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Abstract 

We present here an evolutionary system for the discrimination of 
the splicing sites of the human genome, whose population consists 
of neural networks. l¥l!ost important of the parameters charac-
terizing the networks are the learning algorithm, the duration of 
learning period, the number of hidden units, and the inheritance 
type. Three different simulations were run, and we discuss the 
results. Although several other simulations are necessary to be an-
alyzed, we show that in general, even with the environment change, 
there is the predominance of short learning period, simple learning 
algorithm and Lamarckian type. 
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1 Introduction 

Through its long period of evolutionary process, life has acquired an exquisite 

genetic coding system. One such example is the existence of the intervening 

sequences, called introns, in the protein coding regions of DNA. To the proteins 
be synthesized, first the protein coding region must be copied to pre-mRNA, and 

the introns must be cut out to become matured mRNA, a process called splicing, 

where the introns are eliminated with the enzyme called spliceosome, and the 

actually coding regions, the exons, are connected together. The mRNA splicing 
system, consisting of some enzymes, presents an extremely high discrimination 

accuracy of the splicing sites. For more details, please consult [Stry88]. 

The details of the splicing mechanism is not yet fully known, and we used the 
neural networks to the discrimination of the splicing sites. Here we do not describe 
the implementation details of our evolutionary system. Rather, in this report we 

concentrate in the description of evolutionary mechanism when the individuals 

are free to choose their own learning algorithms, length of the learning period 

corresponding to the childhood, number of the hidden units of the neural network 

which is the power and the complexity of pattern recognition, and finally, the 

inheritance type, either Lamarckian or Mendelian type. 

In order to analyze the general behavior of the system, the problem chosen for 

the simulation is a real-world problem, the splicing site problem, an attempt to 

introduce the real-world complexity to the system. 
In section 2, we describe the learning algorithms used in our system. Total of 

six algorithms were used in our system. The simulation system is briefly described 

in section 3, and the experiment procedure and the input data in section 4. The 

simulation results and discussion are given in section 5, and the conclusion in 

section 6. For details of the simulation system, please consult [TaWa94]. 

2 Learning Algorithms for Neural Networks 

The Back Propagation (BP) algorithm is well known as the learning algorithm 
for neural networks, but it has some problems like slow learning speed and high 

sensitivity to the initial state. 

Initially, we implemented the splice point discrimination system using the sim-
ple BP algorithm, but the initial value sensitivity was too high to be used even 
incorporating them into an evolutionary system. Here we describe the learning 

algorithms used in our system. 
The learning algorithms for neural networks presented here were proposed by 
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Ochiai and Usui [OcUs92] to improve the convolution speed. They are named 
Jacobs, Jacobs Hybrid, and Kick Out. Each of them are constituted by the 

renewal rules for w生ghtand learning rates, a~d t~ere are two renewal rules for 
learning rates, the 8 -8 (DbD) rule and the 8 -8 (DbDb) rule, the latter one 

being the improved version. There are six algorithms for total, which are: Jacobs 

DbD, Jacobs DbDb, Jacobs Hybrid DbD, Jacobs Hybrid DbDb, Kick Out DbD, 

and Kick Out DbDb. 
Here we briefly describe each of them. 

2.1 The algorithms 

First, we describe the Jacobs method. From now on, w is the weight of the neural 

network, TJ = (771, ... , 叫 isthe learning rate, 氏 isthe increment factor and¢ 
is the decrement factor of the learning rate, g is the gradient (first derivative of 
the evaluation function), and 6 is the normalizing derivative. Then, the Jacobs 

method with the DbD renewal rule can be written: 

Jacobs Method: 

Renewal rule for weight: 

Wk+l = wk+△ Wk 

△ wk = -diag(rJり9k

Renewal rule for learning rate (D bD): 

加＝加1,i・十氏 if三 ・9k,i> Q 

康，i=康ー1,i・<p if O k-l,i・9k,iく 0
喰，i=刀k,i otherwise 

whereふ=(1 -0)・9k + 0・Dk-l 
The last formula can be rewritten as亙=(l-0)(g戸 0gぃ＋炉gk_2...). This 

is the average gradient of the evaluation function surface on the track followed by 

the weight. 
The DbD rule for the renewal of the learning rate is if the value is positive, 

it concludes that the change was small and increases the learning rate in order 

to accelerate the convolution. In contrary, if the value is negative, it decreases 

the value of learning rate concluding that it surpassed the valley where it should 
reach, decreasing consequently the search pace, trying to accelerate the convolu-

tion speed. 
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However, we cannot suppress the weight oscillation in the valley of the evaluate 

function caused by the renewal rule for weight. In order to solve this, the addition 

of the mom~ntum term (o:) was proposed, called Jacobs Hybrid method. 
Jacobs Hybrid Method: 

△ wk = -diag(1J砂ぬ＋贔Wk-I

We treat the value of the momentum term (o:) as near 1 to the acceleration 
effect be the maximum. 

But even with the use momentum term, the weight oscillation in the valleys 

cannot be suppressed rapidly. Since this oscillation is caused by the fact that the 

fastest descent direction is orthogonal to the valley, we have to find a way to the 

fast descent direction be the same with the direction of the valley. The method 

with the compensation term to allow this was proposed, called kick out method. 
Kick Out Method: 

△ wk = -diag(1Jk)gk + a△ Wk-1 

y和△Wk  
△叫＝△Wk - 2 Y k if yf y k < 0 211鉛 II

where Yk = gk -9k-l 
The compensation term introduced in this method serves to position the weight 

on the bed of valley in the case of weight oscillation. 

2.2 L earning rate renewal rules 

When describing the Jacobs method, we presented the DbD rule. Here we present 

the improved version of DbD rule, the DbDb rule. 

Renewal rule for learning rate (DbDb): 

加＝加l,i・十氏 if 6k-l,i・ 知＞。
加＝加ーl,i・q> if 6k-l,i・ 如く 0
加＝限，; otherwise 

The reason DbD rule cannot suppress the oscillation of weights is that on the 

moment just after surpassing the valley the gradient and the momentum term 

become unbalanced. With the DbDb rule, since the sign of the mean derivative 

does not change just before and after surpassing the valley, there is no decrease of 

the orthogonal component of the leaning rate to the valley, and the decrease occurs 
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one step after. Because of this, the modulo of the gradient and the momentum 
term are balanced, correcting the weight to the direction of the valley, consequently 

suppressing the oscillation. 

This oscillation suppressing effect of DbDb rule relies upon the value of the 

weight coefficient (0 < 0 < l). 0 should be near 1 the Db Db rule become effective. 

With this rule, there is no need of learning parameter adjustment for specific 

problem, since we can obtain the best convolution performance. 

We should emphasize here that although the weight oscillation problem was 

minimized with this rule, the problem of initial value sensitivity still remains, or 

specifically, has worsened, and hence there is a need of incorporation of evolution-

ary system to solve our problem, the discrimination of the splicing sites. 

3 Simulator 

3.1 Child and Adult -Learning Period 

The neural network should learn before it can be used. In our system, the learning 
process is a fine tuning process, and the generation of the initial weight values is 

a global tuning process. Once the initial weight values are fixed, the possible 

values after any learning become constrained. The initial value is fixed when the 

individual is born, and the learning process corresponds to the childhood. 
The length of learning period of the population, the neural networks in our 

c邸 e,C叫 dbe fixed, but we made it variable in order to verify the optimal length 

of learning period. When the individual reaches its adulthood, it can reproduce. 

Since the number of the total population is fixed, an adult has to find another 

one and check if the opponent's fitness value is lower than his. If this is true, 

the loser's space is occupied with the winner's offspring. The children cannot be 

attacked, 邸 ifprotected in a shelter. 

We expect the decrease of learning times in the later stages of the simulation 

if there is the predominance of the Lamarckians, since if the child inherits the 

parent's learned data, in our case the weight and bias values, there is no need for 

the long learning, or even no learning at all. 

3.2 Mendelism and Lamarckism 

In the field of Biology, it is the common sense between the biologists that natural 

organisms follow the so called Mendelian evolution, where the information passed 
from parents to their offspring is strictly genetic, and not the sort of evolution 
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postulated by Lamarck, who believed that natural organisms might pass acquired 

traits to their offspring. 

This may be true for t~e biological world, but in the engineering field this may 
be different, where Lamarckians can be more advantageous than the Mendelians, 

since the environment change is less drastic. We believe that the Mendelian type of 

inheritance is better suited when the environment change is dynamic and frequent, 

since if the organism is hyper optimized for an environment, it may be more 

expensive in any sense like time, energy or some other cost measure to fit into 
another environment than a recent-born, who is not optimized to any specific 

environment. 

We expect to see the predominance of Larnarckian type as the simulation goes 

with stable environment. In the steps immediately after the environment change, 
there may be a slight increase of Mendelians, since they might be more robust 
than Lamarckians, as latter ones are more locally optimized. 

3.3 Learning Algorithms 

We also let the individuals choose their learning algorithms. Ideally, they should 

develop their own learning algorithms, but this is unrealistic for now. Therefore, 

we provided six learnirrg algorithms for total: Jacobs, Jacobs Hybrid, and Kick 

Out, each one with either DbD (Delta-bar Delta) or DbDb (Delta-bar Delta-bar). 

As described earlier, Jacobs-DbD is the simplest algorithm, which means faster, 

but less stable, and Kick Out-DbDb is the most complex, slower, but more stable. 

DbDb is slower and more complex than DbD, if compared. 

4 Experiments 

4.1 Data Set 

The data sets used in the simulation are the data containing exon-intron DNA 

sequences, intron-exon DNA sequences and junk DNA sequences, the latter one 

containing only the exon sequences without splicing site. These sequences were 

picked up manually and randomly from the human genome DNA sequence data 
base, total of 100 sequences for each data set. 

4.2 Experin~ents 

Three simulations were run, and here we briefly describe each of them. 

5
 



• Experiment 1 -The experiment 1 does not involve environment change dur-
ing the simulation. It was run to analyze the general behavior of the system 
in a stable environment. 

• Experiment 2 -The simulation starts with the positive data set containing 
the exon-intron splicing point. In the middle of the run, the positive data 

set is switched to the data set containing also the intron-exon splicing point 

data set. Although this is an environment change, the change is not drastic, 

as the switched data set contains the former data. 

• Experiment 3 -As in the experiment 2, the simulation starts with the posi-

tive data set containing the exon-intron splicing point, and in the middle of 
the run, the positive data set is switched. However, the environment change 

in this experiment is more drastic than of the second experiment, as the 

positive data set completely changes from the exon-intron splicing point to 

intron-exon splicing point, the latter one being completely different from the 

former one. 

In all experiments, the population was 50, run for 40 steps. The data set 
change occurred at 20th step when involved. 

5 Simulation Results and Discussion 

In this section we present the results of the three experiments and analyse them. 

Although the data set _was small, the results were under our expectations. 

5.1 Experiment 1 

First, the experiment 1, without environment change. From the figure 1, the 

maximum score is 100% from the first step, since the number of data set is small, 

and neural networks can achieve 100% of recognition rate in one epoch with the 

presented learning algorithms. 
We also noted that the mean score reached near 100% in 27 steps, with mono-

tonic increase. There are some ripples of minimum value, which commonly hap-

pens in this kind of simulation. 
Figure 2 shows the change of the mean value of length of learning period. It 

starts with around 5.5, and monotonically decreases, approximating 2 in 40 steps. 

This result reinforces our supposition, where in stable environment, there is no 

need for learning if the population is predominated with Lamarckian types. 
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Figure 3 shows the population composition according to the learning algo-
rithm. At the beginning, the composition is almost equal, but邸 thesimulation 

goes on, the number of those with complex algorithms decreases, reaching near 

0% on the 40th step. The simple algorithms, the Jacobs, clearly predominates 

the population. It is interesting that the Jacobs DbDb, and not Jacobs DbD, 
predominates. Another interesting fact is the slight incre邸 eof Kickout DbDb 

between the steps 10 and 20. In this period that the Lamarckians predominates 
rapidly the population, as in figure 4. We interpret this as follows: The individu-

als with Kick Out method, which is the most powerful algorithm, learn to achieve 

the higher score as possible, and pass their leaned data to the individuals with 

simpler learning method through reproduction and mutation. It seems as if the 
system as whole is working together to extract the best fitted individual. 

5.2 Experiment 2 

Figure 5 shows the maximum, minimum and mean score of the second experiment. 
The environment was switched on the 20th step, and the drop of the mean score 
curve clearly shows that. The positive data set was not completely changed, since 

half of the switched data set is the same as the original one. The drop was near 

15%, but the most interesting is that the maximum score was not affected by the 
environment change, constantly scoring 100%. Partly this is due to the small data 
set used in the simulation. 

Figure 6 shows the mean learning times. It is interesting that the curve in 

the first 20 steps increases, oppositely from the figure 2, where the value tends to 

decrease. There is no .logical explanation to this phenomena, but it may be the 

different random number seed used in this simulation. We cannot see any effect 

from the data set change, which corresponds to the environment change. The 
effect might have been clearer if the data set was larger. The mean value is kept 

almost constant even after the environment change, approximately 6.5, since the 

change was incremental, and not complete. ・ 

Figure 7 is the population composition according to the learning algorithm. 

All the six algorithms starts with the same composition, and the more complex 

algorithms tends to decrease. In general, as in the figure, the DbD rule predomi-

nates the DbDb rule, and Jacobs the Jacobs Hybrid, and Jacobs Hybrid the Kick 

Out algorithm. Just after the environment change, with a slight delay, which is 

approximately equal in value to the mean learning time steps, there is a slight 

increase of more complex algorithms, notably the Jacobs Hybrid. We believe 

there was no influence on the Kick Outs since there was no necessity to use the 

complexity and power provided by this algorithm, and the moderately powerful 
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algorithm, the Jacobs Hybrid, was enough to manage the incremental change of 

the environment. Although small, there is a little increase of Kick Outs in the 

steps between 26 and 35. We also believe this is the environment change effect. 
On the 40th step, when the simulation finished, almost two-thirds of the popula-

tion is Jacobs DbD, and if added with the Hybrid DbD, they account for nearly 

80% of the population. Another interesting fact is the stagnation of the Jacobs 

DbD in the steps between 20 and 25, just after the environment change. This is 

due to the increase of the more complex algorithms to afford the more complex 

environment. After the learning is complete, the simplest algorithm begins to 

rncrease agam. 

Figure 8 shows the population composition according to the inheritance type. 

After a slight decrease of Lamarckians, they increase until reaching a stctble com-

position, around step 15. After the environment change on the 20th step, the 
Lamarckians decrease a little since the Mendelians are more robust against the 

environment change. Note that the decrease is small, around 10%1 and after the 

25th step Lamarckians restart the predomination. This recovery starts 5 steps 
after the environment change, and 5 is approximately the mean learning time of 
the population at this moment, as in figure 6. It shows that the learning period of 

the neural networks at this moment is long enough to account for the complexity 
of the new data set introduced after the environment change. After the 30th step, 
the system keeps the stable inheritance type composition. It is interesting that 

the composition we got from the simulation without environment change (figure 

4) is different from this simulation (figure 8). Maybe this difference is due to the 
different random number generator seed used in the simulations. 

5.3 Experiment 3 

Now we analyze the results of the third experiment. Figure 9 shows the maximum, 

minimum and mean score. As before, the environment was changed on the 20th 

step, and again we can verify the drop of the mean score curve. The mean score 

at the moment just before the environment change in this experiment is nearly 

100%, different from the former one, where the mean score reached nearly 95%. 

This is due to the different seed of random number generator used. Note here 

that the environment change in this experiment is more drastic than that of the 

second experiment, since any data before the change remain after. However, we 

note that drop is around 15%, same as in the second experiment. This is notable, 

but it is partly because of the small data set used. The recovery of the mean score 

is faster than the second experiment. 

Figure 10 shows the mean learning times. The cnrve until the environment 
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change is similar to the second experiment, not showing clear decrease. However, 

after the environment change, there is a decrease as in the figure 2. The positive 
edges at around 23rd step and 27th step are due to the environment change. At 

30th step, the system becomes stable, with approximately 4 learning times. It is 
interesting that the complete environment change allows the system to reach lower 
learning times than the partial environment change, as in the second experiment. 

Another explanation to this phenomenon is the different seeds used for random 
number generators. 

Figure 11 shows the population composition according to the learning algo-
rithm. A clear difference from the second experiment is the predominance of the 

Kick Out DbD in the middle of the simulation including the moment of environ-

ment change. It starts on the 5th step, much earlier from the environment change, 
which happened on the 20th step. After the environment change, the population 

is predominated with Jacobs DbDb, different from the second experience, where 

the much simpler Jacobs DbD predominated. This shows that the complete en-

vironment change demanded more power than the partial environment change. 

If the simulation was proceeded after 40th step, we believe the Jacobs DbD pre-

dominated the population. In this simulation, we note that the Kick Out DbD 

handled the environment change, passing the learned data to the Jacobs DbDb. 

The clearer difference from the second experiment is shown in the figure 12, 

the population composition according to the inheritance type. The number of 
Lamarckians increases rapidly at the beginning of the simulation, achieving com-
plete predominance before the environment change. This high inclination curve is 

related with the predominance of the Kick Out DbD in the middle of the simula-

tion, with neural netw9rks convolving rapidly because of the algorithm efficiency, 

consequently passing acquired data to the Lamarckians. Even with the complete 

environmental change, there is no effect on the predominance of the Lamarckians. 

This graph is completely different from figure 8, and this is due to the different 

seed used for random number generator. V¥1e must note that at the end of simu-

lation, around 35th step, there is a slight decrease (10%) of the Lamarckians, and 

the consequent increase of Mendelians. Maybe! this composition is the system's 

stable composition, or maybe this is just a ripple, being the system in dynamic 

stability. 

6 Conclusion 

In this paper, we attempted to analyze the best combination of parameters when 
popnlation can choose the learning algorithm, the duration of learning period, and 
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the inheritance type. Although the simulations run are of small scale, and hence 
there is a need for more extensive simulations with varied parameter combinations, 
we could get a general outline of the behavior, where the simplest learning algo-

rithm, shorter learning period and the Lamarckian inheritance type predominate 

the population, even with an environment change. 

However, the quantity of simulation data is still small, and there is a need for 

further analysis, with larger data sets and varied simulation parameters. 

This is a partial report, and we intend to collect more data related with the op-
timal combination of inheritance type, learning methods and the length of learning 

period. 
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Figure 3: Stable Environment: Population Composition by Learning Method 
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