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Abstract 

The Regularization Network (RN) is extended to approximate multi-valued 

functions so that the one-to-h mapping, where h denotes the multiplic-

ity of the mapping, can be represented and learned from a finite number 
of input-output samples without clustering operations on the sample data 
set. Multi-valued function approximations are useful for learning ambigu-
ous input-output relations from examples. This extension, which we call the 

Multi-Valued Regularization Network (MVRN), is derived from the Multi-

Valued Standard Regularization Theory (MVSRT), which is an extension 

of the standard regularization theory to multi-valued functions. MVSRT 

is based on a direct algebraic representation of multi-valued functions. By 

simple transformation of the unknown functions, we can obtain linear Euler-

Lagrange equations. Therefore, the learning algorithm for MVRN is reduced 
to solving a linear system. It is rather surprising that the dimension of the 
linear system is invariant to the multiplicity h. The proposed theory can be 

specialized and extended to Radial Basis Function (RBF), Generalized RBF 
(GRBF), and Hyper BF networks of multi-valued functions. 

Keywords 

Multi-Valued Function, One-to-Many Mapping, Computational Learning, 

Ambiguous Relations, Function Approximation, Regularization Network, Ra-

dial Basis Function Network, GRBF Network, Spline Approximation Net-

work, Feedforward Neural Network. 
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1 Introduction 

Learning input-output mappings from examples through feedforward (neu-

ral) networks is a fundamental feature of intelligent systems. Many neural 

network architectures and learning algorithms have been proposed such as 

multi-layer perceptrons, backpropagations, RBF (Radial Basis Function) net-
works and regularization networks. From the perspective of realizing complex 

systems that perform complex tasks such as vision, however, their facilities 
are still unsatisfactory. The visual task is generally very complex and pos-

sibly ambiguous. For example, we may encounter a situation of multiple 

切terpretationssuch as Necker's cube, and of perceptual transparency (Fig. 

1) . Toward this end, the visual modules for perceiving figures have to be 

one-to-h mappings, where h denotes the multiplicity of the mappings. In gen-

eral, for the purpose of learning inverse models from examples, we usually 
encounter similar problems. Mathematically, this is because the inverse map-

ping of a single-valued forward mapping is generally a multi-valued mapping 

(See Fig. 2 for explanation). 
In this paper, we address the problem of learning multi-valued functions 

from examples by regularization networks [9] [10] which are based on the reg-
ularization theory [8] [15]. The multi-valued function is defined as a function 

that produces possibly multiple different values at each point in the input 

space. The multi-valued function is unlike the vector-valued function[6], since 
it does not care about the order of multiple values in the outputs. Further, 

the examples for learning are given with single-valued outputs. If we use 
conventional neural networks for this learning task, we need to cluster the 

learning sample data into groups that correspond to different hypersurfaces. 

This process is computationally burdensome and difficult in general especially 

with noisy learning samples. Conventional feedforward neural networks have 

been concentrating on building single-valued mappings from input to out-

put. Instead, to learn multi-valued functions, we might try to build multiple 

networks separately from manually separated learning sample data and then 

combine them, or competitively learn the multiple input-output mappings 

through a mixture of multiple'expert'networks [3]. The latter approach 

requires optimization techniques such as Simulated Annealing [5] and the 

EM (Expectation and Maximization) algorithm [l] for non-convex general 

functions. 

This paper provides a quantum leap from the conventional approaches. 

r
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We represent a multi-valued function by a single direct algebraic equation. 

Therefore, the learning problem becomes a reconstruction of a single hyper-

surface. We formulate a standard regularization problem for the algebraic 
representation of the multi-valued functions. Using this formalism, the Euler-

Lagrange equation of the energy minimization problem becomes linear with 
respect to the unknown functions. This means that the techniques for deriv-

ing the regularization networks [9] [10] can be applied directly to multi-valued 

function approximation. 
The regularization networks have been proven to be capable of approxi-

mating arbitrarily well any continuous function on a compact subset of Rn 

[2). Therefore, they may be considered as alternatives to feedforward multi-

layer perceptrons. It should be noted, however, that our contribution is not 
restricted to regularization networks, since the basic idea can be applied to 

other types of feedforward neural networks that approximate input-output 
mappings from examples, and can extend such networks enabling them to 

learn multi-valued mappings. 

The paper is organized as follows. First, in section 2, the standard regular-
ization theory, which is the leading principle of the regularization networks, 

is extended to approximate multi-valued functions. The extension is based 

on a direct representation of the multi-valued function using tensor product 

(Kronecker's product). We call this extension the Multi-Valued Standard 

Regularization Theory (MVSRT). Section 3 derives the regularization net-

works and their learning algorithm for approximating multi-valued functions 

(MVRN) based on MVSRT. Also, an approximation to MVRN, called MV-
GRN and having a smaller number of hidden units than learning samples, 

is proposed. Section 4 verifies MVRN by a simulation using Gaussian RBF. 

Section 5 discusses important remaining issues for future investigations and 

concludes this paper. 
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2 Multi-Valued Standard Regularization The-

ory (MVSRT) 

2.1 Standard Regularization Theory and Regulariza-

tion Networks 

The Standard Regularization Theory is a general framework for solving ill-
posed inverse problems in various scientific and engineering problems [8] [15]. 

The learning of input-output mappings from examples can be formulated by 

using the regularization principle. The energy functional for approximating 

a scalar mapping f: Rn曰 Ris written as follows. 

N 

砂[!]=区（リ(i)- f (X (i)) r +入11s1112,
i=l 

(1) 

where Sis a regularization (smoothness) operator, 入isa regularization pa-

rameter, and II II is a norm of a functio叫 space.(x砂 Y(i))E R双 Rdenotes 
the i-th data where i = 1, 2, • • •, N. The second term, called the regulariza-
tion term, determines the smoothness of the mapping which is interpretated 

as generalization in the learning theory. By applying a variational method to 

this formalism, Poggio & Girosi [9] [10] derived the Regularization Network 

(RN) which is a three-layer network for approximating smooth input-output 

functions from examples. Several learning methods including Radial Basis 

Function networks and spline approximations can be derived as special cases 

of the regularization network. In the subsequent sections, we extend this 
formalism into a framework for approximating multi-valued functions. 

2.2 Direct Representation of Multi-Valued Functions 

The basis of our approach is quite fundamental; the direct extension of the 

input-output relation f : Rn曰 Rmin the form y = f(x) into a multi-valued 

function. This was transferred from our previous work on multiple overlap-

ping smooth surface reconstruction from sparse depth data in computational 

vision [12]. 
＼
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2.2.1 General representation of multi-valued functions 

The general form of the basic relation for h-valued mappings from Rn to Rm 

can be written as [12], 

(y -f1(x))R(y -f2(x))R.. ・ R(y -fん(x))= 0, (2) 

where f ;(x) (i = 1, 2, ・ ・ ・, h) denotes component single-valued functions, and 
0 denotes tensor product (Kronecker's product). This is a mathematically 

strict representation of the multi-valued function. We do not need any auxil-

iary parameter or label of any kind other than original functions f; 位）. This 
says that each point (x, y) must be on at least one of the h hypersurfaces 

y = f;(ェ） (i= 1,2,··•,h). 
There are several points to note in Eq. (2). The number of element 

equations in Eq.(2) is mh. This number is much higher than the freedom 

of the functions (m). One way of reducing this redundancy is to use the 

fact that any two functions f k (x) and f厄） (k # l) can be exchanged with 
each other from the original meaning of the problem. Since Kronecker's 

product is not commutative, Eq. (2) does not represent this fact. We can 
incorporate this exchangeability of the functions by using symmetrization of 
the tensor product [14]. Then, the number of independent element equations 

can be computed by the repeated combination m凡=m+h-1仇＝ (m+h—l)! 
h!(m-lh・ 

It still seems redundant in comparison with the freedom of the values of t e 

functions. However, this remaining redunduncy guarantees the uniqueness 

of the representation. 

The tensor product representation Eq. (2) of the multi-valued function 

is motivated from quantum mechanics of elementary particles. It has a very 

interesting analogy to the quantum mechanical representation for the system 

of multiple elementary particles of the same kind (cf. [7] [14]). In the follow-
ing, however, we concentrate on the scalar function approximations, i.e., the 

case of m = 1, since they play fundamental roles even in general cases. Mo匹
general cases including multi-and vector-valued functions are described m 

Refs. [12] [13]. 
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2.2.2 Direct representation of h-valued scalar function 

A multi-valued scalar function can be written in much more simple formulae. 
We define an h-valued function as follows. 

h 

A(h)(x,y) = II (y-f心））
i=l (h) 

= F?¥x) + yF2 (x) +・・・十も/-lp?l(x)+・・・十 l-1F?)(x)+ l =(GJ 

where, 

Fい(x)

F昌(x)

Ft)(x) 

(-1) h f1 (X) h (X) ... f応~); .•• ; 
h h 

I: I: Ji丘）fi2位）；
i1=lら=i1+l

h 

ー Eli(記），
i=l 

(4) 

are elementary symmetrical expressions of the functions fや） • Eq. (3) is 
an h-degree univariate algebraic equation with respect to y, and is a special 
case of Eq. (2). 

These substitutions of the unknown functions greatly simplify the follow-
ing discusssions, since Eq. (3) is linear with respect to functions F?¥ x) 
(k= 1,2, ... ,h). 

2.3 Standard Regularization of Multi-Valued Fune-

tions 

The regularization problem for multi-valued functions can then be formu-
(h) 

lated by minimization of the following functional with respect to Fk (k = 

1, 2, ・ ・., h). 

N 

E(h)[F?¥F四，...,Ft)]= I:{A(h)(X(i)外））}2 + L AkllSk庁 (x)l12, (5) 
i=l k=l 

where sk and入kare the regularization operator and regularization parameter 
(h) 

for凡 (x),respectively. It should be emphasized that this is a standard reg-
ularization problem, i.e., convex quadratic minimization, since we adopt reg-
ularization on functions F?)(エ） instead of original functions f; (x). We call 

＼
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this extension the Multi-Valued Standard Regularization Theory (MVSRT) 
[12] [13]. Therefore, the solution to this problem can be easily obtained by 

standard regularization techniques as will be shown in the next section. 

3 Multi-Valued Regularization Networks 

MVRN consists of two network modules (Fig. 3). The first module maps the 

input vector x into Ft)(x) (k = 1,2,・・・,h), while the subsequent module 
maps Ft) (x) into fや） • In the following, we derive MVRN and its learning 
algorithms from MVSRT. 

3.1 h-Valued Regularization Networks and Learning 

Algorithm 

For simplicity, we assume S = S k and入=,¥k for k = 1, 2, ・ ・ ・, h in the 
following discussions. 

3.1.1 Derivation of the network 

The Euler-Lagrange equation for the minimization problem of Eq. (5) is 

tい）k-1 { A(工， Y(i))}8(xー％））＋認SF?)(x)= 0, 
t=l 

(6) 

where k = l, 2, • ・ •, h. This equation can be solved by using the Green's 

function I{ (四切 ofoperator S S defined as 

SSK(x, ぉ')= 8(::c -x'), (7) 

where S is the adjoint operator of S. We have the following representation 

of MVRN. 
N 

が(x)= Lや (Y(i)/-1K(心％）），
i=l 

(8) 

where 
(h) 

乃 ＝一入―1A(x(i), Y(i))・ (9) 

Equation (8) shows that functions F~h) (x) can be represented as linear corn bi-
nations of Green's functions K(x, x(i))・It should be noted that the number 

，
 



of weight parameters is equal to the number of examples N, and does not 
depend on the multiplicity h of the mapping. The weight parameters r}h) 

(i = 1, 2, ・ ・ ・, N) are shared by all functions F?)(x) (k = 1, 2, • • •, h). 

3.1.2 L earnmg algorithm for MVRN 

We can derive a learning algorithm for determining weight parameters ri (h) 

in a si両 larway to the derivation of the regularization networks in Ref.[9]. 
(h) 

Substituting Fk (x(i)) in Eq. (9) by Eq. (8) d an rearrangmg terms result 

in the following N-dimensional linear system with respect to the weights ri . (h) 

K(h)r(h) + z(h) = 0, (10) 

where, 

K(h) 

、̀
'
‘
9
)

h

h

 

,

1

'

,

1
、

r

z

 

(I<い）＝（｛ミ（リ(i)Y(i)/-1}I<(x(i), 在））＋嶋，

（平，亭，・・・::tr, ) 
({ Y(l) r , { Y(2)} h , . ・. , { Y(N)} h) T , (11) 

where妬 denotesKronecker's delta. Since the weight parameters are shared 

by h functions F?¥ x), the dimension of the linear system is invariant to the 
multiplicity h. This is a particularly significant property, since the compu-

tational complexity for solving an N-dimensional linear system is approxi-

mately equaivalent to N支

3.1.3 Multi-Valued Generalized Regularization Networks (MV-

GRN) 

MVRN can produce an exact solution of the standard regularization problem 

(Eq. (5)). However, the complexity grows rapidly with increasing of number 

of examples. We can consider the MVRN defined by Eq. (8) to be linear 

combinations of'basis functions'K(x, X(i)) whose centers are at X(i) (i = 
1, 2, • • •, N). Poggio & Girosi [9] proposed the Generalized Regularization 

Network (GRN) in which the number of basis functions K(x, x') is less than 

the number of learning samples N. We denote the (fixed) centers of the 

・
ー
し

_* 
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basis functions as ti (j = 1, 2, ・ ・ ・, M < N) where M is the number of 
basis functions. Then, the Multi-Valued Generalized Regularization Network 

(MVGRN)乃叫x)can be written as 

M 

砂旭） = I: 心Iく(x,tぃ），
j=l 

(12) 

where, in contrast to MVRN, we cannot share the weight parameters be-

tween functions P?¥x) fork= l, 2, • ・ ・, h. Thus, we denote the hM weight 

parameters as f闘(k= 1,2,··•,h;j = 1,2,•·•,M). The learning algorithm 
becomes an hM-dimensional linear system. 

k叫 (h)+砂=o, (13) 

where, 

K(h) 

T(h) 

ぇ(h)

(D心
z(h) 

，
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(14) 

3.1.4 
．． 

Decompos1t1011 network 

The second network for transforming functions Ft) (x) into Ji(x) may be 
realized in two ways. 

Recurrent network One is the recurrent network which numerically solves 

the h→ degree algebraic equation (3) with respect to y. In our case, it is con-

venient for us if all of the solutions can be obtained simultaneously. The 

iterative method known as the Durand-Kerner's method [4] meets our pur-

pose. The following iterative update equation solves Eq. (3) simultaneously 
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for all h solutions. 

h 
ー1

Jj"+'i("') = f門(x)-Aihl(x,f門{x))L且y門(x)-f門(x))} , (15) 

where k denotes an iteration counter. This process has been proven to be 

equivalent to the Newton-Raphson method applied to the simultaneous al-
gebraic equation, Eq. (4) [4]. This network may become unstable for a 
multiple-root case. 

Feedforward network The second approach is the use of another reg-
ularization network, or any feedforward neural networks for approximately 

realizing the inverse mapping. This network can be build independent of the 

first network module. We can embed a function for detecting multiple roots 

in the decomposition network. 

4 Simulations using Gaussian Radial Basis 

Function 

We have implemented a Gaussian REF version of MVRN and have tested 

several noisy data configurations. For Gaussian REF, the regularization op-
erator is defined so that Green's function K(記， x')becomes an n-dimensional 

isotropic Gaussian of (xーぉ'):K(x, x') = A exp (-!Ixーx'Iド/2aりwhereA 
is a constant. In this case, operator S is a pseudo differential operator [9]. 
The decomposition network was implemented by a recurrent network incor-

porating Durand-Kerner's method. Figure 4 shows one of the results for a 

three-valued MVRN (Gaussian REF version). In this simulation, the param-

eters were set as a= 0.1, 入=10.0. The dimension of the input and output 

space were both one-dimensional, and the multiplicity of MVRN was h = 3. 

The number of sample data was 500 for each surface. 

5 Conclusions 

A fundamental concept and techniques have been proposed for extending 

conventional regularization networks, including Radial Basis Function net-

works as a special case, to h-valued function approximation. The learning 

12 



algorithm turns out to be a linear system with no clustering operations'on 

the learning sample data set. This property is quite significant in regard of 

computational complexity and robustness of learning. The complexity of the 

learning is almost the same as conventional single-valued function approxi-

mations. 

The idea behind our approach is quite different from'competitive'learn-

ing paradigms. The underlying idea can be dubbed as'coexistence'rather 

than competition. This was strongly motivated from quantum mechanical 

representations of multiple elementary particle systems. The algebraic rep-

resentation of the multi-valued function in Eq. (2) represents this idea in 

rigorous mathematics. 
There are several important problems for future investigations: 

1. The multiplicity h should be determined automatically in the learning 

step. This may be possible if we can estimate the rank of the linear 

system for learning. 

2. For the purpose of learning inverse models from examples like the 

mapping depicted in Fig. 2, the network needs to handle point-wise 

changes of multiplicity h. This may be possible if the decomposition 

network is a feedforward network with a function for determining mul-

tiple roots from inputs Ft¥エ）. Another possibility is placing a gating 

network to select appropriate outputs from among MVRNs of different 

multiplicity h. 

3. Regarding MVGRN, we can incorporate moving centers and norms of 

Green's functions in a similar way with GRBF and HyperBF networks 

[9]. 

4. The direct representation of the multi-valued function (2) can be used 

for h single-valued regularization networks to separately approximate 

each hypersurface of an h-valued function. For this purpose, we can 

derive a learning algorithm based on minimization of the residual of Eq. 

(2). The learning algorithm will not be a simple linear system, but a set 

of linear systems each of whose coefficient matrices nonlinearly depend 

on solutions of the others. Further, Eq. (2) is not dedicated only to 

the regularization networks, but is also available for other feedforward 

neural networks including multilayer perceptrons. 
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(a) (b) 

Figure 1: Examples of ambiguous and multiple visual perception. 

These are examples where multi-valued mappings are essential components 

for visual modules. (a) Necker's wbe (ambigu01Ls visual perception). (b) 

Multiple overlapping transparent surfaces (perceptual transparency). 

~
~
、
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y=g―l(X) 

Two-valued 
X == g(y) 

Single-valued 

Three-valued 

Figure 2: Example illustrating that inverse mapping is generally multi-valued 

mappmg. 

Although the forward mapping g : y曰 xis single-valued1 the inverse mapping 

g―1 : x f-l-y is multi-valued. This figure illustrates the case where the inverse 

mapping is a combination of l-1 2-and 3-valued mappings. 
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Xi X2 X
 ,.
 

Pi(h)(X) Ft¥x) 凡:h)(X)

Decomposition Network 
(This may be either recurrent or feedforward network.) 

が(x) fk(X) J,.(x) 

Figure 3: h-valued regularization network. 

The multi-valued regularization network (MVRN) has two network modules. 

The first module maps the input vector x into F?) (x) (k = 1, 2, ・ ・ ・, h) which 

is an intermediate representation, while the second module, a decomposition 

network, maps F?)は） into f心） • The second module solves an h-degree uni-
variate algebraic equation whose coefficients are F?¥ x). The second module 

can be either a recurrent network which is equivalent to a numerical solver of 

algebraic equations, or another regularization network, which approximate! 
(h 

realizes this function. The learning of MVRN is to determine weights r; 
) 

for i = 1, 2, • • •, N. Note that the number of unknown weights is invariant to 
the multiplicity h. 
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Figure 4: Simulation results for three-valued regularization network. 

This is one example for NIVRN (Gaussian REF version) in the case of a 

three-valued R 1--J, R mapping. (a) Sample data set with additive Gaus-

sian noise (standard deviation = 0.02). (b) Three-valued mapping which 

was learned from the sample data set. The parameters were set as O'= 0.1, 
入=10.0. 
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