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Abstract

We often treat information that was projected into a subspace from a space where the
original information exists. For example, visual information is information that was projected
onto the retina from the 3-dimensional Euclidean space. Because there is a deficiency of in-
formation caused by the projection, we can not uniquely recover the original information in
general. Therefore, it is definitely important to find properties, if any, that essentially connect
the original information with the projected information. When a class of admissible transfor-
mations to which the original information is subject is specified, projective invariants, which
are real-valued functions in terms of the projected information and which are unaffected by
the class of admissible transformations, provide an essential relationship between the original
information and the projected one. This paper is a study on projective invariants under the
condition that the n-dimensional projective space is projected into the (n — 1)-dimensional
projective space by the projection of a certain class; and that the class of admissible transfor-
mations involves projective transformations in the n-dimensional projective space. It is shown
that, for given integers ¢ and j such that 1 < ¢ < j < n — ¢, we have a projective invariant
derived from (n +1+ j) subspaces of (n —2) dimensions, where the (n+ ¢+ j) subspaces are the
intersections of the adjacent hyperplanes of (n + ¢ + j + 1) hyperplanes arranged in the letter
H. The nonsingularity condition, i.e., the condition under which the invariant is nonsingular,
is also given.

Key Words: projective invariants, admissible transformations, interpretation vector, inter-
sections of hyperplanes, nonsingularity condition.
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1 Introduction

When we observe a subject under investigation, we often only obtain a certain part of
the original information, i.e., information projected into a subspace from a space where the
original information exists. We are then required to deal with such partial information to
investigate the subject. For instance, in observing objects in three dimensions, we obtain
visual information that was projected onto the retina from the 3-dimensional Euclidean space;
we have to recognize the objects by making use of the projected inforrnatipn on the retina.
Because there is a deficiency of information caused by the projection, the problem of recovering
the original information is ill-posed: in general, we can not uniquely recover the original
information from the projected information. In addition, when a transformation operates on
the original information, the projected information before and after the transformation differs.
In other words, the projected information significantly varies, depending on the transformation
that operates on the original information, even for the same original information. Thus, it is
important to find properties, if they exist, that essentially connect the original information
with the projected information.

When original information in a space is subject to a given class of admissible transformations,
projective invariants, which are real-valued functions in terms of the projected information and
which are unaffected by the class of admissible transformations, provide an essential relation-
ship between the original information and the projected one. When we can not directly deal
with the original information, such projective invariants play an important role in investigating
the properties of the original information. For example, for object recognition problem which is
one of the most important problems in computer vision, projective invariants aid in identifying
one object out of many (hence, the importance of projective invariants has been continually
emphasized since the origin of the field of computer vision in the 1960s) [2], [5], [6], [7].

On the other hand, invariants were a very active mathematical subject in the latter half
of the 19th century [4]. However, they were not derived through projections: they were de-
rived not by dealing with the projected information but with the original information itself.
Therefore, invariants[1],[3] that were studied then are nothing but invariants of admissible
transformations themselves. In contrast to this, in practice, we often face situations in which

we have to get at the essence of the original information by way of the projected informa-



tion, and we can not deal with the original information. Hence, investigating the existence of
projective invariants is very significant from the engineering point of view.

In this paper we consider the existence of projective invariants under the condition that
(n — 2)-dimensional subspaces in the (n — 1)-dimensional projective space were projected
from the n-dimensional projective space by the projection of a certain class; and that the
inverse images of these subspaces with respect to the projection are subject to projective
transformations in the n-dimensional projective space. We are mainly interested in deriving
projective invariants in a concrete fashion in terms of (n — 2)-dimensional subspaces in the
(n — 1)-dimensional projective space.

The main theorems, which are given in §3, state that (1) for given integers 7 and j such
that 1 < ¢ < j < n —1, we have a projective invariant derived from (n + 7 + j) subspaces
of (n — 2) dimensions, where the (n + 7 + j) subspaces are the intersections of the adjacent
hyperplanes of (n + ¢ + 5 + 1) hyperplanes arranged in the letter H; and (2) the projective
invariant is nonsingular, i.e., well-defined and nondegenerated, iff (COND) below is satisfied
by n subspaces among the (n + ¢ + j) subspaces, i.e., n aligned intersection subspaces of the
adjacent hyperplanes, which include the horizontal part of H, in the arrangement (we always
have four cases).

(COND) Not singular is an (n + 1) X (n + 1) matrix whose column vectors are the homo-

geneous coordinates of (n + 1) hyperplanes that determine n subspaces of (n —2)

dimensions.

In this paper, when an arrangement of hyperplanes or (n — 2)-dimensional subspaces has the
same topology as the letter H, we call “they are arranged in the letter H”; hence, they could
n-dimensionally exist. (1) indicates that we have a projective invariant of (n+1i+ j) subspaces
of (n — 2) dimensions arranged in the letter H (accordingly, the (n + ¢ + j) subspaces could
n-dimensionally exist). It should be noted that the number of (n —2)-dimensional subspaces in
the left part of H is 2¢, whereas that in the right part is 27; and, furthermore, the arrangement
is symmetrical with respect to the horizontal part of H. In addition, the number of this
kind of invariants in the n-dimensional projective space is |3] (n — [_%_[) (see Page T for the
notation). (2) implies that our invariant is almost always nonsingular when we randomly

choose (n + 1+ j + 1) hyperplanes in the n-dimensional projective space. This is because
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the homogeneous coordinates of (n 4 1) hyperplanes randomly chosen in the n-dimensional
projective space are linearly independent in general.

This paper is organized as follows. In §2, we formulate the problem to solve. In §3, the
results of this paper, i.e., the existence of projective invariants and the nonsingularity condition

for our invariants are presented as two theorems. Their proofs are given in §4.

2 Problem Formulation

Let P™ be the n-dimensional projective space over the real number field R. We assume
n > 3 throughout the paper. Note that if not explicitly stated, the coordinates of a point are
understood to be.homogeneous.

Letting ¢ = (1,0,0,...,0)T (€ P™), we consider the set of mappings : P* — {¢} — P*!

as follows.
F = {fp|P€PGL(n-1)},

where PGL(n — 1) denotes the projective general linear group of degree (n — 1) over R; and

fp is a mapping : P" — {c} — P™! that is represented by n x (n + 1) matrix Fp:
Fr = (o) P ) (PePGL(n-1).
Therefore, when we put # € P* — {c} and X = fp(x), then we have
pX = Fpz (p€R),

where R* denotes the set of nonzero real numbers. In this paper, we are interested in the class
F of mappings : P* — {¢} — P""!; and we call an element of F a projection. We assume
that we can deal only with X, i.e., the image of @ projected by fp where fp is derived from a

given P € PGL(n — 1) as seen above. It should be noted that, when we denote by I the unit

matrix of degree n, VFp is expressed by
Fp = PF;.

If we restrict P™ — {c¢} and P*! to the n-dimensional vector space over R that excludes the

origin and hyperplane z; = 0; and to the (n —1)-dimensional vector space over R, respectively,



f1 (€ F) coincides with the central projection where the center of the projection is the origin
(its coordinates in P™ are c), and where the projection hyperplane is z; = 1 (see Fig. 1).

Let 7 be the set of projective transformations for P* — {c}:
T = {T|T : P"~{c} - P", TePGL(n) }.
For § C P" — {c}, we define
Ts = {T|T€T; T(x)#ec, Ve €S}

- Since 75 forms a group, we set Ts to be the class of admissible transformations for S. In
addition, we put
fe(S) = U {fe(=)}.
Tes
In accordance with the notations introduced above, we formulate our problem, namely, the
problem of finding a real-valued function which is defined in terms of the images of S projected

by fp; and which is unaffected by 75, i.e., the class of admissible transformations.

Problem 2.1 Let fp € 7 and S (C P™ — {c}) be given. Find a natural number N and a
N

A

function Inv : fp(S) x fp(8) X -+- X fp(S) — R such that,
for VT € Ts,

Inv(fp(z), fe(x),...,fr(z)) = Inv(fe(T(x)), fr(T(x)),..., fr(T(x))),
where ¢ € S. o

Function I'nv is a projective invariant under the condition that the projection is achieved by
fp, and the class of admissible transformations is 75 for a given S. Our aim in this paper is,
for given fp and S, to find natural number N and function Inv in Problem2.1. For Vfp € F,
(n — 2)-dimensional subspaces in P™ — {c} are projected into (n — 2)-dimensional subspaces
in P*~! by fp; and we can deal with the projected (n — 2)-dimensional subspaces’. Hence,

we set fp to be fp,, that is, fp, derived from an arbitrary P, € PGL(n — 1); and S to be

1Let fp,, fp, € F, then an image of a point in P® — {c} projected by fp, is connected to that projected by
another projection fp, through a projective transformation in P"~! (an element of PGL(n — 1); to be more

specific, 1Pyt or P PTY).



the set whose elements are N subspaces, which n-dimensionally exist, of (n — 2) dimensions
in P* — {c}. We then focus on finding a real-valued function having the following properties:
1) it is defined in terms of the coeflicients of the equations that determine the N projected
subspaces of (n — 2) dimensions, and 2) its value remains invariant even if the inverse images

with respect to fp, are transformed by any admissible transformation, i.e., any element of 7s.

3 Results

The results of this paper are presented as Theorems 3.1 and 3.2. Their proofs are postponed
until the next section.

For an (n — 2)-dimensional subspace

n—1
(3.1) Z a.X., = 0
k=0
in P! (its coordinate system is (Xo, X1,..., Xn_1)T), where
n—1
> al #0,
k=0
we obtain a vector (ag,ay,...,a,-1)T that is determined by the coefficients of the equation.

We call this vector the interpretation vector of the subspace. The interpretation vector is the

homogeneous coordinates of the subspace.

Remark 3.1 We can only determine vector (ao, a1,... ,an_1)T up to a scaling factor when
we actually observe subspace (3.1) in P*~!. However, we can eliminate this indeterminacy by

setting a criterion such as ag = 1 or the normalization of the vector. o

An (n — 2)-dimensional subspace in S is uniquely determined as the intersection of a pair
of hyperplanes in P* — {c} (see Fig.2). Thus, we represent an element of S as a pair of
hyperplanes in P™ — {c}. Let n;; denote the interpretation vector of the intersection subspace
of two hyperplanes ¢ and j in P™ — {c}.

For two integers 7 and j such that 1 < ¢ < j < n — i, we define the following sets of

hyperplanes in P* — {c}.
QLI = {L].l, L12, ey Ll,‘},

QL? = {L21,L22,...7L2i},
S



.QR] = {le,le_l,...,Rll},
.QRQ = {RZ_,‘,RZ_,;],...,RZ]},

.Qc = {Cl, Cz,. . .,Cn+1_i_.j},

where L1,,L25,R1,,R2,,C, (A €{1,2,...,:};e € {1,2,...,i}ive{l,2,...,n+1—i—7j})
are all natural numbers; and any two of 2, (¢ € {L1,L2,R1,R2,C}) are disjoint. Note that
|20k + 92|+ [f2re] = n+1 (k,£ € {1,2}). It is important to remark that we assume that the
order of elements of {2, (¢ € {L1,L2,R1,R2, C}) makes sense. Namely, hyperplanes in {2, are
assumed to be aligned with the order of the elements with which {2, is defined. This should
be applied to the union of §2,'s such as f21; U f2c. Here, we suppose that (n + 1) different
hyperplanes 21, U82cU g in P — {c} are given where k, £ € {1,2}; and n subspaces of (n—2)
dimensions are observed in P*™1, all of which are the images of the intersections of the adjacent
hyperplanes in 21,; U £2c U {2g, projected by fp,. We then consider the interpretation vectors,
TLkiLkgy -+ + » TLkimi Lkis TULE;Cy » TUC1Cas « + + y MCpoijCppt—iogs MCpnp1—iojRE; REGRL 15 - - - s PRGRY > Of
the n intersection subspaces; and define an n x n matrix Ny, , n.,02,, Whose column vectors are

these n vectors:

Nowootme = [ PLuie |- nLk ik | Pk, [ noye, |+

NCpi—jCny1—izj I NCpy1-ijRY; | MReRE |-+~ | nreRy ] .

We attach ’ (prime) to the notations above in the case where an admissible transformation has

operated on S.

Theorem 3.1 For two integers ¢ and 7 such that 1 <: < 7 < n—z,let 2r1, 2r2, 2¢, 211, 212
above be given sets of hyperplanes in P™ — {c}; and let these sets be arranged in the letter H
(see Fig.3). Suppose that rankNp, 0¢.00, = n (k,£ € {1,2}). Then, for (n+ 1+ j) subspaces
of (n—2) dimensions that are the intersections of the adjacent hyperplanes in the arrangement,

we have, independent of fp,,

I —
rankNﬂka-Qc,nm =N
/ '
(3 2) det Noy, 06,05, - detNay, 06,00, _ detNﬂm.ﬁc,nm ) detNﬂm,nc,nm
: - ] ! :
detN‘QLlPQC'-QBJ : dethLZ’nCyQRI dethLl,nc,.Qp_; ' detNQm,f)c,J’?Rl



Theorem 3.1 shows that for any element of F (which is a projection from P — {c} to P*~1)

there exists a projective invariant, independent of the element,

detN - det NV, . .
(3.3) Inv; = 1,260,281 212,99¢,47R2 (1<i<j<n—i)
detNﬂm WH2c.fpa * detNﬂL:,nc,nm

for (n+1:+ j) subspaces of (n —2) dimensions, all of which are the intersections of the adjacent
hyperplanes of (n +:+ j + 1) hyperplanes (in P* — {c}) arranged in the letter H (see Fig. 3).
It is important to remark that we accordingly have (n + %+ j) subspaces of (n —2) dimensions
arranged in the letter H (hence, the (n + ¢ + j) subspaces could n-dimensionally exist); and
also remark that the number of subspaces in the left-upper part of H is equal to that in the
left-lower part: 7. Whereas, the number of subspaces in the right-upper part of H is equal to
that in the right-lower part: j. Namely, the arrangement is symmetrical with respect to the
horizontal part of H. Therefore, for Vfp € F, when we set S to be the set whose elements
are N subspaces of (n — 2) dimensions in P* — {c} arranged in the letter H, N and Inv in
Problem 2.1 are respectively given by N = n+:+ j and (3.3), where ¢ and j are given integers

such that 1 <: < j < n —1i. We should note that n +2 < N < 2n.

Remark 3.2 Since i + j = n is possible, we could have |f26| = 1. Namely, for the (n — 2)-
dimensional subspaces arranged in the letter H, the part that corresponds to the horizontal

part of H could be empty. a

For each i, we have {; = (n — 2¢ + 1) invariants. Taking symmetry into consideration, ¢ can

—

beany of 1 <:¢ < [-gj Hence, the number? = of this kind of invariants in P" — {c} is given

by

(1)

il
INg
T

where L%J denotes the maximum integér which is not greater than 5
Furthermore, we give the nonsingularity condition for Inv;; (1 <1 < j < n — 1), e,

the necessary and sufficient condition under which the invariant Inv;; is nonsingular. Here,

*In particular, we have | 2] invariants for 2n subspaces of (n — 2) dimensions; whereas we have only one

invariant for (n + 2) subspaces of (n — 2) dimensions.



we define “an invariant is nonsingular” as “the value of the invariant is not 0, co or 0/p”.
Nonsingularity can be regarded as nondegeneracy and well-definedness. As we can see, the
nonsingularity condition for an invariant ensures that the values of the invariant are numerically
stable when they are calculated in i)ractical situations. The next theorem indicates that the
nonsingularity condition for invariant Inwv;; is almost always satisfied, when we randomly
choose (n 41+ j + 1) hyperplanes in P* — {¢}. This is because the homogeneous coordinates
of (n + 1) hyperplanes that were randomly chosen in P® — {c}, are linearly independent in
general. Note that (n +7 + 7 + 1) hyperplanes arranged in the letter H could n-dimensionally

exist.

Theorem 3.2 [Nonsingularity condition]

Let (n + 7+ j + 1) hyperplanes where (n + 7 + j) subspaces of (n — 2) dimensions exist,
be arranged in the letter H (see Fig.3). Inwv;; in (3.3) is nonsingular iff (COND) below is
satisfied by n subspaces among the (n +1+ ) subspaces, i.e., n aligned intersection subspaces
of the adjacent hyperplanes, which include the horizontal part {2c of H, in the arrangement
(we always have four cases).

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the homoge-

neous coordinates (in P™ —{c}) of (n+1) hyperplanes that determine n subspaces

of (n — 2) dimensions. 0

4 Proofs

The proofs for Theorems 3.1 and 3.2 are given.

First, we consider the meaning of the interpretation vector of an (n — 2)-dimensional sub-
space in P*"1. Let X (X # 0) be the coordinates (in P*™!) of any point in the subspace,
and put X = P71X (= (f(o,ffl,...,f(n._l)T). Then, (1, X0, X1,...,Xa-1)T is the inverse
image of X with respect to fp,. In other words, a point in P™ — {¢} whose coordinates are
(1, X0, X1,..., Xn_1)T is projected to a point in the subspace (in P*~!) by fp,. Moreover, put

a = (ag,a1,...,a,-1)T and @ = Pla (= (Go, @i ... ,&n_l)T), then (3.1) is rewritten as
(4.1) (0,0, 81, - -, dney)T - (1, X0, X1, .., Xnot)T = 0.

(4.1) represents the hyperplane in P" on which both ¢ and the subspace (3.1) are (see Fig. 4).

This hyperplane is called the interpretation hyperplane of subspace (3.1). (0,80, 81,...,8n-1)"
8



is the homogeneous coordinates (or equivalently the normal vector) in P™ of the interpretation
hyperplane of subspace (3.1). From® a = P;Ta = P7TF;(0,dq,@1,...,8s-1)", Wwe can see that
a is obtained by applying operation fp-z to the homogeneous coordinates of the interpretation
hyperplane of subspace (3.1). Hence, the interpretation vector of a subspace is the vector that
is obtained as a result of applying operation fp_r to the homogeneous coordinates (in P™) of
the interpretation hyperplane of the subspace.

As seen above, we have represented an (n — 2)-dimensional subspace in S as a pair of
hyperplanes in P* — {c¢}. Thus, we next consider the relationship between the interpretation
vector of the intersection subspace of two hyperplanes; and the homogeneous coordinates (in
P™ — {c}) of the two hyperplanes. Let hyperplane £ (£ = g,v) in P™ — {¢} be the set of points

with coordinates @ satisfying

where
a; = (ag,a8,...,a0,); ap €R*, ay, € R (k€ {1,2,...,n}).

Then @, the coordinates of a point on both hyperplanes ¢ and v (hence, the point is in the

(n — 2)-dimensional intersection subspace of the two hyperplanes), satisfies

(4.2) a,(a,-z)+a,(a,-z) = 0,
where a; (£ = p,v) are real numbers. By fixing the values of a; so that ¢ satisfies (4.2), we

obtain the interpretation hyperplane (in P") of the intersection subspace of two hyperplanes

g and v:
(ava, —aga,) -z = 0.

Therefore, a, a, — a,,a, is the homogeneous coordinates of the interpretation hyperplane of
the intersection subspace of hyperplanes y and v; Fp-r (av,a, — aya,) is the interpretation
vector of the intersection subspace. It is important to note that we have indeterminacy of a

scaling factor between the vector Fp-= (a,,a, — ay,a,) and the vector n,, we actually obtain

3For a square matrix P, P~ T is (PT)~1 or equivalently (P~1)T.



as a result of observing the subspace. Therefore, defining

ay, = Fp-r (anau — aua.),
we have
(4.3) N = Puw @y (Pu #0).

Here, p,, is a scaling factor and its value is not known. In line with treating n,,, we define

an n X n matrix Mo, n..0:, (k,£ € {1,2}) as a counterpart of Ny, 00,98,

(44)  Moy000m = [Gukik |+ | aLk ik | auke, | acie, |-+

ACh_i—jCryimi-j | QACyy1—i-jRY; | ARe;RL; -y | U I QR4Re ] .

(4.3) and (4.4) yield

(4'5) detNﬂLk,nc,-ﬂm = Pr- detMﬂLk,nc,an
where
Pkf ‘= PLKkC, ¢ an+1-i—jmj ' ].—.[ p"m".n+l ‘ H pimiﬁ+1 : H pi""'l'i"'
n€y;—{Lk;} n€Rc—{Cns1-i—j} k€Nre-{RL;}

We again attach’ (prime) to the notations above in the case where an admissible transformation

has operated on S. Hence, we obtain*

detMﬂm fo,2my ° det Mnm f2c,fr2

LHS of (3.2) =
of (3.2) detMoy, 00,9 'detMnLhnC'nm’

1 1
detMan,nc,nm ) detMnmync,nm

RES of (3.2) = gt
L1,34CH

gy ° detM}?Lmnc,nm
Now, to prove Theorem 3.1 it suffices to show the following lemma (applying the results of
four combinations of k£ and ¢ in Lemmad4.1 to the two equations above, completes the proof of

Theorem 3.1).

Lemma 4.1 Suppose that a point (with coordinates ) in S changes its coordinates to @’

after an admissible transformation T' (€ 7s) as follows:

Az’ = Tz (AeR).

4LHS and RHS stand for the left-hand side and the right-hand side, respectively.

10
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Let rankMg, , 05,00, = 1, Where k,£ € {1,2}. Then, we have, independent of fp,,

(4.6) rankMp o o, = 7,

(47) detT H aKO . detMl{?Lk,nc,nnz = /\n+1 . H aio . detMnLk,nc‘nR“
k€ly, K€lL,

where

D = U 2cU 2re — {Lkl,R,fl}.
Proof: It follows from the definition of Mg, ¢ 0s, that

1
. (_l)Modz(ﬂ) . H Ay, * detAn e,
detP,. KET Ky ’ e

(4'8) detMnkaﬁc,nm
Here, (n + 1) x (n + 1) matrix A, n¢,0q, 15 defined by
Agie0n, = lawn law | - Jaw lacy | -+ | acaui; lare | - arey ;

and, for a natural number n, Mod, is a function such that

0 n:even
Mod,(n) =
1  n:odd
Similarly, for after admissible transformation T', we define (n + 1) x (n 4+ 1) matrix

Afom,nc,nm = [aLk,_ laLk, |- IaLk.- | a’cl |- |alc,,+1_;_,~ laiu,- [ - Iaiul 1,

then we obtain

1 Modz
(4.9) dEtM})Lk'nC’nm - detP ) 1;[ a detAnLk ¢,
KEL Ky
1 Modz(n) An—i—l ’ det A
= detP, ) ("1) ’ detT 'Kl;[klano - det Agy,, 06,250
since
a; = AT "a

Note that a} # 0 is satisfied since T' € Ts. (4.8) and (4.9) immediately yield (4.7). It is clear
that (4.7) is independent of fp,.
Since an, # 0 (k € Iy), it follows from (4.8) that rankMa,, 0c.2s, = 1 is equivalent to

rankAqy, 0,2, = n + 1. Then we have (4.6) from (4.9) since A # 0 and a # 0 (x € Iy). O

11



Remark 4.1 (4.8) shows that detAg,, a.,0., = 0 is equivalent to detMp,, 05,0, = 0 (k,£ €
{1,2}). Namely, n subspaces in P" — {c} (the intersection subspaces of the adjacent hy-
perplanes in {21 U f2c U §2r¢) share a common point in P! through the projection fp, iff
detAqy,,nc,2n, = 0 (see Observation4.1 below). We assume that detAg,, 0c,2., # 0 is sat-
isfied by (n + 1) hyperplanes that determine these n subspaces (intuitively, this assumption
is equivalent to the random choice of (n + 1) hyperplanes). Moreover, Lemma4.1 indicates
that if detAp,, 0,25, 7 0 holds, we can guarantee that these n subspaces after any admissible

transformations never share a common point in P"~! through the projection fp,. a

We now turn to the proof of Theorem 3.2. From (3.3) it is easy to see that Inv;; is nonsingular
iff the values of the determinants of Ng, 0,0, (k,€ € {1,2}) are not zero. Hence, the
necessary and sufficient condition under which Inwv;; is nonsingular is that the values of the
determinants of Mgy, 0.0, are not zero (see (4.5)). Observation4.1 below indicates that
when n subspaces of (n —2) dimensions in P*~! do not share a common point, the value of the

determinant of Mgy, aq,0x, 1s never zero. This argument yields Theorem 3.2 (see Remark 4.1).

Observation 4.1 Let n different subspaces ¢ (¢ = 1,2,...,n) of (n — 2) dimensions in P™!

be
n—1
Z a;, Xy = 0,
k=0
where
n—1
Z a;,? #0.
k=0

They do not share a common point in P*~1 iff

alo aio PR ano
a11 ail PP anl
det # 0.
a]k « o aik PN ank
aln-l to ain——l e ann-—l.

12



5 Conclusion

We have investigated the existence of projective invariants under the condition that the
projection from P — {¢} to P! is achieved by an element of F, and the class of admissible
transformations is 7g where S is the set whose elements are (n — 2)-dimensional subspaces
in P* — {¢}. Then, for given integers ¢ and j such that 1 < : < j < n — i, we derived
projective invariant, independent of the element of F, Inv;; in (3.3) from (n+ ¢+ ;) subspaces
of (n —2) dimensions, where these subspaces are the intersections of the adjacent hyperplanes
of (n+7+7+1) hyperplanes arranged in the letter H. Accordingly, the (n + ¢ 4 j) subspaces
are also arranged in the letter H (hence, the (n + i+ ) subspaces could n-dimensionally exist).
Note that the number of subspaces in the left-upper part of H is ¢, whereas that in the right-
upper part is j; and the arrangement is symmetrical with respect to the horizontal part. Let us
remark again that the horizontal part could be empty since ¢ + j = n is possible. In addition,
the number of this kind of invariants in P* — {c} is [Z] (n - ]_%J)

Furthermore, the nonsingularity condition for Inwv;;, i.e., the necessary and sufficient condi-
tion making Inv;; nonsingular, was given. Inv;; is nonsingular iff (COND) below is satisfied
by n subspaces among the (n + 7 + j) subspaces, i.e., n aligned intersection subspaces of the
adjacent hyperplanes, which include the horizontal part f2¢ of H, in the arrangement H above
(we always have four cases).

(COND) Not singular is an (n + 1) X (n + 1) matrix whose column vectors are the homoge-

neous coordinates (in P —{c}) of (n+1) hyperplanes that determine n subspaces

of (n — 2) dimensions.

The nonsingularity condition guarantees that Inv;; is not only well-defined but nondegener-
ated; it also ensures that the values of Inv;; are numerically stable when they are calculated
in practical situations. We should remark that this condition is almost always satisfied when
we randomly choose (n + ¢ + j + 1) hyperplanes in P™ — {c}.

Elaboration of investigating the existence of projective invariants under another projection

class is left open for future research.
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Pig. 1: Central projection attached at origin O (n = 3)
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Fig. 2: (n — 2)-dimensional subspace determined as a pair of hyperplanes (n = 3)
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Fig. 3: Arrangement H of (n 44 + j + 1) hyperplanes and (n — 2)-dimensional subspaces as

the intersections of the adjacent hyperplanes (the numbers in ellipses represent hyperplanes;

the lines and the dashed lines represent (n — 2)-dimensional subspaces)
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Fig. 4: Subspace ¢ and the homogeneous coordinates (or equivalently the normal vector) of its

interpretation hyperplane (n = 3)
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