be modeled well. Generalized additive models, however, require an iterative 

training process. 

Finally, FPNL systems need sufficient memory resources since, in the pure 

form, they do not attempt any kind of data compression. This purist 

attitude, however, is not always necessary. If the learning system only 

stores data which constitute a surprise, i.e., which it could not predict within 

a certain accuracy, much less data will be stored and the data collection 

process will rapidly sl~、w down. Another concept would be that the FPNL 

consolidates nearby data points in some kind of receptive fields, and then 

uses the center of the receptive field and its activation as the data which 

enter the averaging process (Cleveland et al., 1988a). In contrary to the 

local parametric methods, however, the number of the receptive fields 

should be able to grow and shrink appropriately, which leads to the second 

form of・nonparametric learning techniques in the next section. 

2.3.2 Variable Number of Parameters 

By extending the idea of local parametric learning to not restricting oneself 

to a certain number of local models, one obtains "Variable number of 

Parameters Nonparametric Learning" (VPNL). Actually, it is not at all 

necessary to confine VPNLs to consist of local functions, since global 

functions can be used, too. This results in two different strands of VPNLs, a 

local version and a global one. 

As alluded to in the previous section, the local version of VPNLs performs 

data compression by creating receptive fields as needed, for instance in the 

form of partitions of a k-d tree. A local parametric model is then fitted to 

the subset of data inside of the receptive field, and only within this field is 

the local model valid. Receptive fields may be either non-overlapping hard 

partitions, or overlapping soft partitions. There usually exists a smoothing 

process between the neighboring partitions such as to avoid sudden jumps 

in the prediction of the learning box when the query location moves from 

one partition to another. 

Most often the receptive fields are created by a recursive splitting 

technique. Initially, all data is thought to belong to one receptive field (or 

one partition). Whenever necessary, a receptive field is split into two, a 

recursive process which leads to a tree-like structure. A variety of 

possibilities of when and how to create a new receptive field have been 

suggested. In the CART system (Breiman et al., 1984), the splitting is driven 
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to achieve the maximal variance reduction for each split; CART only fits 

locally constant models and is best suited for classification tasks. An 

extension of CART to regression problems is Friedman's "Multivariate 

Adaptive Regression Spline" (MARS) algorithm. MARS uses spline basis 

functions in each partition and achieves smooth fits of the data; the splitting 

1s driven by a least squares criterion. Schaal & Atkeson (1994d) introduced 

a variant of k-d tree regression trees in which splitting is done until each 

partition has a valid local linear model. Although the k-d tree splits are 

hard, non-overlapping splits of the input space, the Hnear models are not 

confined to be built only of the data in one partition. This results m a 

piecewise linear representation with overlapping data support. Fritzke 

(1993) presented the "Growing Cell Structure", a Kohonen-like vector quan-

tizer with a variable number of template vectors. In contrast to the 

algorithms above, no tree-like splitting scheme is employed, but the 

algorithm behaves rather like an elastic net into which a new node 1s 

inserted in the middle of an edge of the net if the edge is stretched too 

much. This, of course, results in an overall shift of all nodes in the net and 

adds a global component to the method. Most of the local VPNL algorithms 

also have methods to prune unnecessary partitions or nodes and try to 

accomplish optimal splitting and pruning with respect to some chosen 

criterion. 

In contrary to local VPNLs, global VPNLs use global functions to model the 

input-output data. The key idea is to increase the number of components m 

the system . when the current system becomes unable to model the data 

with a sufficiently small error. For instance, cascade correlation (Fahlman & 

Lebiere, 1990) is a neural network in which new hidden neurons are added 

m such・cases. The new hidden neuron is connected to all inputs, all existing 

hidden neurons, and all output neurons. Adaptation, i.e., learning, only takes 

place for the weights of the connections from the input neurons to the new 

hidden neuron, but the connections weights of all hidden-to-output neuron 

connections are trained as well. The new hidden neuron should increase the 

performance of the network at the previous stage. The Upstart algorithm 

(Frean, 1990) and the work of Littmann and Ritter (1994) are similar to this 

procedure. 

Advantages 

VPNL systems can be trained very quickly in comparison to many other 

network models, and the computational effort to generate an output for a 
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query is low. This is true for both local and global VPNL and has made these 

methods successful in many applications. Local VPNL is particularly suited 

for problems which require variable resolution of the input-output 

mapping, and also as a pre-processing stage for FPNL in order to add data 

compression to FPNL. 

Global VPNL is a general purpose learning method and it could find an 

interesting application for quick, temporary adaptation. For instance, 

attaching a weight to、a robot arm requires some learning in order to 

recover the normal performance of the arm. It would be unreasonable, 

however, to incorporate this adaptation of the arm control mechanism in a 

permanent way. A learning system which could learn to compensate for a 

change in the environment by adding structure to a previously learned 

structure, like global VPNL does, would be better. After a new change in the 

environment, e.g., when the weight was removed, the system should be re-

set to its original structure. 

Disadvantages 

Generally, it is hard to prune elements out of global VPNL systems since 

this will globally affect the performance. Methods which keep on adding 

computational elements to improve the current, seemingly incapable model, 

also run into the danger of overfitting the data and must thus deal with this 

issue. Local VPNL avoids such problems by adding resources such that they 

are only locally effective. The results of local VPNL are also much easier to 

interpret than the cascading of global error reducing elements. A 

dynamically changing environment, moreover, may cause a global VPNL 

system to grow indefinitely, while the local schemes, due to their pruning 

capabilities, will be able to keep up with the changes without indefinite 

growth. Both global and local VPNL requires iterative training methods 

which are slower than training in FPNL. 

2.3.3 Memory Requirements of Nonparametric Learning 

A frequent・question about nonparametric learning systems is how much 

memory resources they need. As before, this question has to be answered 

separately for fixed parameter (FPNL) and variable parameter (VPNL) 

systems. 

Since FPNL requires an evaluation of the nearest neighbors of a query point 

in order to generate a lookup it is inherently memory-based and may need 
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large storage capacities for complicated functions. In contrast, VPNL 

methods are also targeted at data compression. For local VPNL, as soon as a 

receptive field (or partition) has sufficient statistical evidence that its 

predictions are within a certain error bound, the data within this partition 

can be discarded and the prediction within this partition is subsequently 

carried out by means of the parametric model of the partition. The benefit 

of retaining the data for as long as possible is that further splitting and 

pruning can be directly based on the data, as realized, for instance, in CART 

or, MARS. If, however, one is willing to use less sophisticated statistics for 

splitting and pruning, e.g., just variances and means, the retention of these 

statistical variables alone suffices to determine future splits, and the data 

does not need to be kept in memory (e.g., Fritzke, 1993). As local VPNLs 

only grow locally, the adding or pruning of an element will not affect other 

regions of the state space such that retraining of other regions after a split 

is unnecessary. Hence, local VPNLs can function without remembering the 

data. 

Global VPNLs add parameters to the learning box at a time when the 

performance of the learning system does not improve anymore despite 

significant residual error. As it is not differentiated where the error comes 

from, the added element in the, model will globally interfere in order to 

reduce the error. Thus, just inserting this element into the current structure 

without pre-training will degrade the entire performance of the system. 

Pre-training, however, would require the memorization of at least a large 

enough fraction of the previously encountered data. Alternatively, the new 

element could be inserted into the learning system such that its initial 

parameter setting did not affect the current performance. When 

encountering new data this new element would be gradually "unfrozen" and 

integrated it into the overall performance. From this point of view, global 

VPNLs should not require the retention of old data in memory. However, 

they will be vulnerable to catastrophic interference problems due to their 

global characteristics and the retention of the data for re-training could 

help to avoid this. 

3 Biological Relevance of Nonparametric Learning 

This section will attempt to explore some parallels of nonparametric 

methods with biological information processing. Since such a review 
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deserves a paper in its own right, the discussion will be held rather brief 

here. 

First, global VPNL will be excluded from further considerations in this 

section. This is not to say that such a mechanism is biologically implausible, 

but it should be hard to interpret global VPNL neurophysiologically since 

the firing of many neurons of a VPNL system will just contribute as an 

error reduction signal. Due to the restricted memory capabilities of a brain, 

it is also unlikely to、look for pure, memory-based FPNL methods. This 

leaves local VPNL by itself or in combination with FPNL for further 

examination. 

The characteristic of local VPNL is the specialization into locally receptive 

fields which only react to input data falling into the range of the receptive 

field. This is in analogy with receptive fields in biology which elicit a 

response under a specific sensory stimulation. All the topographic maps in 

the cortex share the feature of receptive fields. That the number and range 

of the receptive fields can change has been shown in plasticity studies of 

the cortical organization, for example in somatosensory cortex by Merzenich 

et al. (1983) or in motor cortex by Hess and Donohue (1994). The possibility 

to reorganize requires the possibility to change the number of elements 

which contribute to the representation, a typical feature of nonparametric 

methods. 

Besides the topology preserving maps, receptive fields are also found for 

other brain processes. In early visual information processing of higher 

vertebrates, a specialization of receptive fields to shapes at specific 

orientations is found (area VI, e.g .. , Churchland & Sejnowski, 1992; Kandel 

et al., 1991). In area MT, similar receptive fields are found, but they are 

sensitive to movement directions. Another kind of local specialization is 

found in motor cortex, where certain neurons are sensitive towards the 

movement direction of a limb (Georgopoulus, 1991). Field (1994) argues 

that this kind of a representation which he calls "sparse distributed coding" 

may be one of the major principles in biological information processing, and 

he contrasts this viewpoint with "compact coding", for example, a factorical 

code. The major feature of sparse distributed coding is that there is no 

attempt to reduce the number of dimensions of incoming signals like in 

compact coding but rather to have a divergence to many specialized 

receptive fields. Only few of these receptive fields will respond significantly 

to a stimulus, and only those will primarily contribute to the next stage of 

information processing. Again, this is the principle of local VPNL. 

A~j 

20 



I 

In the superior colliculus and in the motor cortex, the principle of 

population vectors seems to have relevance. The bottom layer of superior 

colliculus corresponds to a motor map for relative eye movements. Lee, 

Rohrer, and Sparks (1988) showed that the weighted average of the 

activation of the neurons of this layer corresponds to the relative 

movement the eye is going to make. A similar result was found by 

Georgopoulus (1991) in motor cortex of mo,nkeys. Here the・movement 

direction of the arm of the monkey coincided with the weighted average of 

direction selective cells in the cortex. Both these examples make use of 

locally weighted averaging methods, which is the major principle in FPNL. 

In an investigation of learning of the hippocampus and the neocortex, 

McClelland et al. (1994) suggested that the hippocampus could be thought 

of as a fast learning system with minimal interference. From the 

understanding of the previous discussions of this paper, this minimal 

interference would demand for a local representation in the sense of FPNL 

and local VPNL. 

In general, local specialization and averaging of the responses of specialized 

elements seems to be a key concept in biological information processing. 

The formation of the locally specialized elements must be a learning process 

which flexibly recruits and prunes computing elements in order to suit the 

desired information processes. The summarizing of certain responses by 

local averaging also seems to be a concept which is made use of. These are 

the processes which nonparametric learning theories try to understand. It 

would be interesting to find out whether there exists some kind of higher 

order averaging as in locally linear models. 

4 Discussion 

One important part of learning is the establishing of nonlinear correlation 

between input and output data, for example, between sensory information 

and appropriate actions. Two ways of approaching this problem can be 

taken, parametric and nonparametric -methods. Parametric approaches 

have to make assumptions about the global structure of the problem to be 

learned. In the case that these assumption are appropriate, the parametric 

learning system , will perform well. However, if these assumptions do not 

meet the structure of the problem to be learned, parametric learning will 

not achieve satisfying results. 
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Nonparametric learning, in contrast, tries to avoid modeling the global 

structure of a problem. It does so by focusing only on the local structure 

around a point of interest, i.e., a query point, or by adding computational 

resources as needed. A nonparametric method cannot outperform a well 

chosen parametric system but can at most achieve the same level of 

performance. If the problem to be modeled is unknown, however, it can be 

expected that a nonparametric model will, on average, have superior 

performance than the parametric counterpart. As most of the 

nonparametric approaches consist of local models, they avoid catastrophic 

interference, an inherent problem of parametric learning. This and the fast 

training of nonparametric learning makes it ideally suited for incremental 

learning and learning in dynamic environments. As a disadvantage, 

nonparametric learning sometimes needs more computational power for a 

lookup and more memory resources. However, these disadvantages can be 

overcome by combinations of different kinds of nonparametric learning and 

parallelization. 

Local specialization seems to be a key concept in biological information 

processing. A variety of neurophysiological investigations showed results 

which can best be described in the framework of nonparametric regression. 

Many more processes could make use of the principles of these techniques, 

such that nonparametric methods may offer an interesting alternative for 

biological modeling. 

An issue which, so far, has not received appropriate attention in the 

discussions of this paper is the bias/variance tradeoff in learning (Geman et 

al., 1992). The desired goal of a learning system is to faithfully model a 

given input-output mapping by minimizing both the bias and the variance 

of the model. In order to be truly unbiased, the learning system has to 

sacrifice variance until it has seen sufficiently many experiences—for 

complex function this may be a huge amount of data. On the other hand, in 

order to minimize variance and generalize well early on, the system usually 

has to sacrifice bias. This is the so-called bias/variance dilemma. Geman et 

al. (1992) correctly argue that for many biological and machine learning 

problems, it is almost impossible to achieve computationally feasible results 
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without some bias. Since nonparametric 

avoid structural bias, the question 

approach to learning is a reasonable 

learning systems inherently try to 

arises whether a nonparametric 

approach at all. To answer this 

question, it is useful to examine some kinds of biases which can be 

employed. As mentioned before, if a parametric learning system chooses a 
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favorable structure for the problem at hand, there will be no way that a 

nonparametric approach out-performs the parametric system. This bias 

concerns the representation inside of the learning box of the function to be 

learned. However, there are many other forms of biases. The chosen input-

output representation, i.e., which variables are inputs to the learning box 

and which are the outputs, plays a dominant role in the success of learning. 

A good choice of the input-output representation can make learning trivial 

(e.g., Schaal et al., 1990; Schaal & Sternad, 1992). Geman et al (1992) 

demonstrate how a bias on the distance metric in a nonparametric learning 

system can increase the learning performance significantly. In local av-

eraging (FPNL), the type of averaging function, e.g., constant, linear, 

quadratic, or cubic, is a bias on the generalization properties of the 

nonparametric learning system. 

Thus, in general, there are a variety of ways to include bias in 

nonparametric systems. The emphasis of being unbiased in nonparametric 

regression is concerned with the internal representation of the function to 

be learned and does not mean that the system is—and must be—unbiased 

with respect to all issues. However, this brief discussion of the importance 

of bias also serves as a reminder of the first lines of this paper, namely that 

learning involves much more than just establishing an input-output 

mapping between two sets of variables. 
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