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Abstract 

The analog Hopfield network has been applied for a variety of optimization 

problems. Peterson and Anderson (Peterson and Anderson 1987, 1988) have shown that 

the Liapunov function of the Hopfield network corresponds to the free energy function in 

the mean field theory (M町） of the Boltzmann machine. They proposed an 

asynchronous MFT equation to find local minima of the free energy function. However, 

convergence of the asynchronous MFT equation has not been analyzed theoretically. 

This article gives proof that the asynchronous MFT equation decreases the free energy by 

a finite amount at each time step, and converges to a local minimum of the free energy 

function. It is also shown that the asynchronous MFT equation converges faster than the 

Hopfield network. 

Good solutions for large size TSP can be obtained by using a MFT for a Potts spin 

model. This article also provides proof that the asynchronous M百 equationfor a Potts 

spin model converges to a local minimum of the model's free energy. 

1. Introduction 

In his original paper, Hopfield (Hopfield 1984) has shown that a Liapunov 

function can be defined for the analog Hopfield network and it always converges to a 

local minimum of the Liapunov function. When the slope of the sigmoid function in the 

Hopfield network becomes very large, the Liapunov function becomes nearly equal to the 

energy function, which has a quadratic form of the state variables. Therefore, the 

Hopfield network can be used for solving optimization problems defined as minimization 

of the quadratic energy function (Hopfield and Tank 1985). 

The physical meaning of the Hopfield network has been further clarified by 

Peterson and Anderson (Peterson and Anderson 1987, 1988). They have shown that the 

Hopfield network is equivalent to the mean field theory (MFT) of the Boltzmann machine 

(Ackley et al. 1985). The Liapunov function of the Hopfield network corresponds to the 

free energy function in the MFT. This implies that the Hopfield network finds local 

minima of the free energy function in the M打.Peterson and Anderson (Peterson and 

Anderson 1988) also proposed an asynchronous M百 equationwhich finds local minima 

of the free energy function. They pointed out that this asynchronous MFT equation is 

more efficient than the Hopfield network to find the local minima. However, 

convergence of the asynchronous MFT equation has not been analized theoretically. In 

this article, we will prove the following points: 

1. The asynchronous MFT equation decreases the free energy by a finite amount at each 

time step. 

2. The asynchronous MFT equation always converges to a local minimum of the free 

energy function. 
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3. The asynchronous 11:FT equation converges faster than the Hopfield network. 

Peterson and Soderberg (Peterson and Soderberg 1989) have shown that good 

solutions for large size TSP can be obtained by using a MFT for a Potts spin model. In 

the appendix it is proved that the asynchronous MFT equation for a Potts spin model 

converges to a local minimum of the model's free energy function. 

2. Mean Field Theory 

In the mean field theory (M百）， thei-th unit variable 1/; represents a probability 

that the corresponding binary variable in the Boltzmann machine takes the value 1. 

Accordingly, the unit variable V.-takes a value between O and 1. The energy E, the 

entropy Sand the free energy Fin the MFT are given by 

F=E-TS (2.la) 

l N N 

E = --I IBN;v; —lLv; 
2 i,j=l i=l 

(2.lb) 

N 

S= —L(½log v; + (1-½)log(l-½)) 
i=l 

, where T represents temperature, and there is no self-connection: 

w;; = 0 (i = 1,-・ ・, N). 

The local minimum of the free energy F is given by 

aF N ー＝心w;jv;-[; + Tlog(VJ(l-V.-) = 0 
av; ） 

j=I 

for all i. By introducing auxiliary variables U.-, (2.2) can be rewritten as 

U.-= Lw;iv;+L 
j,;ai 

v; = G(U;) = 1/(1 + exp(-U;/ T)) (i = 1, ・ ・,N). 

(2. lc) 

(2.ld) 

(2.2) 

(2.3a) 

(2.3b) 

This equation is called the MFT equation (Peterson and Anderson 1987, 1988). From 

(2.3b), one can see that the inverse temperature (1/f) represents the slope parameter of 

the sigmoid function G. The solution of (2.3) can be obtained by using the Hopfield 

network (Hopfield 1984): 

dU;(t) 
-r = - . 

dt 
U,(t) + L l1/;1Vi(t) + /; 

j"#i 
=-cJF!cJ½(i=l, .. ・,N). 
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(2.4a) 

(2.4b) 

By using (2.4b), 
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dF N dF d½1 N dF 亙＝苔元可＝一；芦〕2G'(U,),; 0 (2.5) 

is derived, where G'represents the derivative of the sigmoid function G. This implies 

that the Hopfield network always decreases the free energy F and converges to a local 

minimum of the free energy F (Hopfield 1984). Therefore, the Liapunov function of the 

Hopfield network is given by the free energy Fin the MFT. 

The solution of the MFT equation (2.3) can be also obtained by the following 

asynchronous iterative equation (Peterson and Anderson 1987, 1988). 

V:(t) = a(; W,V,(t —• t) + I,) 

½(t) =½(t —• t) for j =I:-i. 

(2.6a) 

(2.6b) 

In this equation, only one variable v; is updated at time t, and the other variables 

½, j :;c i, are not changed at this point. All the variables are updated once in N血 e

steps. The equation (2.6) is called the asynchronous MFf equation. 

3. Convergence of the asynchronous MFf equation 

A local minimum of the free energy F is a fixed point of the asynchronous M打

equation (2.6). However, this fixed point may be unstable and a limit cycle solution may 

appear for a general iterative nonlinear map such as (2.6). In the following, we will 

prove that the asynchronous MFf equation always converges to a local minimum of the 

free energy F. From (2.6), 

cJF 
av; 

(V(t)) = 0 (3.1) 

holds since v; does not appear in the right hand side of (2.6a). Since 

がF T ＝ av;2 
>0, 

v;c1-v;) 
(3.2) 

the free energy function F is convex along the v; coordinate and has a unique minimum 

along this coordinate, when the other variables½,j =f:. i, are all fixed. Therefore, (3.1) 

implies that the free energy is minimized with respect to the v; coordinate at time t. In 

other words, the free energy F either decreases by a finite amount at each time step or is 

not changed when dF I av; = 0 for the current v; variable. The amount of decrease is 

maximal under the asynchronous update. If the current state is not a local minimum of 

the free energy F, the state must change in N time steps, since dF I av; =f:. 0 for some½. 

On the other hand, if the current state is a local minimum of the free energy F, the state 
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never changes. Consequently, the asynchronous MFT equation (2.6) always converges 

to a local minimum of the free energy F. 

In numerical simulation, the Hopfield network (2.4) must be translated into a 

discrete time equation. By using the Euler method, an asynchronous Hopfield equation 

is given by 

U,(t) = (I―△ t/1:)U.(t —• I)+(△ 111:{苔虹(t―△I)+ /J (3 .3a) 

½(t) = G(U;(t)), (3.3b) 

Vi(t) = Vi(t —• t) (j ;f::. i). (3.3c) 

If the time step△ t is sufficiently small, the free energy decreases for each time step. 

However, the amount of decrease is also infinitesimal. In the asynchronous M百

equation, the amount of decrease is maximal under the constraint that only the v; variable 

is changed. Therefore, the asynchronous MFT equation converges faster than the 

asynchronous Hopfield network. For the synchronous Hopfield network, the situation is 

the same. In order to guarantee that the free energy decreases, the time step△ t must be 

sufficiently small, so the amount of decrease is also infinitesimal. Therefore, the 

synchronous Hopfield network is also inefficient compared to the asynchronous M汀

equation. 

The synchronous M百 equationhas some problems. Since all the variables are 

updated at once according to (2.6a) in the synchronous mode, equation (3.1) no longer 

holds and decrease in the free energy is not guaranteed for the synchronous MFT 

equation. In general, the synchronous MFT equation may exhibit limit cycle solutions. 

4. Conclusion 

The advantage of the asynchronous MFT equation is that it decreases the free 

energy by the maximal amount under the asynchronous update. Therefore, the 

asynchronous M百 equationconverges faster than the Hopfield network, which 

decreases the free energy by an infinitesimal amount. 

Appendix 

The MFT free energy for a Potts spin model (Peterson and Soderberg 1989) is 

f

,

 

given by 
1 

F=―ー I m .. jぷ VjbーLv;J;a + TI½.log v;. 
2 i,j,a,b i,a i,a 

(A.1) 

where i, j runs 1 to N and a, b runs 1 to M. The Potts spin variable Via in the M汀

satisfies the following constraint 
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via 

M

て↑
I

(i = 1,-・ •,N) (A.2) 

and takes a value between O and 1. In order to find a local minimum of the free energy 

(A.1) under the constraint (A.2), it is convenient to solve the constraint equation (A.2) 

explicitly. 

v叫 =1-1v..,
a<M 

(A.3) 

a 
I 

a a 
—=—-' d½a C avia aviM 

(a<M) (A.4) 

where le represents a derivative under the constraint (A.2). A local mi血numof the free 

energy (A. l) satisfies the following stationary condition. 

cJF cJF cJF ―I=―-―=0. av;a C avia av;M 
(a<M) (A.5) 

By defining Q; as Q; = JF I aviM, the stationary condition (A.5) can be written as 

cJF 
Q;=-=一こ肌,JoVioー La+T(log v;. + 1). 

av;. j,b 

(A.6) 

The value of the auxiliary variable Q;, which corresponds to the Lagrange multiplier, is 

determined by the constraint (A.2). Consequently, (A.6) is rewritten as 

U;a= LlVa,jbY}b+lば．

j,b 

(A.7a) 

v;. = H(U;) = eUia/T l(L e 
U;b/T 

）． 
b 

(A.7b) 

This is the MFT equation for the Potts spin model (A.l). An asynchronous MFT 

equation for (A.7) is given by 

U,a(t)= I叫ぷ(t —△t) + La, 
j,b 

(A.Sa) 

½a(t) = H(U;(t)), 

½b(t) = VJb(t-~f) fof j -:j:. i, 

If the connection matrix W satisfies the condition 

(A.Sb) 

(A.Sc) 

w;a,ib = 0 

the equation 

for any i,a,b, (A.9) 
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cJF 一し(V(t))= 0 for a< M 
av;a 

(A.IO) 

holds. The curvature of the free energy in the subspace, ½a (i: fixed), is given by 

がF 1 1 -I =T(-+ー）
av;/ C v;a viM 

がF
=Tl½M 

av;.av,b LE 

(A.lla) '↓ 

(a-::f:. b). (A.llb) 

From this equation, it is shown that the second variation of F is always positive: 

紅 =IがF
-I・ C 

即 aぶl;b
a,b<M dV;adV;b 

T T =Lー 訊 ＋ ーCL即）2 > 0. 
a<M v;. v;M a<M 

(A.12) 

Therefore, the free energy F (A.l) is convex and has only one minimum when 

½b (j':/:. i) is fixed. From this fact and (A.10), it is shown that the asynchronous MFT 

equation (A.8) minimizes the free energy Fin the subspace v;. (i: fixed). By using the 

same argument as in the previous section, it is shown that the asynchronous M町

equation (A.8) converges to a local minimum of the free energy F (A. l). 
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