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Abstract 

We often treat information that was projected into a subspace from a space where the 

original information exists. For example, visual information is information that was projected 

onto the retina from the 3-dimensional Euclidean space. Because there is a deficiency of in-

formation caused by the projection, we can not uniquely recover the original information in 

general. Therefore, it is definitely important to find properties, if any, that essentially connect 

the original information with the projected information. When a class of admissible transfor-

mations to which the original information is subject is specified, projective invariants, which 

are real-valued functions in terms of the projected information and which are unaffected by 

the class of admissible transformations, provide an essential relationship between the original 

information and the projected one. This paper is a study on projective invariants under the 

condition that the n-dimensional projective space is projected into the (n -1)-dimensional 

projective space by the projection of a certain class; and that the class of admissible transfor-

mations involves projective transformations in then-dimensional projective space. It is shown 

that, for given integers i and ;'such that 1 ::; i ::; ;'::; n -i, we have a projective invariant 

derived from (n + i +;')subspaces of (n-2) dimensions, where the (n + i +;')subspaces are the 

intersections of the adjacent hyperplanes of (n + i + J + 1) hyperplanes arranged in the letter 

H. The nonsingularity condition, i.e., the condition under which the invariant is nonsingular, 

is also given. 

Key Words: projective invariants, admissible transformations, interpretation vector, inter-

sections of hyperplanes, nonsingularity condition. 
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1 Introduction 

When we observe a subject under investigation, we often only obtain a certain part of 

the original information, i.e., information projected into a subspace from a space where the 

original information exists. We are then required to deal with such partial information to 

investigate the subject. For instance, in observing objects in three dimensions, we obtain 

visual information that was projected onto the retina from the 3-dimensional Euclidean space; 

we have to recognize the objects by making use of the projected information on the retina. 

Because there is a deficiency of information caused by the projection, the problem of recovering 

the original information is ill-posed: in general, we can not uniquely recover the original 

information from the projected information. In addition, when a transformation operates on 

the original information, the projected information before and after the transformation differs. 

In other words, the projected information significantly varies, depending on the transformation 

that operates on the original information, even for the same original information. Thus, it is 

important to find properties, if they exist, that essentially connect the original information 

with the projected information. 

When original information in a space is subject to a given class of admissible transformations, 

projective invariants, which are real-valued functions in terms of the projected information and 

which are unaffected by the class of admissible transformations, provide an essential relation-

ship between the original information and the projected one. When we can not directly deal 

with the original information, such projective invariants play an important role in investigating 

the properties of the original information. For example, for object recognition problem which is 

one of the most important problems in computer vision, projective invariants aid in identifying 

one object out of many (hence, the importance of projective invariants has been continually 

emphasized since the origin of the field of computer vision in the 1960s) [2], [5], [6], [7]. 

On the other hand, invariants were a very active mathematical subject in the latter half 

of the 19th century [4]. However, they were not derived through projections: they were de-

rived not by dealing with the projected information but with the original information itself. 

Therefore, invariants [1], [3] that were studied then are nothing but invariants of admissible 

transformations themselves. In contrast to this, in practice, we often face situations in which 

we have to get at the essence of the original information by way of the projected informa-
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tion, and we can not deal with the original information. Hence, investigating the existence of 

projective invariants is very significant from the engineering point of view. 

In this paper we consider the existence of projective invariants under the condition that 

(n -2)-dimensional subspaces in the (n -1)-dimensional projective space were projected 

from the n-dimensional projective space by the projection of a certain class; and that the 

inverse images of these subspaces with respect to the projection are subject to projective 

transformations in the n-dimensional projective space. We are mainly interested in deriving 

projective invariants in a concrete fashion in terms of (n -2)-dimensional subspaces in the 

(n -l)-dimensional projective space. 

The main theorems, which are given in§3, state that (1) for given integers i and j such 

that 1~i~j~n -i, we have a projective invariant derived from (n + i + j) subspaces 

of (n -2) dimensions, where the (n + i + j) subspaces are the intersections of the adjacent 

hyperplanes of (n + i + j + 1) hyperplanes arranged in the letter H; and (2) the projective 

invariant is nonsingular, i.e., well-defined and nondegenerated, iff (COND) below is satisfied 

by n subspaces among the (n + i + j) subspaces, i.e., n aligned intersection subspaces of the 

adjacent hyperplanes, which include the horizontal part of H, in the arrangement (we always 

have four cases). 

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the homo— 

geneous coordinates of (n + 1) hyperplanes that determine n subspaces of (n -2) 

dimensions. 

In this paper, when an arrangement of hyperplanes or (n -2)-dimensional subspaces has the 

same topology as the letter H, we call "they are arranged in the letter H"; hence, they could 

n-dimensionally exist. (1) indicates that we have a projective invariant of (n + i + j) subspaces 

of (n -2) dimensions arranged in the letter H (accordingly, the (n + i + j) subspaces could 

n-dimensionally exist). It should be noted that the number of (n -2)-dimensional subspaces in 

the left part of His 2i, whereas that in the right part is 2j; and, furthermore, the arrangement 

is symmetrical with respect to the horizontal part of H. In addition, the number of this 

kind of invariants in the n-dimensional projective space is L号」 (n-Lぎ」） (see Page 7 for the 

notation). (2) implies that our invariant is almost always nonsingular when we randomly 

choose (n + i + j + 1) hyperplanes in the n-dimensional projective space. This is because 
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the homogeneous coordinates of (n + 1) hyperplanes randomly chosen in the n-dimensional 

projective space are linearly independent in general. 

This paper is organized as follows. In§2, we formulate the problem to solve. In§3, the 

results of this paper, i.e., the existence of projective invariants and the nonsingularity condition 

for our invariants are presented as two theorems. Their proofs are given in§4. 

2 Problem Formulation 

Let pn be the n-dimensional projective space over the real number field R. We assume 

n~3 throughout the paper. Note that if not explicitly stated, the coordinates of a point are 

understood to be homogeneous. 

Letting c = (1, 0, 0, ... , 0戸(Ep咋 weconsider the set of mappings : pn -{ c} —• pn-1 

as follows. 

:F := {fp IP E PGL(n -1)}, 

where PGL(n -1) denotes the projective general linear group of degree (n -1) over R; and 

fp is a mapping: pn -{c}---+ pn-l that is represented by n x (n + 1) matrix Fp: 

Fp = (O I P)  (PE PGL(n -1)). 

Therefore, when we put :c E pn -{c} and X = fp(:c), then we have 

pX = Fpx (p ER*), 

where R* denotes the set of nonzero real numbers. In this paper, we are interested in the class 

:F of mappings : pn -{ c}一pn-1;and we call an element of :F a projection. We assume 

that we can deal only with X, i.e., the image of :v projected by fp where fp is derived from a 

given P E PGL(n -l) as seen above. It should be noted that, when we denote by I the unit 

matrix of degree n, V Fp is expressed by 

Fp = P F1・

If we restrict pn -{ c} and pn-l to the n-dimensional vector space over R that excludes the 

origin and hyperplane x1 = O; and to the (n -1)-dimensional vector space over R, respectively, 
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Ji (E :F) coincides with the central projection where the center of the projection is the origin 

(its coordinates in pn are c), and where the projection hyperplane is x1 = 1 (see Fig. I). 

Let T be the set of projective transformations for pn -{ c }: 

T = {TI T : pn -{c}→ P叫 TEPGL(n) }. 

For S~ 炉ー{c }, we define 

Ts := {TI TE 7; T(x)-:/ c, Vx ES}. 

Since Ts forms a group, we set Ts to be the class of admissible transformations for S. In 

addition, we put 

fp(S) := LJ {fp(x)}. 
允 ES

In accordance with the notations introduced above, we formulate our problem, namely, the 

problem of finding a real-valued function which is defined in terms of the images of S projected 

by fp; and which is unaffected by Ts, i.e., the class of admissible transformations. 

Problem 2.1 Let fp E :F and S (~pn -{c}) be given. Find a natural number Nanda 
N 

＾ function Inv : fp(S) x fp(S) x・ ・ • x fp(S) -?  R such that, 

for ¥/TE Ts, 

Inv(fp(x), fp(ぉ），...,fp(x)) = Inv(fp(T(x)), fp(T(x)), ... ,fp(T(x))), 

where :v ES. ロ

Function Inv is a projective invariant under the condition that the projection is achieved by 

fp, and the class of admissible transformations is Ts for a given S. Our aim in this paper is, 

for given fp and S, to find natural number N and function Inv in Problem 2.1. For ¥:/fp E :F, 

(n -2)-dimensional subspaces in pn -{c} are projected into (n -2)-dimensional subspaces 

in pn-l by fp; and we can deal with the projected (n -2)-dimensional subspaces1. Hence, 

we set fp to be fp., that is, fp. derived from an arbitrary P. E PGL(n -1); and S to be 

1 Let f p1, fp, E :F, then an image of a point in pn -{ c} projected by fp, is connected to that projected by 

another projection fp, through a projective transformation in pn-l (an element of PGL(n -1); to be more 

specific, PiP2-1 or P2P戸）．
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the set whose elements are N subspaces, which n-dimensionally exist, of (n -2) dimensions 

in pn -{ c }. We then focus on finding a real-valued function having the following properties: 

1) it is defined in terms of the coefficients of the equations that determine the N projected 

subspaces of (n -2) dimensions, and 2) its value remains invariant even if the inverse images 

with respect to JP. are transformed by any admissible transformation, i.e., any element of Ts. 

3 Results 

The results of this paper are presented as Theorems 3.1 and 3.2. Their proofs are postponed 

until the next section. 

For an (n -2)-dimensional subspace 

(3.1) 
n-1 

I: a"'ふ=0 
K=O 

in pn-l (its coordinate system is (X。,Xい...,Xn-1汀）， where

n-1 
~a/# 0, 
K=O 

we obtain a vector (ao, a1, ... , an-I汀thatis determined by the coefficients of the equation. 

We call this vector the interpretation vector of the subspace. The interpretation vector is the 

homogeneous coordinates of the subspace. 

Remark 3.1 We can only determine vector (a0, a1, ... , an-l戸upto a scaling factor when 

we actually observe subspace (3.1) in pn-1. However, we can eliminate this indeterminacy by 

setting a criterion such as a0 = 1 or the normalization of the vector. ロ

An (n -2)-dimensional subspace in S is uniquely determined as the intersection of a pair 

of hyperplanes in pn -{ c} (see Fig. 2). Thus, we represent an element of S as a pair of 

hyperplanes in pn -{ c}. Let nij denote the interpretation vector of the intersection subspace 

of two hyperplanes i and j in pn -{ c}. 

For two integers i and j such that 1~i・ ~j~n -i, we define the following sets of 

hyperplanes in pn -{ c}. 
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[2Rl {Rlj, Rlj-i, ... , Rlふ

[2R2 {R2j, R2j-i, ... , R2ふ

De { C1, C2, ... , Cn+i-i-i }, 

＼ 

where 11>., 12>., Rlμ,, R2μ,, C11 (入 E{1,2, ... ,i};μE {1,2, ... ,j};v E {1,2, ... ,n+ 1-i-j}) 

are all natural numbers; and any two of r2e (£E {11, 12, Rl, R2, C}) are disjoint. Note that 

1n叫+I r2c I + I r2rul = n + l (k, £E { 1, 2}). It is important to remark that we assume that the 

order of elements of r2e (£E {11, 12, Rl, R2, C}) makes sense. Namely, hyperplanes in r2e are 

assumed to be aligned with the order of the elements with which r2e is defined. This should 

be applied to the union of r2/s such as [2ぃUr2c. Here, we suppose that (n + 1) different 

hyperplanes [2ぃUr2cU r2ru in pn -{ c} are given where k, £E {1, 2}; and n subspaces of (n-2) 

dimensions are observed in pn-1, all of which are the images of the intersections of the adjacent 

hyperplanes in r2rょU珈 un取 projectedby ]P •. We then consider the interpretation vectors, 

n店 Lk2,・ ・ ・, nLk;-1Lki, n1kiC1, nc1C2, ・ ・ ・, ncn-i-jCn+i-i-j, ncn+l-i-j恥，n的恥・ー1,• • • ,nru坪,of 

the n intersection subspaces; and define an n x n matrix N。L1:,nc,nR、whosecolumn vectors are 

these n vectors: 

N叫， 珈知：= [n店 Lk:iI・・・I nLk;_1Lk; I nLk;C1 I nc1C2 I・.・I 

ncn-i-jCn+l-i-j I ncn+l-i一氾jI n助助—1 I ・ ·•In如如1 ] . 

We attach'(prime) to the notations above in the case where an admissible transformation has 

operated on S. 

Theorem 3.1 For two integers i and j such that 1 S i S j S n -i, let f2R1, f2R2, De, 釦，如

above be given sets of hyperplanes in pn -{ c }; and let these sets be arranged in the letter H 

(see Fig. 3). Suppose that rankNnu,nc,nRt = n (k, f E {1, 2}). Then, for (n + i + j) subspaces 

of (n -2) dimensions that are the intersections of the adjacent hyperplanes in the arrangement, 

we have, independent of JP., 

(3.2) 

rankN' [}Lk,nc,nRl 

detN nL1 ,nc ,nR1・detN知，nc,nR2

detN知，nc,nR2・detN知，nc,nR1

n, 

detN'・detN' 知珈，na1 nL2 ,nc ,nR:i 
detN'・detN' 

. 
, Ll ,[)C ,[)R.:Z [)L:Z ,[)C ,[]Rl 

ロ
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Theorem3.1 shows that for any element of :F (which is a projection from pn -{c} to pn-1) 

there exists a projective invariant, independent of the element, 

(3.3) Invii 
detN nL1 ,nc,nR1・detlV伍研C,[}R2

・― detN nL1 ,nc,nR2・detN n辺 c,nR1
(I :::; i・:::;j:::; n -i) 

for (n + i + j) subspaces of (n-2) dimensions, all of which are the intersections of the adjacent 

hyperplanes of (n + i + j + 1) hyperplanes (in pn -{ c}) arranged in the letter H (see Fig. 3). 

It is important to remark that we accordingly have (n + i + j) subspaces of (n -2) dimensions 

arranged in the letter H (hence, the (n + i + j) subspaces could n-dimensionally exist); and 

also remark that the number of subspaces in the left-upper part of H is equal to that in the 

left-lower part: i. Whereas, the number of subspaces in the right-upper part of H is equal to 

that in the right-lower part: j. Namely, the arrangement is symmetrical with respect to the 

horizontal part of H. Therefore, for VJ p E :F, when we set S to be the set whose elements 

are N subspaces of (n -2) dimensions in pn -{c} arranged in the letter H, N and Inv in 

Problem 2.1 are respectively given by N = n + i + j and (3.3), where i and j are given integers 

such that 1 :5 i :5 j :5 n -i. We should note that n + 2 :5 N :5 2n. 

Remark 3.2 Since i + j = n is possible, we could have国cl= 1. Namely, for the (n -2)-

dimensional subspaces arranged in the letter H, the part that corresponds to the horizontal 

part of H could be empty. ロ

For each i, we have ei = (n -2i + 1) invariants. Taking symmetry into consideration, i can 

n 
be any of 1 :::; i ::; L-」.Hence, the number2 S of this kind of invariants in pn -{ c} is given 

2 

by 

l号」

三=I:ei 
i=l 

ー喜」(n-l苔」），
n n 

where L-」denotesthe maximum integer which is not greater than -. 
2 2 

Furthermore, we give the nonsingulari ty condition for In Vij・(1< i < j < _ _ _ n -i), 1.e., 

the necessary and sufficient condition under which the invariant Invij is nonsingular. Here, 

2In particular, we have L %」 invariantsfor 2n subspaces of (n -2) dimensions; whereas we have only one 

invariant for (n + 2) subspaces of (n -2) dimensions. 
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we define "an invariant is nonsingular" as "the value of the invariant is not 0, oo or 0/o". 

Nonsingularity can be regarded as nondegeneracy and well-definedness. As we can see, the 

nonsingularity condition for an invariant ensures that the values of the invariant are numerically 

stable when they are calculated in practical situations. The next theorem indicates that the 

nonsingularity condition for invariant Invii is almost always satisfied, when we randomly 

choose (n + i + j + 1) hyperplanes in pn -{ c}. This is because the homogeneous coordinates 

of (n + l) hyperplanes that were randomly chosen in pn -{ c}, are linearly independent in 

general. Note that (n + i + j + 1) hyperplanes arranged in the letter H could n-dimensionally 

exist. 

Theorem 3.2 [Nonsingularity condition] 

Let (n + i + j + 1) hyperplanes where (n + i + j) subspaces of (n -2) dimensions exist, 

be arranged in the letter H (see Fig. 3). Invi; in (3.3) is nonsingular iff (COND) below is 

satisfied by n subspaces among the (n + i + j) subspaces, i.e., n aligned intersection subspaces 

of the adjacent hyperplanes, which include the horizontal part De of H, in the arrangement 

(we always have four cases). 

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the homoge-

neous coordinates (in pn -{ c})~f (n + 1) hyperplanes that determine n subspaces 

of (n -2) dimensions. 

4 Proofs 

口

ロ
ー

1

The proofs for Theorems 3.1 and 3.2 are given. 

First, we consider the meaning of the interpretation vector of an (n -2)-dimensional sub-

space in pn-1. Let X (X =f 0) be the coordinates (in pn-l) of any point in the subspace, 

and put文=P; ーix(= (ふ，ふ，．．．，Xn-1戸）. Then, (1,X。,X1, ... , Xn-1? is the inverse 

image of X with respect to f凡. In other words, a point in pn -{ c} whose coordinates are 

(1,x。，ふ，...,Xn-1戸isprojected to a point in the subspace (in pn-l) by f p •. Moreover, put 

a= (ao,a1, ... ,an-1f and a= P;a (= (a。,a1 ... , an-i?), then (3.1) is rewritten as 

(4.1) (O,a。,a1, ... , an-1? ・(1,x。，ふ，...,Xn-1戸=0. 

(4.1) represents the hyperplane in pn on which both c and the subspace (3.1) are (see Fig. 4). 

This hyperplane is called the interpretation hyperplane of subspace (3.1). (0, a。,a1, • ・ ・, cin-1? 
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is the homogeneous coordinates (or equivalently the normal vector) in pn of the interpretation 

hyperplane of subspace (3.1). From3 a= P.-Ta = P.-T凡(O,a。，ふ，...'anー1汀， wecan see that 

a is obtained by applying operation f p;-T to the homogeneous coordinates of the interpretation 

hyperplane of subspace (3.1). Hence, the interpretation vector of a subspace is the vector that 

is obtained as a result of applying operation f p;-T to the homogeneous coordinates (in pn) of 

the interpretation hyperplane of the subspace. 

As seen above, we have represented an (n -2)-dimensional subspace in S as a pair of 

hyperplanes in pn -{ c }. Thus, we next consider the relationship between the interpretation 

vector of the intersection subspace of two hyperplanes; and the homogeneous coordinates (in 

pn -{ c}) of the two hyperplanes. Let hyperplane£(£=μ, v) in pn -{ c} be the set of points 

with coordinates :z: satisfying 

ae• ~= 0, 

where 

al = (al。,lll1 , ・ • ・, llln) T j al。€ 応， al,.ER  (KE {1,2, ... ,n}). 

Then m, the coordinates of a point on both hyperplanesμand v (hence, the point is in the 

(n -2)-dimensional intersection subspace of the two hyperplanes), satisfies 

(4.2) aμ(aμ ・X) + av (av・X) = 0, 

where o:e (f =μ, v) are real numbers. By fixing the values of o:e so that c satisfies (4.2), we 

obtain the interpretation hyperplane (in pn) of the intersection subspace of two hyperplanes 

μand v: 

(a110 aμ-aµ。 a11)•x = 0. 

Therefore, av0aμ-aμ0av is the homogeneous coordinates of the interpretation hyperplane of 

the intersection subspace of hyperplanesμand 11; Fp.-T (av0aμ-a凸） is the interpretation 

vector of the intersection subspace. It is important to note that we have indeterminacy of a 

scaling factor between the vector Fp.-T (av0aμ-aμ0av) and the vector nμv we actually obtain 

3For a square matrix P, p-T is (PT戸 orequivalently (P-1戸

，
 



as a result of observing the subspace. Therefore, defining 

a匹 -Ji'. 町 T(av。aμ.-aμ.。av),

we have ●
ー

i
し

(4.3) nμv = Pμv aμv (Pμv -/: 0). 

Here, pμ11 is a scaling factor and its value is not known. In line with treating nμ11, we define 

an n x n matrix M知珈，Dat(k, £E {1, 2}) as a counterpart of N, 伍研c,ilat:

(4.4) M伍 研c知 ： = [a恥 Lk2I・・・IaLk; ー1Lk;I au;c1 I ac1C2 I・.・I 

acnーi-jCn+l-i-jI acn+l-i氾 iI aru氾 jー1I・・・Iaru如 1] . 

(4.3) and (4.4) yield 

(4.5) detN伍研c,nR、=P. 以 -detM知西，知9

where 

pkl・ 一 PLk;C1• PCn+l-i-jRlj• II Pi,.,i,.+1' 
.. eriu-{L柘｝

IT p伝 iバ+1. 
“刃c-{Cn+1-i-j}

II Pi,.+1ふ・
~ena,-{Rら｝

We again attach'(prime) to the notations above in the case where an admissible transformation 

has operated on S. Hence, we obtain4 

LHS of (3.2) -

RHS of (3.2) -

detM知珈，nR1・detMnL2,nc,nR2

detM知知，nR2・detM知 西 ，[]Rl1 

det1'1如，r1c,r1R1. det1'1如，nc知

detM如，nc,nR2 . detM如，知，[}Rl•

Now, to prove Theorem3.1 it suffices to show the following lemma (applying the results of 

four combinations of k and£in Lemma4.l to the two equations above, completes the proof of 

Theorem 3.1). 

Lemma 4.1 Suppose that a point (with coordinates x) in S changes its coordinates to x' 

after an admissible transformation T (E Ts) as follows: 

入ぷ = Tぉ （入 ER*).

4LHS and RHS stand for the left-hand side and the right-hand side, respectively. 
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Let rankM知珈，[}R、=n, where k,f E {1, 2}. Then, we have, independent of JP., 

(4.6) 

(4.7) 

rankM' [}Lk ,nc ,[}Rt 

detT• IT a,.。・detM如，珈知

KEI'kヽ

n ， 

入n+l.II吹 ・detM叫，nc,nao
1<EI'kt 

where 

rkl := Du u応 UDru -{Lk1, Rふ｝．

Proof: It follows from the definition of M知西，r;Rlthat 

detM 
1 

[}Lk,[}C,[}Rl =• 
detP* 

(-1)Mod2(n) . IT a,.。・detA屯研C,[}Rl"
KEI'1c1 

(4.8) 

Here, (n + 1) X (n + 1) matrix Anu,nc,nRl is defined by 

A叫，nc,知：= [ au1 I au2 I・ ・ ・I au; I ac1 I・ ・ ・I acn+1-i-i I a取 j I・ ・ ・I a取 1]; 

and, for a natural number n, Mod2 is a function such that 

Mod詞={: 
n: even 

n: odd. 

Similarly, for after admissible transformation T, we define (n + 1) x (n + 1) matrix 

A' []Lk ,nc ,[]Rl [ a~k1 I a仏2I .. ・I aしk;I aらI... I a~n+l• -j I a知j I .. ・I a如l] l 

then we obtain 

(4.9) detM' []Lk ,[]C ,[]Rl 
1 

~. (-l)Mod2{n). IT <a. detA½u,nc知
1,,EI'kl 

1 入n+l

正Ji;.(-l)Mod2(n). 孟可・ITa~0·detA孔研c,DRo
“ミI'kl

smce 

a~= -T ， ,,¥T a;. 

Note that a~。=/: 0 is satisfied since TE T5. (4.8) and (4.9) immediately yield (4.7). It is clear 

that (4. 7) is independent of JP •. 

Since a"-0ヂ0(1,, E I'k1), it follows from (4.8) that rank.M叫，nc,nRl= n is equivalent to 

rankA叫，nc,nRl= n + l. Then we have (4.6) from (4.9) since入ヂ 0and aらヂ 0(1,, E n1). ロ
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Remark 4.1 (4.8) shows that detAnLk,nc,nR、=0 is equivalent to detM知西珈．、=0 (k, f E 

{1, 2}). Namely, n subspaces in pn  - { c} (the intersection subspaces of the adjacent hy-

perplanes in Du U De U Dru) share a common point in pn-l through the projection fp. iff 

detAnL研 0,nRt= 0 (see Observation4.1 below). We assume that detAnLk,nc,n匹=/0 is sat-

isfied by (n + 1) hyperplanes that determine these n subspaces (intuitively, this assumption 

is equivalent to the random choice of (n + 1) hyperplanes). Moreover, Lemma4.1 indicates 

that if detAnLk,nc,nRt =/ 0 holds, we can guarantee that these n subspaces after any admissible 

transformations never share a common point in pn-l through the projection fp .. ロ

.
＼
 

We now turn to the proof of Theorem 3.2. From (3.3) it is easy to see that In vii is nonsingular 

iff the values of the determinants of N nL臼 c,Dai (k, e E { 1, 2}) are not zero. Hence, the 

necessary and sufficient condition under which lnVij is nonsingular is that the values of the 

determinants of M知，nc,ilRiare not zero (see (4.5)). Observation 4.1 below indicates that 

when n subspaces of (n -2) dimensions in pn-l do not share a common point, the value of the 

determinant of M叫，nc,na,is never zero. This argument yields Theorem3.2 (see Remark4.l). 

Observation 4.1 Let n different subspaces i (i = 1, 2, ... , n) of (n -2) dimensions in pn-l 

be 

n-1 

I: a;kふ=o, 
k=O 

where 

n-1 

~a;k 2 =I= Q. 

k==O 

They do not share a common point in pn-l iff 

a10 a・ •o a no 

a11 ail an1 

det 

a1k a・ 
＂； 

a nk 

a1 nー1
a・ 

tr, ー1
a nn-1 

-::} 0. 

ロ
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5 Conclusion 

We have investigated the existence of projective invariants under the condition that the 

projection from『-{ c} to pn-l is achieved by an element of F, and the class of admissible 

transformations is Ts where S is the set whose elements are (n -2)-dimensional subspaces 

in pn -{ c }. Then, for given integers i and j such that 1 ::; i ::; j~n -i, we derived 

projective invariant, independent of the element of F, I nVij in (3.3) from (n + i + j) subspaces 

of (n -2) dimensions, where these subspaces are the intersections of the adjacent hyperplanes 

of (n + i + j + 1) hyperplanes arranged in the letter H. Accordingly, the (n + i + j) subspaces 

are also arranged in the letter H (hence, the (n + i + j) subspaces could n-dimensionally exist). 

Note that the number of subspaces in the left-upper part of His i, whereas that in the right-

upper part is j; and the arrangement is symmetrical with respect to the horizontal part. Let us 

remark again that the horizontal part could be empty since i + j = n is possible. In addition, 

the number of this kind of invariants in pn -{ c} is L~」 (n -L~」)．

Furthermore, the nonsingularity condition for Invii, i.e., the necessary and sufficient condi-

tion making Invii nonsingular, was given. Invii is nonsingular iff (COND) below is satisfied 

by n subspaces among the (n + i + j) subspaces, i.e., n aligned intersection subspaces of the 

adjacent hyperplanes, which include the horizontal part flc of H, in the arrangement H above 

(we always have four cases). 

(COND) Not singular is an (n + 1) x (n + 1) matrix whose column vectors are the homoge-

neous coordinates (in pn -{ c}) of (n + 1) hyperplanes that determine n subspaces 

of (n -2) dimensions. 

The nonsingularity condition guarantees that Invii is not only well-defined but nondegener-

ated; it also ensures that the values of I nvii are numerically stable when they are calculated 

in practical situations. We should remark that this condition is almost always satisfied when 

we randomly choose (n + i + j + 1) hyperplanes in pn -{ c}. 

Elaboration of investigating the existence of projective invariants under another projection 

class is left open for future research. 
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Fig. 4: Subspace i and the homogeneous coordinates (or equivalently the normal vector) of its 

interpretation hyperplane (n = 3) 
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