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Abstract 

This paper provides a study on object recognition under paraperspective projection. Dis-

cussed is the problem of determining whether or not a given image was obtained from a 3-D 

object to be recognized. First it is clarified that paraperspective projection is the first-order 

approximation of perspective projection. Then it is shown that, if we represent an object as a 

set of its feature points, any paraperspective image can be expressed as a linear combination 

of three appropriate paraperspective images. We show that any paraperspective image of an 

object enjoys this property even if it undergoes not only a rigid transformation but also an 

affine transformation. Particularly in the case of a rigid transformation, the coefficients of the 

combination have to satisfy two conditions: orthogonality and norm equality. A simple algo-

rithm to solve the above problem based on these properties is presented: a linear, single-shot 

algorithm. Some experimental results with artificial images are also given; it is found that the 

algorithm correctly solves the problem for perspective projection as well as for paraperspective 

projection. Our investigation shows that there exists a simple linear algorithm for recognizing 

a 3-D object. Namely, we only have to store three images and, whenever a new image is given, 

we simply determine whether it can be expressed as a combination of the three images. 

Key Words: paraperspective projection, linear combination, representation of transforma-

tions, 3-D object recognition. 
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1 Introduction 

Human beings can easily recognize objects in 3-D through visual 2-D information. The 

appearance of an object shape varies significantly as the viewpoint changes. This results in 

numerous different images even for the same object. Fundamental difficulty in recognizing 

objects from images is how to deal with the images that were obtained from the same object. 

Hence it is a very important problem in object recognition to determine whether or not a 

given new image was obtained from the same object. A classical approach [3] to this problem 

is to construct object descriptors that are unaffected by a change in viewpoint. For example, 

we first recover the 3-D information of an object, and then describe the object with the 

object-centered coordinates. Though use of generalized cylinders [5] has been proposed with a 

view to constructing a viewpoint invariant descriptor, it is not an easy task to construct such 

a descriptor from images. Methods [4], [6], [17] that use geometric invariants have also been 

proposed. Geometric invariants are viewpoint invariant functions in terms of the coordinates 

of point images or the coefficients of equations that represent line (or curve) images. Attaching 

the values of geometric invariants to objects makes it easy to identify one object out of many. 

Several invariants [ll], [12], [13] have been actively derived; however, we must have strong prior 

knowledge about objects to calculate the invariants. Accordingly, we can not make good use 

of geometric invariants. 

On the other hand, Poggio-Edelman [9] proposed an approach where orthographically pro-

jected images, which, of course, depend on the viewpoint, are directly treated for object recog-

nition. The approach does not explicitly recover 3-D information of an object. GRBF (Gen-

eralized Radial Basis Function) is used there for learning and also recognizing an object. The 

network obtains the coordinates of point images of an object to be recognized as its inputs and 

after its learning process, it establishes some template images of the object within its hidden 

units. By interpolating or extrapolating the template images, it deals with an image from 

a different viewpoint. However, we need many images to make the network learn an object; 

consequently we must get a number of images of an object in advance. 

In contrast to this, Ullman-Basri [8], [16] showed that three images are sufficient to describe 

any other image of the same object under orthographical projection and that any image can 

be described as a linear combination of the three images. Their results led to an approach 
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that recognizes the object if the new image can be expressed as a linear combination of the 

three stored images. Sugimoto-Murota [14] extended their results to the case of perspective 

projection, showing that four images are sufficient to recognize an object under perspective 

projection, and that an image can be described as a certain nonlinear combination of the four 

images. However, it is not an easy computational task to determine whether or not an image 

can be described as a nonlinear combination of the stored images; we will face a convergence 

problem and a local minimum trap. 

Orthographical projection is convenient, being a very rough approximation of the projection 

of light on the retina. On the other hand, perspective projection, which is the true model of the 

projection on the retina, often leads to complicated equations for many problems and makes 

the subsequent analysis difficult. As a compromise, Ohta-Maenobu-Sakai [7] proposed a new 

model, termed parnperspective projection by Aloimonos [1], [2] to approximate the distortion of 

a texel pattern under perspective projection. Paraperspective projection stands in complexity 

between the orthographical and the perspective. It is a good approximation of perspective 

projection when the size of an object is sufficiently small, compared with the distance between 

the object and the viewpoint. 

This paper is a study on the problem above under paraperspective projection, namely, the 

problem of determining whether or not a given paraperspective image was obtained from a 3-D 

object to be recognized. The mathematical meaning of paraperspective projection is clarified: 

paraperspective projection is the first-order approximation of perspective projection. Under 

the paraperspective projection, when we represent an object as a set of its feature points, the 

coordinates of the feature points of any image can be expressed as a certain combination of the 

coordinates of the feature points of several images of the same object, just as in the case of or-

thographical projection. Three images are found to be sufficient, though the number of images 

required for such descriptions depends upon the representation of admissible transformations. 

The problem under paraperspective projection is thus reduced to the problem of determining 

whether or not the image is described as a combination of the three stored images. Therefore, 

the approximation of perspective projection by paraperspective projection makes the problem 

solvable with a computationally simple procedure: a single-shot algorithm. 

The outline of this paper is as follows. In Section 2 we introduce paraperspective projection 

畜・
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and show that it is the first-order approximation of perspective projection. In Sections 3 and 

4, we formulate the problem to solve, and give a mathematical description to paraperspective 

images. In Section 5 we consider three representations of admissible transformations. Here the 

motion for an object is assumed to be described by an affine transformation or by a rigid trans-

formation. And we show that, in either case, any image of the same object can be described 

as a certain combination of several images. First, we discuss a simple representation, linear 

combination (in the ordinary sense) representation of admissible transformations, and then 

exploit the other representations to reduce the number of images required for the description 

of other images. We also show that, when rigid transformations are admissible, we have two 

conditions, orthogonality and norm equality, on the coefficients that appear in the combina-

tions. In Section 6 we present an algorithm for recognition under paraperspective projection 

and show some experimental results with artificial images in Section 7. 

2 Paraperspective projection 

2.1 Definition of paraperspective projection 

The notion of paraperspective projection was introduced by Y. Ohta, K. Maenobu and T. 

Sakai (see (7)) and named by J. Aloimonos (see [l], (2)). It globally preserves the properties of 

perspective projection and locally realizes orthographical projection. Suppose that the center 

of a lens whose focal length is f coincides with the origin and that the z axis is aligned with the 

optical axis. Let1砂=(x尺y尺ZG戸bethe coordinates of a reference poin仔 Gunder parap-

erspective projection. Then a point p (with coordinates x門in3-D space is paraperspectively 

projected to示Pin the image plane (z = f) as follows (see Fig. 1): 

1. xP is first projected to3印 (ERりonthe plane z = z又whichis parallel to the image 

plane. The projection is performed by using a ray that is parallel to ray OG going 

through the origin O and the reference point G. 

2. が isthen projected perspectively toが inthe image plane (z = f), whereが ER乞

1 We use a column vector and denote by五 thetransposition of a vector x. 

2We take it that the centroid of the feature points is a reference point (see (2.2)). 

3R represents the set of real numbers. 
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For吋=(x凡y凡ザ）T, we get 

炉＝国，吋）T

玉c:=:) z'+長(::)・
Since xG is the centroid of the feature points, we have 

(2.1) 

G 
l P 

~= -p 区砧．
p=l 

(2.2) 

It is clear that paraperspective projection decomposes the image distortions into two parts: 

Step 1 captures the foreshortening distortion and part of the position effect, and Step 2 captures 

both the distance and the position effect. For points in the plane z = z汽paraperspective 

projection coincides with perspective projection. 

Remark 2.1 When we let f→ oo in (2.1), 炉 doesnot tend to the orthographical image of 

p. Instead, we should first shift the coordinate system by -f along the z axis and then take 

the limit J→ oo. We choose in this paper a coordinate system in which the viewpoint and the 

origin coincide so that a rotation around the viewpoint can be expressed as a 3 x 3 orthogonal 

matrix. ロ

Remark 2.2 Under perspective projection, 吋=(x凡訊z叩 isprojected to炉＝（吋，1rnT
as follows: 

xP 
吋＝一f

zP 
， 

炉
吋＝一f.

zP 
(2.3) 

The coordinates of a point are not linearly related to the coordinates of its perspective image, 

whereas they are linear for its paraperspective image (see (2.1)). ロ

2.2 Meaning of paraperspective projection 

Paraperspective projection is defined by the procedure explained above. Here we show 

that paraperspective projection is the first-order approximation of perspective projection. In 

accordance with the notation introduced above, suppose a point p, with coordinates :z:P, is 

paraperspectively projected to云Pand perspectively projected to 7rP. The coordinates of the 
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reference point under paraperspective projection are denoted as砂.Let 8吋=(8ザ，6炉，6ザ）T

be defined by 

ふザ

6炉

fJzP 

呼ー XG

G

G

 

y

z

 

―
―
 

p

p

 

y

z

 

From (2.3) we have 

砂+8xP 
吋 = f 

天+8zP' 
吋＝

炉+0yP 

zG + 8zP・ f (2.4) 

We assume 

lxG I≫l8xPI'I炉I≫18炉I,I戸I≫l8zPI (2.5) 

and take up to the first-order terms in the Taylor expansion of (2.4) around砂， thenwe get 

吋

p
2
 

T
 

G G 

j [~+~8xP -向年＋．．．］，

f [旦+~附ー~:）2年+•• ・]. 
On the other hand, from (2.1) we obtain 

-p 砂 +o呼 XG

巧=f [ zG ―戸平ozP], 

吋= 1[炉 :GoyP —凸OzP] . 

It is clear that irP is the first-order approximation of 1rP. Therefore, when the distance between 

the object and the viewpoint is sufficiently large, compared with the size of the object (see 

(2.5)), paraperspective projection will be a good approximation of perspective projection. 

Remark 2.3 Sugimoto-Murata [15] and Poelman-Kanade [10], independently, clarified the 

property that paraperspective projection is the first-order approximation of perspective pro-

jection. As we can see, we do not use (2.2) in this subsection. Accordingly, we can take any 

point G that satisfies (2.5) as a reference point under paraperspective projection in order to 

show this property. In contrast to this, Poelman-Kanade [10] assumes that the centroid of the 

feature points is the reference point throughout the paper. D 
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3 Formulation of the problem 

In this section we formulate our problem in a well-defined form. The following are assumed: 

-An object moves around a fixed viewpoint, and a motion is described by an affine trans-

formation or by a rigid transformation. 

-Any image is paraperspectively obtained. 

-Feature points in an image are correctly extracted. 

-The set of points of which the object consists has a one-to-one correspondence to the set 

of the feature points in the images, and the correspondence remains invariant under any 

transformation of the object. 

-The set of the feature points in the images is fixed, and the correspondence of the feature 

points among the images is known. 

Now suppose that a point p (with coordinates吋） moves to叫 witha transformation i 

and that it is paraperspectively projected to示『 (seeFig. 2). When p is subject to an affine 

transformation, the transformation i is characterized as follows: 

叫=R; 虹+t;, 

where4 

R; E GL(3), t; E R3. (3.1) 

When p is subject to a rigid transformation, (3.1) is to be replaced by 

R E S0(3), ti E R3. 

It is clear that 

紆=R諮+t; 

4GL(3) denotes the general linear group of degree 3 over R, and S0(3) denotes the special orthogonal group 

of degree 3 over R. 
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follows from (2.2). Put 

゜uj 

l/zf 

゜

賛／（が）2

誓 /(z'f)')'
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¥

）

 

彎
齊

G〗

(

＼

(

¥

 

f

f

 

then we obtain 

p
.
t
 

キ＂ ＝ ui吋+¼.

We represent an object as a set of its feature points. An image of an object is accordingly 

represented as a set of the projected feature points in the image plane. Let {吋}:=ldenote 

the image of an object to be recognized with a transformation i (i E {1, 2, ... , J}) where the 

number of the feature points is assumed to be P; hence we have J images of the object. We 

denote a new image by {だ}:=i・Theproblem we investigate here is to determine whether or 

not the image {祠}f=1is obtained from the same object with a certain transformation. We 

assume that a class of admissible transformations of a 3-D object is specified. This is because 

the decision whether or not the new image was obtained from the same object depends upon 

the class of admissible transformations. In this paper, we consider two classes of admissible 

transformations: affine transformations Aa and rigid transformations Ar, Both form a group 

and are expressed, respectively, as follows: 

Aa 

Ar 

{(R, t) IRE GL(3), t ER汀，

{(R, t)IRES0(3), tER汀 (3.2) 

Since S0(3) C GL(3), elements of Ar are characterized as those elements of Aa that satisfy 

certain conditions. Therefore, (3.2) can be rewritten as 

Ar ＝ {(R, t) E Aa IRE S0(3)}. 

In this paper, we regard Ar as part of Aa with the conditions. We write i E A as a shorthand 

notation for (Ri, ti) E A. For a class of admissible transformations A, put 

訂P {云fI示f= uiむ『+v;, ヨiEA}. 
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か isthe set of possible paraperspective images of point p for a class of admissible transfor-

mations A. The problem is formulated as follows. 

Problem 3.1 Suppose a class A of admissible transformations is specified. Find a procedure 

which, treating directly {吋}:=l(i E {1, 2, ... , J}), determines whether or not 祠€ か forall 

p E {1, 2, ... , P} every time {祠}:=lis given. ロ

We assume a representation of admissible transformations for further investigation, because a 

procedure to be constructed depends on the representation of admissible transformations. 

In Section 5, we consider three representations, all of which are linear equations in the 

elements of admissible transformations. 

4 Mathematical description of images 

4.1 Coordinates in the image plane 

Since 

p
.
I
 

示

p•<1
-
P
 

＝
 

G
.

｀
 

示 (4.1) 

follows from (2.1) and (2.2), we can calculate耐?easily from吋 (p= l, 2, ... , P). We denote 

the increment of吋 from紆 by

pf :=吋ー的， (4.2) 

and as a counterpart ofか weput 

戸：= {Pf IP『＝吋—紐吋€か｝．

Since pf is easily calculated from示;:,we may concentrate on p『insteadof示;:. In other words, 

we may regard {p『}に (i= 1, 2, ... , J) and {p~}:=l as the stored image and a new image 

respectively. 

From (4.2) we have 

＇ 

p
.
I
 

p
 

f 7f2Q[x(]8叫，
(zi) 

(4.3) 
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where 

Q := (~l ;:) 
and for x = (xぃXぁ巧）T in general, [記]is defined by 

Q -X3 四

［む］ X3 0 -X1 

-X2 X1 Q 

(4.4) 

The operation [ x] has the following properties. 

Lemma 4.1 Let5 x, y E R3 and RE GL(3). 

[x十y]

が [Rx]R 

[x] + [y], 

detR・[x]. 

、¥
j

、̀l'ノ

5

6

 

．
 

4

4

 

，
ー
‘
(

Proof: (4.5) is trivial from the definition of [・] (see (4.4)). Putting 

RT r1 I r2 I T3 

we have 

detR・R-1 [乃]r3 I [ r3] r1 I [ ri] r2 

It is easy to see6 

(detR)2・(R-T[x]R―l) 12 （［乃］乃）T [x] [応lr1 

吋［乃］［［巧lr叶工

吋［乃]{ (T3・x)r1―伍.x)応｝

吋[r2] r1吋ェ

detR・[ Rx h2- (4. 7) 

5detR is the determinant of a square matrix R. 

喰—T stands for (RT戸 orequivalently (R-1?. M;j is the (i,j) component of a matrix M. 

，
 



In the same way, we obtain 

(detR)2• (R-T [x]正）13 = detR・[ Rx ]i3, 

(detR)2・(R-Tに］記）23 = detR・[ Rx ]23. 

、

1
,

、
|

8
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．

．

 

4

4

 

（

（

 

Since both R-T [ x] R-1 and [Rx] are alternating, it follows 

detR• R-T [ :z:] R―1 = [Rx] 

from (4.7), (4.8) and (4.9), which yields (4.6). ロ

4.2 Images 

Assume that, for i E {1, 2, ... , J}, the stored image {pf}乞 wasobtained from {叫}:=1that 

satisfies 

吋=Rぷ +t; (pE{l,2, ... ,P}). 

This implies 

6叫 = Rふザ，

的=R; か +ti,

from which it follows 

[ x? l 5吋 =(<let凡）R門[XG + R;1ti] {; 吋

by Lemma 4.1. Substituting this into (4.3) we obtain 

p『= f (Ad記G]+ Bi) 8研， (4.10) 

where 

Ai 

Bi 

detRi 

停）2
QR戸，

detRi 

(zP)2 
QR門[R□t叶．

Here Ai and Bi are both 2 x 3 matrices. The stored images are expressed as (4.10). 
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Remark 4.1 In the case of R; E GL(3), both A; and B; can be any 2 x 3 matrix, whereas in 

the case of R; E S0(3), the conditions 

detR; = 1, R門=Ri 

are satisfied. Hence the first-row vector of Ai is equal to the second-row vector of凡 multiplied

by a constant c, and the second-row vector of Ai is equal to the first-row vector of~multiplied 

by -c. In other words, the two row vectors of A are orthogonal and have the same norm. We 

call these orthogonality and norm equality. 

As for a new image {p~}『~1, suppose similarly that 

立=R*か +t* (pE {1,2, ... ,P}) 

is satisfied. Then by putting 

A* 

B* 

we obtain 

detR* 

(z:)2 

detR* 

(z:)2 

QR戸，

Q R-:;T [ R-:;1t*], 

成 =f (A* [xG] +叫足

5 Representations of images 

D 

(4.11) 

Here we consider three representations of admissible transformations and investigate how an 

image can be described by a combination of the stored images. We define the following 2 x 6 

matrices: 

ci := (Ai I Bi), c* := (A* I B』・ (5.1) 

5.1 Linear combination I 

The matrixに in(5.1), being a 2 x 6 matrix, can also be thought of as a vector in R立

Therefore, if {Ci}{=1 spans R12, any C* can be expressed as 

c* = I: 入,Ci
1=1 

11 



in terms of the coefficient set {入i}f=i・Thisis equivalent to 

I 

A*=区入;Ai, 
i=l 

I 

B*=区入iB;, 
i=l 

(5.2) 

which yields a representation of A* and B*. Substituting (5.2) into (4.11) we obtain 

p~ 
I I 叫 A[砂 l+?,; 入B;}8が

喜入;f (A; [ XG] + B;) 8吋

I 

I:,¥; pf. 
i=l 

(5.3) 

Theorem 5.1 Suppose Aa (affine transformations) is the class of admissible transformations 

and that {Cサ比 islinearly independent. Then for V p~E PP, there exists {入i}畠 independent

of p, such that 

P
*
 

p
 

＝ 
12 

こ入ipf. 
i=l 

(5.4) 

ロ

When Ar (rigid transformations) is the class of admissible transformations, the two row 

vectors of A* are orthogonal and have the same norm (see Remark 4.1). Putting 

A『 .
t
1
 

a
 

.
t
2
 

a
 

(5.5) 

we see the conditions7 

信;a~)·(苫入 a~) = 0, 

12 12 

こ入叫 ＝ 区入叫
i=l 1=1 

(5.6) 

(5.7) 

on {刈比 inTheorem 5.1, which are orthogonality and norm equality. 

Theorem 5.2 When Ar is the class of admissible transformations, {入i}畠 inTheorem 5.1 is 

subject to (5.6) and (5.7). 口

7llxll is the Euclidean norm of a vector x. 

12 



Remark 5.1 Theorem 5.1 states that all the feature points in the images obtained from the 

same object should satisfy (5.4) with a common coefficient set {入，Jf=1・

from the same object. 

The converse is not 

true, namely, an image in which all the feature points satisfy (5.4) is not necessarily obtained 

However, when the number of the feature points is sufficiently large, 

it will not be expected that all the feature points of an image of a different object happen to 

satisfy (5.4). This remark applies also to the theorems below. ロ

5.2 Linear combination II 

Put 

C; ＝ .，1
 

c
 

,
9
2
 

c
 

If both { c¥ }{~1 and { c¥ lf~i span R 6 ,・espectively, there exists D; := ( 
μ; 

such that ゜
:, ） (i=l,2, ... ,1) 

c* ＝ 
I 

I:Dぶ，
i=l 

which is equivalent to 

I 

A*= LDi A, 
i=l 

I 

B* =~D; B;. 
i=l 

(5.8) 

This gives another representation of A* and B*. Then we obtain 

p~ 

＝ 

I I 

I い I"'門＋ごD,B,}宣

LDip「・
i=l 

Theorem 5.3 Suppose that Aa is the class of admissible transformations and that { cD『~1

and {吋}?=1are linearly independent, respectively. Then for V p~E P凡thereexists {μ;, v;} ?=1, 

independent of p, such that 

p: 佑
（

＼

 

6

▽
J

I

 ゜
．
 

p.’ p
 

＼

）

 

〇

佑

ロ
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Theorem 5.4 When Ar is the class of admissible transformations, {μ;, v;}f=1 in Theorem 5.3 

is subject to the following two conditions: 

図iat)・(t, Iii a;) = 0, 

6 6 

I:μ 叫=I: Iii a; . 
i=l i=l 

口

We have shown that any image can be described as a combination of six appropriate images 

under the representation (5.8). 

Remark 5.2 The representation (5.8) is similar to that of Ullman-Basri [16]. ロ

5.3 Linear combination III 

I£{cL弓}r=lspans R尺thereexists { ai, /3i, ii, 5i}y=1 which satisfies 

c* 
5

T

 

（

＼

 

3

▽
I
 

Putting 

Mi 
a
i
T
 

（

＼

 

．
 

.,． c
 

＼

）

 

店
ふ
．

(5.9) 

，
 

＼

）

 

氏

ふ

we rewrite (5.9) as 

3 

A*=~A1iA;, 
i=l 

3 

B* = I:M虚，
i=l 

(5.10) 

which gives a third representation of A* and B*. Then, 

p~ 信(M心 I.,G l +喜(M且）｝年

＝ 
3 

~M;p『
i=l 

Theorem 5.5 Suppose that Aa is the class of admissible transformations and that { ci, 吋｝恥

is linearly independent. 

such that 

Then for Vp~E P凡thereexists {a;, 店，Ji,ふ}7=1,independent of p, 

p~ ＝ 
5
I
i
 

（

＼

 

3•>
• p

.
I
 

p
 

＼

）

 

店

ふ
(5.11) 

ロ
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Theorem 5.6 When Ar is the class of admissible transformations, { ai, f3i, ii, ふ}7=1in Theo-

rem 5.5 is subject to the following two conditions: 

3 

L(a叫＋凡a;)・t(,i叫十8;a;)= 0, 
i=l i=l 

3 3 

L(a叫+/3叫） = Lhi a~+ s叫）．
i=l i=l 

(5.12) 

(5.13) 

ロ

We have demonstrated that for the two classes of admissible transformations (affine and 

rigid), any image can be expressed as a linear combination of three appropriate images under 

the representation (5.10). Furthermore, we need at least six points to determine { o:;, (3;, 1;, ふ}r=l

since we have two independent equations for each point (see (5.11)). 

6
 

Algorithm 

In this section we describe an algorithm for object recognition, i.e., a single-shot algorithm 

of linear least-squares type, which is based on the third representation considered in Section 

5. This is because the representation has the advantage of requiring the smallest number of 

images. Similar algorithms could be made for the other representations. 

6.1 Degeneracy of the coefficient matrix 

In Subsection 5.3 we proved that p~can be expressed as a combination of {pf }7=1 for all 

p (p = 1, 2, ... , P) (see (5.11)). When a new image {祠}:=1is given, we first calculate {pり}f=l

and then regard (5.11) as an overdetermined system of linear equations in {ai,Pi,ti, ふ}r=l'

(5.11) shows in dependency of { O'.j'/3;} r =1 and bi'ふ}7=1:the 1st component of p~is expressed 

as the linear equation in only O'.i and /Ji; whereas the 2nd one is expressed as the linear equation 

in only ti andふ.Hence, we can recover { O'.i, /3』)=1and hi, ふ}7=1,separately. 

Let p『=(p右，p店）T, P~= (P~1, Pら）T and also define 

Pk 

T1 

r2 

1 2 P T 
(P*k'P吐 '...'P*k) (k = 1,2), (6.1) 

(aぃ0:2,0:3, 凡，厖凡）Tl 

(,1, ,2, /3, 釘，的，妬）T, 

15 



1 1 1 1 1 1 
P11 P21 P31 P12 P22 P32 

2 2 2 2 2 2 
P11 P21 応1 p口 P22 P32 

H ・一

p p p p p p 
Pn  P21 P31 P12 P22 p3z 

皐
ー

Then (5.11) is rewritten as 

Pk = Hrk (k = 1,2). (6.2) 

Therefore, we first store Hin advance for an object to be recognized. Then when a new image 

（肛 (k= 1, 2)) is gi;en, if affine transformations are concerned, the problem of determining 

whether or not it was obtained from the same object is equivalent to determining whether or 

not there exists r k that satisfies (6.2); for the case of rigid transformations, the problem is 

equivalent to determining whether or not there exists Tk that satisfies all of (6.2), (5.12) and 

(5.13). We should remark again that Pミ6must be satisfied to recover Tk, Pミ6is assumed 

in the following argument. The coefficient matrix H of linear equation (6.2) in rk has the 

following property. 

Theorem 6.1 For the coefficient matrix Hin (6.2), we have 

rankH :S 3, (6.3) 

which is generally satisfied with equality. 

Proof: For i = 1, 2, 3, we denote by wi and w~the first-row vector and the second-row vector 

of the 2 X 3 matrix J人［砂 +R戸ti],respectively (see (4.10)). We also de恥 ea 3 X P matrix 

Sand a 6 x 3 matrix T as follows: 

T 

置

S:= 6ぶ lo研 I・ ・ ・Io試 T:= 叫 IWi I wf I w~I w~I w~ 

Then we have 

H = (TS?. 
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Hence 

rankH < min (rankS, rankT) < 3. 

Furthermore, in general, point p (p = l, 2, ... , P) is randomly chosen in three dimensions and 

the three transformations for the stored images are also independent of one another. This indi-

cates that { 8吋｝『~1 and {wL叫｝恥 spanR尺respectively.Thus, in general, (6.3) is satisfied 

with equality. ロ

From here on, we assume (6.3) is satisfied with equality. Theorem 6.1 shows that a P x 6 

matrix H always degenerates. In other words, Tk (k = 1, 2) that satisfies (6.2) has three degrees 

of freedom; we can not uniquely recover Tk . Accordingly, when Ar (rigid transformations) is 

the class of admissible transformations, we should make use of this freedom so that r1 and r2 

satisfy the conditions (5.12) and (5.13). We apply the method of singular value decomposition 

to H to recover r1 and乃.We can decompose H into 

H = U EVT, (6.4) 

where U and V are respectively a P x P orthogonal matrix and a 6 x 6 orthogonal matrix; 

and E is a P x 6 matrix such that 
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Let dk = UT肛 (k= 1, 2), then the solutions of (6.2) are given by8 

{ T k = V y k I y kj =心／びi(1 :S j'.S 3), 恥 (4:S j =S 6) is arbitrary}. (6.5) 

Especially 

•k v戸戸Pki (6.6) 

where 

r;+ （口：：：::) , 
8如 isthe j-th component of vector dk. 
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which is obtained by setting Yki = 0 (4 S j S 6) in (6.5), is the least-norm solution, i.e., the 

solution that has the minimum norm among the solutions of (6.2). Note that we need not 

know the transformations for the stored images to calculate singular values aj from H. 

6.2 Simplification of orthogonality and norm equality 

When rigid transformations are admissible, we have two conditions: orthogonality and norm ¥ 

equality. Here we show that two conditions (5.12) and (5.13) in Theorem 5.6 can be rewritten 

in a simpler fashion where singular value decomposition again plays an important role. And 

we give the least-norm solution of (6.2) that satisfies both orthogonality and norm equality. 

We define a 3 X 6 matrix W as follows: 

vV・- ai I ai I af I a~I a~I a~ 

which is derived from the three transformations of an object for the stored images (see (5.5)). 

By using W, we can rewrite (5.12) and (5.13) as 

吋WTW巧

吋i,vTvVr1 

0, 

吋WTWr2.

、I
J

、I
J

7

8

 

．

．

 

6

6

 

f
I
‘
(
 

The number of singular values of W is three since the three transformations that are related 

to the stored images are generally independent: rank W = 3. Hence, we apply the method of 

singular value decomposition to vV to obtain 

vV = F鱈 T_ (6.9) 

Here F and G are, respectively, a 3 x 3 orthogonal matrix and a 6 x 6 orthogonal matrix; and 

I[/ is given by 

I 
妬

゜゚
0 0 0 

I]_! = 

゜
如

゜
0 0 0 （か 2心22: 応>0). 

゜゚
応 0 0 0 

＼ 

We define 

Tk := GT匹 (k = 1,2), (6.10) 
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and denote byテkjthe j-th component of vector元.Then (6. 7) and (6.8), namely, the conditions 

on {a;, {3;, 1;, ふ}7=1(or equivalently on r1 and r2) that are incurred for the case where rigid 

transformations are admissible, are rewritten as 

3 

こ討和初=0, 
j=l 

3 

こ討（芍ー恐） = 0. 
j=l 

(6.11) 

(6.12) 

We should remark thatむ(j= 1, 2, 3) can be calculated in advance if we know the transfor-

mations for the stored images. In other words, whereas we need not know the transformations 

to calculate O"j, we must know them to calculate如.From (6.10) and (6.5), the solutions of 

(6.2) are given in terms of元：

柘＝び VykI叩＝心/crj(1さj:S 3), Ykj (4 :S j :S 6) is arbitrary}. (6.13) 

Though Yki (j = 1, 2, 3) is already determined, Yki (j = 4, 5, 6) is arbitrary, which shows that 

元 isexpressed as the linear combination in叩 (j= 4, 5, 6). Therefore, (6.11) and (6.12) are 

quadratic equations in Ykj (j = 4, 5, 6; k = 1, 2). The fact that the number of the constraint 

conditions is two indicates that we still have freedom in determining恥 (j= 4, 5, 6; k = 1, 2). 

Hence, we set Yki = 0 (j = 5, 6; k = 1, 2). Then when we solve (6.11) and (6.12), Yk gives us 

the least-norm solution of (6.2) that satisfies both (6.11) and (6.12) since JIY叶I= llf-kll = llrkll 

(see (6.5)). 

6.3 Algorithm 

In Subsection 6.1 we showed that the problem of determining whether a given new image was 

obtained from the same object is equivalent to determining whether there exists•k (k = 1, 2) 

that satisfies (6.2). And we proved that if the image was obtained from the same object, •k 

is given by (6.5), where singular value decomposition to H plays an important role since H 

is of (at most) rank 3. Furthermore, when affine transformations are concerned, the least-

norm solution is given by (6.6), which should be recovered. In Subsection 6.2, we proved 

that the conditions that are incurred for the case of rigid transformations are rewritten as 

(6.11) and (6.12). vVe also showed that the least-norm solution of (6.2) that satisfies the 

conditions, the solution for the rigid transformation case, is given by•k = Vyk where Yk 
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satisfies Yki = 0 (j = 5, 6; k = I, 2) and is determined by solving (6.11) and (6.12) (cf. (6.13)). 

Therefore, when a new image is given, we regard (6.2) as an overdetermined system of linear 

equations in rk; and then we apply the method of least squares to see whether the residual is 

(almost) eq叫 tozero. 

To be more specific, we first assume that the given image satisfies (6.2) and then recover 

'Tk, Next we determine whether the sum of the distance between two vectors, Hrk and Pk, 

for k = I and 2 is (almost) equal to zero. Here we define a function dis that calculates the 

distance between two vectors: for two vectorsむ andy, 

dis(ぉ， y) := llx-yll-

We should note that we can calculate the two orthogonal matrices U and V as well as singular 

values CYj from the three stored images in advance; and also note that we can calculate the 

orthogonal matrix G andもfromthe three transformations for the stored images beforehand 

(see (6.4) and (6.9)). We sh叫 dagain remark that in order to calculate them we need not know 

the three transformations for the stored images when affine transformations are admissible; 

whereas we must know them in the case of rigid transformations. 

The following procedure determines, for a given paraperspective image, whether or not it 

was obtained from an object to be recognized. 

/Algorithm/ 

1. Calculate的 (see(4.1)). 

2. Calculate p~for all p (p E {1, 2, ... , P}) (see (4.2)). 

3. dk :=戸pk (k = 1, 2) (see (6 .1)) . 

4. (a) If affine transformations are considered admissible, then 

Tk := V~+ dk (k = 1, 2) (see (6.6)); 

(b) if rigid transformations are considered admissible, then 

i. 叫：= (dk1/びl1 dk2/び2,dk3如， Yk4,0, 0汀 (k= 1, 2). 

ii. 元：＝び Vぬ (k= 1,2). 
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iii. Fork= 1 and 2, find Yk4 that satisfies (6.11) and (6.12); let yz be the solution. 

lV. 訴：= (dk1/0"1, d紐／び2,dk3/び3,汎， 0,0戸 (k= 1, 2). 

v. Tk := V訴 (k= 1,2). 

5. Let cost function h be h :=~ 如 (Pk,Hrk), 
k=l 

6. If his (almost) equal to zero, then the same object; otherwise, a different object. ロ

The algorithm is very simple as well as single-shot: just linear operations with no iteration. 

Remark 6.1 From a theoretical point of view, the decision to be made in Step 6 should be 

"h = O" whereas from a practical point of view, it should be "h~O". This is due to the 

rounding errors in the numerical computation. ロ

7 Experimental results 

On the basis of the algorithm above, our experimental results with artificial images are 

shown. And it is found that the algorithm correctly determines whether or not a given image 

was obtained from the same object. Note that we fixed the focal length at J = 1.0, and that 

the class of admissible transformations was set rigid. 

First, paraperspective images were artificially generated from an object to be recognized. 

The object is a parallelepiped (see Fig. 3) with eight vertices: (5.,00, 6.50, 10.00), (5.80, 5.96, 9.73), 

(6.16, 7.04, 9.37), (5.36, 7.58, 9.64), (5.45, 6.05, 11.35), (6.25, 5.51, 11.08), (6.61, 6.59, 10.72), 

(5.81, 7.13, 10.99). Then we regarded the seven visible vertices as the feature points. Hence 

an image of the parallelepiped is represented as the set of the paraperspective images of the 

seven feature points. Three stored images for the object are shown in Fig. 4. Each image was 

obtained with a transformation9 in Table 1. Fig. 5 shows three new images, each of which 

should be determined whether or not it was obtained from the parallelepiped. The algorithm 

was applied to the three images. The results are shown in Table 2 (first column). Since the 

values of pf are 0(10-2), we set the threshold for the decision "h~O" to 1.0 X 10-5 (rather ar-

bitrarily). Then, Table 2 shows the algorithm determines that both (d) and (e) were obtained 

from the same object, and that (f) was obtained from a different object. Actually in Fig. 5, 

9 All the transformations consist of a rotation around the viewpoint followed by a translation. 
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(d) was obtained by rotating the parallelepiped by 30°around the x axis and then by -30° 

around they axis and then translating it by (1.00, 4.50, -0.50); (e) was obtained by rotating 

the parallelepiped by 5°, 20°, and 30°around the x, the y and the z axes, respectively, and 

then translating it by (-3.00, -5.00, 0.00); whereas (f) was obtained from a different object, 

i.e., a frustum of the pyramid. 

On the other hand, in order to find our algorithm could be applied to perspective images, we 1 

experimented the case where images were perspectively obtained. Table 2 (second column) also 

gives the results of the algorithm applied to the perspective images under the same conditions. 

Note that the stored images and the new images are shown in Fig. 6 and in Fig. 7, respectively. 

Table 2 also shows our algorithm determines that both (d) and (e) were obtained from the 

same object, and that (f) was obtained from a different object under the threshold 1.0 x 10-5. 

These decisions are again correct even though there are approximation errors in this case. This 

shows that the algorithm can be applied even to perspective images. 

Our experimental results indicate that our algorithm correctly determines whether or not a 

given image was obtained from the same object under not only paraperspective projection but 

also perspective projection. 

8 Conclusion 

It was clarified that paraperspective projection is the first-order approximation of perspective 

projection. And it was shown that under paraperspective projection, when we represent an 

object as a set of its feature points, several images are sufficient to express any other image of 

the same object that has at least six feature points. Particularly when the class of admissible 

transformations for an object is affine or rigid, the coordinates of the feature points of any 

image can be described as the linear combination of the coordinates of the feature points of 

three appropriate images where the coefficients of the combination are parametrized and their 

number is independent of the number of the feature points (and accordingly, independent of an 

object to be recognized). In addition, when rigid transformations are considered admissible, 

the coefficients of the linear combination have to satisfy two conditions: orthogonality and 

norm equality. 

Based on these properties, we proposed a single-shot algorithm for object recognition under 
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paraperspective projection; it is an algorithm of linear least-squares type and makes use of sin-

gular value decomposition to recover the values of the coefficients. This indicates that, when a 

new image is given, we have only to determine whether or not the cost function can be almost 

nullified by a suitable set of parameter values. As pointed out, we have indeterminacy in recov-

ering the values of the coefficients; hence we introduced a coefficient vector Tk by aligning the 

coefficients and set a criteria of least norm in order to eliminate the indeterminacy. We should 

note that this indeterminacy could cause an image obtained from a different object to happen 

to be determined as an image obtained from the same object. Theoretical considerations on 

such a case are left open in this paper. 

We presented some experimental results with artificial paraperspective images and found 

that the algorithm correctly determines whether or not a given image was obtained from the 

same object. We also applied our algorithm to perspective images and found that it still 

works well for recognizing an object though there are approximation errors in addition to the 

rounding errors in the numerical computation. 

Future investigations should include (1) the analysis of the errors incurred by the approx-

imation of perspective projection by paraperspective projection, and (2) the analysis of the 

rounding errors in the actual implementation of the proposed algorithm. 
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Fig. 1: Principle of paraperspective projection 
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Fig. 2: A transformation i of a point p 

Fig. 3: The parallelepiped to be recognized 
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Fig. 4: The stored images of the object in Fig. 3 

(d) (e) (f) 

Fig. 5: New images 

(a) (b) (c) 

Fig. 6: The stored images of the object in Fig. 3 (perspective) 
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(d) (e) (f) 

Fig. 7: New images (perspective) 

Table 1: Transformations for the stored images 

rotation translation 

axis degree (x,y,z) 

(a) X 10° (-0.50, 2.00, 0.00) 

(b) お 15° (2.50, 4.00, -1.00) 

(c) y -10° (-4.50, 2.50, 0.50) 

Table 2: Minimum values of the cost function h 

h (paraperspective) h (perspective) 

(cl) 5.63 X 10-14 2.86 X 10-7 

(e) 5.99 X 10-13 4.75 X 10-5 

(f) 1.14 X 10-2 2.32 X lQ-3 

28 


	001
	002
	MX-4111FN_20201007_141755



