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Abstract 

Three computational problems to be solved for visually guided reaching move-

ments, trajectory formation, coordinate transformation, and calculation of motor 

commands, are all ill-posed in redundant biological motor control systems. Two 

different theories, unidirectional and bi-directional, have been developed to account 

for how the brain solves them. In the unidirectional theory, the three problems are 

solved sequentially and step by step. In each calculation, the higher-level in the 

hierarchy resolves ill-posedness at that level without reference to what happens at 

the lower-level in the hierarchy. The representative models developed in the unidi-

rectional theory framework are minimum-jerk model and virtual trajectory control 

hypothesis. The bi-directional theory retains the same hierarchical structure, but 

the three computational problems are solved simultaneously rather than sequentially 

while using both upward and downward information flows between different lev-

els in the hierarchy. The upward and downward information flows are achieved 

by the internal forward and inverse models of the controlled object and the environ-

ment, respectively. The representative models developed in the bi-directional-theory 

framework are minimum-torque-change model and feedforward control using an in-

verse dynamics model. The two theories disagree on many points, some of which 

can be tested by a combination of carefully controlled experiments and computer 

simulations. This paper first summarizes comparisons between the two theories and 

introduces recent experimental and simulation data which address their differences. 

1 Unidirectional versus Bi-directional Theory 

The problem of controlling goal-directed limb movements can be partitioned conceptually 

into a set of information-processing sub processes; trajectory planning, coordinate trans-

formation from extracorporal space to intrinsic body coordinates and motor command 

* shorter version of this technical report will appear as a chapter in Proceedings of the Second Workshop 
on Mathematical Approach to Fluctuations (ed) Hida, T., World Scientific Publishing, Singapore, 1995. 
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generation. These sub processes are required to translate the spatial characteristics of the 

target or goal of the movement into an appropriate pattern of muscle activation. Over the 

past decade, computational studies of motor control have become much more advanced 

as a result of concentrating on these three computational problems. Many of the mod-

els can be broadly classified into one of the two contrasting theories: unidirectional and 

bi-directional. In both the theories, hierarchical structure of information representations 

and the three problems are assumed to be as shown in Fig. 1. The fundamental difference 

between the two theories is direction of information flows allowed for solving the three 

computational problems. 

In the unidirectional theory, information flows only downward from the higher level to 

the lower level. As a result, the higher level computational problem is solved without any 

reference to the lower level computational problems. For example, trajectory planning is 

solved without using any knowledge about coordinate transformation or motor command 

generation. Thus, the three problems are solved sequentially step by step (Table 1). That 

is, first the trajectory planning problem is solved to compute the desired trajectory in the 

extrinsic space (in many cases, task-oriented visual coordinates). Then, the coordinate 

transformation problem is solved to obtain the desired trajectory in the intrinsic space 

(joint angles, muscle lengths etc.) from the trajectory in the extrinsic space. Finally, the 

necessary motor commands for the desired trajectory in the intrinsic space are calculated 

by a controller. 

On the other hand, in the bi-directional theory, upward information flows as well as 

downward flows are allowed and actually essential to solve the three computational prob-

lems in a reasonably short time (Table 1). As a result, the higher level computational 

problem is solved while taking account of events which happen at the lower levels. For 

example, trajectory planning is executed while taking account of the smoothness of motor 

command (Fig. 1). Thus, the three problems should be solved simultaneously rather than 

sequentially (Table 1). 

This section briefly summarizes comparisons between the unidirectional theory and 

the bi-directional theory according to the order of items listed in Table 1. Some of the 

topics will be discussed in detail in the following sections. References to them will also 

be given here. 

One of the most fundamental differences between the two theones concerns the spaces 

in which the trajectory is first planned. Conseque叫 y,at present there is a controversy 

about the coordinate system, extrinsic (kinematic) or intrinsic (dynamic), in which trajec-

tories are planned. In the unidirectional theory, the trajectory is assumed to be planned 

solely in the extrinsic space (usually task-oriented visual coordinates), while all the kine-

matic and dynamic factors at the lower levels are neglected. On the other hand, in the 

bi-directional theory the trajectory is planned in both the intrinsic (body coordinates) and 

extrinsic space. Goals of movements such as the end point of reaching are given in the 

extrinsic space while necessary constraints to select a unique trajectory (i.e, to resolve the 

ill-posedness) are given in the intrinsic space. Thus, the two spaces are used simultane-

ously for trajectory planning. 

The above explanation to the controversy might be too simple and slightly misguided. 
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Figure 1: Hierarchical arrangement of computational problems and internal representa-

tions of visually-guided arm movements. The left side shows a block diagram of the 

unidirectional theory, and the right side a block diagram of the bi-directional theory. 
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Table 1: Comparison of the unidirectional and bi-directional theories for goal-directed 

arm movements 

Theory 

How to solve three computational 

problems 

Spaces where trajectory is planned 

Optimization principle 

(Example) 

Control 

Internal models of motor apparatus 

and environment 

Motor learning 

Unidirectional 

Sequential 

Extrinsic space (task-oriented vi-

sual coordinates) 

Kinematic 

(Minimum-jerk) 

Virtual trajectory control 

Not necessary 

Curved path I• Incomplete control 
• Visual misperception 
• Virtual trajectory 

Stiffness during movement I High stiffness 

Bi-directional 

Simultaneous 

Intrinsic space (body coordinates) 

& Extrinsic space 

Dynamic 

(Minimum-torque-change) 

Inverse dynamics model 

Forward dynamics model & 

Inverse dynamics model 

Acquisition of internal models 

Optimal (planned) trajectory itself 

is curved 

Low stiffness 

Altered visual environments I• Invariant in extrinsic space 

• Variant in intrinsic space 

Force field adaptation (new dy-/ No adaptation 

nam1c environment) 

Trajectory under translation, rota-I Invariant 

tion, reflection 

・Invariant in intrinsic space 

• Variant in extrinsic space 

Adaptation 

Variant 
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The difference between the uni-directional theory and bi-directional theory surely is not 
simply whether or not there is only planning in extrinsic space; somehow those high-level 

plans must be passed down to a system that deals with forces and motor commands, in 

which case there must be a lower-level planner (or controller). Actually as an illustrative 
example, we can imagine a uni-directional strategy in which first the minimum-jerk model 

in Cartesian coordinates specifies the path in extrinsic space, then the minimum-torque-

change model transforms this desired trajectory into joint angle motions, and finally the 

minimum-motor-command-change model determines the necessary motor neuron firings 

from the desired joint angle motions. In this extreme case, motor planning (or in a wider 

sense, trajectory planning) is done at all of the three different levels but the information 

flow is uni-directio叫 Thelower level planner obeys the commands (path constraints or 

desired joint angle motions) from the higher level strictly, and the higher level planner 

ignores the lower level planner. Thus, the distinction between the uni-directional and bi-

directional theories is neither directly coupled to kinematic versus dynamic optimization 

models nor extrinsic versus intrinsic trajectory planning. The essential difference between 

the two theories is whether different level motor planners and controllers are arranged 

in a purely hierarchical manner (uni-directional) or whether they talk to each other (bi-

directional) to determine motor behaviors. 

However, in most of the biologically plausible models which have been studied, the 

optimization principles for trajectory planning developed by the two theories are markedly 

different, which are inseparably coupled to the spaces for the first trajectory planning. In 

the unidirectional theory, because the planning process does not take the lower levels into 

account, the optimization principle has to be kinematic at the highest level and all of the 

dynamic factors are therefore neglected at this first planning stage. One representative 

example is the minimum-jerk model defined in Cartesian coordinates. On the other hand, 

in the bi-directional theory, it is possible to use principles on the optimization of dynam-

ics which takes lower levels into account. One representative example is the minimum-
torque-change model. 

With regards to motor command generation (control), several different schemes are 

possible under the unidirectional theory. If one takes the purest position of the unidirec-

tional theory where upward information flows are not even used for motor learning on 

a longer time scale, the vi血 altrajectory control hypothesis (Bizzi, Accornero, Chapple 

and Hogan, 1984; Hogan 1984; Flash 1987) is one possible strategy. The virtual trajec-

tory control hypothesis will be discussed in Section 4.3 as a possible reason for observed 
curved paths. 

In the bi-directional theory, feedforward control is executed by an inverse dynamics 

model of the motor apparatus. 

If one takes the purest position in the unidirectional theory which combines kinematic 

path planning with the virtual trajectory control hypothesis, the brain does not need to 

utilize any internal model of the motor apparatus or environment in trajectory planning 
and control. 

On the other hand, both the forward dynamics model and the inverse dynamics model 

are necessary for fast computation of trajectory planning under the bi-directional theory 
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(Wada and Kawato, 1993). In general, inverse models are necessary for fast computation, 

while forward models are necessary to resolve ill-posedness, or in more intuitive terms, 

to improve adaptability of behaviors. These two kinds of models correspond to down-

ward and upward information flows respectively (Fig. 1). These internal models should 

be learned and stored somewhere in the brain. I believe that this acquisition of internal 

models of the motor apparatus and the environment forms a major part of early-stage motor 

learning. A biologically plausible learning scheme to acquire the inverse dynamics model 

and some experimental evidence that internal models reside in the cerebellum were pre-

viously proposed (Kawato, Furukawa, Suzuki, 1987; Kawato and Gomi, 1992; Shidara, 

Kawano, Gomi, Kawato, 1993). 

As explained in the next section, point-to-point arm trajectories are roughly straight 

in front of the body. However, some trajectories such as lateral (transverse) motions are 

markedly curved. In the unidirectional theory, the curvature of these paths is ascribed to 

one or several of the following reasons because the kinematically planned trajectory has 

no rational reason to be curved (that is, it must strictly be straight). These three reasons 

were first clearly pointed out by Wolpert, Ghahramani and Jordan (1993,1994) and ex-

amined by them. The first is that although the planned and desired trajectory is straight, 

because of incomplete control capability of the central nervous system, the realized trajec-

tory becomes a little curved. The second is that although humans perceive a straight path, 

realized trajectories are curved because of distortion in their visual systems. The third 

is that although the virtual trajectory is planned to be straight, the actual trajectory is the 

outcome of interactions of the nonlinear dynamical properties of the arm and the visco-

elastic properties of muscles, thus it is a little curved (Flash 1987). On the other hand, in 

the bi-directional theory, the optimal trajectory itself is curved (Uno, Kawato and Suzuki, 

1989). Section 4 reviews experimental data obtained in our laboratory which disproves 

the above three possible reasons ascribed by the unidirectional theory (Osu, Uno, Koike 

and Kawato, 1994; Katayama and Kawato, 1993; Kawato, Gomi, Katayama and Koike, 

1993; Koike and Kawato, 1993). 

In order that the planned virtual trajectory be straight and the resulting actual trajectory 

be slightly curved, the arm should be stiffer during movement than during posture control 

(Flash, 1987). On the other hand, in the bi-directional theory, low stiffness values dur-

ing movement can be assumed. Recent experiments directly estimated dynamic stiffness 

values during movement and reported low values (Bennett, Hollerbach, Xu and Hunter, 

1992; Bennett, 1993; Gomi, Koike and Kawato, 1992; Gomi and Kawato, 1995). These 

experimental data will also be introduced in Section 4.3. 

The lower-most three items in Table 1 indicate experimental tests of predictions made 

by the two theories. First, if visual perception of the hand position is systematically altered 

for example by artificial coordinate transformation between the measured hand position 

and the cursor position displayed on the CRT, the two theories make dramatically differ-

ent predictions. In the unidirectional theory, because the trajectory is planned in the task-

oriented visual coordinates it is not influenced by any operation below the extrinsic space. 

Thus, the prediction is that the trajectory is invariant in extrinsic space while it is variant 

in intrinsic space. On the other hand, because the objective function in the bi-directional 
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theory is given in the intrinsic space, once the target point to be reached is transformed into 

the intrinsic space, the trajectory should be planned in exactly the same way. Thus, the 

trajectory is invariant in intrinsic space and hence variant in extrinsic space. This experi-

mental paradigm was first proposed by Uno and tested by an undergraduate student at the 

University of Tokyo (1989 unpublished bachelor thesis). It was cited by Kawato (1992). 

Wolpert, Ghahramani and Jordan (1993) drew conclusions favorable to the unidirectional 

theory based on their own experimental data. This paper points out that their conclusion 

is inappropriate in the light of their own data. It also introduces experimental data which 

supports the bi-directional theory obtained in our lab (Uno, Imamizu and Kawato, 1994). 

Force field adaptation is another useful way to discriminate between the predictions of 

the two theories. Examples of force fields are elastic, viscous or inertia fields. Because in 

the unidirectional theory, the trajectory is planned regardless of dynamics, it is not adapted 

to the new force field. Thus, once the controller finds out how to achieve the original 

planned trajectory, the realized trajectory should be identical to the planned one under the 

normal condition. On the other hand, in the bi-directional theory, the planned trajectory 

is altered by an external force field. This experimental examination of the theories was 

first adopted by Uno, Kawato and Suzuki (1989) and supported the bi-directional theory. 

Flash and Gurevich (1992) and Shadmehr and Mussa-Ivaldi (1993) used the same force 

field adaptation paradigm and drew different conclusions from ours. Section 6 shows that 

either because the training was not sufficient or because the effect of the force-field on the 

trajectory shape was too small, they were not able to properly examine the two theories. 

Finally, in the unidirectional theory, even if the starting, via and target points are trans-

formed either by translation, rotation, or reflection, the same trajectory is predicted. How-

ever, in the bi-directional theory, different trajectories are predicted under such conditions. 

Uno, Kawato and Suzuki (1989) already confirmed that the latter prediction is correct. 

The next section briefly describes well known invariant features of multi-joint arm tra-

jectories. These characteristics must be reproduced by any candidate for a computational 

model of trajectory planning and control. 

2 Invariant Features of a Multi-Joint Arm Trajectory 

One interesting feature of human multi-joint arm movements is that the hand paths be-

tween two points are roughly straight, and the hand-speed profiles are bell-shaped (Kelso, 

Southard and Goodman, 1979; Morasso, 1981; Abend, Bizzi and Morasso, 1982; Atkeson 

and Hollerbach, 1985; Flash and Hogan, 1985; Uno, Kawato and Suzuki, 1989). 

We re-examined human multi-joint arm movements using the OPTOTRAK (Northern 

Digital Inc.) position measurement system. Subjects (3 males aged 28-39) were asked to 

move their hands from one point to another using elbow and shoulder joint rotations while 

their wrists were braced. Arm movement was constrained in the horizontal plane at the 

shoulder level. We tested the following three methods for constraining the movement in 

the horizontal plane. (1) Hanging the elbow by a long strap from the ceiling. (2) Attach a 

cuff made of a low friction material to the wrist. The table was covered by a low friction 
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Teflon sheet. (3) Subjects were asked to hold their arms above the table about 5 cm to 10 

cm before, during and after the movement. The three different methods gave essentially 

the same results, but the third one gave the smoothest and most comfortable movement 

execution. Thus, we report here the results obtained under the third condition. The path 

data shown in Fig. 2 has already been published in Japanese (Koike and Kawato, 1994) 

but the velocity and acceleration data shown in Fig. 3 have not. Similar but more noisy 

data using the long strap (above method (1)) were previously published (Kawato, Gomi, 

Katayama and Koike, 1993). 

Durations for movement were not given; instead, subjects could select their own com-

fortable duration, which ranged from 500 to 750 ms depending on the distances moved. 

Figure 2 shows hand paths for five different movements (Tl⇒ T3, T2⇒ T6, T3⇒ T6, 
T4⇒ Tl, T4⇒ T6) taken from one subject. The hand position was sampled at 400 Hz 
and each point in Fig. 2 corresponds to one sampled position. Paths generated under 10 

trials for each movement were overwritten. The positions of the initial and target points 

were the same as those used in Uno et al. (1989). The origin of Fig. 2 is the shoulder 

position, the X-axis is toward the right and the positive direction of the Y-axis is forward 

away from the body. One can see that the trajectories are usually roughly straight but 

that they are significantly curved for some movements (e.g. T2⇒ T6). The observation 
that transverse paths are significantly curved but radial paths (paths away from the frontal 

plane of the body) are considerably straighter played an important role in discriminating 
different computat10叫 theories.

We also calculated hand tangential velocities and accelerations. Figures 3A and B 

show them for the movement from T2 to T6 shown in Fig. 2. Note that velocity and 

acceleration profiles of other movements are very similar (see Fig. 3 of Uno et al. 1989 

for velocity profiles for different paths). A second-order Butterworth filter with a cutoff 

frequency of 10 Hz was used to make numerical calculations of the velocity from the 

position data. The same filter was again used to obtain the acceleration from the velocity. 

The shape of the velocity profile agrees with previous studies and is characterized by 

a single peak and bell-shaped profile. The acceleration profile is more noisy because of 

numerical differentiation, but reveals very important characteristics which can be used to 

reject some computational models for trajectory planning and control. When the hand is 

in a static state either before or after the movement, the acceleration is zero. During the 

movement, it is of course not zero except at the time of peak velocity as can be seen from 

Fig. 3B. It should be emphasized that the acceleration gradually increased from zero at the 

beginning of the movement, and also that it gradually increased (decreased in magnitude) 

to zero at the end of the movement (conceptually depicted in the right column of Fig. 

3C). It was not discontinuous at the beginning or end of the movement. Consequently, 
optimization models such as minimum acceleration or minimum torque which predict the 

discontinuity of acceleration at the beginning and end of movement are rejected. 
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3 Kinematic versus Dynamic Optimization Models for Tra-

jectory Planning 

This section first introduces several optimization models that have been experimentally 

confirmed. In particular, it shows that optimization at a given space can solve the ill-posed 

motor control problem at that level (Figure 4). The minimum-jerk model defined at the 

task space can resolve the ill-posed trajectory formation problem. The minimum-torque-

change model defined at the intrinsic body coordinates can resolve the ill-posed inverse 

kinematics problem. The minimum-muscle-tension-change model defined at the muscle 

level can resolve the ill-posed inverse dynamics problem. And finally, the minimum-

motor-command-change model defined in the central nervous system can resolve indeter-

minate motor control problems. The first model is classified into the unidirectional theory 

while the other three are all examples of the bi-directional theory. As mentioned in section 

1, depending on which of these models is used, there is a controversy about the coordinate 

system in which trajectories are first planned. The first model proposes the extrinsic space 

whereas the latter three propose the intrinsic space. 

3.1 Minimum-jerk model 

In order to account for the kinematic features of human multi-joint arm movements such as 

those explained in the previous section, Flash and Hogan (1985) proposed a mathematical 

model, the minimum-jerk model, which assumes that the trajectory followed by a subject's 

arm tends to minimize the square of the movement jerk (rate of change in acceleration), 

integrated over the entire movement: 

CJ = 1 / 2 lot t { (詈？＋（冒内dt (1) 

Here, (X, Y) are the Cartesian coordinates of the hand, and t 1 is the movement dura-

tion. Flash and Hogan (1985) showed that the unique trajectory predicted by this equation 

agreed closely with data on movements made in front of the body. Let us explain this in a 

little more detail. 

By using the Euler-Poisson equation, it can be mathematically shown that the optimal 

solution of the minimum-jerk model for each coordinate axis has the form of a 5-th or-

der polynomial in time. The predicted trajectory for a discrete point-to-point movement 

is a straight line because the temporal dependence of X and Y is identical. The trajec-

tory is also characterized by a perfectly symmetrical bell-shaped speed profile. Thus, the 

prediction is in qualitative agreement with the data shown in Fig's. 2 and 3. 

The minimum-jerk model was the first optimization model to be experimentally con-

firmed; this was epoch making for biological optimization theories. The minimum-jerk 

model is based solely on the kinematics of movement, independent of the dynamics of 

the musculoskeletal system. It is successful only when formulated in terms of the mo-

tion of the hand in extracorporeal space, and fails when defined in terms of, for example, 

the joint angles. This is because the minimum-jerk model predicts straight trajectories 
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Figure 4: Schematic diagram illustrating components involved in visually-guided reach-

ing movements and different spaces where different variables are represented. Four dif-

ferent spaces are used to represent movement conditions, movement trajectories, and mo-

tor commands. The positions of the target or obstacles are represented in 3-dimensional 

Cartesian space (extrinsic space). The hand position in this coordinate system can be mea-

sured by the visual system. During movements, joint torques are generated from muscle 

tensions. Muscle activation levels are controlled by the nervous system. The minimum-

jerk model is defined at the Cartesian coordinates of the hand position, and can solve the 

trajectory formation problem. The minimum-torque-change model is defined at the joint 

torque coordinates, and can solve the trajectory formation problem, the inverse kinematics 

problem, and the inverse dynamics problem up to the joint torque. The minimum-muscle-

tension-change model is defined at the muscle tension coordinates, and solves the above 

three problems up to the muscle tension. The minimum-motor-command-change model 

is defined in the motor command coordinates of the central nervous system, and can solve 

the above three problems up to the motor commands in the brain. It is possible to impose 

a smoothness constraint on motor commands at different levels such as a motor neuron 

firing in the spinal cord, or a pyramidal tract neuron firing in the cerebral motor cortex. 
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in the space where the objective function is defined. The minimum-jerk model defined 

in joint angle space predicts straight paths in the joint angle space but these are overly 

curved in Cartesian space when compared with the experimentally observed data. Thus, 

the minimum-jerk model implies that the trajectory is first planned in extrinsic space. 

3.2 Minimum-torque-change model 

The minimum-jerk model is simple and beautiful, but the uniqueness of the solution seems 

too strong in the sense that the model predicts a unique trajectory regardless of various 

conditions which may be present in the environment or in the motor task itself. 

If a major objective of motor control is merely to decrease the degrees-of-freedom 

in the system, this can be easily achieved by introducing very strong couplings between 

all independent variables so that the system behaves in a stereotyped, single-fixed-action 

pattern. However, this is not at all desirable. The solutions adopted by the motor-control 

network should be flexible and should adapt to various environmental conditions; oth-

erwise, humans would not have the capacity for motor equivalence or equi-finality -the 

ability to achieve the same physical objective in more than one way. However, because 

the minimum-jerk model is a kinematic model, it can not adapt planned trajectories in 

extrinsic space to different dynamic aspects involved in the motor task, environment and 

the motor apparatus, such as the inertial characteristics of manipulated objects, force field 

or physical parameters of the arm. 

Based on the idea that movement optimization must be related to movement dynamics, 

Uno, Kawato and Suzuki (1989) proposed the following alternative quadratic measure of 

performance: 

CT = 1/2 la。勺〗（詈兄dt, (2) 

where, Ti is the torque fed to the ith of m actuators. Here, the performance measure (ob-

jective function) is the sum of the square of the rate of change of the torque, integrated 

over the entire movement. One can see that Cr (Equation 2) is related to CJ (Equation 

1) because the rate of change of torque is locally proportional to the jerk. In particular, 

if the controlled object is a point mass, then the force is eq叫 tothe product of the mass 

and the acceleration. Thus, the minimum-jerk (rate of change of acceleration) is identical 

to the minimum-force-change (minimum-torque-change). For a multi-joint, nonlinear-

controlled object, the two criteria are different. In particular, it must be emphasized that 

Cr depends critically on the dynamics of the musculoskeletal system, not just on the kine-

matics. 

For movements between pairs of targets in front of the body, predictions made by both 

these models have agreed closely with experimental data. However, movement trajec-

tories predicted by the minimum-torque-change model (Equation 2) are quite different 

from those predicted by the minimum-jerk model (Equation 1) in four other behavioral 

situations. In one situation, past data already support the minimum-torque-change model 

(Atkeson and Hollerbach, 1985). The other three situations were not examined. However, 

when Uno, Kawato and Suzuki (1989) dealt with them they found that predictions of the 
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minimum-torque-change model matched the data better than did those of the minimum-

jerk model. 

The first result by Uno, Kawato and Suzuki (1989) concerned what happened when 

the starting point of an arm was to the side of the body and the end point was in front. 

Here the movement path was curved under the minimum-torque-change model, but always 

straight under the minimum-jerk model. The hand paths of sixteen human subjects were 

all curved, supporting the minimum-torque-change model (Uno, Kawato, Suzuki, 1989). 

This specific movement was utilized again by Osu, Uno, Koike and Kawato (1994) to 

examine the origin of the curvature, and will be introduced in Section 4. 

The second result found by Uno, Kawato and Suzuki (1989) concerned movements 

between two points while resisting a spring, one end of which was attached to the hand 

while the other was fixed. This is exactly the first examination of the force field adaptation 

listed in Table 1. Here, the minimum-jerk model always predicted a straight movement 

path regardless of external forces. The minimum-torque-change model predicted a curved 

path and an asymmetrical speed profile for the movement with the spring. The latter 

predictions again agreed closely with the data, further supporting the minimum-torque-

change model. 

Third, Uno, Kawato and Suzuki (1989) examined vertical movement affected by grav-

ity. The minimum-jerk model always predicted a straight path between two points. The 

minimum-torque-change model predicted curved paths for large up and down movements, 

but essentially straight paths for small fore and aft movements. The speed profiles were 

bell-shaped for both movements. This outcome agrees closely with the data of Atkeson 

and Hollerbach (1985), as one would expect from the minimum-torque-change model. 

Finally, the most compelling evidence obtained by Uno, Kawato and Suzuki (1989) 

concerned a pair of via-point movements (Fig. 5). These movements involved two sub-

cases, with identical starting and end points, but with mirror-image via-points. This cor-

responds to the lower most item listed in Table 1. Because of objective function C/s 

invariance under translation, rotation, and roll, the minimum-jerk model predicted iden-

tical movement paths with respect to roll as well as identical speed profiles for the two 

subcases. On the other hand, the minimum-torque-change model predicted two different 

paths. For the concave path, the speed profile should have two peaks. However, for the 

convex path, the speed profile should have only one peak. These latter predictions agree 

closely with the data obtained by Uno, Kawato and Suzuki (1989). 

Summarizing these comparisons, it can be seen that the trajectory derived from the 

minimum-jerk model is determined only by the geometric relationship between the initial, 

final, and intermediate points on the movement trajectory. The trajectory derived from the 

minimum-torque-change model depends not only on the relationship between these three 

points but also on the arm posture (in other words, the location of the shoulder relative to 

the three points), and on external forces. Empirical data suggest that the latter dependence 

is in fact the case. Wann, Nimmo-Smith and Wing (1988) also found that the minimum-

jerk model fails due to its lack of information on movement dynamics. 
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3.3 Physical parameter values of the arm 

Flash (1990) recently criticized the minimum-torque-change model based on her own 

simulation of the minimum-torque-change trajectory. Her criticism concerned the link-

inertia moment values assumed in Uno, Kawato and Suzuki (1989). Let subscript 1 de-

note physical parameter values of the upper arm (link 1), and subscript 2 denote those of 

the forearm (link 2). The values assumed in Uno, Kawato and Suzuki (1989) are as fol-

lows and are summarized in Table 2: mass M1=0.9[kg], M2=1.l[kg]; length L1=0.25[m], 

L2=0.35[m]; center of mass from jointふ=0.ll[m],品=0.15[m];inertia moment around 

joint 11 =0.065[kg m汀， 12=0.IOO[kg m汀； coefficient of viscosity around joint b1 =0.08[kg 
m勺s],妬=0.08[kgm2/s]. Although our simulations used the moment value h experimen-
tally obtained by Cannon and Zahalak (1982), it was about double a reasonable value 

based on the other physical parameters of the links: mass, length, and center of mass used 

in the simulation. When a reasonable, smaller inertia moment value was assumed while 

keeping the other parameter values constant, the hand path for point-to-point movement in 

front of the body was too concavely curved compared with the human data (Fig. 17 .6 pp. 

293, Flash, 1990 for T3⇒ T6 movement). When Uno simulated minimum torque-change 
trajectories with parametersハ=0.0201[kgm汀， l2=0.0453[kgm汀， whichwere less than 

half of the above values, and with other parameters which were the same as those in Table 

2, the predicted hand paths were too concave and too curved to the left compared with the 

human data. 

Table 2: Parameter values assumed in Uno, Kawato and Suzuki (1989) for examining the 

minimum-torque-change model 

link 1 link 2 

(upper arm) (forearm) 

L・ i ［叫 0.25 0.35 

Si ［叫 0.11 0.15 

Mi [kg] 0.9 I.I 

Ii [kgm汀 0.065 0.100 
b・ I [kgm勺s] 0.08 0.08 

The other uncertain parameter values in the above simulations were the viscosity val-

ues during movements because 0.08 was cited from a monkey study (Hogan, 1984) and 

no direct measurement was made for viscosity during human movements at that time. 

Recently, Bennett et al. (1992) directly estimated stiffness and viscosity values of the 

elbow joint during cyclic movements. They reported that the damping ratio defined as 

t = bサ~during movement varied between 0.2 and 0.6 over one movement cycle. 

Here}もisstiffness of the elbow joint and h was 0.072 [kgm汀includingthe apparatus 

inertia of 0.032 [kgm汀.Then, Bennett (1993) estimated dynamic stiffness values dur-

ing targeted elbow joint movements at speeds ranging from slow to very fast. In Fig. 
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6 of Bennett (1993), mean stiffness during movement was plotted as a function of the 

mean background torque magnitude (mean absolute value of net muscle torque during 

unperturbed movement). This paper is concerned with two-joint movements. The elbow 

joint stiffness and viscosity during multi-joint movements was estimated by calculating 

the mean background torque magnitude at the elbow as defined by Bennett (1993). Koike 

(personal communication, 1994) calculated this using the data and the method described 

in Koike and Kawato (1994). The resulting values [N叫 areas follows: 0.306 (T3=辻 6),

0.341 (T2=⇒ T6), 0.022 (Tl=⇒ T3), 0.141 (T4=⇒ Tl), 0.187 (T4=⇒ T6), 0.266 (T6==;, T3), 
0.307 (T6=⇒ T2), 0.047 (T3=⇒ Tl), 0.099 (Tl=⇒ T4), 0.202 (T6=⇒ T4). Themeanis0.19 
and the range is 0.022 to 0.34. By using Fig. 6 of Bennett (1993), the mean dynamic stiff-

ness}臼forthese 10 two-joint movements can be estimated as 3 [Nm/rad] with a range 

of 2 [Nm/rad] to 4 [Nm/rad]. Viscosity value can be estimated from the damping ratio e 

of Bennett et al. (1992) using the following equation: 妬=e勾恥0.072,which gives an 

average of 0.37 [Nms/rad] and a range of 0.15 to 0.64. Because vigorous EMG activities 

in elbow related muscles were observed even when the mean background torque magni-

tude was small in (Tl=⇒ T3) and (T3=⇒ Tl) movements, the lower bound was apparently 
underestimated. It can be safely concluded that the average viscosity is around 0.4 and 

that the variation ranges from 0.2 to 0.8. Incidentally, the viscosity value changed from 0 

to 0.7 with an average of around 0.3 to 0.4 in elbow joint cyclic movement examined by 

Bennett et al. (1992). 

Accordingly, the current best estimation of parameter values is summarized in Ta-

ble 3. Uno and Kawato (1994) recently found that, for this set of parameter values, the 

minimum-torque-change model predicts trajectories which are quite similar to those given 

by human data. Thus, it can be concluded that the minimum-torque-change model is still 

a very attractive model which can reproduce human-movement data with realistic inertia 

moment values and measured viscosity values. Flash (1990) apparently used an underesti-

mated value for the dynamic viscosity (0) in her simulation of the minimum-torque-change 

model. If the viscosity parameter is assumed to be twice as large b=0.8[kg m勺s],predicted 

paths are only a little too convex (curved away form the body), and if it is assumed to be 

twice as small b=0.2[kg m勺s],trajectories are a little too concave (curved towards the 

body). Thus, predictions are sensitive to the viscosity values. However, this sensitivity is 

not considered to be a weak point of the minimum-torque-change model. It only suggests 

that dynamic viscosity values can still not reliably be estimated during multi-joint arm 

movements. 

In summary, accidentally chosen inertia moment values that were too large and vis-
cosity values that were too small gave human-like trajectories (Uno, Kawato and Suzuki, 

1989). A combination of the correct inertia moment values and viscosity values that were 

too small gave concavely curved trajectories (Flash, 1990). The best current estimate of 

moment values and viscosity values reproduces human data quite well (Uno and Kawato, 

1994). If the viscosity values are twice as large as these, the paths are convexly curved 

while if they are twice as small, the paths are concavely curved. 

Finally, Table 4 shows the link physical parameter values recently estimated by Koike 

and Kawato(1994) from 3-D shape measurements of a subject arm using a Cyberware 
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Table 3: The current best estimate of parameter values based on measurements of dynamic 

stiffness and viscosity by Bennett et al. (1992) and Bennett (1993) 

link 1 link 2 
(upper arm) (forearm) 

0.25 0.35 

0.12 0.15 

0.9 1.1 
0.0201 0.0453 

0.4 0.4 

LisiMilibi 

［叫

［叫
[kg] 

[kgm汀
[kgm勺s]

Laser Range Scanner. Please note that the values in Tables 3 and 4 are quite similar. 

Table 4: Link parameter values estimated by Koike and Kawato (1994) from 3-D shape 
measurements of a human arm using a Cyberware Laser Range Scanner 

link 1 link 2 

(upper arm) (forearm) 

0.256 0.315 

0.104 0.165 
1.02 1.16 
0.0167 0.0474 

LisiMiIi 

[m] 

［叫
[kg] 

[kgm汀

3.4 M" . I 1n1mum muse e-tens1on-change model 

Musculoskeletal systems possess muscle-tension sensors (Golgi tendon organs) as well as 

muscle-length and velocity sensors (muscle spindles) but no direct joint-torque sensors; 

joint capsule mechanoreceptor afferents are not sensitive to intermediate joint angles, but 

are sensitive to extremes of joint angles (Kandel, Schwartz and Jessell, 1991). Considering 

these physiological constraints, Uno, Suzuki and Kawato (1989) proposed a minimum-

muscle-tension-change model, in which the following objective function is minimized: 

仰=1/2 j t1 n dFi 
。~(一）2dt, 

i=l 
dt 

where, Fi is the muscle tension generated by the ith of n muscles. Generally, the number 

of muscles n is much larger than the number of joints m. Here, the performance measure 

(objective function) is the sum of the square of the rate of change of the muscle tension, 

integrated over the entire movement. One can see that CF (Equation 3) is related to C,, 

(Equation 2) because the joint torque is the summation of muscle forces weighted by their 

(3) 
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moment arms for the joint. If the joint torque were to be generated by only one muscle 
and if its moment arm were to be constant regardless of the joint angle and the same for 

all different muscles, then the minimum-muscle-tension-change model would be identical 

to the minimum-torque-change model. However, of course, joint torque is generated by a 

number of muscles, their moment arms are different and moment arms do depend on joint 

angles. Thus, the minimum-muscle-tension-change model is different from the minimum-

torque-change model. 

Using the minimum-muscle-tension-change model requires a more sophisticated model 

of the arm than the minimum-torque-change model. Not only the link dynamics but also 

the muscle geometry should be taken into account for the dynamic modeling of the arm. 

Specifically, it is necessary to first determine which muscles effectively contribute to the 

considered movements, then to estimate the moment arms of these muscles, which gen-

erally change with varying postures. This sounds like a formidable task, and it is actually 

very laborious, but it can be done pe1fectly independent of the measurement of movement 

trajectories. Thus, although the minimum-muscle-tension model possesses more param-

eters (related muscles and their moment arms) than the minimum-torque-change model, 

it by no means guarantees a better fit to the observed trajectories because the muscle pa-

rameters are estimated from literature of biomechanical studies or dissection experiments, 

and are perfectly independent of the observed trajectories. 

Uno, Suzuki and Kawato (1989) simulated discrete point-to-point trajectories (Fig. 2) 

based on the minimum-muscle-tension-change model. They used a two-link manipulator 

with six muscles (elbow flexor and extensor, shoulder flex or and extensor, and double-joint 

flexor and extensor) as a model of the human arm. It was found that the minimum-muscle-
tension-change model can reproduce human trajectory data for a wide range of dynamic 

parameter values of the arm. 

3.5 Minimum-motor-command-change model 

This evolution of the minimum-torque-change model to the minimum-muscle-tension-

change model can be interpreted as a proximal shift of the space where the smoothness 

constraint is given (see Fig. 4): from more extrinsic space Uoint torques) to more intrinsic 

space (muscle tensions). Because of several theoretical and computatio叫 reasonsgiven 

below, this proximal shift seems to be further extended so that the smoothness constraint 

is defined in the intrinsic space even for the brain. 

I proposed the minimum-motor-command-change model (Kawato, 1992) where the 

following criterion is minimized: 

C」w= 1/2 j 
t f n 

゜
I:( cl.Mi -)2clt, 

i=l dt 
(4) 

where .lllf; is the ith motor command out of n commands. Several definitions of motor 

commands are possible. At the lowest level, we could define the i-th muscle motor com-

mand by the instantaneous frequency of nerve pulses arriving at the i-th muscle. At the 

spinal cord level, the firing frequency of each alpha motoneuron could be denoted by」i)IJか
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In this case summation in the above equation is taken over all motor neurons related to the 
investigated movements. Thus, both the rapid change in individual firing rate and rapid 

recruitment are penalized. At an even higher level, firing frequencies of corticomotoneu-

ronal neurons in the cerebral motor cortex could be represented by Mi・

In order to understand the theoretical reasons for the preference of the minimum-

motor-command-change model, it is necessary to recall that all three computational prob-
lems involved in visually-guided reaching movements (trajectory planning, coordinates 
transformation, motor-command generation) encounter computational difficulty: the re-
dundancy problem. The above optimization principles were proposed to resolve the ill-

posedness of one or some of these problems. It is very important to realize that if the 

smoothness criterion of some optimization model is defined at a specific space, then the 

model can only solve ill-posed computational problems that are defined at or above that 
level (Figure 4). The minimum-jerk model defined at the task space can thus resolve only 

the ill-posed trajectory formation problem. Because the minimum-torque-change model 
specifies the smoothness criterion at the joint-torque coordinates, it can determine unique 

torque waveforms when the target position is specified. Because joint angles and the cor-

responding Cartesian coordinates are uniquely determined from the torque waveforms, 
both the ill-posed inverse kinematics problem (coordinates transformation from visual to 

joint space), which is formulated between the joint space and the visual space, and the tra-
jectory formation problem are said to be simultaneously solved by the minimum-torque-

change model. Similarly, the minimum-muscle-tension-change model, which specifies 

the smoothness criterion at the muscle level, can resolve the ill-posed inverse dynamics 
problem (the problem of determining muscle tensions from desirable joint motions) as 
well as the inverse kinematics problem and trajectory formation problem. And finally, 
the minimum-motor-command-change model which specifies the smoothness criterion in 
the central nervous system can resolve excess degrees of freedom at that motor command 

level as well as all of the above three problems (trajectory formation, inverse kinematics 
and inverse dynamics). 

The following gives three reasons for extending the minimum-muscle-tension-change 

model to the minimum-motor-command-change model. First, in order to solve the ill-

posed problem posed by the enormous excess degrees-of-freedom in the central nervous 

system (larger numbers of motor or cortico-motoneuronal neurons than the number of 
muscles), it is necessary to use the smoothness principle in the state space of the central 

nervous system (i.e. firing frequency of neurons). 
Second, in view of the nature of the neural network hardware which executes trajectory 

planning and control, it can be said that the origin of the smoothness resides in the central 

nervous system rather than in the periphery. Thus, it would seem more plausible to impose 
the smoothness constraint at the central nervous system level rather than at the peripheral 
level. 

Finally, Uno and Kawato (1994), in response to Flash's (1990) criticism of the link 

inertia parameter values used in Uno et al. (1989), found that the minimum torque-change 

model can reproduce human data well if measured dynamic viscosity values (Bennett, 

Hollerbach, Xu and Hunter, 1992) in combination with correct inertia parameter values 
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are used in the simulation. But if zero viscosity values are assumed as in Flash (1990), the 

predicted hand paths are too concavely curved from the body compared with the human 

data. Because the musculoskeletal system's viscosity properties arise mainly from muscle 

velocity-tension relationships and spinal reflex characteristics, the measured viscosity co-

efficients used can not be interpreted as a visco-elastic component of the dynamical proper-

ties of the arm. Thus, if we are really talking about the torque which is actually generated at 

the joint, there is only a little viscosity in the controlled object. Consequently, the "torque" 

in this simulation should be interpreted as the motor command arriving at the muscles de-

termining muscle-generated torques. In this sense, the original minimum-torque-change 

model should be renamed the minimum-commanded-torque-change model. 

4 Curved Paths 

Observed curved paths in point-to-point arm movements, at first sight, would seem to 

support the dynamic optimization theory (e.g., the minimum-torque-change model) rather 

than the kinematic optimization model~e.g., the minimum-jerk model). As mentioned in 
section 3 .2, for movements whose startmg point is an outstretched arm to the side of the 

body and whose end point is in front of the body, the hand paths were significantly and 

convexly curved. One can also see that the trajectory from T2 to T6 in Fig. 2 is detectably 

and convexly curved. 

Dynamic optimization models such as the minimum-torque-change model, the minimum-

muscle-tension-change model and the minimum-motor-command-change model always 

predict roughly straight but gently curved paths and never predict perfectly straight paths. 

On the other hand, kinematic optimization models such as the minimum-jerk model pre-

dict perfectly straight paths for point-to-point movements. This is because invariance of 

objective function under translation, rotation or reflection is the consequence of any kine-

matic model with symmetry, and thus curved paths can not be unique optimal solutions. 

If a curved path were the unique optimal solution, the symmetrically reflected curved path 

with respect to the line connecting the starting and end points should have exactly the same 

objective function value, and thus should become another unique optimal solution. This 

is a contradiction. Thus, the optimal trajectory in a kinematic optimization model with 

symmetry, which is a very natural assumption, must be strictly straight. This strong prop-

erty would appear to contradict the actual data mentioned above unless some explanation 

is given to salvage the unidirectional theory. 

Wolpert, Ghahramani and Jordan (1994) listed the following three possible ways to 

explain the observed curvature in the unidirectional theory framework (see also Table 1). 

1. The first possibility is that the reference trajectory is straight but that imperfections 

in the control system lead to a curvature which is dependent on the dynamics of the 

arm. The reference trajectories produced by the minimum jerk model are straight 

lines in space. Models such as minimum jerk, in which only the kinematic aspects 

of the movement are determined, require a controller that produces motor torques 
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to follow the reference trajectory. Imperfections in these controllers could lead to 

curved trajectories. 

2. The second possibility is that the curvature seen is due to visual misperception. 

Under this hypothesis, subjects try to make visually-straight movements but mis-

perception of the curved nature of the path followed by the hand leads to perceived 

straight-line motion when the hand is, in fact, making a curved movement. 

3. The third possibility is that the central nervous system, rather than directly comput-

ing torque, specifies the trajectory in terms of an intermediate representation, such 

as a series of equilibrium positions (Flash, 1987) or desired muscle lengths. The 

actual trajectory produced then depends on the dynamics of the arm. This possibil-

ity differs from imperfect control in that it is this intermediate representation, rather 

than the outcome, which is matched to the reference trajectory. 

The following subsections discuss these three possible explanations while referring to 

recent experimental data and theoretical studies. 

4.1 Incomplete control and visual m1spercept10n 

Wolpert, Ghahramani and Jordan (1994) found a significant correlation between curva-

ture perceived as straight and the curvature of actual arm movements. They suggested 

that subjects try to make straight-line movements, but that actual movements are curved 

because visual misperception makes the movements appear to be straighter than they really 

are. This explanation is quite interesting and also seems to be closely related to the well 

known horopter. That is, rods on the horizontal plane which appear to lie parallel to the 

fronto-parallel plane are convex to the body at a far distance and are concave to the body 

at a near distance (Foley, 1980). However, the correlation between visual misperception 

and movement curvature itself can not tell whether there exists a causal relationship. 

In order to examine the visual misperception as well as the first incomplete control 

as explanations of curvature, Osu, Uno, Koike and Kawato (1994) conducted two exper-

iments. In the first, subjects were asked to move their right hand from the starting point 

where their arm was at the side of their body to the end point in front of their body. These 

movements are very similar to the first experimental data discussed in section 3.2, that is, 

T7⇒ TS movements in Fig. 4 of Uno, Kawato and Suzuki (1989). The following four 

types of instructions were given to the subjects. 

1. Move your hand from the starting point to the end point. 

2. Move your hand from the starting point to the end point along the curved path drawn 

on a table which is actually the average path in the above first paradigm. 

3. Move your hand straight from the starting point to the end point. 

4. Move your hand along a straight path drawn on a table from the starting point to the 

end point. 
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The above four instructions were used to define a set of four co汀espondingexperi-

mental conditions that were given in the following order: 1→2→3→4→3→2→ 1. 
Under all of these conditions, the subjects were required to reach the target within a 

specified period of time. The first beep sound cued the initiation of movement and the 

second beep indicated the end of movement. The interval between the two sounds was 

900 msec and the actual movement duration was from 850 to 950 msec. 

Figure 5 shows the averaged hand paths and their standard deviation for each test 
block and one subject. The upper plot shows movements without a visual reference (in-

structions 1 and 3). In the upper plot, from the top are movement spontaneously generated 
(instruction 1), instructed straight trajectory before learning (instruction 3 before instruc-

tion 4), and instructed straight trajectory after learning (instruction 3 after instruction 4). 

The lower plot shows movements (top is instruction 2 and bottom is instruction 4) with 
visual references which are denoted by solid curves. The experimental procedures, rele-
vant statistics about the data and detailed results will be presented elsewhere (Osu, Uno, 
Koike and Kawato, submitted). 

In 1, normal trajectories generated under the most natural condition were measured. 

Instruction 2 was used to examine the effect of imposing path constraints; no significant 
difference between instructions 1 and 2 was observed. Instruction 3 was used to test the 
first and second explanations for curvature. The difference between instructions 3 and 4 

was whether or not to give visual guidance about the straight path, thus the visual mis-
perception effect could be examined by comparing trajectories made under 3 and 4. It 

was found that subjects generated much straighter trajectories under condition 3 than they 
did under condition 1. The difference was not only statistically significant but also very 

marked. This simply disproved the incomplete control hypothesis. 
Trajectories made under 4 were only a little bit straighter than those made under 3. This 

slight difference could be ascribed to the visual misperception effect or, in our preferred 

interpretation, imperfect ability to internally generate a straight path. The fact that subjects 
were able to generate almost straight paths under 3 indicates that visual misperception, 

even if it has some causal relationship to movement curvature, does not have a large effect. 
Osu et al. (1994) then examined point-to-point movements constrained in the fronto-

parallel plane within 3-D space. The instructions given to subjects were like those in 1 

and 3 in Experiment 1. It was further required that the movement paths be contained in 
the fronto-parallel plane about the eye-level. The reason for this requirement was that no 

strong visual distortion effect such as horopter is known to exist within this plane (Indow 

and Watanabe, 1988). Under instruction 1, subjects generated a significantly upward con-

vex path in the fronto-parallel plane and showed a slight curvature (outward convexity) 

in the horizontal plane when the 3-D path was projected onto these two planes. On the 
other hand, under instruction 3, trajectories projected onto the fronto-parallel plane were 

significantly and markedly straighter than those projected in 1. The same conclusions 
can be drawn from this experiment as were drawn form the above experiment. Further-

more, because visual distortion was not expected in the fronto-parallel plane the observed 

movement curvatures in 1 could not be ascribed to visual misperception. 

Furthermore, Osu, Uno, Koike and Kawato (1994) conducted Experiment 3 while 
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Figure 5: Averaged hand paths and standard deviation under different instructions for one 

subject. The point (0,0) denotes the initial position of the movements. The cross denotes 

the average X-Y positions normalized and re-sampled at 80 Hz. The orientation of the 

long axis of ellipses su汀oundingcrosses denotes the direction of the principal component 

of the position variation at that time. The radius of ellipses denotes the standard deviation 

of the position at that time. The solid line in the upper plot denotes a start-to-goal straight 

line. 
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recording EMG activities from six related muscles in order to directly evaluate several 

possible objective functions. They compared various objective functions for the spon-

taneously curved trajectories made under (1) in Experiment 1, and straight trajectories 

made under (3) in Experiment 1. The minimum-jerk objective function was lower un-

der condition (3) than it was under condition (1), while the minimum-motor-command-

change objective function, which was calculated from EMG using the network of Koike 

and Kawato (1994), was lower under condition (1) than it was under condition (3). The 

smaller minimum-jerk objective function for straighter trajectories under (3) strongly re-

jects the minimum-jerk model without any reservation. Subjects can generate straighter 

trajectories whose minimum-jerk criterion is lower than it is under (1) if they intend to do 

so. Thus, if the minimum-jerk criterion is really the objective function which the central 

nervous system tries to minimize, then at least for the control condition under instruction 

(1) subjects must by no means generate curved trajectories whose minimum-jerk criterion 

is higher. 

On the other hand, the latter half of the experimental results do not lead to any un-

equivocal conclusion. If some criterion functions are lower for spontaneously curved tra-

jectories than they are for instructed straighter trajectories, it does not necessarily mean 

that this is the objective function which the central nervous system tries to minimize. All 

that can be said is that such an objective function survives the experimental test. 

Another source of evidence supporting the major role of link dynamics in observed 

curvature comes from comparing of curvatures within the horizontal plane (e.g. Fig. 2) 

and within the vertical plane (Atkeson and Hollerbach, 1985). For movements shown in 

Fig. 2, only shoulder and elbow extension and flexion were involved. Transverse move-

ments were curved but radial movements were relatively straighter. Atkeson and Holler-

bach (1985) also examined movements in which only the elbow and shoulder flexion and 

extension were involved. They found that up and down movement paths are outwardly 

convex while fore and aft movement paths are relatively straight. If we rotate the vertical 

plane 90 degrees around the anterior-posterior axis passing thorough the shoulder joint, it 

exactly matches the horizontal plane at the shoulder level. This rotation can actually be 

achieved by 90 degrees shoulder abduction. Then, fore and aft movements in the vertical 

plane correspond to radial movements in the horizontal plane, and up and down move-

ments in the vertical plane correspond to transverse movements in the horizontal plane. 

This conceptual yet interesting coincidence of observed curvatures by 90 degrees shoulder 

abduction makes perfect sense if the curvature difference associated with different paths 

comes from dynamic interactions between the forearm and upper arm. Here, for this dis-

cussion we neglected the effect of gravity on path shapes based on a previous computer 

simulation (Uno et al., 1989), and additionally adopted the theoretical argument given by 

恥 12in section 6. Note that the same visual misperception effect was not expected for 

the up and down movements in the vertical plane and the corresponding 90 degrees rotated 

transverse movements in the horizontal plane. 
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4.2 Virtual trajectory control hypothesis 

Flash (1987) explained slight curvatures observed in point-to-point paths in front of the 

body by combining the minimum-jerk-model with the virtual trajectory control hypothesis 
(Bizzi et al., 1984, Hogan, 1984). That is, the virtual trajectory, and not the real trajec-

tory, was assumed to be planned as the minimum-jerk trajectory. Although the virtual 
trajectory is straight, the real trajectory is slightly curved because of imperfect control by 

the virtual trajectory control. However, the stiffness values assumed in Flash's simula-

tion (1987) could be controversial. Bennett et al. (1992), Bennett (1993), Gomi, Koike 

and Kawato (1992) and Gomi and Kawato (1995) found that dynamic stiffness during 

movement was much less than was assumed by Flash (1987). Then, based on these mea-

sured values of stiffness during movement, Katayama and Kawato (1993) showed that to 
reproduce roughly straight hand paths the virtual trajectory must be wildly curved. The 
differences between Flash's and Katayama's simulations can be readily understood if one 

recalls that the required joint torques are generated as the product of mechanical stiffness 
and the difference between the virtual and real trajectories under the virtual trajectory 
control hypothesis. If physical parameters such as the moment of inertia, mass, and link 
length are given, and the desired hand trajectory is fixed, the required joint torques can be 
uniquely determined from the inverse dynamics equation. When the stiffness is large, the 

difference between the virtual and real trajectories is small, but if the stiffness is small, this 

difference becomes large. Human multi-joint hand paths are roughly straight for point-

to-point movements. Consequently, in Flash's simulation where relatively high stiffness 

was assumed, the virtual trajectory could be close to the real trajectory; that is, it could 
be a simple straight trajectory. In Katayama's simulation, however, where relatively low 

stiffness was assumed, the virtual trajectory was very different from the real trajectory and 
was wildly curved. Conversely, if the virtual trajectory is planned as the minimum-jerk 

trajectory, real trajectories are overly curved and do not get close enough to the target 
point if the dynamic stiffness values measured during movement are used (Katayama and 
Kawato, 1993). Thus, if we consider the low mechanical stiffness values recently mea-
sured during movement (Bennett et al., 1992, Gomi, Koike and Kawato, 1992, Gomi and 

Kawato, 1995), it would seem difficult to reproduce slightly curved hand paths by combin-
ing the virtual trajectory control hypothesis with the minimum-jerk model (see Kawato, 

Gomi, Katayama and Koike, 1993 for review). 

Furthermore, Koike and Kawato (1993,1995) provided experimental data which sup-
ports the low stiffness values and complicated virtual trajectory shapes using a completely 

different and independent methodology. They constructed a forward dynamic neural net-
work model which can estimate dynamic joint torques from 10 surface EMG signals by 

using intensive training based on a vast amount of physiological data collected during 
multi-joint arm movements as well as posture control. The trained network is very ac-

curate in reproducing the isometric as well as the dynamic torques and also the trajec-

tories. It contains muscle-nonlinear properties such as the length-tension curve and the 

velocity-tension curve. The network can be readily used to calculate virtual trajectories 

without any further assumption about the musculo-skeletal system and its controller. The 
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predicted virtual trajectories for slow movements are close to the actual trajectories but 
those for medium speed movements are considerably different from the actual trajectories. 
The predicted complicated virtual trajectories are very different from the minimum-jerk 
trajectory. 

There exist at least three different levels of propositions developed under the same 

name of equilibrium point control hypothesis. 
(1) The dynamics of the musculo-skeletal system including spinal reflex loops is char-

acterized by spring like properties. That is, if the supra-spinal motor command is constant 
during posture control, the state of the above dynamics converges to a stable attractor 
which is defined as the equilibrium of several nonlinear springs. Even during movement, 

the positional (elastic) force is dominant in the above dynamics when the acceleration and 

the velocity are small compared with some positional perturbation. 
(2) The motor commands descending from the brain down to the spinal cord are repre-

sented as the equilibrium position or some quantity which has direct connection with the 

equilibrium (e.g. muscle activation threshold lambda). 

(3) The virtual trajectory could be straight and having single-peaked velocity in repro-
ducing human multi-joint arm data, thus inverse dynamics problem and/or neural internal 
models can be avoided. 

The third is the most radical proposition while the first seems trivially true if we con-

sider only musculo-skeletal system without neural feedback loops. 
Our previous studies seriously questioned the third-level proposition. On the other 

hand, I am not against the second-level proposition. I am neutral about the second level 
because I think that we do not have any good experimental data which prove or disprove 

any representational model at the second level. Many experimental data which support 

only the first level were refe汀edas if supporting the second or the third level. I think the 
first-level proposition is true and is very important advancement of our understanding of 

motor control. 

Many articles have been written about the equilibrium control hypothesis while em-
phasizing its computational advantage (namely level (3)) in the past 10 years. I think still 
many of motor control researchers believe in (3) (for example several papers in Journal 

of Motor Behavior special issue in 1993) with or without knowing recent criticism by us 
described above. 

5 Altered Visual Environments 

5.1 Logic underlying k. 1nematic transf ormatwn test 

As shown in Table 1, trajectories generated in altered visual environments can be used 

to discriminate between the unidirectional and bi-directional theories. An undergraduate 

student supervised by Uno at the University of Tokyo (1989) used nonlinear coordinate 

transformation between the hand position on a two-dime~sional position digitizer and on 
the CRT coordinates where the end point, the starting point, and the hand position are 

displayed. Because of the nonlinear transformation, a straight line on the CRT corresponds 
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to a curved line on the digitizer, and vice versa. Here, subjects generated roughly straight 

hand paths on the digitizer (i.e., curved paths on the CRT), conforming to the minimum 

torque-change trajectories. This study was cited in page 844 of Kawato (1992). 

Let me explain in more detail how these interpretations are drawn from the two theo-

ries. LetX = (x,y), P = (p,q) and0 = (01,02,・ ・・，似） denote the hand position on the 

CRT, the hand position on a board or a table, and the joint angles of the arm, respectively. 

Here, m is the number of joints related to the arm movements which are being considered. 

Generally, functional relationships exist between the three coordinates as follows: 

X = j(P), 

p = g(0). (5) 

In usual cases of experimentation or the use of a computer mouse to move a cursor on 

a CRT, the first equation becomes very simple, and is just a magnification or contraction 

if the origins of the CRT plane and the hand plane are appropriately chosen: 

X=入P. (6) 

Here, 入isa positive scalar. We are interested in the case where f is a nonlinear function 

which causes a straight path on a CRT to become curved on the hand plane and vice versa. 

Let us assume that the subjects learned this nonlinear mapping from repeated trials of 

point-to-point movement on a CRT screen where the starting point X5, the target point 

ふ aswell as the hand cursor X = f(P) = J{g(0)} are presented. 
Let us assume first as per the unidirectional theory that subjects plan their trajecto-

ries in the task-oriented visual coordinates, in this case on the CRT screen. Given this 

assumption, a straight trajectory should be observed connecting the starting and target 

points X(t) = <p(t)(Xr -X5) + Xs on the CRT screen. Here, cp(t) is a scalar function of 

time t which is zero at t = 0 and 1 at t = tend・The corresponding trajectory on the hand 
plane can be obtained using the inverse off as follows: 

P(t) = f―1位(t)(島ー Xs)+Xs}- (7) 

This path in the hand space is curved since the inverse of nonlinear function J distorts 

the straight line into a curve. 

Next, as per the bi-directional theory, let us assume that the trajectory is planned in the 

intrinsic body space such as the joint torques, muscle tensions or the motor commands. It 

must be emphasized that not only the internal model of the inverse mapping J―1, but also 

the internal model of the forward mapping J are essential for calculation of the optimal 

trajectory in the intrinsic space (see Fig. 1), especially when J is a many to one mapping 

as usual. This is because it is necessary to use the forward model of nonlinear transfor-

mation to predict the trajectory and its end point on the CRT screen from tentative motor 

commands and adaptively modify them. This is in sharp contrast to the unidirectional 

theory where inverse mapping only is sufficient. This is another example of where only 
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downward information flows are necessary in the unidirectional theory and both down-

ward (inverse model) and upward (forward model) information flows are necessary in the 

bi-directional theory. If two kinds of internal models are acquired through training, tra-

jectory planning and control can be done in a very simple manner. The starting and target 

points on the CRT screen are first transformed into the corresponding starting and target 

points on the hand plane by the inverse mapping model: 

Ps = f―1(Xs), 

的=f―1cx砂 (8) 

Then using these intermediate representations in the hand space, calculation and con-

trol of the optimal trajectory can be done in exactly the same manner as it is done under 

the normal condition where CRT does not exist and the two points Ps and PT are given 

directly on the hand plane. If the two points are in front of the body, it is known that 

dynamic optimization models predict roughly straight hand paths in the hand plane: 

P(t)竺 ,(t)(PT-Ps) + Ps. (9) 

Here, ,(t) is a scalar function of time t which is zero at t = 0 and 1 at t = tend. The 
corresponding trajectory on the CRT screen can be obtained using fas follows: 

X(t)竺 f{,(t)(PT-Ps) + Ps}. (10) 

Thus, the path on the CRT plane is markedly curved while the path on the hand plane 

is roughly straight. The above computational procedure is described as if in the brain 

information flows only downward between the CRT screen level and the hand plane level, 

and the rest of the calculation is done solely below the hand plane representation. This 

probably does not happen in the brain and it is believed that the forward internal model 

of f is continuously used for trajectory planning and control. The above explanation is 

simply meant to show that the planned paths are roughly straight on the hand plane. 

ation 1n altered visual env1ronments 5.2 Adapt . . 

Wolpert, Ghahramani and Jordan (1993) followed the experimental design of Uno (1989) 

and used only a part of the above logic. They examined shapes of paths only in the hand 

plane and never examined them in the extrinsic space. This partial data analysis seems 

to be one of the reasons for their biased conclusion. Their experimental paradigm is very 

close to Uno's but different in several important aspects. First, although they also used 

a digitizing tablet to measure the hand position, they used an LCD projector to present 

the finger positions as virtual images on the plane of the digitizing tablet instead of us-

ing a simple CRT screen. Second, the magnitude of visual distortion started at zero (no 

perturbation) and was increased linearly from movement 20 to reach a maximum of 4 cm 

at movement 40 at which point it was held constant for the remaining 60 movements. In 
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Uno's experiment, nonlinear coordinate transformation was given from the beginning of 

the experiment and the subjects knew of its existence. 

In Experiment 1, when they increased the perceived curvature of normally straight 

sagittal movements by 40 mm, subjects showed significant (p < 0.001) corrective adap-
tation in the curvature of their actual hand movement with an average magnitude of adap-

tation of 10 mm. In Experiment 2, increasing the curvature of the normally curved trans-

verse movements by 40 mm produced a significant (p < 0.01) corrective adaptation with 
a magnitude of 7 mm. Here, the hand movement became straighter, thereby reducing the 

visually perceived curvature. In Experiment 3, when the curvature of naturally curved 

transverse movements was reduced by about 12 mm there was no significant adaptation 

(p > 0.05), with less than 2 mm of change. 

Only 25 %, 17 % and -2 % of the imposed distortion of curvature was compensated 
for by adaptation of subjects in Experiment 1, 2 and 3, respectively. As described above 

and also in Table 1, the unidirectional theory (e.g., the minimum-jerk model) predicts 

100 % adaptation in the hand space for all these experiments so that no (0 %) change 

is observed on the LCD screen. On the other hand, the bi-directional theory (e.g., the 

minimum-torque-change model) predicts O % adaptation resulting in no change in the 

hand space and 100 % change on the LCD screen. Experimental data shows 25 %, 17 % 
and -2 % adaptation in the hand space and hence 75 %, 83 % and 102 % change on the 

LCD screen. Is it not therefore reasonable to say that this result is close to the prediction 

of the bi-directional theory? Should it be concluded that both theories are wrong because 

both predictions (100 % and O % or O % and 100 %) are different from the experimental 
data? Or, should it be concluded that the truth is in between the two theories with a score 

of 4 to 1 (Experiment 1), 5 to 1 (Experiment 2) or oo to -2 (Experiment 3) in favor of 

the bi-directional theory over the unidirectional theory? To say the very least we were 

very surprised by the following conclusion drawn by them: "The results of the curvature-

increasing study suggest that trajectories are planned in extrinsic visual space and the 

results of the curvature-reducing study suggest that the desired trajectory is indeed straight 

in visual space. These results are incompatible with models such as minimum-torque-

change and suggest a critical role for visual perception in trajectory formation". To be 

fair they might also have said that these results are more significantly incompatible with 

models such as minimum-jerk and suggest a quantitatively more critical role for internal 

variables such as muscle tension in trajectory formation. Because the manuscript contains 

no data for trajectories seen on the LCD screen where curvature was much more marked 

than it was on the hand plane, it misleads readers. 

Besides how to interpret their data with regards to discriminating between the two 

theories, we are also very much interested in the cause of the observed small adaptations in 

Experiments 1 and 2. We believe that Experiment 3 supports the bi-directional theory and 

disproves the unidirectional theory unequivocally. For Experiments 1 and 2, the authors 

interpreted the adaptation as being partial because the number of movements was only 60. 

This implies that as subjects experienced more movements, adaptation increased from 25 

% to 100 %. We interpreted the partial adaptation in the completely opposite way. Because 

the subjects could not experience enough trials, they could not acquire the internal forward 
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model of the nonlinear transformation. As a result, they could not use the bi-directional 

scheme, and were forced to rely on some ad hoc strategy where partial adaptation was 

observed. For example, it would be interesting to know how much subjects feel obli~ed 
to conserve the usual straightness of hand paths on the screen in the absence of informat10n 

about what happens when they do this. In other words, how much of the straightness of the 

path is implicitly included in the task instruction? We predict that if subjects experience 

a sufficient number of trials, the adaptation or disturbance in our interpretation would be 

reduced from 25 % to O % . 

5.3 Intensive training experiment under kinematic transformation 

Uno, Imamizu and Kawato (1994) conducted a new experiment which was an extension 

of the previous experiments of Uno (1989). Subjects moved their right hands (shoulder 

and elbow) at the level of the shoulder. Their wrists were secured by a cuff. The hand, 

elbow and shoulder positions were measured with the OPTOTRAK position measurement 

system. Then, the shoulder joint angle 01 and the elbow joint angle舵werecalculated from 

these data. Direct vision of the hand was not allowed, and the hand cursor, the starting 

point and the target point were presented on a 33 inch CRT located vertically in front of 

the subject. Here, a simple linear transformation in joint angles was introduced which 

actually corresponds to a strongly nonlinear transformation between the hand plane and 

the CRT screen. Let X = (x, y) and P = (p, q) denote the hand cursor position on the CRT 

screen and the hand position on a table at the shoulder level as in Equation 5. Then, the 

nonlinear coordinate transformation from the measured joint angles to the CRT screen is 

given as follows: 

0* 1 = a(01 -0~) + 0~, 

0; = b(02―腐）+0ぶ
p = g(01, 02), 

X = g(0!,0り，
X = f(P). (11) 

It is important to note that the nonlinear transformation f is actually determined by the 
first four equations. Although the transformation in the body coordinates which is defined 

by the first two equations gives a simple reduction or magnification of joint angles around 

a fixed point (0?, 0~), its corresponding transformation f is highly nonlinear with only one 
fixed point g(0?, 0~). In previous studies by Uno (1989) and Wolpert, Ghahramani and 
Jordan (1993) the positions of the starting and end points were invariant under the imposed 

transformation. Thus, in these previous studies, subjects could execute a reaching task 

even when they did not change their motor commands at all. We wanted to change this so 

that subjects had to learn inverse and forward internal models of imposed transformation 

to successfully execute the task. The introduced transformation satisfies this requirement. 
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The subjects were told about the nature of transformation. The instruction given to 

them was to achieve a target within a fixed duration signaled by two beeps. It was also 

stated that no requirement was imposed on path shape either on the CRT screen or on the 

hand plane. Four experiments were conducted for more than 10 subjects altogether. In Ex-

periment 1, each subject learned to execute the transverse movements with two directions 

and the sagittal movements with two directions (four altogether). In Experiment 2, each 

subject learned to execute only the transverse movements with two directions. In Experi-

ment 3, each subject learned to execute only the saggital movements with two directions. 

Only in Experiment 4 were the subjects not told about nonlinear transformation, and dur-

ing the course of the experiment, the strength of distortion was increased incrementally. 

That is, a and b were slowly changed from 1. 
Each subject experienced each kind of movement for 320 times which was more than 

in Wolpert, Ghahramani and Jordan (1993). At the end of the experiment, two kinds of 

control experiments were done. In the first one, each subject was asked to move their hand 

from the same starting Xs and end points Xy in the training session but with no distortion 

of joint angles. Here, f becomes an identity. Let XcRT denote the trajectory on the CRT 

obtained in this first control experiment and PcRT = J―1(XcRT) denote its imaginary 
corresponding trajectory in the hand space, assuming that nonlinear transformation rather 

than actual identity mapping between the CRT and the hand plane still exists. In the second 

control experiment, subjects were able to watch their hands directly, and the starting and 

end points were given directly on the table on which the hand actually moved around. 

These points were detem血edby mapping f inversely to the points on the CRT screen: 

Ps = f―1(Xs) and Py = 1-1c島）• Let Phand denote the trajectory in the hand space 
obtained in this second control experiment, and Xhand = j(Phand) denote its imaginary 

corresponding trajectory on the CRT, assuming that the CRT and nonlinear transformation 

still exist in this second control experiment. Similarly, let Xalt denote the trajectory on the 

CRT obtained in the final session of the main training experiment, and Pait = f―1cx叫
denote its corresponding trajectory in the hand space. 

As apparent from the discussion in Section 5 .1, if the unidirectional theory is correct 

: Xalt = XcRT, Pait= PcRT, Xalt =/ Xhand, Pait =/ Phand is observed. On the other hand, 
if the bi-directional theory is correct, 

Xazt =I XcRT, Pait =I PcRT, Xalt = Xhand, Pait = Phand would be expected to be 
observed. 

Throughout Experiments 1 to 4, for almost all cases with only a few exceptions, the 

latter case was observed with significant statistical differences from the former case. Ac-

tually there was no single case where the former prediction was validated. Furthermore, 

the exceptions were observed only when the subject could not attain end-point accuracy 

even after 320 training trials. Even in that case, the exhibited trajectories did not agree 

closely with the above former perdition of the unidirectional theory. Our conclusion is 

that the unidirectional theory is disproved by these carefully controlled kinematic trans-

formation experiments. The experimental data are compatible with the predictions of the 

bi-directional theory in that subjects who accurately learned the imposed transformation. 

It is important to emphasize that one must carefully prepare the experimental paradigm 
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so that subjects can learn imposed visual transformation or artificial force field if one wants 
to make a fair comparison of the two theories using such altered environments. This is 

because no algorithm or hardware in the framework of the bi-directional theory can work 
if either the inverse or forward internal models of kinematic and dynamic transformation 

is not acquired. In this context, it is interesting to note that the frequency of insufficient 

learning and violation of predictions of the bi-directional theory was highest in Experiment 
4 for all of the conditions. Experiment 4 is closest in its design to Wolpert, Ghahramani 

and Jordan (1993) and tends to prevent subjects from acquiring internal models. 
Although the conclusions drawn from the above two studies were opposite, the two 

sets of experimental data were not that different. However, it should be emphasized that 

in Uno, Imamizu and Kawato (1994), (1) the training session was longer, (2) subjects 
were informed of the existence and characteristics of transformation, (3) subjects could 
not attain the goal unless they acquired the internal model of the transformation (subjects 

could not achieve the task with the same motor command as that used under the no trans-
formation condition), (4) the location of the CRT screen was different from that of the 

hand position, (5) the transformation was turned on at full strength from the beginning of 
the training session except in Experiment 4, and finally but probably most importantly (6) 

the transformation was very simple at body coordinates and was relatively easily learned. 

All these differences helped and encouraged the subjects to acquire internal models of the 
imposed transformation. I understand that researchers use altered kinematic or dynamic 

environments to elucidate the mode of computation employed by the brain in the normal 

environment by examining how such computation is adapted to the new environment. 
The bi-directional theory requires that the central nervous system possess both forward 
and inverse internal models of kinematics and dynamics of the normal environment. Con-

sequently, in order to fairly compare predictions of the two theories which are supposed 
to be operating in daily life by using the novel kinematic or dynamic environments, it is 

critical to provide sufficient information so that subjects can acquire internal models of 
the imposed environments. 

6 Force-Field Adaptation 

As described in Table 1 and in Section 3.2, trajectories under externally applied force fields 

can be used to discriminate between the uni-directional and bi-directional theory. The 
underlying logic is very simple. Because the kinematic optimization principle defined in 

extrinsic space does not take account of any dynamic effect of the external force field, the 

desired trajectory in that situation is exactly the same as it is under the normal condition. 

Thus, once the controller regains its capability to achieve the optimal trajectory after a・ 
short period of adaptation, the central nervous system achieves exactly the same shapes 

of trajectories as it did under the control condition without the force field. On the other 
hand, the dynamic optimization principle defined in intrinsic space takes account of the 

new dynamic environment imposed by the external force field. Thus it recalculates a 
different optimal trajectory from that calculated without the force field, once the central 
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nervous system acquires the internal model of both the forward and inverse dynamics of 

the arm in combination with the environment. Thus, after a relatively longer duration 

of adaptation, different trajectories than the control trajectories are predicted. Although 

this logic underlying the force-field adaptation experiment is simple, it turns out that the 

practical design of proper experimental conditions actually needs careful consideration. 

As briefly described in section 3.2, Uno, Kawato and Suzuki (1989) first used this 

paradigm to support the dynamic optimization principle. They used a strong rubber band 

attached to the subject's hand to induce an elastic force field. After about 50 trials, subjects 

produced significantly curved paths with asymmetrical speed profiles which were in good 

agreement with the prediction made by the minimum-torque-change model. Although we 

did not fully realize it at that time, this experimental paradigm satisfied two important 

prerequisites of the force field adaptation experiment which were necessary to test the two 

theories on fair ground. (1) The force field must be strong enough and sharply variable 

along a generated trajectory to induce large effects on optimal trajectory shapes which 

can be detected even in the presence of experimental variations. (2) The experimental 

setting must allow subjects to learn both the forward and inverse dynamics model of the 

arm under the external force field. In order to satisfy the second condition, first of all, 

the number of training trials must be sufficiently large. Second, it is probably better for 

subjects to directly see the mechanical apparatus that induces external force fields and 

to understand its actions and nature. Third, it is also helpful to inform subjects about 

the characteristics of the force field as well as its existence. Finally, if subjects have had 

previous experience with similar force fields, their experience should greatly facilitate the 

acquisition of internal models. 

Unfortunately, these prerequisites were not satisfied in the experimental examinations 

of force fields by Flash and Gurevich (1991) and Shadmehr and Mussa-Ivaldi (1993). Both 

of them reported failure to observe significant changes in trajectory shapes in the force 

field. Uno and Kawato (1994) simulated the minimum-torque-change trajectory based on 

the numerical values of force field of Shadmehr and Mussa-Ivaldi (1993) and found that 

optimal trajectories under their force field are only slightly different from those without the 

force field. Thus, in experiments, it should be difficult to find any significant difference. 

In simulation, we succeeded in reproducing large distortions of the trajectories after the 

first exposure to the force field. Thus, our simulation result that the optimal trajectory is 

not so much affected although the first exposed trajectory is very much affected is quite 

counter intuitive. This is because of the combined effects of relatively small forces (0 to 

6 N), the small movement distance of 10 cm, and most importantly a quasi-uniform force 

field along a single trajectory, which is peculiar to the used viscous force field. Details of 

this simulation study will be presented elsewhere. 

It must be noted that any uniform force field, even if it is very strong, has no influence 

on the optimal trajectory of the minimum-motor-command change model because the time 

derivative of such a uniform field vanishes in the criterion as shown below. 

CM = 1/2 j L( 
tJ n dMfomp 
。)2dt 

i=l dt 
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where .!vIF0mp is the total motor command necessary for compensating the arm inherent 
dynamics and canceling the imposed force field. M匹 isthe motor command in the 
normal condition without the force field. M戸 isthe motor command that compensates 
the applied uniform force field. It might be quite large but its time derivative vanishes. 

The necessity of internal models for making fair comparisons was discussed at some 
length in the previous section, thus it will not be repeated her~. However, it is very helpful 
to discriminate between inverse models and forward models to fully understand the nature 
of both the bi-directional theory and computations in the brain. For reaching under the 

force field, the most important objective of the task is to reach the target. The shape of 
the path is of secondary priority. The first objective of reaching the target can be achieved 

in a feedforward manner only if the inverse dynamics model is acquired, even though the 

forward dynamics model is not acquired. Calculation of the optimal trajectory, however, 
necessitates acquiring both models. Thus, in general, three phases of adaptation to the 

external force field under the bi-directional theory are anticipated. (1) In the first phase, 
neither the inverse dynamics model nor the forward dynamics model is acquired for the 
suddenly applied external force field. In this case, reaching the target can not be achieved 

solely by using feedforward control and large e汀orsare observed at the end of the ballistic 
control phase. (2) In the second phase, the inverse dynamics model is acquired but the 

forward model is still not acquired. There is no strong prediction for the desired trajectory 
planned for this phase, but it is reasonable to assume that the same trajectory as is used 

under the normal condition is similarly used. For, in the absence of the forward model, the 

optimal trajectory under the force field can not be calculated. Thus, a similar trajectory 
should be observed in this second phase. (3) Finally, when both models are acquired, 
the optimal trajectory and thus the similar realized trajectory is different from what it is 

under the normal condition. Here, it is assumed that learning the forward model is more 

difficult and occurs after the learning of the inverse model, without experimental support. 
Our experiences in neural network training and vague philosophical reasoning about the 

ontogeny and phylogeny of the two kinds of internal models are behind this assumption. It 
is interesting to see that this assumption is opposite to that underlying the forward-inverse 

modeling approach of Jordan and Rumelhart (1992). 

Regarding the discrepancy between Flash and Gurevich (1991) and Uno et al. (1989), 
possible reasons for the failure to detect significant changes in the former study might be 

(1) the fixed point of the spring was much too far from the trajectory and so the force direc-

tion did not sufficiently change (again quasi-uniform force field), (2) the force magnitude 

was not large enough, and/or (3) the training number of less than 15 was not large enough 

for acquisition of internal forward models. 

In order to clarify various factors which affect the easiness of acquiring internal mod-

els, we will soon repeat our previous force-field adaptation experiments using a most ad-
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vanced parallel-link, direct-drive, air-floating manipulator, which was specially designed 

for reliable measurement of dynamic impedance during multi-joint arm movements. If it 

is possible to demonstrate the three adaptation phases predicted above by the bi-directional 

theory, this could be the first indication of strong support for participation of the forward 

model in planning the dynamically optimum trajectory. 

7 Discussion 

The paper contrasted the two theories while referring to new experimental and simulation 

results. Computational neuroscience of visuo-motor coordination appears to be moving 

into a really exciting and productive period of advancement. There are now two con-

trasting theories from which concrete predictions can be made which can be tested by 

experiments. Several groups of researchers have started to examine these predictions to 

find more appropriate computational models. At present, it looks like it will be possible 

to objectively and fairly examine the two theories if careful experimental design and re-

liable computer simulations are prepared. Construction and destruction of theories based 

on the accumulation of critical experimental data is the correct and preferable way for hard 

science to advance. I believe that we are currently working in a happy period of computa-

tional neuroscience. Probably, the only caution to researchers involved in this dispute is to 

pay maximum efforts and care to making arguments, mathematical theories, experimental 

data and computer simulation results as transparent as possible so that outsiders to this 

dispute do not lose their interest in this most interesting, profound and popular topic. 
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