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Abstract 

A snake is an elastic spline with dynamics determined by internal and external 

forces -it is a physical model for a one-dimensional curve. In this report, we use a 

snake to find and track features of interest in images by constructing forces which 

guide the snake to those features. Construction of these forces requires consideration 

of the "material" properties of elastic curves and the resulting dynamics and of the 

image processing required to generate an external force related to features of interest. 
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Chapter 1 

INTRODUCTION 

Within the past ten years, computer graphics and image processing research have 

advanced tremendously due to rapid technological developments. These two research 

areas share a common body of knowledge [1]: 

• Graphics deals with the generation of images.Currently this seems to be an area 

of fast growth. The computational effort required to produce displays (such 

as production of plots of functions, composition of displays for the common 

computer game, and production of the scenes used in flight simulators) varies 

significantly, depending on the task. The term interactive graphics refers to 

devices and systems that accept input from the user to produce a graphical 

display (the simplest example being the drawing of a line between two points 

on the screen that the user specifies). 

• Image processing deals with analysis of images. It can entail noise removal, 

data compaction, contrast enhancement techniques. Sometimes it desirable to 

apply more drastic transformations. For example, an image with a wide range 

of illumination may be reduced into an image where one sees only two levels of 

illumination. 

Clearly, there exist overlapping interests among theses two areas of research. 

In the past few years, a new focus of research in computer graphics, known vari-

ously as engineering animation or physical-based modeling has begun to emerge. The 
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notion is that rendering objects and scenes, however realistically, is only a part of the 

game. Human and animal figures, mechanical parts and assemblies have physical at-

tributes and obey the laws of classical mechanics. The lack of such attributes is often 

painfully obvious in animated sequences that account only for geometric properties; 

animation that incorporates physical properties seems aesthetically and psychologi-

cally more satisfying. 

Modeling based on physical principles is establishing itself as a potent technique 

in computer graphics. Physical-based models, while computationally more complex 

than many traditional models, offer unsurpassed realism in the modeling of natural 

phenomena. This is a critical advantage for computer animation. Conventional ani-

mation is kinematic; objects are set into motion by describing the positions of their 

geometric components at each instant in time, usually aided by key-frame interpo-

lation techniques. By contrast, in the dynamic approach to animation, forces are 

applied to objects while standard numerical procedures generate position through 

time in accordance with Newton's laws. Newton's laws are applied based on the 

physical properties attributed to the object's model. 

A snake is a one-dimensional model of an elastic curve that is influenced by internal 

and external forces. The internal forces are elastic forces which give the curve a 

resistance to deformation. The external forces can be specified arbitrarily and are the 

primary mechanism used to produce a desired behavior. As an example of interest 

here, image processing techniques can be used to produce a force field within which 

the snake moves towards object boundaries. Moreover it could track this object 

through time because the snake is a dynamic model with a mass, so it has a inertial 

motion like real objects in a sequence of images. 

The basic theory of the snake has been developed in recent years[2, 3, 4]. It comes 

in fact from the theory of computer animation and graphics -the authors of this 

theory were interested in virtual reality, so they created some physical models that 

can be used for image processing. It is a animation which receive both nonpictural 

information and pictural information. So we can no longer say that it is only image 

processing, and it is certainly not only computer graphics because of its uses. The 
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snake is a flexible object in a physical environment. The energy of and forces on the 

snake depend on where the snake is placed and how its shape changes locally in space. 

The idea is to have the snake lock on to the features of an image structure by 

minimizing an integral measure which represents the snake's total energy or in fact by 

computing its displacement in a force field. For such computation, Terzopoulos[2] used 

an energy-oriented algorithm; within this report we used forces-oriented algorithm. 



Chapter 2 

BASIC SNAKE BEHAVIOR 

2.1 Introduction 

In this chapter we will explain how to "build" a snake. So in this chapter we will 

discuss the physical part of this report. We have to understand what the snake is 

made of and what are the forces we will have to apply and how it will react to such 

forces as well as its internal constraints. In the first part of this chapter, we will 

talk about the space in which the snake will move. We will have to define the most 

useful frames to study the snake motion. Secondly, we will obtain the equations of 

motion for the snake which determine its shape and motion when it is submitted to 

external forces. The third part of this chapter will be dedicated to a deeper study 

of the elastic force which is the snake's cohesion force. Finally, we will show some 

examples of different types of snakes. 

A snake is modeled as a spline under the influence of external and internal forces. 

The external forces push the snake in some direction and the internal forces try to 

return it to its original shape (unless this "original" shape can be changed through 

time). The external forces can be specified in any way -for example, interactively by 

the "user". 

In this report, the behavior of the snake is based only on the deformation of 

its elastic model from its original shape. This simplification is discussed further in 

Chapter 5. 

4
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2.2 Inertial F'rame and Body F'rame 

5
 

Snakes are represented parametrically as: 

v(s, t) = (x(s, t), y(s, t)) (2.1) 

where t is a time coordinate, s is the snake's intrinsic coordinate with domain of 

D=[0,1], x() and y() are coordinates in the snake's two-dimensional Euclidean space, 

and v() is a time-varying, vector-valued function of the material coordinates (not a 

velocity). 

If we define a reference frame <p, whose origin coincides with the snake's center of 

mass as 

c(t) = jμ(s)v(s, t)ds 
N 

whereμis the mass density of the deformable snake and n is the domain of integration, 

then we can express the positions of the mass points relative to¢as 

q(s, t) = r(s) + e(s, t) (2.2) 

which is composed of a reference component, r(), and an elastic component, e() given 

by 

r(s) = [rェ(s),乃(s)]

(2.3) 

e(s, t) = [ex(s, t), ey(s, t)] 

for the deformable snake model. 

The inertial'body'frame cp translates along with the deformable body. It could 

rotate as well, however, that changes many things particularly the equations of mo-

tion; we will discuss the effect of rotation later in the report. In what follows, the 

body frame cp is only permitted to translate as shown in Figure 2.1. 
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deforming body 
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x
 

Figure 2.1: Geometric Representation: A snake's shape is decomposed irdo reference 

and deformation components. 

2.3 Equations of Motion 

A deformable model is described completely by the positions v(s, t), velocities v(s, t), 

accelerations v(s, t) of each of its mass elements. In the inertial frame <p, the Lagrange 

equations of motion governing v(s, t) take a relatively simple form : 

μii十神+8芯=! (2.4) 

whereμ(s) is the mass density, ,(s) a damping factor and J(x, t) is the external force. 

8vt represents the internal force or elastic force which depends only on v() and its 

partial derivatives. Equation 2.4 is a partial differential equation in s and t. 

During motion the net external forces f(s, t) balance dynamically against the 

following three factors: 
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• the inertial force due to the mass densityμ(s) -this is a force to resist acceler-

ation. 

• the velocity-dependent damping force with damping density ,(s) -this force 

dissipates the kinetic energy of the body's mass points as it moves through a 

viscous ambient medium. 

• the internal elastic force 8。e-this resists deformation of the snake away from 

its natural shape. 

The elastic force is conveniently expressed as 81ふ avariational derivative of a de-

formation energy e(x) associated with the model. The non-negative functional e 

measures the potential energy associated with an instantaneous elastic deformation 

of the body. Its value increases monotonically with the magnitude of the deformation. 

Given this equation with appropriate conditions for v on the boundary of D and 

the initial shape or configuration v(s, 0) and velocityも(s,0), the problem becomes an 

initial boundary-value problem. 

Using this formulation of Equation 2.4, there can be a numerical degeneration 

due to the fact that in order to increase rigidity, the values of the parameters must 

be increased. This increase makes e both more non-quadratic and non-linear. This 

problem can be avoided by decomposing v into the reference component r and the 

deformation component e of Equation 2.4. In that case, we obtain a purely quadratic 

elastic functional (However, as mentioned previously, in this work the body frame 

can only translate in the inertial frame; thus there is no great difference between a 

new equation of motion and equation 2.4. Still, the notation is useful to express easily 

the elastic form as we saw in equation 2.4. 

2.4 The Elastic Force 

In this section, we will discuss the elastic force, l, which resists deformation and 

pushes the snake to recover its original shape. A deformation is termed "elastic" 

if, upon removal of all external forces, the shape returns to its undeformed original 
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shape. The basic assumption underlying the constitutive laws of classical elasticity 

theory is that the restoring force (stress) in a body is a single-valued function of the 

deformation (strain) of the body and moreover that it is independent of the history of 

the deformation. The restoring forces intrinsic to the deformable models are expressed 

in term of a deformation potential energy [5). An energy characterization is always 

possible for elastic models. As a generalization of the ideal spring, the elastic model 

stores potential energy during deformation, which is then released as it recovers the 

original shape. 

The elastic force due to deformational displacement away from the original shape 

is a variational derivative of a elastic potential energy functional e. This is an integral 

of an elastic density E which depends on e(s, t) and its partial derivatives. We can 

define e(e) as: 

釦）= j E(s, e, es, ess, ...) (2.5) 

with two restrictions: 1) e = 0 when e = 0, and 2) e increase monotonically with 

mcreasmg e. 

At our disposal are a class of controlled-continuity generalized spline kernels. 

These splines are of the previous form with the potential energy defined by 

1 P ml 
E= 2 I: I: . 1. 1 . wj(s)18匹12
m=O lil=m J1・J2・・・・Jd・I 

(2.6) 

where j = (j1,jふ...,jd) is a multi-index with ljl = j1 + j2 +・ ・ ・+ Jd, dis the material 
dimension of the model and the partial derivative operator is 

かn
fj'!1 = 
J 洸．．．明・

E() is a weighted sum of partial derivatives of e of all orders up top. The weights 

叫 s)are express the material properties of the deformable model. This is a general 

model capable of representing any material properties whatsoever. In practice only 

low-orders of p are used. In a subsequent section we illustrate the consequences of 

modifying these weights吟;(s)
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In the material domain D, the variational derivative of~is 
，
 

p 

ば＝区（一l)m△:me 
m=O 

(2.7) 

where 

△こ=L
m! 

jjj=m jl坊！．・・)d・
. I年(wj(s)o丁）

is a spatially-weighted iterated Laplacian of order m. In our problem d is equal to 

(2.8) 

one because the snake is a simple one-dimension curve. The form of the elastic force 

simplifies to 
p 

8el =区 (ir
am ame 

- -(wm(s)ーゴ
m=O 

asm 8s 
(2.9) 

Moreover, for the work described here there is no need for high precision in the 

snake behavior (we are in a discrete space so the complexity of the model could be a 

factor of errors). So we employed a second order (p = 2) controlled-continuity spline 

model. Thus the form for our elastic force becomes 

a oe 82 伊e
ば=wo(s)e(s)―尻（叫s)即＋戸（吟(s)戸）． (2.10) 

2.5 Examples 

Before continuing with a discussion of our implementation it is useful to illustrate 

some examples of simple snake motion. We start with an oval moving in a 2D world. 

We will show now some examples of the different kinds of rigid or elastic bodies that 

we can obtain. We changed the the coefficients w0, w1 and吟 ofthe elastic force e to 
explore the effects of these parameters. 

In the five examples, there is only one external force which is the gravitational 

force (a constant force along the negative y-axis). We gave a initial velocity to the 

ball in the negative x direction to improve the viewability of the results. 

Figure 2.2 shows a very soft ball that reacts more like a viscous fluid after it 

reaches the wall at x = 0. For this figure, all the parameters were nearly zero. 

Figure 2.3 shows a soft ball. In this example, w0 = 0 and the others elastic 
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Figure 2.2: A very soft ball. 

parameters are greater than in the previous example. However, in our model, the ball 

need not have a constant volume; it is compressible and we see the consequences in 

this figure. 

Figure 2.4 shows a ball that is harder・than the previous one; upon hitting the 

wall, the shape of the ball oscillates around its original shape. 

Figure 2.5 shows a hard ball. There is not a great difference between the transla-

tional motion of the balls in Figures 2.4 and 2.5 except that the harder ball recovers 

its original shape more quickly. 

Finally, in Figure 2.6 is different from the previous ones because we changed more 

parameters than solely the plastics parameters. This figure shows that not only the 

elastic parameters are important -further discussion regarding this is in Section 3.4. 

In the this chapter we studied the physical aspects of snakes when submitted to 

two different types of forces: external forces and internal elastic forces. We derived 

an equation for the snake's motion under theses conditions. 
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Figure 2.4: A rigid ball. 
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Figure 2.5: A hard ball. 
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Figure 2.6: A very hard ball. 



Chapter 3 

IMPLEMENTATION 

3.1 Introduction 

The subject of the present chapter is the solution and implementation of Equation 2.4. 

In the first part, we will describe the method we used to semi-discretize the snake. It 

is a semi-discretization because even if the coordinates of the mass points are reals, in 

our case the snakes'external force is ultimately derived based on a discrete grid (see 

Chapter 4). Moreover we will consider the snake as a succession of interconnected 

mass points and not as a continuous elastic curve. After this important part, we will 

talk about the time-discretization. Because the snake is a dynamic model, we have to 

solve a dynamic equation to know the motion of the snake through the time. In this 

chapter, we will introduce some parameters (dynamic parameters, elastic parameters 

and the time parameter) which are preponderant in the snake's behavior -their study 

will be the subject of our third section. 

3.2 Semidiscretization in Space 

The goal of this section is to write the elastic force 8よofEquation 2.9 in a discrete 

form. Our first step in this section will be the discretization of the elastic force for 

one mass point, then we will introduce new coordinate vectors that will describe the 

positions of all the mass points along the snake. Our objective then is to express the 

13 
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elastic force acting on the whole snake as a matrix product of the deformation tensor 

and the position vector for the snake. 

We illustrate the semidiscretization step using standard finite-difference approxi-

mations. The unit domain, n = [O; 1], of the curve is discretized as an equally-spaced 

distribution of N nodes. The internode spacing h is constant and is calculated from 

the original position of the snake. Furthermore, we calculate has the average value of 

the different internode spacing; thus h is a constant in time and a constant in space 

as well. Note that, this is a significant approximation and we will discuss its effect 

later in this report in chapter 5. Nodes are indexed by integers n where 1 Sn S N. 

We approximate continuous functions of s and t by transforming s as s = nh; for 

Equation 2.4 and the external force of Equation 2.4 this approximation yields 

r(s) =r(nh) =r[n] 

e(s, t) = e(nh, t) = e[n](t) 

J(s, t) = J(nh, t) = f[n](t). 

(3.1) 

The discretization in time is the subject of future section; So, for now, we will suppress 

the time dependence notation until section 3.3. 

The discrete elastic force requires approximating the nodal variables e[n] and, 

because we restricted our interest to a second-order approximation, the first and 

second derivatives of e (with respect to the material coordinates s). In order to 

compute theses derivatives, we define some differential operators : 

• The forward first difference operator 

Dt(e)[n] = 
e[n + 1] -e[n] 
h 

• The backward first difference operator 

D1(e)[n] = 
e[n] -e[n -1] 

h 
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• The central second difference operator -based on previous operators 

D2(e)[n] = D1(Dt(e))[n]. 

These difference operators will be used to write the elastic force 8よina discrete 

form. Recalling that for our model p = 2 and with the above difference operators, 

the elastic force that acts on the node n can be written as: 

be(:;:::j woe[n] -D1(w1Dt(e))[n] + D2(w2D2(e))[n]. (3.2) 

We now collect the nodal variables into some N-dimensional vectors. These vectors 

describe the positions of all the snake's mass points. In our previous discussion on 

discretization, we were considering one mass point; now the goal is to obtain one 

equation of motion for the whole snake instead having N equations for each mass 

point. All underlined variables in the following will describe variables for the whole 

snake (not only one point but all the points of the snake). 

f. = (e[l], e[2], .. ・, e[N]) 

V-
(v[l], v[2], ・ ・ ・, v[N]) (3.3) 

r. = (r[l], r[2], ・ ・ ・, r[N]). 

In our model in fact, §., Q andェarealready vectors in a 2-dimensional space. 

So in order to represent the whole snake position and elongation, we will use, each 

time, two N-dimensional vectors which will represent the projection of the vectors§., 

旦andェonthe x and y axes. So now we will have the vectors§.x and§.y to describe 

the snake's elongation , the vectors盆andJf_ to describe the snake's position and the 

vectors r.,,: andェYto describe the snake's reference position in the body frame. 

The discrete approximation of the elastic force may be written in the vector form 

f{xory年。rywhere I<xory is an N-dimensional square matrix. To see the form of I<, we 

can have a look on the projection of the discrete elastic force 8i (for one point) on 

the x and y axes. We have to remember that his a constant; we call these projections 
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8xl and 8式．

妬e= Woeェ[n]-D1(w1D[(eェ））[n] + D2(w2D2(eェ））[n] 

and 

8ye = Woey[n] -D1(w1Dt(ey))[n] + D2(w2D2(ey))[n]. 

Further simplification of these elastic forces is possible if we assume that w0, w1 

and w2 are constants in s and t and thus elastic properties of the snake are the same 

for each of its points. Then two projections of the elastic force can be written as 

a product of a matrix by the vector~- We obtain髯=J(五聟=J{揺Y'and

kェ=}も=J{ because J{ is the representation of the action of the different operators 

on the vectors~x and今・

With these definitions, K is a pentadiagonal-matrix that can be described as the 

weighting sum of IN, JN and LN : 

K = (wo -2w1 + 6w2)IN + (w1 -4w2)JN + w2LN 

where 

• IN is a N-dimensional unity matrix 

• J N is the N-dimensional square matrix 

I 

゜
1 

゜゚ ゜゚1 

゜
1 

゜゜゚
゜
1 

゜
1 

゜゚ふ=I。
゜
1 

゜゜゚
1 

000  0・・・10 
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• LN is the N-dimensional square matrix 

／ 

0 0 1 

゜0 0 0 1 
1 

゜゚゚
゜
1 0 0 

LN= 

I 

゜
0 0 

゜
゜
0 0 

゜
゜
0 0 

゜

0

0

 
0
 
0
 

0
 
0
 
0
 
0
 

0
 
0
 
0
 
0
 

1

0

0

 

0

0

0

 

0

0

1
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And finally, the equation for whole snake's motion can be written in term of two 

components in x and y as 

応釦
M--= + C-= + K§.x = 
8t2 fJt f 

ー X

(3.4) 

a2y oy 
Mrffl + C尻十I国=Ly 

where the discrete mass density variablesμ[n] have been replaced by a diagonal N-

dimensional square matrix M with theμ[n] variables as diagonal components and 

respectively where the discrete damping density variables ,[n] have been replaced 

by a diagonal N-dimensional square matrix C with the ,[n] variables as diagonal 

components and where f and f are each N-dimensional vectors of the external force 
-$  -Y  

projected on the x-axis and y-axis respectively for each mass point on the curve. 

3.3 Numerical Integration Through Time 

In order to simulate the dynamics of this model, we integrate the semidiscrete system 

through time. Dividing an open-ended interval from t = 0 into time steps△ t, the in-

tegration procedure computes a sequence of approximations at△ t, 2△ t, 3△ t, ...'t, t+ 

△ t, .... Each time step requires the solution of our two algebraic equations (Equa-
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tion 3.5) for x and y to describe the complete motion of the snake in the reference 

frame. 

We used the following two discrete-time approximation for the first and second 

temporal derivative 

釦 z(t)-z(t —• t) 
～ 
8t 

がz
8t2 

～ 
△t 

z(t +△ t) -2z(t) + z(t —• t) 
~ 

△ t2 

and substitute these approximations into Equation 3.5 to obtain the two procedures 

1 
（亙"iM)盆t—△t = L+e山 +02盆t—△t -J{§_x 

(3.5) 

1 
（亙"iM)且t-△t ly + 01J1..t + 02J1..t—• t-K鈎

where 
2 

81= M 
1 

- --C 
△炉△t

and 
1 1 

02=-C--M. 
△t △ t2 

3.4 Parameters 

We have to explain the real role of all the parameters in the snake's motion equations. 

We saw in the second chapter that the influence of these parameters is significant 

because modifications in the parameters produce very "hard" or "soft" snakes. Un-

derstanding the parameters is important in order to produce or design snakes with 

desired behavior. 
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3.4.1 The Elastic Parameters 

The elastic parameters control the material properties of the snake: 

● w0(s) describes an elastic force which links each mass point to its original posi-

tion in the body frame. You have to imagine that there is a little spring between 

the mass point of the body and its reference position. We can't say that this 

force is really the main force that characterize the elastic behavior of the body 

because there is no connection in the motion of two different mass point. They 

all react independently. 

• w1 (s) controls the tension along the curve; it makes the snake act like a mem-

brane. 

• w2(s) controls the rigidity along the curve; it makes the snake ad like a thin-

plate. Setting吟 (so)= 0 permits a tangent discontinuity to occur at s0 -it 

allows the snake to develop a corner at s.0. Moreover setting凸 (so)=吟 (so)=0 

permits a position discontinuity where the snake can (almost) break. 

In the model we implemented, the elastic parameters had constant values. We 

saw that even with these constant values, the snake produced reasonable behavior. It 

could be a significant improvement to permit these parameters to be real function of s 

instead just parameters and also to allow these parameters to change values through 

time. 

3.4.2 The Mass and Damping Densities Coefficients 

The mass and damping coefficients are very highly correlated. μ(s) is the mass 

density of the snake which is responsible of the inertial force and 1(s) the damping 

density which is responsible of the velocity-dependent damping force. To see these 

correlations, we will illustrate a simple model of a damped spring, mii +cu+ ku = 0, 

with free oscillations. This study is very simple and well known but we have to keep 

in mind that the coefficients are linked[6]. In this simple example, the oscillations are 
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free but, in fact, our problem is, when and how does the spring (or the snake) reach 

its stable position? 

There are three possible types of motion for the spring. For all the examples, we 

have m = k = l. 

• When c2 < 4mk : Underdamping (c = 0.3) 

゜

-1 

!5 10  15  20  2'5 30  

This produces lots of oscillations around the stable position. Given any dis-

placement from its original shape, our snake would oscillate for a long time 

about the original position. 

• When c2 > 4mk : Overdamping (c = 4) 
2 
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Now there is no oscillation, but the spring acts like it is moving in oil or molasses. 

Consequently it does not reach the stable position very quickly. 

• When c2 := 4mk : Critical damping (c = 4) 
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Here we have the most convenient behavior; the spring goes straight to equilib-

rium (and gets there at t = oo). 

If you compare the drawing of the critical damping and the drawing of the over-

damping, you can see that with critical damping the spring goes near its stable 

position more quickly. So from all theses examples, we can say that the best type of 

motion for the snake is a critically damped behavior. But the problem is that the 

elastic force is not a constant (neither in time nor in space), so we have to compute 

the best damping coefficient for each point at each time. We did not do it, but it 

could be an future improvement. 

3.4.3 The Time Parameter 

△ t is the time parameter in our discrete equations of motion. This parameter is very 

important; using a large t value can lead to instability in the relaxation procedure 

while a small value will slow the overall time to equilibrium of the relaxation. 



Chapter 4 

IMAGE 

4.1 Introduction 

The two first parts of our report were oriented towards graphics computation because 

we wanted to display an elastic curve and make it move in a force field. But now, 

we have to make the snake useful in an image processing task and thus we need a 

force field that attracts the snake to salient features in an image. We now enter a 

totally different part of our report, because we will speak about image processing. 

We have to link the model to something physical, so we have to find something in an 

image that could replace a force (or, as Terzopoulus used, an energy). In the physical 

world, there are "forces" between two (or more) objects because there are contrasts 

and similarities between objects. In this chapter we will try to define an appropriate 

force derived from an image and then show the results when theses forces are applied 

to a snake. 

4.2 Force Field 

In this part our approach will proceed in two steps: first, we will find a force for one-

dimension; then as a second step, we will try to apply our one-dimensional solution 

to the two-dimensional problem faced in images. 

22 
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4.2.1 One-Dimensional Problem 

In this part, we will begin with a very simple example. Lets have a signal S(x) where 

1 < x < 100 and 

S(x) = { 0 ifx~50 
1 if X > 50 

First of all, we have to smooth this signal; we cannot use a signal with such a discon-

tinuity. A suitable filter to smooth a signal is the Gaussian distribution: 

1 
G(x) = -e  ー丑/2q2
21rび2

. 

There are two good reasons for using this filter. First, it smoothes the image thus 

the effects of noise are diminished(8] and the influence of such discontinuities as in 

our example are almost suppressed. The space constant of the Gaussian, び， isused 

to modify the smoothing (the larger the value of a-is, the more smoothed will be the 

signal). And second, the Gaussian is separable and, due to the central limit theorem, 

we can decompose it into many smaller functions. 

There are many ways to smooth a signal with a Gaussian . 

• The Fourier Transform. According to the property of the convolution, smooth-

ing a signal with a Gaussian can be computed by taking the Fourier transform 

of the input signal and of the Gaussian and then multiplying both and taking 

the inverse fourier transform of the result. For our present problem, it is not 

the simplest way to do. 

• Direct Convolution. We convolve directly the input signal with the Gaussian 

(discretized). That is the simplest way to smooth an image with a Gaussian but 

it is also the longest in time. So even if here (in the one-dimensional problem) 

time is not really a problem, because there are only one hundred points, we 

won't use this method. 

• Binomial Convolution. It is an iterated application of the mask [1/4 1/2 1/4) 

along the x-axis on the input signal to simulate the smoothing with a Gaussian. 
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This solution is only an approximation but as you could see one the figure below, 

it work rather well when the number of iterations is sufficient. 

There is another small problem to consider with convolution to produce a Gaus-

sian. The points at the boundaries S(l) and S(lOO) have to be convolved. But 

there are no points S(O) and S(lOl). In order to perform the convolution we chose 

'mirror'boundary conditions and effectively added two points as S(O) = S(l) and 

S(lOl) = S(lOO). 
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Figure 4.1: Binomial convolutions to produces a Gaussian. Top -the input signal. 

Bottom -the smoothed signal (we applied twenty times the mask {1/4 1/2 1/41). 

Now we have a smoothed signal, we have to find an appropriate force function. 

The force has to pull the snake toward the edge, so the force function must satisfy 
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certain conditions that are: 

F (x) > 0 if (50 -5) < x < 50 

F (x) < 0 if 50 < x < (50 + 5) 
F(x) = 0 elsewhere. 

We introduced the parameter 8 because we don't want the force field to be too strong. 

If a force of the same sign (positive or negative) is applied to the snake during too 

long time, the velocity of the snake increases far too much and so it would pass the 

equilibrium point (where the force is nulls) because of its inertia leading to excessive 

oscillations. 

The second derivative of the smoothed signal seems to be perfect for our objectives. 
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Figure 4.2: The second derivative of the smoothed signal 

However our step function example was to simple. If the input signal is different 

as m 

j 
Q if X~35 

S (X) = 1 if 35 < X < 65 

Q if X~65 

and we apply the smoothing and the second derivative we obtain the result shown in 

Figure 4.3. 
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Figure 4.3: A Box input. Top -the input signal. Middle -the smoothed signal. 
Bottom -the second derivative. 

It is obvious from Figure 4.3 that our force field does not work because the force 

field is inverted for the second edge. In our first example, there was an edge for a 

quick increase of S, but now there is also an edge for a decrease. The only difference 

in mathematical term is: for the first edge the first derivative is positive, and for the 

second one the first derivative is negative. So we can solve this problem by taking the 

absolute value of the first derivative and so an edge will be equivalent of a positive 

first derivative. 

If Fis the force we want obtain, then we can write: 

F=▽ (I▽ (G * S)I) 

where▽ is the gradient which is equivalent to the first derivative in fact, G is the 

Gaussian and S the input signal. 

Figure 4.4 shows the different steps from the input signal to the force. So now we 

solved the one-dimensional problem, we have to apply this type of resolution to the 

two-dimensional problem. 
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Figure 4.4: A'Box'input and the resultant force. From top to bottom: the input 
signal, the smoothed signal, the first derivative, the absolute value, the resultant force. 

4.2.2 Two-Dimensional Problem 

The equations of the snake's motion require two different forces: one for the x-axis, 

and one for the y-axis. But in fact theses two forces are very similar in their construe-

tion. So there is no need to develop separate explanations for their construction. We 

will use the same algorithm for the one-dimensional problem to build our forces, the 

only difference will be in the dimension of the pr~blem: we don't use vectors anymore, 

but a matrix. The input signal (the image) is a matrix with elements that are the 

pixel gray-level values. We will describe in this section the successive steps to build 

the x-force (we use the same operations to build they-force). 

In order to smooth the image, we will use the binomial convolution previously 
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discussed based on the iterated application of the mask [1/4 1/2 1/4) along the x-

axis. In order to compute the gradient立 ofthe smoothed image, we used the 

following 3X3 mask : 

1/4 0 -1/4 

1/2 0 -1/2 

1/4 0 -1/4 

A similar mask for▽ y can be easily found by rotating the above mask by 90 degrees. 

Theses masks compute, in fact, both a differentiation and a local averaging. This 

is a sort of smoothing but in fact the number of discontinuities is reduced, that is 

the reason we applied this mask instead of using a simple derivative operators [1/2 0 

-1/2]. The force field has to be the more continuous as possible. 

After theses two first steps, we have only tq take the absolute value of the gradient 

and to apply another. type the differentiation mask. We will now show one example 

of the force field. 
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Figure 4.5: a) The input image; b) the force field 

In the previous chapter, we talk about sernidiscretization in space. This becomes 

important here because the snake moves in a semi-continuous space but the force field 

is a matrix (two in fact, one for the x-force and one for they-force). The x-force for 

example is known only on a discrete grid corresponding to the image, and therefore, 
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there can be a zero-crossing without any zero in the grid (in fact it is the general case). 

We used a linear interpolation of the external force at non integer positions. Thus 

with a discrete grid, we have a continuous definition of the force field and equilibrium 

points correspond now to zeros of the force. 

4.3 Results 

Figures 4.6, 4.7 and 4.8 show the evolution of the snake in an image. We defined 

the initial position as shown in the first picture, then we let our model move in the 

force field. At the beginning of this sequence, the top of the snake is attracted by 

a disturbing edge at the top of the image. But the snake's extremities are stuck on 

the contour of the apple, thus an external force attracts the middle part of the snake 

to the top of the image but, moreover, the internal elastic force pushes it toward the 

apple's contour. The more we progress in the sequence, the bigger is the part of the 

snake stuck on the apple. The almost tangent discontinuity of the snake curve, which 

can be seen in picture "g", increase the value of the internal force. Thus the middle 

part of the snake is suddenly extracted from the neighborhood of the disturbing edge 

in the top of the image and the snake can reach the apple's contour which is its 

equilibrium. ・ 
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c) 

e) f) 

Figure 4.6: The first sixth steps of the snake's motion. 
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Figure 4. 7: Steps 1 to 12 in the snake's motion. 
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m) n) 

Figure 4.8: The final two steps in the snake's motion. 



Chapter 5 

IMPROVEMENTS 

5.1 Introduction 

In the previous chapter, our subject was the construction of the force field from the 

image and we showed the results of our snake on a few images. But the snake is a 

physical model, its motion takes place in a virtual physical space. Our modeling of 

the snake's motion was basic, but you could improve this model by increasing the 

complexity of the virtual space. In order to show the possibility of such a model, 

we will describe in this chapter some possible improvements. The first improvement 

that we will describe is the rotating body frame. This could be very useful for the 

following of an object's motion during a sequence of images. The second part will 

be dedicated to the curvature estimation in a discrete model, and this take a major 

place in the implementation of the elastic force. We will discuss in the third and last 

section about the possibility to add a new force (a pressure force) to the snake to 

make it pass the insignificant edges. 

5.2 The Rotating Body Frame 

In Chapter 2 we express both a reference component r(s) and an elastic component 

e(s) in body coordinates relatively to a reference frame <p. But we only allowed the 

body frame to translate and thus a rotation of the whole snake was considered as a 

33 
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deformation, but, in fact, it is not. So to have a more accurate description of the 

snake's motion we could have allowed the body frame to rotate. In order to do that, 

we need to know the orientation 0(t) of <p relative to <I> (the reference frame) and the 

displacement c(t) between the two frames. c(t) is the the position of the origin of the 

body frame, it is the body's center of mass: 

c(t) = jμ(s)v(s, t)ds 
n 

where the terms in this equation have been defined in Chapter 2. 

mass elements relative to~is 

心(s,t) = c(t) + w(t)xq(s, t) +も(s,t)

(5.1) 

The velocity of 

(5.2) 

where an overstrike denotes a time partial or total derivative, w(t) is the angular 

velocity of <p relative to <I> 

Once again, to obtain the equations of motion, you have to apply Lagrangian 

mechanics to the kinetic energy that governs the model given below as 

1 1 
T=2! 応 ds= 2 jμ(c + wxq十も）(c+wxq十も）ds (5.3) 

There is a velocity dependent energy dissipation (in terms of the Raleigh dissipation 

functional) of 
1 

F=う／齊ds

and, given this, we can express the equations of motion as (e the elastic energy does 

not depend on c or w): 

紅＋ふF=j fds = J6 
繹＋似F= j qx f ds = fw 
8eT十ふF+8よ=!

(5.4) 

where J6 is a net translating force applied on the center of mass and fw is a net torque 
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acting also on the center of mass. The two first equations describe the rigid motion 

of the snake (or the motion of the body frame </> relative to the inertial frame <I>) and 

the last equation describes the deformation of the body in the body frame from its 

reference shape. 

So you can obtain the equations of motion for the unknown functions c, w and 

e under the action of the force f, and assuming small deformations, you have three 

coupled differential equations: 

．
 

d 
両＋五！匹ds+ j ,vds = fと

where m is the total mass of the body. On the left hand of this equation, the 

first term is the total inertia of the body as if it was concentrated on its center 

of mass, while the second term is the motion due to the total displacement from 

the reference shape. The third term is the damping force. 

．
 

羞(Iw)+羞JμqXもds+j四 Xvds = fw 

where I is the two-dimensional inertia tensor with Iii = Jμ(Dij祈ー q叩）ds. 

There is an analogous interpretation (term by term) of this equation in terms 

of inertial torques. The first two terms are due to the body moment of inertia 

about c and the total angular momentum due to the motion of mass elements 

and the third term is the total damping torque. 

．
 

μe +μc +μw X (w X q) + 2μw Xe+μ 山Xq + ,v + Dよ=J

This equation is the compilation of several inertial forces applied on individual 

mass elements as they deform in the body frame <p. the first term is the inertial 

force of a mass element, the second is due to the linear acceleration of the center 

of mass, the third is the centrifugal force, the fourth one is the Coriolis force, 
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the fifth one is the transverse force. The penultimate term is the term of the 

damping force and the last term is the elastic force due to the deformation of 

the body in the body frame <p. 

This rotating body frame increase the complexity of the model because you have to 

solve three coupled equations of motion. The equations can be simplified, for example, 

by removing the Coriolis force; however they remain coupled. These equations now 

express rigid rotation without any deformation. In the case of following one object 

in a sequence of images, the rotational component is indispensable. Yet as described 

earlier in the report, we considered only simple edge finding and did not proceed with 

implementation of this more involved model. 

5.3 A Correction in Curvature Estimation 

In Chapter 3, when we talked about semidiscretisation, we used the assumption that 

the mass points of the snake were separated by a constant distance. In fact, this is not 

true and the derivatives have to be corrected by a factor of di where di is the distance 

between points i and i -1. We made another assumption, which is: the parameter 

s is the arc length. When this assumption is true, then the curvature is given by 

lvssl = VX正五． However, when the parameter 1s not arc length, curvature is given 
by 

I<= 
lxsYss -XssYsl 
日+y;)3/2 (5.5) 

The measure of curvature is a very important point because of its great influence on 

the computation of the elastic force along the snake. We developed it in a very simplis-

tic way in the Chapter 3 but, in fact, it is a complicated problem in discretization[9]. 

The more accurate the curvature estimation is, the more accurate the elastic force 

will be. 

It is not clear what measure of curvature is the best reflection of the geometric 

situation depicted by the contour. Nevertheless, the mathematical definition of cur-

vature is K =息 where0 is the angle between the positive x-axis and the tangent 
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vector to the curve. This is a coordinate independent measure as the same values will 

be obtained for d0 when any line is substituted for the x-axis (the measure is invari-

ant under rotation). In this section we will give two examples of possible curvature 

estimation in discrete contour. 

The first possibility for approximating curvature is to apply the definition of cur-

vature directly. Let the vector Ui = (Xi -x砂 Yi-Yi-1). If△ 0 is the angle between 
the two vectors Ui and Ui+i, the formula for△ 0 is given by 

△() 
Ui'Ui+l 

arccos 
luillui+1I 

（叩一年1)(xi+1一叩）一 (Yi-Yi-1)(Yi+1 -Yi) 
arccos 

✓[(叩ー Xi-1)2 + (Yi -Yi-1)り[(xi+l-叩)2 + (Yi+i -Yi)2] 

Moreover the centered difference, 

△ s = (△ Si+I —• si)/2 = (lui+1 I+ I叫）/2 

averages the distance from the point i to its two neighbors and thus gives the best 

estimate of ds. So we have here a measure of curvature which is intuitively satisfying 

but it requires a lot of computation. So we could gain some precision but we could 

lose a great time in computation. 

There is another possible measure of curvature which has the advantage of being 

computationally more efficient. If u1 and u2 are the vectors defined above, lu1 -u2b 

reflects not only the difference between the two vectors, but also the difference in 

length. 

Normalizing the two vectors before taking the difference removes the length differ-

ential, and the measure depends solely on relative direction. The length of 悶—凸

is given by 2 sin 0 /2 where 0 is the difference in direction of the two vectors as shown 

in the figure before. 
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Figure 5.1: difference in direction of two vectors 

5.4 Snake and Balloon 

In our implementation, an initial guess of the contour has to be provided. This has 

a major consequence for the evolution of the curve: if the snake is not initialized 

close enough to an edge, it is not attracted by it. So we could add another force 

which would make the contour have a more dynamic behavior. We can now consider 

the curve as a "balloon" [10] (in a two-dimensional space) that we inflate. From our 

initial physical model, we could add a pressure force pushing outside as if we have 

been introducing air inside the balloon. This additional force could be written as: 

P = kn(s) (5.6) 

where n(s) is the normal unitary vector to the curve at point v(s) and k is the 

amplitude of this pressure force. It is obvi~us that the sign of k or the orientation of 

the curve could change the effect of this force. So we could have an effect of deflation 

instead of inflation. if we chose an inflation force for example, the curve then expands 

and it is attracted and stopped by edges as before. But since there is is a pressure 

force, if the edge is too weak (if the gradient is not important enough) the curve can 

pass through this edge if it is a singularity with regard to the rest of the curve being 
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inflated. So if it tends to have a tangent discontinuity at a point, the smoothing and 

the pressure force could remove the discontinuity and the curve passes through the 

edge. This improvement can be very useful if you want to detect the contour of a 

convex shape but in many cases the objects to detect are not convex. We just talk 

about the main default but one of the majors advantages of this extra force is that it 

makes the snake much less sensitive to the initial conditions. 



Chapter 6 

SUMMARY 

The first chapter of this report was an introduction to the relatively new area of 

research of physical-based models. We saw also that computer graphics and image 

processing were not two totally separated worlds, and that a lot of overlap exist 

between these two research areas. One application of physical-based modeling is the 

"snake", a elastic curve with motion influence by internal and external forces. The 

main interest of this physical curve is that it has a dynamic behavior that can be 

useful in edge detection or a motion tracking, for example. 

The second chapter was dedicated to the physical study of an elastic curve in 

a force field. We introduced a body frame to make the equations of the snake's 

motion easier. We also described the elastic force which gives the snake its reaction 

against deformation. At the end of this chapter, we showed some examples of different 

behaviors for a snake. 

The third chapter was dedicated to the implementation of our physical elastic 

curve. We first discretized in space the snake: the snake was no longer an continuous 

elastic curve but a linear net of mass points; each of these points was related to 

its two-nearest neighbours. After having described the elastic force on one point, 

we wrote it for the whole snake. We obtained an equation of motion for the snake 

where the elastic force was expressed as the product of a matrix of elasticity and the 

snake's vector of position. After that we integrated this equation through time. All 

throughout Chapters 2 and 3, we introduced some parameters (dynamic, time and 

40 
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elastics parameters), and we explained their influence on the model at the end of 

Chapter 3. 

The fourth chapter was dedicated to the image processing part of our work. We 

described there the way we used to obtain a force field from an image. We always 

kept in mind that this force will apply on the snake so the force had to push the snake 

toward the edges. So, we studied a sucession of mathematical operations which could 

transform a input signal into an output force. Then we applied this operators on our 

two dimensionnal problem. At the end of the chapter 4, we showed the results of our 

work. 

The last chapter was dedicated to some possible improvements. We first studied 

the case of the rotating body frame which could allow the snake to have rigid rotation 

without deformation. This improvement should be useful to the motion tracking of 

an object in a sequence of images. The second improvement was a correction in the 

curvature estimation to make the elastic force more accurate. We introduced a new 

external force as the last possible improvement. This force was an pressure force that 

could make the snake pass through insignificant edges. 
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Appendix A 

MATLAB PROGRAMS 

MATLAB is a technical computing environment for numeric computation and visual-

ization. It integrates numerical analysis, matrix computation, signal processing and 

graphics in an easy-to-use environment. This is an interactive system whose basic 

data element is a matrix that does not require dimensioning. This allows solution of 

numerical problems in a fraction of the time it would to write a program in a language 

such as Fortran, Pascal or C. 

¼¼¼¼¼¼¼¼¼¼¼FORCEFIELD'S PROGRAM¼¼¼¼¼¼¼¼¼¼ 

forcex=[]; 

forcey= []; 

imax=ovO; 

imay=ovO; 

[ny,nx]=size(imax); 

¼******MASKS DEFINITION******* 
ax=[O O 0;1/4 1/2 1/4;0 0 OJ; 

ay=[O 1/4 O;O 1/2 O;O 1/4 OJ; 

bx=[1/4 0 -1/4;1/2 0 -1/2;1/4 0 -1/4]; 

by=[1/4 1/2 1/4;0 0 0;-1/4 -1/2 -1/4]; 

¼*********SMOOTHING************ 
for j=1:20 

res=imax'; 

imax=[res(1, :) ;res;res(nx, :)]'; 
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end 

irnax=conv2(imax,ax); 

irnax=irnax(2:ny+1,3:nx+2); 

irnay= [irnay (1, :) ; imay; imay (ny, :) ] ; 

irnay=conv2(imay,ay); 

irnay=irnay(3:ny+2,2:nx+1); 

¼¼¼¼¼¼¼¼¼¼¼¼¼¼FOR THE X-FORCE¼¼¼¼¼¼¼¼¼¼¼¼¼ 

¼*********FIRST DERIVATIVE************ 
res1=imax'; 

imax=[res1(1, :) ;res1;res1(nx, :)]'; 

forcex=conv2(imax,bx); 

¾**********ABSOLUTE VALUE************* 
forcex=abs(forcex); 

¼*****SECOND FIRST DERIVATIVE********** 
forcex=forcex(2:ny+1,3:nx+2); 

res2=forcex'; 

forcex=[res2(1, :) ;res2;res2(nx, :)] 1; 

forcex=conv2(forcex,bx); 

forcex=10*forcex(2:ny+1,3:nx+2); 

¼¼¼¼¼¼¼¼¼¼¼¼¼¼FOR THEY-FORCE¼¼¼¼¼¼¼¼¼¼¼¼¼ 

¼*********FIRST DERIVATIVE************* 
imay= [imay (1, :) ; imay; imay (ny, :) ] ; 

forcey=conv2(imay,by); 

¼***********ABSOLUTE VALUE************ 
forcey=abs(forcey); 

'!.*******SECOND FIRST DERIVATIVE******** 

forcey=forcey(3:ny+2,2:nx+1); 

f orcey= [forcey (1, :) ; forcey; forcey (ny, :) J; 
forcey=conv2(forcey,by); 
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forcey=10*forcey(3:ny+2,2:nx+1); 

%%%%%%%%%%%%% SNAKE'S PROGRAM %%%%%%%%%%%%%%% 

45 

¼*****INITIALISATION******** 

¾****************parameters 

"
h
 

number of mass points of the snake 

n=input('number of mass points'); 

'I , dynamic coefficients 

gam=input ('damping parameter') ; 

mu=input ('mass density'); 

r , elastic coefficients 

wO=input ('wO='); 

wi=input ('w1='); 

w2=input ('w2='); 

"
h
 

time parameters 

dt=0.01; 

dt2=dt*dt; 

'!.************** initial snake's position 

elf 

ov0=0.15*apple_01_6; 

colormap(gray) 

image(ovO) 

hold on 

Y. Initially, the list of points is empty 
x=[]; 

y=[]; 

n1=0; 

¼loop picking up the points 
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disp ('left mouse button picks points.') 

disp ('right mouse button picks last point.') 

but=1; 

while but ==1 

[xi,yi,but]=ginput(1); 

plot (xi, yi,'go') 

n1=n1+1; 

end 

x(n1,1)=xi; 

y(n1,1)=yi; 

¾interpolate with two splines and finer spacing 
t1=1:n1; 

ts=1:(n1-1)/(n-1):n1; 

xt=spline(t1 ,x, ts); 

yt=spline(t1,y,ts); 

h=mean(sqrt(diff(xt). -2+diff(yt). -2)); 

¾plot the curve 
plot(xt,yt,'c-'); 

hold off 

cxO=mean(xt); 

cyO=mean(yt); 

xtO=xt-cxO; 

ytO=yt-cyO; 

xt_i=xt; 

yt_i=yt; 

fx=zeros(1,n); 

¼**************elastic matrix k initialisation 

k=zeros(n,n); 

for i = 1:n-2 

end 

k(i,i)= w0+2*w1/(h-2)+6*w2/(h-4); 

k(i,i+1)= -w1/(h-2)-4*w2/(h-4); 

k(i+1,i)= -w1/(h-2)-4*w2/(h-4); 

k(i,i+2)=w2/(h-4); 

k(i+2,i)=w2/(h-4); 

k(n,n)=w0+2*w1/(h-2)+6*w2/(h-4); 

k(n-1,n-1)=w0+2*w1/(h-2)+6*w2/(h-4); 

k(n-1,n)=-w1/(h-2)-4*w2/(h-4); 

k(n,n-1)=-w1/(h-2)-4*w2/(h-4); 
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¼************** calculation of the force field 

force_field; 

¾********** some variables to increase the velocity of the snake 

alpha1=2*mu/dt2-gam/dt; 

alpha2=gam/dt-mu/dt2; 

id=ones(1,n); 

dis=70; 

g=1:1:n; 

gs=i:0.1:n; 

t=O; 

tprim=O; 

axis([O nx O ny]); 

¼¾¼¼¼¼¼¼¼¼MAIN PART: THE SNAKE'S MOTION¼¼¼¼¼¼¼¼¼ 

while t<500 

¼******************displaying of the snake and the image 

if dis==70 

axis ([O nx O ny]); 

axis ('equal') ; 

image(ovO) 

hold on 

plot (xt ,yt,'w'); 

pause(1); 

plot(xt,yt,'i'); 

hold off 

dis=O; 

end 

dis=dis+1; 

¼******calculation of the deformation from the initial shape 
¼at the time t 

cxt=mean (xt) ; 
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cyt=mean(yt); 

dex=xt-cxt -xtO; 

dey=yt-cyt -ytO; 

¼*******comptutation of the external force which is applied 
¼to the whole snake 
¼(linear interpolation) 

entx=round(xt); 

enty=round(yt); 

for i=1:n 

if enty(i)==O 

enty(i)=1; 

end 

fx(i)=(xt(i)-entx(i))* 

(forcex (enty(i), entx(i)+1) -

forcex (enty(i), entx(i))) + 

forcex (enty(i), entx(i)); 

fy(i)=(yt(i)-enty(i))* 

(forcey (enty(i)+1, entx(i)) -

forcey (enty(i), entx(i))) + 

forcey (enty(i), entx(i)); 

end 

¼******************* computation of the snake's next position 

xtplus=(fx+alpha1*xt+alpha2*xt_1-dex*k)*dt2/mu; 

ytplus=(fy+alpha1*yt+alpha2*yt_1-dey*k)*dt2/mu; 

¼****************** adjustement 

xt_1 = xt; 

yt_1= yt; 

xt=xtplus; 

yt=ytplus; 

¼*******************boundaries conditions 
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for ii=1:n 

if yt(ii)<=1 

yt(ii)=1; 

end 

if yt(ii)>=ny 

yt(ii)=ny; 

end 

end 

¼***** 
t=t+dt; 

tprim=tprim+1; 

end 

¼¼¼¼¼¼¼¼¼¼¼END OF THE MAIN PART¼¼¼¼¼¼¼¼¼¼¼¼¼ 
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