
/

TR-H -050

Evolutionary System for
the Computer Screening of

the Coding Regions of Human Genome

Tetsuya MAESIDRO (JAIST Hokuriku)

Ken-nosuke WADA

1994. 2. 3

ATR人間情報通信研究所
〒619-02京都府相楽郡精華町光台2-2 ぢ 07749-5-1 011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-77 49-5-1011
Facsimile: +81-77 49-5-1008

c(株ATR人間情報通信研究所

ATR HUMAN INFORMATION PROCESSING LABORATORY

DEPARTMENT 6

Technical Report February 3, 1994

Evolutionary System for

the Computer Screening of

the Coding Regions of
Human Genome

Tetsuya I¥!Iaeshiro1

Ken-nosuke vVada2

Abstract

We present here an evolutionary system for the discrimination of
the splicing sites of the human genome, whose population consists
of neural networks. l¥l!ost important of the parameters charac-
terizing the networks are the learning algorithm, the duration of
learning period, the number of hidden units, and the inheritance
type. Three different simulations were run, and we discuss the
results. Although several other simulations are necessary to be an-
alyzed, we show that in general, even with the environment change,
there is the predominance of short learning period, simple learning
algorithm and Lamarckian type.

Copyright◎ 1993 by the authors.

1 Kimura Lab., School of Information Science, Japan Advanced Institute of Science and Tech-
nology, Hokuriku.

E-mail : maeshiro@jaist.ac.jp
2Dept.6, ATR Human Information Processing Research Lab.
E-mail: kwada@hip.atr.co.jp

1 Introduction

Through its long period of evolutionary process, life has acquired an exquisite

genetic coding system. One such example is the existence of the intervening

sequences, called introns, in the protein coding regions of DNA. To the proteins
be synthesized, first the protein coding region must be copied to pre-mRNA, and

the introns must be cut out to become matured mRNA, a process called splicing,

where the introns are eliminated with the enzyme called spliceosome, and the

actually coding regions, the exons, are connected together. The mRNA splicing
system, consisting of some enzymes, presents an extremely high discrimination

accuracy of the splicing sites. For more details, please consult [Stry88].

The details of the splicing mechanism is not yet fully known, and we used the
neural networks to the discrimination of the splicing sites. Here we do not describe
the implementation details of our evolutionary system. Rather, in this report we

concentrate in the description of evolutionary mechanism when the individuals

are free to choose their own learning algorithms, length of the learning period

corresponding to the childhood, number of the hidden units of the neural network

which is the power and the complexity of pattern recognition, and finally, the

inheritance type, either Lamarckian or Mendelian type.

In order to analyze the general behavior of the system, the problem chosen for

the simulation is a real-world problem, the splicing site problem, an attempt to

introduce the real-world complexity to the system.
In section 2, we describe the learning algorithms used in our system. Total of

six algorithms were used in our system. The simulation system is briefly described

in section 3, and the experiment procedure and the input data in section 4. The

simulation results and discussion are given in section 5, and the conclusion in

section 6. For details of the simulation system, please consult [TaWa94].

2 Learning Algorithms for Neural Networks

The Back Propagation (BP) algorithm is well known as the learning algorithm
for neural networks, but it has some problems like slow learning speed and high

sensitivity to the initial state.

Initially, we implemented the splice point discrimination system using the sim-
ple BP algorithm, but the initial value sensitivity was too high to be used even
incorporating them into an evolutionary system. Here we describe the learning

algorithms used in our system.
The learning algorithms for neural networks presented here were proposed by

ー

Ochiai and Usui [OcUs92] to improve the convolution speed. They are named
Jacobs, Jacobs Hybrid, and Kick Out. Each of them are constituted by the

renewal rules for w生ghtand learning rates, a~d t~ere are two renewal rules for
learning rates, the 8 -8 (DbD) rule and the 8 -8 (DbDb) rule, the latter one

being the improved version. There are six algorithms for total, which are: Jacobs

DbD, Jacobs DbDb, Jacobs Hybrid DbD, Jacobs Hybrid DbDb, Kick Out DbD,

and Kick Out DbDb.
Here we briefly describe each of them.

2.1 The algorithms

First, we describe the Jacobs method. From now on, w is the weight of the neural

network, TJ = (771, ... , 叫 isthe learning rate, 氏 isthe increment factor and¢
is the decrement factor of the learning rate, g is the gradient (first derivative of
the evaluation function), and 6 is the normalizing derivative. Then, the Jacobs

method with the DbD renewal rule can be written:

Jacobs Method:

Renewal rule for weight:

Wk+l = wk+△ Wk

△ wk = -diag(rJり9k

Renewal rule for learning rate (D bD):

加＝加1,i・十氏 if三 ・9k,i> Q

康，i=康ー1,i・<p if O k-l,i・9k,iく 0
喰，i=刀k,i otherwise

whereふ=(1 -0)・9k + 0・Dk-l
The last formula can be rewritten as亙=(l-0)(g戸 0gぃ＋炉gk_2...). This

is the average gradient of the evaluation function surface on the track followed by

the weight.
The DbD rule for the renewal of the learning rate is if the value is positive,

it concludes that the change was small and increases the learning rate in order

to accelerate the convolution. In contrary, if the value is negative, it decreases

the value of learning rate concluding that it surpassed the valley where it should
reach, decreasing consequently the search pace, trying to accelerate the convolu-

tion speed.

2

However, we cannot suppress the weight oscillation in the valley of the evaluate

function caused by the renewal rule for weight. In order to solve this, the addition

of the mom~ntum term (o:) was proposed, called Jacobs Hybrid method.
Jacobs Hybrid Method:

△ wk = -diag(1J砂ぬ＋贔Wk-I

We treat the value of the momentum term (o:) as near 1 to the acceleration
effect be the maximum.

But even with the use momentum term, the weight oscillation in the valleys

cannot be suppressed rapidly. Since this oscillation is caused by the fact that the

fastest descent direction is orthogonal to the valley, we have to find a way to the

fast descent direction be the same with the direction of the valley. The method

with the compensation term to allow this was proposed, called kick out method.
Kick Out Method:

△ wk = -diag(1Jk)gk + a△ Wk-1

y和△Wk
△叫＝△Wk - 2 Y k if yf y k < 0 211鉛 II

where Yk = gk -9k-l
The compensation term introduced in this method serves to position the weight

on the bed of valley in the case of weight oscillation.

2.2 L earning rate renewal rules

When describing the Jacobs method, we presented the DbD rule. Here we present

the improved version of DbD rule, the DbDb rule.

Renewal rule for learning rate (DbDb):

加＝加l,i・十氏 if 6k-l,i・ 知＞。
加＝加ーl,i・q> if 6k-l,i・ 如く 0
加＝限，; otherwise

The reason DbD rule cannot suppress the oscillation of weights is that on the

moment just after surpassing the valley the gradient and the momentum term

become unbalanced. With the DbDb rule, since the sign of the mean derivative

does not change just before and after surpassing the valley, there is no decrease of

the orthogonal component of the leaning rate to the valley, and the decrease occurs

3

one step after. Because of this, the modulo of the gradient and the momentum
term are balanced, correcting the weight to the direction of the valley, consequently

suppressing the oscillation.

This oscillation suppressing effect of DbDb rule relies upon the value of the

weight coefficient (0 < 0 < l). 0 should be near 1 the Db Db rule become effective.

With this rule, there is no need of learning parameter adjustment for specific

problem, since we can obtain the best convolution performance.

We should emphasize here that although the weight oscillation problem was

minimized with this rule, the problem of initial value sensitivity still remains, or

specifically, has worsened, and hence there is a need of incorporation of evolution-

ary system to solve our problem, the discrimination of the splicing sites.

3 Simulator

3.1 Child and Adult -Learning Period

The neural network should learn before it can be used. In our system, the learning
process is a fine tuning process, and the generation of the initial weight values is

a global tuning process. Once the initial weight values are fixed, the possible

values after any learning become constrained. The initial value is fixed when the

individual is born, and the learning process corresponds to the childhood.
The length of learning period of the population, the neural networks in our

c邸 e,C叫 dbe fixed, but we made it variable in order to verify the optimal length

of learning period. When the individual reaches its adulthood, it can reproduce.

Since the number of the total population is fixed, an adult has to find another

one and check if the opponent's fitness value is lower than his. If this is true,

the loser's space is occupied with the winner's offspring. The children cannot be

attacked, 邸 ifprotected in a shelter.

We expect the decrease of learning times in the later stages of the simulation

if there is the predominance of the Lamarckians, since if the child inherits the

parent's learned data, in our case the weight and bias values, there is no need for

the long learning, or even no learning at all.

3.2 Mendelism and Lamarckism

In the field of Biology, it is the common sense between the biologists that natural

organisms follow the so called Mendelian evolution, where the information passed
from parents to their offspring is strictly genetic, and not the sort of evolution

4

postulated by Lamarck, who believed that natural organisms might pass acquired

traits to their offspring.

This may be true for t~e biological world, but in the engineering field this may
be different, where Lamarckians can be more advantageous than the Mendelians,

since the environment change is less drastic. We believe that the Mendelian type of

inheritance is better suited when the environment change is dynamic and frequent,

since if the organism is hyper optimized for an environment, it may be more

expensive in any sense like time, energy or some other cost measure to fit into
another environment than a recent-born, who is not optimized to any specific

environment.

We expect to see the predominance of Larnarckian type as the simulation goes

with stable environment. In the steps immediately after the environment change,
there may be a slight increase of Mendelians, since they might be more robust
than Lamarckians, as latter ones are more locally optimized.

3.3 Learning Algorithms

We also let the individuals choose their learning algorithms. Ideally, they should

develop their own learning algorithms, but this is unrealistic for now. Therefore,

we provided six learnirrg algorithms for total: Jacobs, Jacobs Hybrid, and Kick

Out, each one with either DbD (Delta-bar Delta) or DbDb (Delta-bar Delta-bar).

As described earlier, Jacobs-DbD is the simplest algorithm, which means faster,

but less stable, and Kick Out-DbDb is the most complex, slower, but more stable.

DbDb is slower and more complex than DbD, if compared.

4 Experiments

4.1 Data Set

The data sets used in the simulation are the data containing exon-intron DNA

sequences, intron-exon DNA sequences and junk DNA sequences, the latter one

containing only the exon sequences without splicing site. These sequences were

picked up manually and randomly from the human genome DNA sequence data
base, total of 100 sequences for each data set.

4.2 Experin~ents

Three simulations were run, and here we briefly describe each of them.

5

• Experiment 1 -The experiment 1 does not involve environment change dur-
ing the simulation. It was run to analyze the general behavior of the system
in a stable environment.

• Experiment 2 -The simulation starts with the positive data set containing
the exon-intron splicing point. In the middle of the run, the positive data

set is switched to the data set containing also the intron-exon splicing point

data set. Although this is an environment change, the change is not drastic,

as the switched data set contains the former data.

• Experiment 3 -As in the experiment 2, the simulation starts with the posi-

tive data set containing the exon-intron splicing point, and in the middle of
the run, the positive data set is switched. However, the environment change

in this experiment is more drastic than of the second experiment, as the

positive data set completely changes from the exon-intron splicing point to

intron-exon splicing point, the latter one being completely different from the

former one.

In all experiments, the population was 50, run for 40 steps. The data set
change occurred at 20th step when involved.

5 Simulation Results and Discussion

In this section we present the results of the three experiments and analyse them.

Although the data set _was small, the results were under our expectations.

5.1 Experiment 1

First, the experiment 1, without environment change. From the figure 1, the

maximum score is 100% from the first step, since the number of data set is small,

and neural networks can achieve 100% of recognition rate in one epoch with the

presented learning algorithms.
We also noted that the mean score reached near 100% in 27 steps, with mono-

tonic increase. There are some ripples of minimum value, which commonly hap-

pens in this kind of simulation.
Figure 2 shows the change of the mean value of length of learning period. It

starts with around 5.5, and monotonically decreases, approximating 2 in 40 steps.

This result reinforces our supposition, where in stable environment, there is no

need for learning if the population is predominated with Lamarckian types.

6

Figure 3 shows the population composition according to the learning algo-
rithm. At the beginning, the composition is almost equal, but邸 thesimulation

goes on, the number of those with complex algorithms decreases, reaching near

0% on the 40th step. The simple algorithms, the Jacobs, clearly predominates

the population. It is interesting that the Jacobs DbDb, and not Jacobs DbD,
predominates. Another interesting fact is the slight incre邸 eof Kickout DbDb

between the steps 10 and 20. In this period that the Lamarckians predominates
rapidly the population, as in figure 4. We interpret this as follows: The individu-

als with Kick Out method, which is the most powerful algorithm, learn to achieve

the higher score as possible, and pass their leaned data to the individuals with

simpler learning method through reproduction and mutation. It seems as if the
system as whole is working together to extract the best fitted individual.

5.2 Experiment 2

Figure 5 shows the maximum, minimum and mean score of the second experiment.
The environment was switched on the 20th step, and the drop of the mean score
curve clearly shows that. The positive data set was not completely changed, since

half of the switched data set is the same as the original one. The drop was near

15%, but the most interesting is that the maximum score was not affected by the
environment change, constantly scoring 100%. Partly this is due to the small data
set used in the simulation.

Figure 6 shows the mean learning times. It is interesting that the curve in

the first 20 steps increases, oppositely from the figure 2, where the value tends to

decrease. There is no .logical explanation to this phenomena, but it may be the

different random number seed used in this simulation. We cannot see any effect

from the data set change, which corresponds to the environment change. The
effect might have been clearer if the data set was larger. The mean value is kept

almost constant even after the environment change, approximately 6.5, since the

change was incremental, and not complete. ・

Figure 7 is the population composition according to the learning algorithm.

All the six algorithms starts with the same composition, and the more complex

algorithms tends to decrease. In general, as in the figure, the DbD rule predomi-

nates the DbDb rule, and Jacobs the Jacobs Hybrid, and Jacobs Hybrid the Kick

Out algorithm. Just after the environment change, with a slight delay, which is

approximately equal in value to the mean learning time steps, there is a slight

increase of more complex algorithms, notably the Jacobs Hybrid. We believe

there was no influence on the Kick Outs since there was no necessity to use the

complexity and power provided by this algorithm, and the moderately powerful

7

algorithm, the Jacobs Hybrid, was enough to manage the incremental change of

the environment. Although small, there is a little increase of Kick Outs in the

steps between 26 and 35. We also believe this is the environment change effect.
On the 40th step, when the simulation finished, almost two-thirds of the popula-

tion is Jacobs DbD, and if added with the Hybrid DbD, they account for nearly

80% of the population. Another interesting fact is the stagnation of the Jacobs

DbD in the steps between 20 and 25, just after the environment change. This is

due to the increase of the more complex algorithms to afford the more complex

environment. After the learning is complete, the simplest algorithm begins to

rncrease agam.

Figure 8 shows the population composition according to the inheritance type.

After a slight decrease of Lamarckians, they increase until reaching a stctble com-

position, around step 15. After the environment change on the 20th step, the
Lamarckians decrease a little since the Mendelians are more robust against the

environment change. Note that the decrease is small, around 10%1 and after the

25th step Lamarckians restart the predomination. This recovery starts 5 steps
after the environment change, and 5 is approximately the mean learning time of
the population at this moment, as in figure 6. It shows that the learning period of

the neural networks at this moment is long enough to account for the complexity
of the new data set introduced after the environment change. After the 30th step,
the system keeps the stable inheritance type composition. It is interesting that

the composition we got from the simulation without environment change (figure

4) is different from this simulation (figure 8). Maybe this difference is due to the
different random number generator seed used in the simulations.

5.3 Experiment 3

Now we analyze the results of the third experiment. Figure 9 shows the maximum,

minimum and mean score. As before, the environment was changed on the 20th

step, and again we can verify the drop of the mean score curve. The mean score

at the moment just before the environment change in this experiment is nearly

100%, different from the former one, where the mean score reached nearly 95%.

This is due to the different seed of random number generator used. Note here

that the environment change in this experiment is more drastic than that of the

second experiment, since any data before the change remain after. However, we

note that drop is around 15%, same as in the second experiment. This is notable,

but it is partly because of the small data set used. The recovery of the mean score

is faster than the second experiment.

Figure 10 shows the mean learning times. The cnrve until the environment

8

change is similar to the second experiment, not showing clear decrease. However,

after the environment change, there is a decrease as in the figure 2. The positive
edges at around 23rd step and 27th step are due to the environment change. At

30th step, the system becomes stable, with approximately 4 learning times. It is
interesting that the complete environment change allows the system to reach lower
learning times than the partial environment change, as in the second experiment.

Another explanation to this phenomenon is the different seeds used for random
number generators.

Figure 11 shows the population composition according to the learning algo-
rithm. A clear difference from the second experiment is the predominance of the

Kick Out DbD in the middle of the simulation including the moment of environ-

ment change. It starts on the 5th step, much earlier from the environment change,
which happened on the 20th step. After the environment change, the population

is predominated with Jacobs DbDb, different from the second experience, where

the much simpler Jacobs DbD predominated. This shows that the complete en-

vironment change demanded more power than the partial environment change.

If the simulation was proceeded after 40th step, we believe the Jacobs DbD pre-

dominated the population. In this simulation, we note that the Kick Out DbD

handled the environment change, passing the learned data to the Jacobs DbDb.

The clearer difference from the second experiment is shown in the figure 12,

the population composition according to the inheritance type. The number of
Lamarckians increases rapidly at the beginning of the simulation, achieving com-
plete predominance before the environment change. This high inclination curve is

related with the predominance of the Kick Out DbD in the middle of the simula-

tion, with neural netw9rks convolving rapidly because of the algorithm efficiency,

consequently passing acquired data to the Lamarckians. Even with the complete

environmental change, there is no effect on the predominance of the Lamarckians.

This graph is completely different from figure 8, and this is due to the different

seed used for random number generator. V¥1e must note that at the end of simu-

lation, around 35th step, there is a slight decrease (10%) of the Lamarckians, and

the consequent increase of Mendelians. Maybe! this composition is the system's

stable composition, or maybe this is just a ripple, being the system in dynamic

stability.

6 Conclusion

In this paper, we attempted to analyze the best combination of parameters when
popnlation can choose the learning algorithm, the duration of learning period, and

，

the inheritance type. Although the simulations run are of small scale, and hence
there is a need for more extensive simulations with varied parameter combinations,
we could get a general outline of the behavior, where the simplest learning algo-

rithm, shorter learning period and the Lamarckian inheritance type predominate

the population, even with an environment change.

However, the quantity of simulation data is still small, and there is a need for

further analysis, with larger data sets and varied simulation parameters.

This is a partial report, and we intend to collect more data related with the op-
timal combination of inheritance type, learning methods and the length of learning

period.

Acknowledgements

The authors would like to thank Yoichi Tokura, Katsunori Shirnohara, and Ma-

sayuki Kimura, and one of the authors would like to thank them for giving the

opportunity to stay as trainee at ATR Human Information Processing Research

Laboratory.

References

[OcUs92] OCHIAI, KEIHIRO AND Usm, SHIRO, "Improved Kick Out Algorithm
with New Adaptation Rule (万—万 Rule) of Learning Rate", In: Technical

Report of IEICE, NC92-94, 1992.

[Stry88] STRYER, LUBERT, Biochemistry, W.H.Freeman and Company, 1988.

[TaWa94]田中真一，和田健之介，進化システムを用いた遺伝子のコーデイング領
域予測システムの開発， 1994.

10

.O
19876543210

00 ci ci ci ci ci ci ci

glB~+!H
-"'--』 . -

一 I •

l ~- .
• ~ •

ー・
．．

A I! I ;1

ー：＇

--. I ;1 I•
f I • I

I・ • I • I ': • I --~I •

：

ー Max

• • • , Mean

ー・-Min

5 10 15 20 25 30 35 40

Steps

Figure 1: Stable Environment: Max, Min and Mean Scores

6

543210
(uBgW) sg日tLbl U1UJBg7

:,¥

ヽ,-

,,,,,,.._

~~
＼ 、冑

5 10 15 20 25 30 35 40

Steps

Figure 2: Stable Environment: Learning Times

11

Figure 3: Stable Environment: Population Composition by Learning Method

12

ー

貪）uonちodwoU

00 000 0 00000
0987654321

I#囀

I~

一
~ ~ ヘ/"""'

／
、~

r ，，
J
．

.ヽ/

＾
..
¥ I

．ヽ
~ヽ

•

｀
~,

｀
•1,' 0、I ~ • ヽ ヽ~ I,,.

5 10 15 20 25 30 35 40

Steps

—Lamarckian

-, -Darwinian

Figure 4: Stable Environment: Population Composition by Inheritance Type

13

Switch

Exon -lntron &
Intron -Exon

Exon -Intron &
Intron -Exon

．

“

•
『

:：

-l寸
J

-

―

―

-

-

]

。

1

9

8

7

6

5

4

3

2

1

0

0

0

 c
i
c
i
c
i
c
i
c
i
c
i
c
i

g
l
U
c
l
 l●

H

ヽ
,. .. * • ． .. • • .. —ー＇--

重I ♦
•

a a ■ I

Max

Mean

-• -Min

5 10 15 20 25 30 35 40

Steps

Figure 5: Experiment 2: Max, Min and Mean Scores

14

Switch

Exon -Intron

7

6

5

4

3

2

1

0

名宍
3

芝）
s
g
日

L」
b
l
u
•
日

B
3
1

Exon -Intron &
Intron -Exon

~ ふ

｀
一V"'-''"' r ● 9

“―

../' ソ’

5 10 15 20 25 30 35 40

Steps

Figure 6: Experiment 2: Learning Times

1.s

1
9
8
7
6
5
4
3
2
1
0

0
0
 cicicici 0
 cici

妥
臼
臼
．
s
名
詞
[

a
q
a
'
p
p
q
i
H

q
a
q
a
'
p
μ
q
A
H

.̀,9

＼
ー
、
’
/
ヽ
ー
・
9
.
I
I
,
J
.
‘
,
・
I
t
,

'

・

・

・

・

・

ぃ

＿
i•

•'‘·̀

••.••

＾

、ー
[

e

/

｛

．
＾
、
一

.1.'(

'·'••9

9
8
7
6
5
4
3
2
1

•••••••••
1
 0
0
0
0
0
0
0
0
0
0

Figure 7: Experiment 2: Population Composition by Learning Method

“!

16

Switch

Exon -Intron
Exon -Intron &
Intron -Exon

100
90
80―

象 70~..__,

目 60:
•こ SQ..: ・←一4
uっ

0 40:

i 30~
u 20:

10:

゜

_,,,

5 10 15 20 25 30 35 40

Steps

一 Lamarckian

Darwinian

Figure 8: Experiment 2: Population Composition by Inheritance Type

17

＼̀,＇_,.

Switch

Exon -Intron Intron -Exon

1
0.9:

0.8

゜
0.7

~0.6·
~0.5
.-;:::: 0.4

~v
~-

0.3 -

0.2

0.1

゜0 5 10 15 20 25 30 35 40

Steps

—Max
...... 1 Mean

ー・-Min

Figure 9: Experiment 3: Max, Min and Mean Scores

18

S,vitch

Exon -Intron

6

5

4

3

2

1

0

(
u
e
g
w
)
 s
g
日
巨
bl

日
日
翌
T

Intron -Exon

.,,,,.
~

＾
ヽ

"r -+ ヽ
V ヽ¥j¥

｀

5 10 15 20 25 30 35 40

Steps

Figure 10: Experiment 3: Learning Times

19

守

，

1
9
8
7
6
5
4
3
2
1
0

0
0
 o

ci''o'b o'ci o

生
臼
六
〗
．3
9
1
臼

i
gば

9
8
7
6
5
4
3
2
1

•

．
．
．
．
．
．

1
 0
0
0
0
0
0
0
0
0
0
 a

q
a
'
s
q
o
:
m
r

q
a
q
a
・
s
q
o
:
m
r

a
q
a
'
p
μ
q
i
H

q
a
q
a
'
p
μ
q
i
H

aqa'lTIO)[JD!

Figure 11: Experiment 3: Populat.io11 Composition by Lea.ruing Met.hod

20

―-- -------h

9
,
9

・'

••99,9~

t
2
.
L

~,1~`C9999.,

Switch

Exon -Intron Intron -Exon

＾

:1:-：

7:-

.
-
-
：
-
：
1
:
-
．一

．．

ー

0

0

 0

0

0

0

0

0

0

0

0

0

9

8

7

6

5

4

3

2

1

ー

（ぶ）uop~sodwo

U

．
·~1-—.

5 10 15 20 25 30 35 40

Steps

—Lamarckian

- , -Darwinian

Figure 12: Experiment 3: Population Composition by Inheritance Type

21

	01
	02
	03

