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Abstract 

Word spotting is a fundamental approach to recognition/understanding 

of natural, spontaneous spoken language. An overall spotting system, 

comprising word models and decision thresholds, primarily needs to 

be optimized to minimize all spotting errors. However, in most con-

ventional spotting systems, the word models and the thresholds are 

separately and heuristically designed: There has not necessarily been 

a theoretical basis that has allowed one to design an overall system 

consistently. This paper introduces a novel approach to word spot-

ting, by proposing a new design method called Minimum SPotting 

Error learning (MSPE). MSPE is conceptually based on a recent dis-

criminative learning theory, i.e., the Minimum Classification Error 

learning (MCE)/Generalized Probabilistic Descent method (GPD); it 

features a rigorous framework for minimizing spotting error objectives. 

MSPE can be used in a wide range of spotting pattern applications, 

such as spoken phonemes, written characters as well as spoken words. 

Experimental results for a Japanese phoneme spotting task clearly 

demonstrate the promising future of the proposed approach. 

1 Introduction 

Natural conversation utterances, often including such common phe-

nomena as hesitation, repetition, as well as correction, usually do not 

observe grammar rules and are difficult to recognize in a precise, word-
by-word manner. Therefore, there has long been research concern 

about the speech understanding aimed at obtaining the meanings of 

utterances instead of transcribing all acoustical events. 

Spotting, especially keyword spotting, is a fundamental technique 

for this type of speech understanding. A spotter (spotting system) 
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attempts to selectively recognize preset target acoustical events such 

as keywords which are necessary to understand given utterances cor-

rectly, by shifting short, spotting decision segments over given utter-

ances. This nature of spotting intrinsically has a risk of producing 

two kinds of categorical errors: 1) mis-detection (deletion error), i.e., 
failing to detect a target event that actually exists, and 2) false alarm 

(addition error), i.e., mistakenly detecting a target event that actually 
does not exist. Therefore, spotter design is complex, compared with 

that for a simple classification of isolated (pre-segmented) utterance 

patterns; it must primarily consider such complex features in spotting 

as the localization of spotting and error categorization. . 
A spotter usually consists of two kinds of adjustable system param-

eters: 1) event models and 2) decision thresholds. One goal of spotter 
design must then be to determine the state of all of these system 

parameters to reduce the spotting errors as much as possible. How-

ever, perhaps due to the lack of a theoretical basis, most conventional 
spotters have been designed in a scratch-of-heuristics manner, with no 

direct attempt at this error reduction; in particular, event models have 

been designed to achieve minimum distortion (maximum likelihood) 

and thresholds have been selected empirically through a trail-and-

error repetition of spotting experiments. Obviously then there is no 

consistency between the actual design procedure and the design goal 

of minimizing the spotting errors. 

To overcome this problem, we propose in this paper a novel de-

sign method, called the Minimum SPotting Error learning (MSPE), 
which allows one to train all of the adjustable system parameters in 

a manner consistent with the spotting error minimization. A key 

concept of MSPE is to embed the entire spotting process including 

an intrinsically-discontinuous operation of counting spotting errors, 

in a smooth (at least first differentiable in adjustable system param-

eters) functional form. This concept is taken from a recent discrimi-

native learning theory, i.e., the Minimum Classification Error Learn-

ing/Generalized Probabilistic Descent Method (MCE/GPD), which 

has recently been shown to be useful in various pattern classification 

tasks [1]-[6]. Nevertheless, MSPE is clearly distinct from MCE/GPD 
in the following two points: In MSPE we newly formalize the above-

cited, complicated error evaluation process and MSPE provides an 

innovated departure from the conventional, scratch-of-heuristics way 

of designing spotters. 

The paper is organized as follows. In the next section, we present 

some fundamentals for MSPE formalization. In particular, the def-

inition of the cost function being directly related to spotting error 

measurement is described in detail. In Section 3, we present practical 

implementation examples for Dynamic Time Warping (DTW) incor-
porating N-best concepts such as N -best warping path and N -best 

reference. In Section 4, we attempt to show the utility of the pro-
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posed method, by reporting experimental results for Japanese conso-

nant spotting using a simple DTW-based spotter. Section 5 summa-

rizes the paper. 

2 Minimum Spotting Error Learning 

Spotting can be considered a more general and practical version of 

classification which is the decision process to assign one of many pos-

sible class labels to a given pre-segmented event: It is the process to 

assign one of the two classes, mis-detection or false alarm, to an event 

that is automatically detected by shifting a decision position over a 

given sample. A key of the MSPE formalization is thus to define 

this complex decision process as a smooth functional form that appro-

priately reflects the spotting accuracy. Similar to a general spotting 

concept, MSPE can handle any reasonable sample such as a continu-

ous speech utterance, and any reasonable event such as spoken words 

or written letters. For clarity of presentation, we shall describe our 

formalization by focusing on the distance-based spotting of words from 

continuously-spoken utterances. 

2.1 Fundamentals for formalization 

We consider a C-class word spotting task; suffix c is used for the class 

index. A speech utterance x is represented as a variable but finite 

length sequence of acoustic feature vectors, each of fixed-dimension S; 
i.e., X = {互 x2,・ • •, xI} where the i-th feature vector (or the i-th 
frame) of x is叫=[xil叩2・ ・ ・x;sf. A spotter consists of parameters 

A=  {A惚~1 = {>.C, が}f=r,where N・ 1s a word model consrstmg of 
templates, each having the same representation as the utterance, and 

が isa scalar-variable decision threshold. 

The spotting for one class can be independent of that for another 

class. This feature should be quite useful in executing spotting/ design 

runs because it allows one to use parallel and distributed computa-

tions. In the MSPE formalization, we thus use a class-by-class design 
strategy. In light of this, we focus our discussion in the following on 

the spotting of a class c word. It is worth noting that, if necessary, one 

can easily change this class-independency without adversely affecting 

the MSPE concept. 

Since a word is originally a segmental (durational) pattern, spot-

ting is fundamentally performed by comparing an input speech seg-

ment and these word models. Clearly, a spotting rule must make such 

a segment-based decision. We thus specially use in this paper the fol-

lowing decision rule, i.e., introduce a discriminant function, denoted 

by gi(x; >.c), to indicate the degree to which a class c word e沿stsat 
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the i-th frame of the input x: For a class c, if 

mingや；>._C) < h尺
iE!1k 

(1) 

one word exists in出={i lp(k) S: i S: q(k)} with p(k) and q(k) being 
the first and final frames, respectively; otherwise, no word exists in 
Dk. The Dk is the k-th segment of x, called the k-th block , and is 

fundamentally preset by a correct word location. Figure 1 illustrates 

this spotting decision. Two words to be spotted are given; w1 and 

w2. In the top of the figure, a hatched region indicates the given word 

segment. The blocks are determined based on the locations of these 

words. See the block sequence (a) of the figure. There are two kinds 

of blocks in this sequence: a shaded one and a white one. The shaded 

blocks correspond to word segments to be spotted and the white blocks 
correspond to segments not to be spotted. We refer to the shaded 

block as an S-block and the white block as a non-S-block. Note that 
the S-block is set around the last end of a given word segment. This 
feature is related to a reason why we bother to introduce the blocks in 

the spotting decision, not making a direct use of the word segments. 

Detailed discussions about the block definition will be given later. 

In the spotting (testing) stage, we make the spotting decision based 

on (1). In the design stage, we must thus train the spotter parame-
ters, on the premise that we use (1), so that we can increase spotting 
accuracy as much as possible. Therefore, MSPE is formalized to em-

ulate the above decision process in a smooth function and provides a 

gradient search-based design algorithm that optimizes the state of the 

parameters. The formalization, like MCE/GPD, basically consists of 
three steps. 
In the first step, we embody the discriminant function. The form 

of this function is essentially determined by the selection of the word 
model and in our case using templates we define 9i(x; >.c) as a gen-
eralized distance between入cand a segment of x with the i-th frame 

being the final end of DTW matching. 

In the second step, we introduce a block-based spotting measure 

dk(x; A) to indicate the degree to which a class c word is spotted in 

Dk. Among many possibilities, we specially define the following simple 
example: 

d屡(x;A)~h'-In { *門 exp(g;(x;,¥'))―(}-1/( 
i=p(k) 

where Ik is the frame length of nk (h = q(k) -p(k) + 1) and~is 
a positive number. So that the reader understands our formalization 

concept correctly, let us consider the extreme case that~goes to oo; 
the spotting measure becomes simpler as 

(2) 

d瓜(x;A)~ が一ming丘；.¥c). 
iEOk 

(3) 
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Both (2) and (3) clearly show that the spotting measure emulates the 

above spotting decision in a scalar measurement. A positive value of 

d反(x;A) implies that the corresponding word exists in出； a negative 
value implies that the word does not exist in nk, Note that this 
measure simulates the spotting decision in a scalar value comparison. 

As in MCE/GPD, the use of the Lp-norm form is mainly motivated 

by the following two points: 1) achieving the function's smoothness 
and 2) making the decision softer (more robust). 
In the final step of the formlization, we define a loss, denoted by 
坑(x;A), that directly reflects the spotting result and is controlled 
by block-based supervision. Taking into account the possibility that 

there can be two different kinds of spotting errors, mis-detection and 

false alarm, the loss is defined as 

鯰(x;A)=且(d託(x;A)) (4) 

with 

叡y)~{ l'(y; af詞） ifい(k)= I 
汽 *(y;0:1, 町） if vc(k) = 0 

where炉 (k)is a supervising signal that indicates one (1) if the class c 

word actually e沿stsin nk, zero (0) otherwise, o:t and o:1 are positive 
and negative real numbers, respectively, ,c is a weight controlling 
the balance in possibility between mis-detection and false alarm, and 
f*(y; o:, (J) is a smooth step function such as 

(5) 

1 
『(y;a,/3)= , , -ヽヽ• (6) 

The loss is a function of the spotting result and the supervising signal, 

and straightforwardly approximates the number of block-based spot-

ting errors in a flexible manner based onヂ： It approximately takes 
1) one (1) for one mis-detection, 2)ヂforone false alarm, and 3) zero 

(0) for correct spotting. Whenザ isset to one (1), all of the errors 
are treated as even. Since the mis-detection is fatal compared with 

the false alarm, ,c ma:y sometimes be set less than one (1). By taking 
account of the significance of these error conditions, one can easily 

control the design process by changing , 汽

Since a spotting result must in principle be evaluated over the 

entire set of possible input utterances, we use in the design stage the 

following expectation loss consisting of the above loss for an individual 

decision: 

L(A) = E [鯰(x;A)]. (7) 

Minimizing L(A) will lead to an approximation of the minimum spot-

ting error situation. This minimization can be done by any reasonable, 
mathematically-proven search algorithm such as the steepest descent 

method or simulated annealing. Again, based on the MCE/GPD con-

cept, we specially use in our formalization the adaptive training based 
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on GPD that guarantees the probabilistic convergence. It can easily 

be shown that the following adjustment lets A converge to at least a 

locally-optimal status in a probabilistic sense: 

C K 

A(t + 1) = A(t) -EtU~ ~ ▽且 (x(t);A(t)), (8) 
c=l k=l 

where x(t) and A(t) denote an input token and the parameter status 

at the t-th learning iteration stage, respectively, Et is a small positive 
learning factor which satisfies the stochastic approximation constraints 

I:~1€.t • oo and区芦：1€.l く oo [1],[7], 1(is the number of segments 
set up in記(t),and U is a positive-definite matrix. Note here that this 

learning updates all of the trainable spotter parameters, i.e., both the 
word models and the thresholds, under the single criterion of smooth 

spotting error counts. 

2.2 Block setting 

In principle, one spotting decision is required to correspond to each 
block (each word segment). Nevertheless, in reality, as illustrated in 
Figure 1, the value of the discriminant function :fluctuates continu-

ously and unsteadily due to natural statistical variation, and thus it is 

rather difficult to meet. this requirement; therefore, we obviously need 
a careful way of setting the blocks, or a more precise way of spotting 

decisions than the above rule, so that we can handle realistic deci-

sion situations as appropriately as possible. There is a clearer need of 

this consideration in the training stage: the block setting determines 

spotting accuracy. 

Since the (spoken) word spotting is by nature a segment-based 

decision and our spotter uses DTW-based distance accumulation, the 

spotting decision is naturally done around the last end of a true word 

segment. In this sense, S-blocks should be set as short segments, one 

around each true last end; other segments should be non-S-blocks. 
Moreover, since the rule is based on the minimum-search operation, 

a correct spotting position (frame) should basically correspond to a 

local minimum lower thanが ofthe discriminant function. Therefore, 

in making the decisions, we can naturally focus on local minima, each 

called an M-fra.me, of the function. For later discussions, we specially 

refer to the M-frame that indicates a lower discriminant function value 

than he as the S-fra.me. In light of this, let us elaborate here on 

possible decision situations at a true last end of a word. Consider two 

exemplars, last end frames ie1 and ie2, Ideally, a correct M-frame, or 

an S-frame, should appear at each of these frames. Nevertheless, this 

pin-point match is obviously unrealistic. It is thus natural to consider 
a preset, fixed-length segment around the last end of the word as 

a segment in which a correct M-frame should appear. We refer to 

this segment indicating a correct spotting location as a C-segment; 
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we denote the C-segment for ie by [ie -Kいわ十氏2]with K1 and K2 

being positive constants. We also refer to a segment, other than the 

C-segment, that should inhibit spotting as the I-segment. Figure 1 

illustrates an example consisting of two C-segments, one for the ie1 

frame and one for ie2. Then there may be the following manifold of 
decision situations: 

1. There is no S-frame in a C-segment; this indicates one mis-

detection (See the C-segment for ie2), 

2. There is more than one S-frame in a C-segment; this suggests 

one correct spotting for the most plausive (in terms of the dis-

criminant function value) S-frame among them and false alarms 

for the others (See the C-segment for ie1). 

3. There is at least one S-frame in an I-segment; this implies that 

all of these S-frames cause false alarms (See the I-segments). 

4. Each of all the situations other than the above three indicates 

one correct spotting (no error). 

An appropriate block setting should reflect the above variety. On 

this premise, we specially consider in the paper two methods of block 
setting. 

The first method is simply to assign blocks to either C-segments 
or I-segments; an S-block is set at a C-segment and a non-S-block is 

set at an I-segment. Figure l(a) illustrates this method. Note that 

the concept of min-max error lies in this method. Even if there is 

more than one S-fra.me in one block, the dominant (lower discriminant 

function value) S-fra.mes a.re primarily used for training. This feature 

of the method is clearer in the extreme case of letting [ go to oo; 

only the most dominant (lowest discriminant function value, or most 

undesirable) S-frame is used for training (See the first two segments 

of Figure l(a)). We refer to this method as the min-max method. 

The second method is to fundamentally set an S-block around one 

dominant S-fra.me in a C-segment; an important point here is that 

the S-block is set to the segment sandwiched by two frames with local 

m訟 imaof the discriminant function, each next to the inside S-frame, 

so that the S-block includes only one S-frame. For convenience, we 

refer to the frame with local maxima of the discriminant function 

as the P-frnme. To deal with possible situations appropriately, the 

method is decomposed to the following sequential procedures: 

1. Compute all local minima (S-frames) and local ma泣maof the 

discriminant function. 

2. If there is one S-frame in a C-segment, assign an S-block to 
the segment that includes this S-frame and is bounded by two 

adjacent P-frames. 
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3. If there is more than one S-frame in a C-segment, assign an S-

block to the segment that includes the S-frame with the lowest 

discriminant function value and is bounded by two adjacent P-

frames(See the fourth block of Figure l(b)). 

4. If there is no S-frame in a C-segment, assign an S-block to the 

C-segment (See the sixth block of Figure l(b)). 

5. Set a non-S-block to each of all remaining S-frames. In this. 

procedure, the block boundaries set in the above 4th rule are 

used with priority over the boundaries due to the S-frames in 

this rule (See the fifth and seventh blocks of Figure l(b)). 

We call this method the S-frame-based method. Compared with the 

min-max method, this S-frame-based method seems to be more direct 

in counting spotting errors: a spotting decision is fundamentally done 

at every S-frame. However, since the blocks that should essentially be 

determined only by training samples are set based on training results, 

in other words, the training target is affected by the training result, 

this method is inadequate in a mathematical sense. 

Experimental evaluation for these two methods will be given in 

Section 4. 

3 Implementation Details of MSPE 

Training to DTW-Based Spotter 

In this section, we describe implementation details of the MSPE train-
ing to a DTW-based spotter which we assumed to use in Section 2. 

As cited before, our formalization is of the class-by-class strategy, and 

thus we consider one class spotting, removing the class index c from 

notations in this section. Im?lementation examples for other types of 

spotter structures are given m the Appendix. 

In order to show a general means of implementation, we assume 

to use a multi-template spotter structure. Our word model is then 

assumed to be composed of a set of B sub-models, each consisting of a 
template (acoustic feature vector sequence) and its corresponding set 

of covariance matrices; 入＝｛ふ｝贔={Rb, :Eけf=~'where the b-th 
sub-model, ふ， isa pair comprising template Rb and its corresponding 
set of covariance matrices江凡＝｛叩｝］匂 withJb being the length 
of the template; 叩 isthe j-th S-dimensional acoustic feature vector, 

[ 1'bjl叩...TbjS l四:Eo= {詞｝如； and恥・isthe S x S covanance 
matrix that corresponds to r bj• 

There are many ways to define the discriminant function for this 

spotter structure. By way of example, we consider a starting-end-free, 

multi-template, multi-path, DTW-based spotter of which the discrim-
inant function is a word distance calculated based on the so-called 
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N-best (minimum distortion) concept; the word distance consists of 

M sub-model distances (M :s; B), each calculated between a segment 
of an input utterance and one of the M-best sub-models. The sub-

model distance consists of N path distances, each calculated by accu-

mulating a frame distance along one of the N-best Dynamic Program-
ming (DP) matching paths for every corresponding sub-model. The 

frame distance is calculated between frames, i.e., one frame of an input 
utterance and its corresponding (DP matching-determined) template 

frame. Among many possibilities to measure the frame distance, we 
specially use a general, likelihood-based distance. We assume that the 

sub-model index b indicates the order of its closeness, in terms of the 

above distance measure, to the input segment; e.g., 入1is the closest 

sub-model. Precisely, the discriminant function is then defined in the 
following step-by-step fashion: First, 

gゃ，入） ~m{ 嵐 t,exp(Df (x; A))-,}―1/,, 
where <I> is the total number of permutations for choosing 1'1 sub-
models from all possible B sub-models, i.e., <I>= B!/(B-M)!; Df(x; 入）
is the combi加 dsub-model distance computed over the M sub-models 
in the¢-th best permutation; and 77 is a positive constant. Second, 

(9) 

M 

尻(x;入） = I: p凸 (xぶ (</;,m)心b(</;,m)), (10) 
m=l 

where m is an order index in permuting the M sub-models from the 

B sub-models, b(¢, m) indicates the m-th sub-model in the ゆ— th best 

permutation, Di(x, rb(¢,,m); 恥，m))denotes the sub-model distance 
due to the b(¢, m)-th sub-model, and Pm is a weighting factor that 

satisfies Pm~Pm+l·Third, 

D戸心） = In {芯exp(叫，r心））―(rl/('
where屯 isthe total number of permutations for choosing N paths 

心from all possible 0ib DTW paths, i.e., 屯=0叫/(0ib-N)!;△ i (x,rb;:Eり
is the combined path distance computed along N paths in the琺th

best permutation for the b-th best sub-model; and (is a positive con-

stant. Note that in this description we have specially focused on the 

b-th sub-model. Fourth, 

(11) 

N 

△ f(x, 乃；江） =~7r凸(x,rb; 喜 0(ゅ，n)), (12) 
n=l 

where n is an order index in choosing N paths, ふ（屯叩:Eb,0(ゆ，n))
is the path distance along the 0(1/;, n)-th path of the b-th best sub-
model, 0(1/;, n) indicates the n-th path in the 1/;-th best permutation, 
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and 7r n is a weighting factor that satisfies 7r n 2: 7r n+1. Finally, the path 
,j., 

distance△ i (x, 九；Eりisdefined by using the frame distance 8(・) as 

Jb 1 
△ ;(x, 巧；江0)= -LO(叫(i,b,0,j),巧；砂）， (13)

lb-J=l 

where z(i, b, 0, j) is the frame indicator for x, which corresponds tor妬
via the 0-th path, and the frame distance is of the following form 

8(y, z; I:)= (y -z)冗—l(y -z), (14) 

where y E 炉， zE 炉， and~E Rsxs_ 
The above definitions are general but actually rather complicated. 

One reason for this is that we try to incorporate as rigorously as pos-

sible the concept of using multiple best candidates, which has been 

shown to be useful in increasing design robustness, in our implemen-

tations. In practical use, nevertheless, one can run various simpler 

spotting/ design procedures by controlling the Lp norm parameters 
such as~and the weights such as , , and by introducing a practical 
approximation iμto the formalization. 

One extreme but the most practical way is to let~'T/, and (go to 
oo. The above definitions then become simpler as 

d託x;A) ～ ～ h-g; ・（ぉ；入）， (15) 

gi(x; 入） ～ ～ 叫(x;入）， (16) 

Di(x, rb; :Eb) ～ ～ △ ;(xぶ；Xり (17) 

where 

i* = argmin gi(x; 入）． (18) 
p(k)SiSq(k) 

Note that (16) and (17) respectively are calculated using only M-best 

templates and N-best DTW paths based on the fact that b~= m and 
0~= n. It is worth mentioning here that the idea of using multiple 
best candidates holds accurately even for this simple implementation: 

In particular, the combined path distance can be efficiently computed 

by the A*-based N-best search algorithm [8] for N > 1, or by dynamic 
programming for N = 1. 

Moreover, the full use of covariance matrices often complicates the 
computation and is time-consuming. Simplification should clearly be 

attempted over these matrices. The use of the following diagonal form 

~= diag(cri, aぶ．．．，唸）． (19) 

may be a recommendable solution. The frame distance then becomes 

S (Ys -Zs)2 
庫，z心）= I: 2 ・

a 
s=l s 
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GPD requires in principle an infinite run of training adjustment in 

order to achieve a local optimal status of the parameters. However, the 
infinite training is obviously unrealistic. Using finite, monotonically-

decreasing positive numbers for Et in a manner similar to Learning 

Vector Quantization should thus be another simplication for practica-

bility. 

4 Experimental Results 

To evaluate the fundamental utility on MSPE, we conducted exper-

iments of Japanese consonant spotting. The input speech data con-

sisted of 50 phonetically-balanced Japanese sentences. This set was 
a part of the ATR phonetically-balanced 503-sentence set. Each sen-

tence was uttered twice in a sound-proof room by one ma.le speaker. 

Speech was converted to 16 Mel-scale power coefficients (16-dimensional 
power spectrum) every 5 msec. The acoustic feature vector (frame 

vector) was a sequence of seven adjacent power spectra; S was 112 

(= 7 x 16). Manually-selected labels were used for both training (in 

particular, block setting) and testing. Each label consists of a tran-

scrip ti on (name) and the first-and last-end frames of the corrsponding 

consonant. 

For computational simplicity, we used a simplified implementation 

of the DTW-based spotter described in Section 3. The spotter actually 
evaluated used the simplest Lo::, norm form, the top best sub-model 

for the combined sub-model distance computation, the top best DTW 

matching path for the combined path distance computation, and the 

Euclidean distance for the frame distance computation; (= ry = (= 
2 oo, NI = N = 1, Pl = 1r1 = 1, and abjss'= o(s,s'), where 8(・) is 

Kronecker's delta. We also specially used the asymmetric DP path 

shown in Figure 2. 

Each spotter detected the input frame whose distance from the 

class model was the minimum among nearby frames and was less than 

the threshold; such a frame was considered to be the last-end frame 

of a consonant, i.e., the input frame with the index i satisfying the 

following condition: 

d,(x; A)< 0 /¥ i = argmin dや；A), (21) 
t-K1~i~,+心

where氏1,氏2are prescribed positive constants. In this experiment, 

these values were set to 1,,1 =心=3 for all phoneme spotters. The 

mis-detectionvヽassimply evaluated by counting the number of mis-

spottings. To evaluate the false alarm rates properly, we used false 

alarm rate in false alarm/hour/phoneme (FA/H/P), i.e., the num-

ber of false alarms, normalized by time and the number of phoneme 

classes. 
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Since our training is based on gradient search, the parameters had 

to be initialized effectively. We initialized the templates by modi-
tied k~means clustering [9] with B = 5 for every phoneme class us-
ing phoneme segments extracted by referring to the hand labels cited 

above. The thresholds were initially set so that the mis-detection rate 

and false alarm rate would simultaneously be small. Precisely, the 

threshold initialization was done as follows: First, we investigated the 

mis-detections and false alarms for 23 different threshold values (10.0, 

15.0, 20.0, ... , 120.0). Then, as the initial threshold value h(O), we 

employed the value among them that minimized the initial average 
spotting error 

L(A) = nt +, 町 (22) 

where nt and n1 denote the total number of mis-detections and false 

alarms over the whole training data set, respectively. 

Two different context conditions were tested; 1) context-closed 

mode and 2) context-open mode. In the context-closed mode, a data 

set consisting of one of two utterances for each sentence (Set 1) was 

used for training; the other utterance (Set 2) was used for testing. 
Phoneme contexts appearing in them were the same. In the context-

open mode, 40 sentences of Set 1 were used for training and the re-

maining 10 sentences of Set 1 were used for testing. We carried out 

training and testing for five different training/testing combinations 
and got the average performance. 

In both modes, we ran a 160-epoch (epoch = one full presentation 
of all training sentences) training for each spotter, with Ctt = 0.1, 
Ctf = -0.1, f3t = /31 = 0.0, 1 = 0.15, 0.5, and the learning factor Et = 

Eo(l -t/T), where Eo = 20.0 and Tis the product of the total number 
of training sentences and the prescribed m凶 mumepoch (= 160). 
We used six consonant classes that rather frequently appeared in 

the data set, namely, /t/, /k/, /r/, /N/, /s/, and /h/. Table 1 shows 
the total number of segments for these consonants in the data set 

for each training condition. In the table, "C" and "0" denote the 
context-closed mode and the context-open mode, respectively, and 

"train" and "test" denote the training set and the testing set, re-

spectively. In the "0" column, the sums for all five training/testing 
sets are showed. Tables 2-7 show spotting results for testing sets ob-

tained with the min-max method and S-frame-based method for each 

spotter. In the tables, "MDC" and "FAC" denote the total number of 

mis-detections and false alarms, respectively; "MDR" denotes the mis-

detection rate in percentage; "FAR" denotes the false alarm rate in 

false alarm/hour/phoneme; and in the "mode" column, "C" and "0" 
indicate the context-closed mode and context-open mode, respectively, 

and "B" and "A" indicate the situation before and after the MSPE 

training, respectively. Accordingly, a pair of these notations such as 

"CB" and "OA" indicates the corresponding combined condition of 

experiment. In the context-open mode, the sums of errors of the five 
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training/testing sets and the average error rates are showed. 

A significant reduction in the number of errors was obtained for 

/t/, /k/, and /r/, where MSPE training decreased the mis-detection 
rateand holds the false alarm rate low, both in the context-closed 

mode and in the context-open mode. Although the improvements 

were smaller for /N /, /s/, and /h/, the effectiveness of MSPE training 

was clear. 

The performance of the two types of block setting methods do 

not differ so much. However, the S-frame-based method tends to give 

more weight to false alarms than to mis-detections, since it conducts 

adjustment for non-S-blocks more frequently. As the proliferation of 

false alarms by the min-max method with small I for /r/, /N /, and 

/h/ suggests, 1 and the learning factor should be selected carefully 

depending on the phoneme (or word etc.) category and the block 

setting method. 

5 Conclusion 

We presented a new design method for word spotting, called the Min-

imum Spotting Error learning (MSPE), which fo_ndamentally guar-

antees the minimum spotting error situation in a probabilistic sense 
through MCE/GPD. MSPE allows us to train all trainable spotter pa-

rameters consistently; this key feature implies an innovative departure 
from conventional, heuristic approaches to spotter design. 

The MSPE concept can be applied to any spotting process for even 

visual patterns a.swell as spoken words/phonemes (used for the formal-

ization description in the paper). The concept can also be applied to 

any reasonable spotter system structure. The paper presented the de-

tailed implementation for a multiple sub-model, DTW-based system; 

implementations for an HMM system and a subspace-projection-based 

system are summarized in the Appendix. 

To show the utility of the proposed method, we conducted spotting 

experiments on several Japanese phonemes. The experiments were 

somewhat limited to a particular setting of controllable parameters, 

e.g., coefficients in the Lp norm form and the number of multiple best 

sub-model/DP-path selections. However, our results clearly demon-

strated a very high utilization possibility for MSPE. 
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Appendix 

A Implementation to HMM-Based Spot-

ter 

The implementation of MSPE to HMM-based spotting frameworks is 

described below. We treat a ]-state hidden Markov model {II, A, B} 

as the class model入； II is a set of initial state probabilities {巧}f=l'
A = [ai,j] is a state transition probability matrix, and B is a set of 
output probability density functions {bj(•)}f=I·For notation conve-
nience, we assume a。,j= 1!"j in the following discussion. 
In HMM-based spotting frameworks, the discriminant function 

takes the following form: 

g;(x; 入）＝ー m{責〗圧(x;入，0)'r" (23) 

where? 心；入，0)is the path probability a.t the 0-th best (largest prob-

ability) fra.me-sta.te matching pa.th among a.11 possible 0i paths. 

The pa.th probability at the 0-th pa.th is defined a.s a duration-
normalized likelihood: 

叫入， 0)~{〗も(o,1-,) ,JI o ,l) b JI o ,l) (屯(0り）r・ (24) 

where L0 is the length of the 0-th path. Note that due to this duration 
normalization, time-synchronous trellis algorithms populary used in 

HMM-based systems is not adequate here. 

The output probability density function form depends on the HMM 

type; continuous or discrete. A typical continuous HMM uses 

M; 

も(y)= L叱mN(y;巧mぶm) (25) 
m=l 

where Mj is the total number of mixtures of statej, and N(y; 巧m,均m)
is a multivariate Gaussian with a mean vector Tjm and a covariance 
matrix均m,and Wjm is the normalized mixture weight satisfying 

I: 
M 
m白巧m= 1. On the other hand, a discrete HMM using Fuzzy 
VQ uses 

M 

bj(Y) =~Ujmfm(Y) (26) 
m=l 

where Ujm is the output probability satisfying the requirement区翌=1uがn=
1 and fm(Y) is a fuzzy membership function of them-th VQ code de-
fined as 

fm(Y) = -----M 
8(y, 圧）ー1/(F-1)

m'=l 8(y, r吋
(27) 
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where o(y, rm) is the distance (usually the Euclidian distance) be-

tween y and the m-th centroid vector Tm E炉 ofthe VQ-codebook 
with size M, and the value F > 1 is the degree of fuzziness. Also in 
the discrete one, the reference vectors can be trained. 

Simplification techniques stated in Section 3 can also be applied 
similarly and to keep some constraints of the HMM parameters during 

MSPE training, parameter transformations stated in Ref. [3] can be 
used. 

B Implementation to Subspace Method-

Based Spotter 

We can also apply our training method to spotting based on Iijima's 
subspace method using multiple similarity [10],[11]. 
The discriminant function for a multiple similarity-based subspace 
method is denoted by 

g心；入）＝ーIn{喜f,exp(s;(x; 入，0))'}1/, (28) 

where si(ぉ；入，0)is the multiple similarity at the i-th input frame 
along the 0-th best (ma沿mumsimilarity) time warping path among 
all possible 0i paths. The multiple similarity is defined as follows: 

M 

釘(x;入，0)= L 
m=l 

am(f ;0(x), 如）2

a1 II fie(叫112
(29) 

where fi0(x) is the time-normalized static input vector by the 0-
th best path whose final frame is the i-th input frame; am and心
are the m-th largest eigenvalue and corresponding eigenvector of the 

covariance matrix of the class, M is the total number of eigenval← 
ues/eigenvectors used to compute the multiple similarity, and (,) 

denotes dot product operation. There can be many possibilities of 

time-normalization. One may use a simple linear oor non-linear map-

ping function for this normalization [12],[13]. By letting 

f;e(叫
祐0= 
llfie(x)II 

(30) 

and 

加= ✓元：・<Pm, (31) 

we simplify the de恥itionof the discriminant function in Eq. (28) to 

M 

s心；入，0)=~ 
(bm, y)2 

m=l 
II b1 112・

(32) 
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To keep satisfying the orthogonality of vector set { bm} during the 

MSPE training procedure, we use parameter transformation based on 

Schmidt's nomalization: 

m-1 - - -

bm =に—こ
(bm, bk)bk 

k=l 
II bk 112 ・ (33) 

Transformed parameter {bm} can be freely modified with keeping the 

orthogonality of {bm}-In MSPE training for this framework, a class 

model入representedby入={am, 如｝屈~1 is updated according to 
Eq. (8). 
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Table 1: The total number of phonemes in each data set 

C 

゜phon. train test train test 

t 102 102 408 102 
k 141 141 564 141 
r 117 117 468 117 
N 102 103 408 102 
s 69 69 276 69 
h 66 66 264 66 

19 



Table 2: Training result of /t/ spotter 

(a) Min-max method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 23 8 22.5 122 

CA 2 20 2.0 305 
OB 11 30 10.8 476 

OA 

゜
23 0.0 365 

0.5 CB 23 8 22.5 122 

CA 4 11 3.9 168 
OB 19 19 18.6 302 

OA 3 15 2.9 238 

(b) S-frame-based method 

うl Mode MDC FAC MDR FAR 

0.15 CB 23 8 22.5 122 

CA 2 10 2.0 152 
OB 11 30 10.8 476 
OA 3 21 2.9 333 

0.5 CB 23 8 22.5 122 

CA 4 3 3.9 45 

OB 19 19 18.6 302 
OA 3 12 2.9 190 
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Table 3: Training result of /k/ spotter 

(a) Min-max method 

'Y Mode MDC FAC MDR FAR 
0.15 CB 34 110 24.1 1682 

CA 11 79 7.8 1208 
OB 27 111 19.1 1764 

OA 11 87 7.8 1383 
0.5 CB 74 23 52.5 351 
CA 18 19 12.8 290 

OB 48 41 34.0 651 

OA 22 22 15.6 349 

(b) S-frame-based method 

' 
Mode MDC FAC MDR FAR 

0.15 CB 34 110 24.1 1682 

CA 15 29 10.6 443 
OB 27 111 19.1 1764 

OA 15 39 10.6 620 

0.5 CB 74 23 52.5 351 
CA 21 14 14.9 214 

OB 48 41 34.0 651 

OA 23 15 16.3 238 
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Table 4: Training result of /r/ spotter 

(a) Min-max method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 68 133 58.1 2034 
CA 2 630 1.7 9638 

OB 57 199 48.7 3163 

OA 13 593 11.1 9428 

0.5 CB 94 48 80.3 734 

CA 23 24 19.7 367 
OB 98 22 83.8 425 

OA 38 29 32.5 561 

(b) S-frame-based method 

うl Mode MDC FAC MDR FAR 

0.15 CB 68 133 58.1 2034 

CA 18 42 15.4 642 

OB 57 199 48.7 3163 

OA 28 50 23.9 794 

0.5 CB 94 48 80.3 734 

CA 43 ， 36.8 137 
OB 98 22 83.8 425 
OA 78 6 66.7 116 
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Table 5: Training result of /N / spotter 

(a) Min-m訟 method

'Y Mode MDC FAC MDR FAR 

0.15 CB 52 62 50.5 948 

CA 10 1112 9.7 17012 
OB 29 118 28.4 1876 

OA 18 1100 17.6 17488 

0.5 CB 73 19 70.9 290 
CA 42 77 40.8 1178 

OB 55 46 53.9 731 

OA 49 53 48.0 842 

(b) S-frarne-based method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 52 62 50.5 948 

CA 14 67 13.6 1025 

OB 29 118 28.4 1876 
OA 23 66 22.5 1049 

0.5 CB 73 19 70.9 290 
CA 31 32 30.1 489 

OB 55 46 53.9 731 
OA 38 30 37.3 476 
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Table 6: Training result of /s/ spotter 

(a) Min-max method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 4 36 5.8 550 
CA 3 31 4.3 474 
OB ， 29 13.0 461 
OA 2 28 2.9 445 

0.5 CB 7 16 10.1 244 
CA ， 11 13.0 168 
OB 14 18 20.3 286 
OA 10 8 14.5 127 

(b) S-frame-based method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 4 36 5.8 550 
CA 3 21 4.3 321 
OB ， 29 13.0 461 
OA 5 26 7.2 413 

0.5 CB 7 16 10.1 244 
CA 4 8 5.8 122 
OB 14 18 20.3 286 
OA 8 15 11.6 238 
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Table 7: Training result of /h/ spotter 

(a) Min-max method 

'Y Mode MDC FAC MDR FAR 

0.15 CB 34 30 51.5 458 

CA 8 2170 12.1 33198 
OB 36 41 54.5 651 

OA 8 1077 12.1 17123 

0.5 CB 44 5 66.7 76 
CA 21 ， 31.8 137 
OB 44 3 66.7 79 
OA 36 11 54.5 292 

(b) S-frame-based method 

' 
Mode MDC FAC MDR FAR 

0.15 CB 34 30 51.5 458 

CA 19 12 28.8 183 
OB 36 41 54.5 651 

OA 36 20 54.5 317 

0.5 CB 44 5 66.7 76 
CA 28 4 42.4 61 

OB 44 3 66.7 79 
OA 44 5 66.7 132 
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Figure 1: An example of (a) min-max method and (b) S-frame-based method. 
White circles indicate local minima of discriminant function. 
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Figure 2: Asymmetric DP path used for starting-end-free dynamic time warp-

ing. 
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