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Abstract 

The human arm has at least seven degrees of freedom: the shoulder has three, 

the elbow has one and the wrist has three. The number of related muscles 

is about thirty. Quantitative dynamical models of the arm have been play-

ing critical roles in developing recent computational theories of motor control. 

Unfortunately, construction of a reliable quantitative model based just on re-

ductionistic approach turned out quite difficult if not entirely impossible. We 

have focused on con・structing a forward dynamics model (FDM) of human 

arm motion in the form of an artificial neural network while using physiolog-

ical recordings of EMG signals and simultaneous measurement of mqvement 

trajectories.・In previous studies we have already succeeded in: (1) estimat-

ing joint torques under isometric conditions in the horizontal plane (2) esti-

mating four degrees-of-freedom posture in 3-D space and (3) estimating joint 

angular acceleration and reconstructing trajectories in the horizontal plane 

from surface EMG signals. In this paper, as the final step of our previous 

efforts, dynamic joint torques at the elbow and shoulder during movements in 

the horizontal plane are estimated from the surface EMG signals of 10 flexor 

and extensor muscles using a neural network model with a modular archi-

tecture. Moreover different trajectories are reliably reconstructed only from 

the arm initial condition and the EMG time course using this network and 

Lagrangean equations of the arm dynamics. This is the first demonstration 

that multi-joint movements and posture maintenance can be quantitatively 

and accurately predicted from multiple surface EMG signals while including 

complicated via-point movements as well as co-contraction of muscles. 

Keyword: EMG, Forward Dynamics Model, Muscle Model, Neural Net-

work, Modular Learning 
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1 Intro duct ion 

The problem studied in this paper is to find quantitative relationship between 

EMG signals and ensuing movements. Especially, we will construct a forward-

dynamics model of human arm as an artificial neural network model while using 

EMG signals as control inputs. The goal is to demonstrate that two-joint arm 

trajectories in the horizontal plane can be reconstructed from surface EMG 

signals using an artificial neural network model with modular architecture. 

To reveal the computational mechanisms of the CNS for motor control, 

quantitative dynamic arm models whose joint torques are exerted by mus-

cle tensions have been proposed for a long time. Muscles have a spring-like 

behavior that depends on muscle length and activation level (Rack and West-

bury 1969). Thus, dynamic arm models which include muscle tensions as 

control variables must be based on the spring-like properties of muscles. Ac-

cording to this property, Feldman proposed that posture can be determined 

by the equilibrium point of the length-tension curves of agonist and antag-

onist muscles (Feldman 1966). Recently, Feldman et al. (1990) succeeded 

in reproducing multi-joint trajectories just by changing the hand equilibrium 

point at a constant velocity. Bizzi et al. (1984) and Hogan (1984) proposed the 

virtual trajectory control hypothesis, and according to this hypothesis, Flash 

(1987) simulated multi-joint arm movements. This model assumed that the 

coefficients of the joint stiffness matrix were two or three times larger than the 

values measured by Mussa-lvaldi et al. (1985). 

The virtual trajectory control hypothesis, however, has recently begun to 

be doubted (Katayama and Kawato 1993, Kawato et al. 1993, McIntyre and 

Bizzi 1993) because the dynamic stiffness values measured during movements 

are smaller than or the same order as that during posture control (Bennett et 
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al. 1992, Gomi et al. 1992). Thus, McIntyre and Bizzi (1993) proposed a modi-

fication of the virtual trajectory control hypothesis in which CNS sends velocity 

as well as position information during the course of fast limb movements and 

succeeded in reproducing single-joint movement with a simple virtual trajec-

tory. However, Katayama and Kawato (1991, 1993) have already examined 

essentially the same control scheme and found that very complicated virtual 

trajectories are necessary for reproducing multi-joint movements. This finding 

suggests that the CNS needs to compute the joint torques needed for move-

ment and presumably the muscle activation levels needed to produce these 

torques. This problem is. called the inverse dynamics problem. Because the 

dynamics of the human arm or a robotic manipulator are nonlinear, this prob-

lem is also nonlinear, and actually quite difficult to solve. But our position 

is that this problem can not be avoided for feedforward control (Kawato and 

Gomi 1992, Kawato et al. 1993, Shidara et al. 1993). To further examine these 

controversial computational hypotheses, quantitative arm models are essential 

in which the muscle tensions are explicitly represented. 

There has been considerable effort to reproduce muscle tension or move-

ments from nerve impulses or EMG in medical engineering and biomechanics 

as well as in physiology (Akazawa et al. 1988, Wood et al. 1989, Winters 

1990, Clancy and Hogan 1991). Those studies at the lowest level constructed 

a muscle model which includes a spring, mass and damper. We hope that this 

kind of reductionistic approach will ultimately construct a good quantitative 

model of the musculoskeletal system step by step (i.e. muscle model, neural 

model, skeletal system model with variable muscle moment arms, Lagrangean 

dynamics model of the arm). A disadvantage of this method, however, is that 

some assumptions have to be made at each step since the nonlinear proper-



(No.4) 

ties of the musculoskeletal and nervous systems are largely unknown. Our 

group earlier proposed a 6-muscle human arm model (Katayama and Kawato 

1993) and a 17-muscle monkey arm model (Dornay et al. 1992). However, 

constructing reliable models is very difficult if not entirely impossible. 

The relationship between EMG activity and the resulting movement has 

been extensively studied. Previous studies investigated the duration, mag-

nitude, and timing of phasic EMG bursts in relation to movement ampli-

tude, duration, and maximum speed (Gottlieb et al. 1989, Brown and Cooke 

1990, Karst and Hasan 1991). It is desirable to construct a more computational 

and quantitative model of the relationship between EMG and movements other 

than those kinds of kinematic and descriptive studies to elucidate the motor 

control strategy of multi-joint arm movement. This is because many computa-

tional hypotheses on multi-joint arm movement control can be tested directly 

and reliably only on the basis of quantitative arm models. 

We have been aiming at constructing a complete forward dynamics model 

(FDM) of the human arm by using an artificial neural network that has the 

ability to learn nonlinear functions which relate physiological recordings of 

EMG signals to simultaneous measurement of movement trajectories. We have 

already succeeded in: (1) estimating joint torques under isometric conditions 

in the horizontal plane from surface EMG signals (Koike et al. 1993), (2) 

estimating posture (three degrees-of-freedom at the shoulder and one degree-

of-freedom at the elbow) in 3-D space from surface EMG signals (Koike and 

Kawato 1994a) and (3) estimating joint angular acceleration and reconstruc-

tion of trajectories in the horizontal plane from surface EMG signals (Koike 

and Kawato 1994b). 

In the case of estimating joint angular acceleration, because the network had 
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to learn not only nonlinear properties of muscles, but also the dynamics of the 

arm, which can be described by Lagrange equation of motion, the learning was 

difficult. Thus, in this paper, the dynamics of the arm is explicitly described 

by the Lagrange equation and is not treated by the network. That is, in this 

paper, dynamic joint torques at the elbow and shoulder are estimated from 

the surface EMG signals of 10 flexor and extensor muscles using a neural net-

work model with a modular architecture, during movement in the horizontal 

plane. The network itself does not deal with the arm dynamics. Instead, we 

wrote down the Lagrange equation of the arm dynamics which describe the 

relationships between joint torques and joint-angle trajectories for two-joint 

horizontal movement. Necessary physical parameters of the arm were mea-

sured. Therefore, the neural network learned only the nonlinear properties of 

muscluloskeletal systems. Finally trajectories are reconstructed using combi-

nation of the network and the Lagrange equation. 

2 The model which estimates trajectories from 

surface EMG signals 

Fig. 1 compares the information flow in the organism (A) and the computa-

tional procedure adopted in this paper (B). The following details each step. 
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Figure 1. The comparison of the information fl.ow in the organism (A) to the com-

putational procedure adopted in this paper (B). In (A), control signals from the 

CNS are sent to each muscle via a motor neurons. The signals activate the mus-

des (muscle tension), the contraction causes joint torques, and then the arm moves 

along movement trajectories according to the arm dynamics. In (B), we can mea-

sure EMG signals and trajectory: they both have a double-line box around them. 

EMG signals, though temporally distorted, reflect the motor commands fed to the 

muscles. Since we can not measure motor neuron activity directly, though not ideal, 

we will treat the low pass filtered EMG activity as a substitute of the firing rate of 

motor neurons. 

2.1 The relationship between EMG signals and quasi-

tensions 

Surface EMG signals are spatio-temporally folded action potentials of the mus-

de membranes, and involv~not only descending central motor commands but 

also reflex motor commands generated from sensory feedback signals. There 

have been considerable efforts to estimate muscle force from surface EMG 
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signals (Basmajian and De Luca 1985, Akazawa et al. 1988, Wood et al. 

1989, Clancy and Hogan 1991). From these previous studies in medical elec-

tricity and biological engineering (Basmajian and De Luca 1985), it can be 

expected that low-pass-filtered EMG signals reflect the firing rate of o: mo-

tor neurons because high-frequency components of EMG reflect shape of the 

individual action potential while low-frequency components reflect the firing-

frequency of motor nerve fibers; such signals are called "quasi-tensions," be-

cause they seem to be highly correlated with the true muscle tensions . In 

neurophysiological studies, it was found that a second-order low-pass filter is 

sufficient for estimating muscle forces from the nerve impulse train (Man-

nard and Stein 1973). The relationship between the EMG input signal and 

T (quasi-tension) output signal can be represented as an FIR (Finite Impulse 

Response) filter. 
n 

加） = I: 化;・EMG(t -j + 1), 
j=l 

(1) 

where, hj is filter, EMG represents EMG signals, and T represents "quasi-

tensions". j is the number of discrete time. EMG is actually the digitally 

rectified, integrated and filtered signal, which will be described in detail in 

section 4.4. The second-order frequency response of the filter H (s) is repre-

sented as follows. 

H(s) = w~ 

（茫十 (w冦 +w~)'
(2) 

where Wn and (denote natural frequency and damping coefficient, respectively. 

The impulse response of the function in (2) is 

h(t) =ax (exp―bt - exp―ct) . (3) 

The coefficients hj in (1) can be acquired by digitizing h(t) with the given 

coefficients a, b and c. 
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2.2 Motor command and muscle tension 

There exists nonlinear relationships between muscle-exerted tension and the 

motor commands. The muscle tension is related to motor command (firing 

rate) through a sigmoid function (Rack and Westbury 1969, Mannard and 

Stein 1973). This nonlinearity is caused not only by firing-rate-tension re-

lationship but also by recruitment of a-motor neurons. Moreover, there are 

two nonlinear relationships between muscle tension and muscle length, and 

between muscle tension and muscle contractile velocity (Fig. la) (Basmajian 

and De Luca 1985). One is called the length-tension curve, i.e. muscle tension 

increases with length even if the motor command does not change. The other 

is called the velocity-tension curve, i.e. muscle tension decreases with contrac-

tile velocity for the constant motor command. Therefore, muscle tension can 

be described by the following nonlinear function of the muscle length, which is 

a nonlinear function of the joint angle, the contractile velocity, and the motor 

command: 

T = f (1(0), i(0), u), (4) 

where T, l, i, 0 and u represent muscle tension, muscle length, contractile 

velocity, joint angle and motor command, respectively. We call the nonlinear 

relationship between u and Tin (4) as motor-command-tension relationship. 

Let us assume that the number of joints is n, and the number of muscles is k. 

Then T, l and u are k-dimensional vectors. 0 is an n-dimensional vector. f 

is a k-dimensional vector function. A component of each vector is denoted as, 

for example, ~(1~i~k) or 0j (1~j~n). That is Ti is the i-th muscle 

tension and 0i is the j-th joint angle. 
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2.3 Muscle tension and joint torque 

The joint torques are determined by the product of the muscle tension and the 

moment arm. The distance between the joint axis and the force action line of 

the muscle is the muscle moment arm. The moment arm changes nonlinearly 

depending on the joint angle and because muscles wrap around other muscles, 

bones and connective tissues. 

The joint torque is produced as the difference between agonist arid antagonist 

muscle torques, which depend on the muscle tension and moment arm. It can 

be formulated as 

T = I: (ai (0/ 1'i (0, {)土）），
i 

(5) 

where T and Oi (0) represent the joint torque and the moment arm of the ith 

muscle (0 for an inparticipate muscle of the considered jth joint), respectively. 

↑ i is the ith quasi-tension. Superscript t represents the transpose of the matrix. 

In this paper, we deal with horizontal planar movements of the shoulder 

joint (flexion-extension) and the elbow joint at the shoulder level. Then the 

controlled object is the two-link system comprised of the upper arm (link 1) 

and forearm (link 2) shown in Fig. 2. Definitions of the shoulder and elbow 

joint angle 08 and 0e are depicted in the figure. T8 and Te represent shoulder and 

elbow joint torques. L1 and L2 represent the length of the link, and 191 and 192 

represent the distance from the center of mass to the joint. Both joint angles 

and joint torques are defined positive in the direction of flexion. Definitions of 

physical link parameters are also given in Fig. 2, and they will be explained in 

the next section. In this case, components of vectors in (5) can be described 
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Figure 2. Experimental settings and definitions of joint angles and link physical 

parameters of the two-link arm model. Li: length of upper arm, L2: . length of 

forearm, 191: distance from the center of mass of upper arm to the shoulder joint, 

192: distance from the center of mass of forearm to the elbow joint, 08: shoulder joint 

angle, 0e: elbow joint angle. Black circles show 5 points where the subject exerted 

isometric hand forces in Experiment 1. Black diamonds show the start, via-and 

target points of movements in Experiment 2. White squares show 23 points where 

postures are maintained in Experiment 3. 

as follows. 

T 

゜O'.i (0) 

に，冗）t

(0s,0e)t 

(ais (8) ,aie (8)/ 

ais (0) and aie (0) are the muscle moment arms for the shoulder and elbow 

joint of the i-th muscle as functions of the joint angles. 
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2.4 The relationship between joint torques and trajec-

tories 

We use the following dynamics equations for two-joint horizontal movements 

of the upper arm and the forearm. 

(11 + 12 + 2M2L心 cos0e + M2店）0・8 

+(J2+M山 l92cos 0e)0゚e

-M2L心(208+ Be)此sin0e = Ts 

伍 +M山 l92cos 0e)0~ 

＋砂

+M2L心(08)2sin Be =冗

(6) 

where r, 0, 0, 0 represent the joint torque, joint angle, velocity and acceleration, 

respectively. Mi, Li, l9i, Ii represent the mass, length, distance from the center 

of mass to joint, and rotary inertia around the joint for each link。

When the problem is to find the joint motion corresponding to a known 

sequence of input torques, the transformation (6) is referred to as forward 

dynamics. If the initial conditions: joint angles and velocities, and the control 

signals: joint torques from the initial time to the final time are given, then 

the time course of 0 and 0 are obtained by numerical integration of dynamics 

equations (6). 

When the problem is to find the joint torques corresponding to the desired 

time sequence of joint angles, the transformation (6) is referred to as inverse 

dynamics. In the experimental procedure of this paper, to calculate the joint 

torques from measured trajectories, the dynamics equations (6) are also used. 

In the case of forward dynamics, the information flows from the right side to 

the left side of (6), and in the case of inverse dynamics, the information flows 
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from the left to the right. 

2.4.1 The physical parameters of the subject arm 

The physical parameters of the arm of a human subject were calculated from 

the 3-D shape of the human arm. First the shape of the subject arm was 

scanned in a 3-D space by the Cyberware Laser Range Scanner™. Then, 

assuming a uniform material with a specific gravity of 1.0, the mass, the center 

of mass, and the rotary inertia were calculated from the cubic volume. The 

same density as water is a good approximation both for soft and hard tissues. 

Table 1 shows the estimated physical parameters of the subject arm. 

Table 1. Parameters of the human arm 

link 1 link 2 

(upper arm) (forearm) 

Li [m) 0.256 0.315 

l gi . [m] 0.104 0.165 

Mi [kg] 1.02 1.16 

Ii [kgmり 0.0167 0.0474 

3 The neural network architecture for dy-

namic torque estimation 

Each joint torque was estimated from surface EMG signals, joint angle, and 

velocity using an artificial neural network model with a modular architecture as 

shown in Fig. 3. Here, only the network for the shoulder is shown. The modular 
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Figure 3. Structure of the artificial neural network which estimates the shoulder 

joint torque using a modular architecture. EM  Gs is EMG signals of muscles related 

to the shoulder movement. EM  Gau is EMG signals of all muscles. 号and号arethe 

square of the approximate torque of the shoulder and elbow respectively calculated 

by the approximate torque estimation network. 令stand f s1 are shoulder joint torques 

estimated by the expert network 1 and 2 respectively. See (7) for 91 and 92• 

architecture consists of two types of networks: expert and gating networks 

(Jacobs and Jordan 1991, Nowlan and Hinton 1991). Two modular shoulder 

and elbow networks were used to estimate the two joint torques respectively 

in order to improve the accuracy of the torque estimation. In Fig. 3, each 



(No.14) 

expert network estimated shoulder joint torque. In the case of elbow joint 

torque, same modular architecture was used except that expert input signals 

were EMGe: EMG signals of muscles related to the elbow joint movements. 

The expert network 1 estimated joint torques和 mainlyduring posture control, 

and the expert network 2 estimated joint torques f82 mainly during movements. 

This division of their roles was first attained by pre-training and further refined 

by the automatic modular learning algorithm explained later. 

The gating network switched the expert networks by judging whether the 

arm moved or not. To judge whether the arm moved or not, the angular 

velocity was used as one of the indexes. At the start or end of a movement, 

the switching of the gating network based only on velocity information may 

be delayed, because the change in value of the velocity was small and gradual, 

thus difficult to be reliably detected. Therefore, torques which change faster 

than velocity signals, were also added as input signals to the gating network. 

To calculate this torque input, an approximate torque estimation network was 

prepared at the input side of the gating network (Fig. 3). 

Each expert network consisted of a four-layer network shown Fig. 4. The 

first-layer inputs of this four-layer network were the EMG signals recorded 

from some of the ten muscles (see section 4.2) over a 0.5 second interval. The 

EMG signals from double joint muscles, related single joint muscles, the joint 

angle and the joint angular velocity of the elbow and shoulder were the ex-

pert network inputs. The number of units in the second layer was 11 for the 

shoulder expert network, and 9 for the elbow expert network. In a strict sense, 

"quasi-tension," a linearly-filtered EMG signal can not represent muscle ten-

sion. Because the FIR filter is linear, the nonlinear muscle properties found 

in the motor-command-tension, length-tension, and velocity-tension curves de-
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EM屯a(n-N+l)

Figure 4. One of the expert neural network which estimates the shoulder joint 

torque. The approximate torque estimation network also has a similar structure 

except that it has two output units for the shoulder and elbow torques. 

scribed in (4) are not represented between the first and second layers. Thus, the 

network learns these nonlinear properties between the second and the fourth 

layers. The second-layer inputs were the joint angles and joint angular ve-

locities of the elbow and shoulder, as well as the quasi-tensions. The third 

layer consisted of 30 hidden units. The fourth, the output layer, estimated 

the joint torque. Activation functions, relating the weighted sum of synaptic 

inputs to the output of an artificial neuron model, of only the third layer are 

the nonlinear sigmoid function. 
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The gating network consisted of a three-layer network and the soft-max 

function which will be defined by (7) in the next section. The first-layer inputs 

were the square of each joint torque and joint velocity. Thus, the number of 

units in the first-layer was four (2 x 2). The second-layer consisted of 10 hidden 

units. The third, the output layer, consisted of two units which calculate Sj in 

(7) corresponding to two expert networks (j = 1, 2). Again, only the second 

layer units are nonlinear. The outputs of the gating network are g1 and g2 

defined in (7). 

The approximate torque estimation network also consisted of a four-layer 

network like the expert networks shown in Fig. 4. The first-layer inputs were 

the EMG signals from all the ten muscles over a 0.5 second interval. The 

second-layer inputs were the joint. angles and joint angular velocities of the 

elbow and shoulder, as well as 10 quasi-tensions. Thus, the number of units in 

the second layer is 14. The number of units in the third layer is 30. The fourth, 

the output layer, consisted of two units which estimated shoulder and elbow 

joint torques元and元.Again, only the third layer is nonlinear. This network 

had less accuracy than the expert networks, but it could provide sufficiently 

good information to judge whether the arm moved or not. The training method 

of the approximate torque estimation network is standard. The actual torques 

Ts and 7―e are given as the teaching signals and the objective function is defined 

as the squared sum of the difference between real and estimated joint torques. 

The popular back-propagation algorithm (Rumelhart et al. 1986), in con-

junction with the steepest ascent method (see next subsection) was first ex-

amined. Because its rate of convergence is slow, we used the Kick-Out method 

(Ochiai and Usui 1994) in which learning rates are adjusted, according to the 

rate of increase in the objective function during the last few steps. 
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3.1 Modular learning 

We briefly illustrate the modular learning algorithm which is proposed by 

Jacobs and Jordan (1991) and Nowlan and Hinton (1991), and used in this 

study. The j-th output of the gating network, gj, is calculated by the following 

soft-max function 
esJ 

9j = t e8i 

t=l 

(7) 

where Si is calculated from the synaptic input signals. In this study, s1 and s2 

are outputs of two units of the third layer of the gating network as described 

in the previous section. N denotes the number of outputs. The total output 

of the modular network is as follows. 

N 

r = I: 砧・
i=l 

(8) 

where令isthe output of the i-th expert network. 

The gating and expert networks are trained to maximize the following log-

likelihood function。

N ーヒニ髯
ln L = ln I: gie 2a-i (9) 

i=l 

where, ai is the variance scaling parameter of the i th expert network. 

The adaptation rules of the weights in the gating network are derived from 

the partial derivative of equation (9) by applying the chain rule. 

8lnL N 
―=  I:(hi -gi) 
8si i=l 

(10) 

where hi is defined by the following equation corresponding to the posterior 
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probability. 

hi= 

＿止亭
gie 2ai 

ーヒ亭
2aj 

(11) 
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 Similarly, the adaptation rules of the weights in the expert networks are 

derived from the partial derivative of equation (9) by applying the chain rule. 

olnL N T―布
言＝苔hiT (12) 

4 Experimental procedures 

4.1 Exp er1ment 1: 1sometr1c force generation 

One healthy subject, 29 years old, participated in this study. The seated 

subject's shoulder was restrained by a harness. In the first experiment, to 

analyze the relationship between EMG signals and quasi-tension, the force 

generated at the hand under isometric conditions and surface EMG signals 

were measured. 

His wrist was secured by a cuff and supported horizontally using the beam 

which was attached to a force-torque sensor. The subject was trained first to 

exert a hand force of about 50 % maximum. The subject exerted isometric 

hand forces in two different directions: forward and backward, left and right, 

at five different locations (Be, 0』of(30°, 110°), (40°, 80°), (50°, 90°), (60°, 

100°) or (70°, 70°) indicated by the "black circles" in Fig. 2. These trials 

lasted for seven seconds, and were of various rates of force production. At 

each 5 positions, the subject tried 2 times in each direction. Thus, the rate of 
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the hand-force change was intentionally varied and the peak magnitude was 

roughly controlled. 

The hand force was measured by a force-torque sensor and filtered at an 

upper cut-off frequency of 130 Hz by a hardware. These signals were first 

sampled at 2000 Hz with 12-bit resolution, and were then re-sampled at 200 

Hz. The positions of the hand, elbow and shoulder were recorded at 400 Hz 

using the OPTOTRAK position sensing system. The shoulder and elbow joint 

angles were calculated from those position data. These signals were digitally 

filtered at an upper cut-off frequency of 10 Hz by the Butterworth filter. Then, 

these signals w~re re-sampled at 200 Hz. The shoulder and elbow joint torques 

were calculated from the measured hand force within the horizontal plane (two-

degree-of-freedom) multiplied by the transpose of Jacobian of the coordinate 

transformation. 

4.2 Experiment 2: movement generation 

These measurements of arm positions and EMG signals were simultaneously 

continued during movements and maintenance of posture using the same method 

as Experiment 1. Again, the subject's wrist was secured by a cuff and sup-

ported horizontally. In Fig. 2, the target positions are indicated by the "black 

diamonds". T1 to T6 are starting and ending positions, and Pi and P2 are 

via points (same as Uno, Kawato and Suzuki (1989)). The subject was asked 

to produce five different unrestrained point-to-point movements between the 

five targets, i.e. T3→ T6, T2→ T6, T1→ T3, T4→ T1, T4→ T6; move-

ments were repeated in the opposite direction. Then, the subject made via-

point movements between two targets in the horizontal plane. Two cases, 

T3→ Pi→ Ts, T3→ A→ T訴 weretested in both directions. The move-
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ment durations ranged from about 600 ms to about 800 ms. Each of the 14 

movements consisted of 10 trials. During movement, joint angular velocity and 

acceleration were computed using numerical differentiation. The joint torques 

were calculated from the trajectories using the dynamics equations (6), because 

dynamical torques can not be measured directly during movement. 

4.3 Experiment 3: posture maintenance 

In experiment 3, the subject produced co-contraction of muscles while main-

taining the same posture without exertion of force at 23 points over the 

workspace indicated by the "white squares". Thus, the net torques gener-

ated were 0. Three trials at each point lasted for six seconds, and were of 

various co-contraction levels. 

4.4 Muscles whose EMG activity was recorded 

EMG signals were recorded from the following 10 muscles shown in Fig. 5. 

For flexion/extension of the shoulder joint, the deltoid-clavicular part (DLC), 

deltoid-acromial part (DLA), deltoid-scapular part (DLS), pectorals major 

(PMJ), and teres major (TEM) were measured. For double-joint muscles, 

the biceps-long head (BIL) and triceps-long head (TRL) were measured. For 

flexion/extension of the elbow joint, the brachialis (BRC), triceps-medial head 

(TRM), and triceps-lateral head (TRA) were measured. 

The EMG signals were recorded using a pair of silver-silver chloride surface 

electrodes, in a bipolar configuration. Each electrode had a 10-mrn diameter 

and were separated by approximately 15 mm. Test maneuvers were used to 

verify electrode placement. Each signal was sampled at 2000 Hz with 12-bit 

resolution. This signal was digitally rectified, integrated for 0.5 ms (EMGave 
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Figure 5. Electrode positions in EMG measurement. See text for muscle name 

abbreviations. 

), sampled at 200 Hz, and finally, filtered (25-ms moving average window). 

This signal was denoted EMGma• 

1 2 

EMGma(t) =一 LEMGave(t -i) 
5 i==-2 

The EMGma signals were used as the input signals in (1), i.e. EMG. 

5 Simulation Results 

(13) 

5.1 Joint torque estimation using an artificial neural 

network model 

5.1.1 Estimation of the weights between the first and second layers 

(filter) 

To specify the relationship between EMG signals and quasi-tension, joint 

torques under isometric conditions measured in Experiment 1 were first esti-
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mated from surface EMG signals using the simple and non-modular four-layer 

neural network such as shown in Fig. 4. The data from the odd numbers of 4 

trials in Experiment 1 were used to train the network. Other trials were spared 

for a cross-validation test. The training employed 10,000 sample points for 5.0 

seconds x 10 trials X 200 Hz sampling rate (10,000 = 5 x 10 x 200). The 

weights between the first layer and second layer after learning are shown in 

Fig. 6. The dotted lines for shoulder。1and elbow.1 indicate weights obtained 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 , 

0.0 0.1 0.2 0.3 0.4 0.51 

time [sec) 

Figure 6. Impulse response of the second-order temporal filter which determines the 

quasi-tension from EMG. The ordinate scale is arbitrary with the peak response of 

1.0. 

from the previous experiment using the same subject (Koike et al. 1992). The 

dotted lines for shoulder.2 and elbow.2 indicate the weights obtained this time. 

The coefficients of (3) were estimated from shoulder.l and elbow.l using the 

least squares error method for 0.25 sec. A comparable calculation for 0.5 sec 

yielded weights which were less stable and variable for different joints. The 

solid line in Fig. 6 shows the resulting impulse response with a = 6.44, b = 

10.80, and c = 16.52 in (3). Using these coefficients, the isometric torques 
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were estimated accurately. Because the coefficient of determination (square of 

the correlation coefficient between actual torques and estimated torques) for 

the test data was 0.897, and, moreover, shoulder.2 and elbow.2 which were 

obtained from the present experiment, well fitted the estimated impulse re-

sponse, we can conclude that the obtained filter was reliable. The coefficients 

a, b, and c of the filter were fixed when the torques were estimated during 

movement in the next step. 

Fig. 7 shows EMG signals EMGma calculated by (13), and quasi-tension T 

given by (1). We can see that the quasi-tension signal (smooth curve) lags 

［し—―
. 0.2 o.• o.e o.a 1.0 1.2 
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Figure 7. Measured EMG signals and quasi-tension for the four muscles (DLC, 

TEM, BIL, TRL). 

about 100 ms behind the EMGma signals. 
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Prediction was made at each time step from the position, velocity and EMG 

data from the test set. As far as the torque is concerned, the dotted line is for 

the actual torque, and the solid line is for the network output. For the output 

of the gating network, the solid line corresponds to expert 1, and the dotted 

line corresponds to expert 2. Overall for test data from Experiment 2 and 3, 

the determination coefficient of dynamic torque is 0.887. Thus, the dynamic 

torques were reliably predicted by our proposed network. Expert l's output 

corresponds to "posture", and expert 2's output corresponds to "movement". 

From the lower trace of Fig. 8, we can assert that the gating network switched 

the expert networks correctly for both the stopping and moving conditions. 

5.2 Trajectory formation 

The trajectories were calculated from the initial position and velocity, and 

the continuous EMG signals for point-to-point movements and via-point move-

ments. This was done in the following recursive way. 

• (Step 1) 

At each time step, the dynamic torque was predicted by the 

neural network model from the position and velocity values 

at the current time step and the past 500 msec EMG data. 

Then, this predicted torque is used as the control input to the 

dynamics equation (6). 

• (Step 2) 

Numerical integration of (6) by Euler's method from the cur-

rent values of the position, velocity and torque provides the 

next step value of position and velocity. 
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Figure 9. Joint angle (1st row), angular velocity (2nd row), angular acceleration (3rd 

row), and joint torque (4th row) predicted during point-to-point movement. Dotted 

curves show actual values and solid curves show estimated values in the upper 4 

rows. The bottom row shows the outputs of the gating network. Here, solid curves 

show the output of the gating network for Expert 1 and dotted curves show the 

output of the gating network for Expert 2. 

This two steps are repeated until the end of recording duration. 



(No.28) 

Fig. 9 shows one example of the simulation result of trajectory generation 

for T3 to T6. In descending order, the joint angle, angular velocity, angular 

acceleration, torque, and output of the gating network are shown. The left 

column corresponds to the shoulder and the right one corresponds to the elbow. 

In the upper 4 rows, the solid curve is the network output, and the dotted curve 

is the experimental data. In the bottom row, the solid curve is the output for 

expert 1, and the dotted curve is the output for expert 2. Similarly to the 

one-step prediction described before, the gating network switched the expert 

networks correctly for both the stopping and moving conditions. It should 

also be noted that at the start and end of a movement, the output of the 

gating network began to change in advance of the velocity change, allowing 

the expert network output to follow. Overall for test data shown in Fig. 10 

from Experiment 2, the coefficient of determination for position data predicted 

from initial conditions of position and velocity and EMG time course is 0.948. 

Therefore, even though there was gradual cumulative error occurrence because 

the angle and angular velocity at the next time step were recursively calculated 

by summing the predicted accelerations with the current angular velocity, the 

trajectories were reconstructed accurately. 

Fig.10 shows trajectories on the X-Y plane. Some trajectories were slightly 

different from actual trajectories, because of the error accumulation. There 

is, however, almost no significant error for the joint angle. This is the first 

demonstration that multi-joint movements and posture maintenance can be 

fairly accurately predicted from multiple surface EMG signals while allowing 

complicated via-point movements as well as co-contraction. 
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Figure 10. Calculated trajectories on XY plane. Dotted curves show actual and 

solid curves show estimated paths. 

6 Discussion 

Joint torques and then human arm movements have been estimated from sur-

face EMG signals using a four-layer artificial neural network with a modular 

architecture. Particularly, we took account of the implementation of the follow-

ing domain-specific knowledge. (1) the relationship between the EMG input 

signal and quasi-tension, (2) the dynamics of the arm, and (3) nonlinear muscle 

properties. To implement (1), a network was prepared to work as a temporal 

FIR filter between the first and second layer. In this work, we found about 

100 msec lag between EMG signals and quasi-tension. Soechting and Roberts 

(1975) reported the natural frequency of the impulse response relating EMG to 

force of human muscle was 2.5 Hz. Moreover, Bawa and Stein (1976) reported 

that the natural frequency of the impulse response for human soleus muscle 

was around 2 Hz. These natural frequency corresponded to about 60 to 100 

msec delay between EMG signals and muscle tension. Bennett (1993) also 
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pointed out the low-pass muscle property and reported about from 60 msec 

to about 90 msec delay between surface EMG signals and the human arm 

muscle tension. To implement (2), the physical parameters of the subject arm 

were calculated from the measured 3-D shape of the arm, and the arm dynam-

ics were described by the Lagrange equations. Furthermore, some nonlinear 

properties of the musculo-skeletal system were obtained by the training of the 

neural network; expert networks were trained separately for training data fo-

cusing on moving or stopping to efficiently implement (3). There were some 

reasons for using two expert networks. From the physiological view points, 

the use of muscles were different depending whether the arm moves or not. 
,., . . . . ヽ . . ; 會~ ヽ

When the arm was moving, the relationship between velocity and tension has 

to be considered. The approximate torque estimation network was added to 

calculate joint torques to provide the useful information for the gating network. 

Until now mainly qualitative descriptions have been made regarding the re-

lationship between mov~ments and EMG, such as recognizing registered move-

ment patterns from surface EMG signals (Suzuki and Suematsu 1969, Mori 

et al. 1992). In this paper, however, trajectories were estimated quantitatively 

from surface EMG signals. The constructed forward dynamics model will be 

served as a fundamental tool for computational study of multi-joint arm move-

ments。 Otherthan this scientific use, several engineering applications might 

also be possible. For example, by using the network, EMG signals could be 

used as human interface inputs to control a "virtual arm" in a virtual reality 

environment. A further possibility is for the motor command produced by a 

minimum-muscle-tension-change model (Uno, Suzuki and Kawato 1989) based 

on the neural network forward dynamics model to be applied to a paralyzed 
，＇ 
limb. 
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Regarding computational studies of motor control based on the acquired 

forward dynamics model, our future work includes 1) calculating of virtual 

trajectories to critically examine the virtual trajectory hypothesis (see Koike 

and Kawato (1993) for preliminary results), 2) learning the inverse dynam-

ics model, 3) examining a minimum-motor-command-change model (Kawato 

1992). 
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