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Abstract 

A fundamental extension of the standard regularization theory is proposed 
for data approximations by multi-valued functions which are essential for 
such as the transparency problems in computational vision. Conventional 

standard regularization theory can approximate scattered data by a single-
valued function which is smooth everywhere in the domain. However, to 
incorporate discontinuities of the functions, we need to introduce the line 

process or equivalent techniques for breaking the coherence or smoothness of 

the approximating functions. Multi-layer representations have recently been 
used for multiple overlapping surface reconstruction. However, this should 

incorporate auxiliary fields for segmenting the given data. Further, these 
two different approaches share the difficulty of implementing optimizations 

of their energy functionals, since they become non-quadratic, non-convex 

minimization problems with respect to unknown surface and auxiliary field 
parameters. In this paper, by using a direct representation for multi-fold sur-
faces, we show that the data approximation by a multi-valued function can 
be reduced to minimization of a single quadratic convex functional. There-

fore, since the Euler-Lagrange equation of the functional becomes linear, we 
can get benefit from simple relaxation techniques of guaranteed convergence 

to the optimal solution. 
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1 Introduction 

The regularization theory is a general framework for solving ill-posed inverse 
problems in computational vision [17] [18] [27]. Surface reconstruction from 
sparse data, edge detection, optical flow, and shape from shading, etc. have 

been formulated using the regularization principle[l 7]. Regularization theory 
also provides a universal and very useful mathematical framework for solving 
inverse problems in various engineering numerical analyses as well as in bio-

logical information sciences[20]. However, the standard regularization theory 

can only serve for recovering continuous, si~gle-valued functions. Therefore, 
it cannot handle discontinuities of the functions and multi-valuedness of sur-
faces that are required to reconstruct multiple overlapping surfaces. 
To incorporate surface discontinuities, Geman & Geman introduced the 
line process which inhibits propagation of smoothness across the discontinu-
ities. Terzopoulos has proposed adaptive control of the regularization param-
eters so that the smoothness constraint vanishes at the surface discontinuities. 

Various improvements and approximations for thsese approaches have been 

suggested, for example Refs.[2][5]. 
The control of the smoothness terms using such a line process alone can-
not handle transparency in which the sample data is a complete mixture of 
data on multiple surfaces, since it produces a solution of discontinuities al-

most everywhere on the surface in extreme cases. Multi-layer representations 
have recently been suggested for these cases. For example, Darrel et. al.[3] 

proposed an optimization framework for segmenting and decomposing an in-
tensity image into a multi-layer representation. Darrel & Pentland used their 
framework to the segmentation of motion images[4]. Wang & Adelson[28] and 
Madarasmi[12] applied the multi-layer representation to motion analysis and 

stereo transparency, respectively. However, these approaches cannot han-

dle the cases where multiple values are assigned to a single point, in other 
words, the case of multi-valued data. Ando [1] developed an optimization 

framework for surface reconstruction using the multi-layer representation in 
which each data point has a variable indicating the surface to which the data 

point assigned. It is therefore capable of handling multi-valued data. An-
other possible solution to the transparency problem is to represent multiple 

attributes as a multi-modal distribution [13] [14] [15]. 

The above approaches used auxiliary or extremely redundant parameters 
such as line process field, data assignment variables for clustering, and the 
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distribution fields. Therefore, they cannot be simple and reliable in their 

optimizations since the problems become minimizations of non-quadratic, 

non-convex energy functionals. For example, Darrel & Pentland used the 
Simulated Annealing method, and Madarasmi and Ando used the Mean Field 
Annealing method to minimize their energy functionals. 
This paper provides a general computational framework for representing 

multi-valued functions in a single equation without introducing any auxiliary 
parameters other than component functions. Based on this representation, 

we formulate the reconstruction problem of multiple overlapping surfaces 
as a standard regularization problem. Since the energy functional becomes 
quadratic and convex, its Euler-Lagrange equation turns out to be linear. 
Therefore, we can use optimization techniques that can be implemented by 
using simple relaxation, for example, the steepest descent and Gauss-Seidel 

methods. These optimization methods guarantee convergence to the op-

timal solution under general conditions. Therefore, our framework has a 
great advantage over conventional multi-layer representations and their op-
timization algorithms. We call this extension of the standard regularization 
theory Multi-Valued Standard Regularization Theory which we abbreviate to 

MVSRT in this paper. 

The paper is organized as follows. 
In Sec. 2, we demonstrate the capabilities of MVSRT by deriving a 
two-fold surface reconstruction algorithm based on discrete approximation 
and the Gauss-Seidel relaxation method. Several simulations under various 

conditions are performed on the algorithm. 

Sec. 3 provides the general theory of MVSRT for h-valued scalar func-
tions. Further, extensions to multi-and vector-valued function are also dis-

cussed by using the tensor product. 
Sec. 4 concludes this paper and discusses remaining problems. 
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2 Multiple-Surface Reconstruction via Stan-

<lard Regularization Theory 

In this section, we derive a regularization algorithm for solving two-fold-
surface reconstruction problems. The transparency problems in computa-

tional vision generally require recovery of multiple overlapping surfaces from 
possibly multi-valued data (see Fig. 1 and Ref. [24]). In the case of trans-
parency, surfaces must be recovered even if the data is partially lacking such 
as for the upper surface in Fig. 1. Therefore, the surface recovery algorithm 
must be global optimization rather than local optimization. The regulariza-

tion theory helps to solve this problem if it is extended to the multi-valued 
functional approximation. 

2.1 Energy Functional for Two-fold-surface Recon-

st ruction 

The conventional standard regularization problem for single-valued func-
tional approximation is formulated as a minimization of the following quadratic 
energy functional [17]. 

N 

砂 [J]= L (Y(i) -f(x(i))) 2 +入11sJ(x)ll2 
i=l 

(1) 

where, Sis the regularization (smoothness) operator, 入isthe regularization 

weight parameter, and II II is the norm of the functional space. (x(i), Y(i)) 
denotes the i-th data where i = 1, 2, • • •, N. 
In this case, we can see that the constraint for the data is y = f(x). If 
we define two overlapping surfaces by y = fi(x) and y = f2(x), we can write 
the constraint of the two-fold surface in a single~quation, 

(y -f1(x)) (y -h(x)) = y2 -(f1(x) + h(x)) y + f1(x)f2(x) = 0. (2) 

Figure 2 shows the two-fold surface defined by this equation. This is the 
necessary and sufficient condition for each data point being placed on either of 

two surfaces. Since real data has noise, we can consider that each data point is 
approximated by either of two surfaces. An advantage of this representation 

is that two surfaces can be represented in a single equation without explicitly 
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indicating the assignment of the data points. Therefore, it is not necessary to 

introduce an auxiliary field such as an integer variable indicating assignment 

of data points. 
Next, we define functions F(x) and G(x) as follows. 

F(x) = fi(x)h(x), 
G(x) = -(J1(x) + f2(x)) (3) 

Therefore, Eq. (2) becomes linear with respect to unknown functions F(x) 
and G(x) as 

F(x) + G(x)y十炉=o. 
The inverse transformation of (3) can be written as 

応），f2(x)=~[-G(x) 士占G(x)}2 -4F(x)]. 

(4) 

(5) 

Both the transformation (3) and the inverse transformation (5) are smooth, 
differentiable and nonsingular except when J1(x) = J2(x), i.e., when the 
surfaces intersect each other and when the surfaces degenerate into a single 

surface. If we adopt the smoothness constraint on the original functions, 
we have nonlinear Euler-Lagrange equations that are difficult to solve in a 
simple scheme. Thus, insteq,d of imposing the smoothness constraint on the 

original functions f孔x)and J2(x), it is a reasonable compromise to use the 
smoothness constraint on the transformed functions F(x) and G(x). Thus, 

we have a quadratic convex energy functional in both the data term and the 
regularization terms. In other words, the problem can be transformed into 
the standard regularization problem. 

It should be noted, however, that the inverse transformation (5) has an 
inevitable ambiguity in determining correspondence to the original functions 

]1 (x) andん(x).This is due to the fact that the constraint equation (2) and 
the transformation (3) have a symmetry of permutation between the func-

tions fi(x) and h(x). In fact, we cannot determine which of two functions 
on the right hand side of Eq. (5) corresponds to J1(x) (and to J2(x)). A 
problem emerges if the surfaces intersect since, at the point of intersection, 

we have indeterminacy in connection of surfaces. However, this situation 

is rare in nature and to the author's knowledge there is no psychophysical 

evidence that humans have the capability of perceiving intersecting surfaces 

(for example, in binocular stereo vision). 
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Now we have a quadratic energy functional for the standard regularization 

problem of a two-fold surface as follows. 

砂 [F,G]=名{F(x(i)) + G(x(i))Y(i) + (Y(i)r『
＋入FIISFF(x)『＋入allSaG(x)Iド (6)

In this formalism, functions F(x) and G(x) may have arbitrary values, al-
though the inverse transformation (5) requires the condition of real numbers 

for the square root. 
{G(x)}2 -4F(x)~0 (7) 

Therefore, strictly speaking, the problem must be formulated as a constrained 

optimizations with this inequality. However, we have not yet detected this 
case in our simulations even in the transient conditions. In practice, it may 

not be necessary to implement this constraint in optimizations of Eq. (6). 
We may be able to detect this improper unreliable case by testing Eq.(7) after 
the optimization. This fact may simplify analog hardware implementations. 

In fact, the optimization problem of the energy functional (6) is similar to 

the regularization of optical flow fields[9). 

2.2 Gauss-Seidel Relaxation Algorithm for Optimiza-

tion 

In this subsection, we derive an optimization algorithm for MVSRT us-
ing Gauss-Seidel relaxation by a discrete approximation which is a popular 

massively-parallel implementation for the standard regularization theory. We 

use the membrane model for the regularization operator SF = Sa =▽ ＝ 
儘六）• In the following, we assume that the variables x1 and x2 take 
integer values. Therefore, the energy functional (6) is approximated by 

N 

臼 (F,G)=>{?町{i),X2(i)+ G町{iJ,X2(i)Y(i)+ (Y(i)) } 
+ L 枯{(f工1,x2-fエ1-l立 +(F F 叫 2- x1,x2-l) } 

（エ心）EZ2 

+ L 柘{(Gx…-Gx1ーl,x2戸+(Gx1,x2 -Gx1,x2-1)2} (8) 
（工1,x2)EZ2
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where F; エ1,エ2and Gx1,x2 are values of F(x) and G(x) at grid points (x1, 四） E 
z2. { (xi(i),X2(i)),Y(i)} (i = l,•·•,N) are sparse sample data points and 
values given at the points. 

To minimize the energy functional (8), we derived the following Euler-

Lagrange equation by taking the partial derivatives with respect to Fx心

and Gエ1,x2and equating them to zeros. 

卵 (2)(F,G) 

8F x1,x2 

卵 (2)(F,G) 

8G x1,x2 

2 [国妬，••uih,,,,.,,,1 { F町u,,.,u,+ G叫c;i,•~;JY(;J+ (Y(;)「｝］
＋応 (Fx1,x2-Fx1,x2) = 0, 

2 [t, o.,,.,c;, ら，.,,,,{F呵）呵）Y(;J + G呵）国） (Yc;)r + (Y(;) n l 
+2知 (Gx心―似，x2)= 0, (9) 

where Oa,b is Kronecker's delta, i.e., when a = b, it equals 1 and other-
wise equals 0. f工1,x2and Gx1,x2 are averages of four neighborhoods Fxi-l, 工2l 
Fx1+1, 工2l F; 工1,x2ーi,Fx1,x2+1 and Gx1ーl,x2,Gエ1+l,x2,G工1,x2-l,Gx1, 工2+1,respec-
tively, 

F x1,X2 
1 
-4 (Fx1 +1,x2 + Fx1ーl,x2+ f全 2+1+ Fx1,x2ー1)'

G定 2
1 
-4 (Gx1+l,x2 + Gx1一1,x2+ G年巧+1+ G全 2-1)

(10) 

Next, we define the following quantities just like moments which can be 

computed directly from the sample data. 

N 

A x1,x2 I: 8x1, 町(,)知，ェ2{i)l 
i=l 
N 

B x1,x2 区知，町(i)知，工,(i)Y(i),
i=l 

C X1,X2 
N 2 

戸正l(i)ら，X2(1)(Y(i)) l 
i::=l 
N 3 

D 工1,x2 区鯰，X1(i)妬，X2(i)(Y(i)) (11) 
i=l 

， 



These quantities are all zero for points where there is no data. It is important 
to note that this formalism can admit multi-valued data, and also multiple 

data may be overlapping at the same point. There is no restriction on the 

multi-valuedness at each point. This is significant especially for the case of 

'pure'transparency, where multiple attributes are truly overlapped. 

Using the above notations, we have the following simplified version of the 

Euler-Lagrange equation. 

“
 

(Aエ1,X2+入F)Fx1,x2 + Bx1,X2似，工2

Bx1,x2凡，X2+ (C孔エ2十柘）G孔x2
ー AFFx1,x2-Cx1,x2, 

柘Gx心―Dx心・ (12) 

By solving these simultaneous linear equations with respect to Fxぃx2and 

G 年 X2,we have the following equat10ns. 

F x1,x2 

G年 2

入F(Cx1,x2 +柘）凡，工2ー柘Bx1,工2Gx1,工2+ Bx1,x2Dx1ぶ2-Cx1ぷ2(Cx1,x2十柘）

(Aエ1,工2+枯） (~ 竺1ぶ2+知)-B恥2
ー入pBエ1,x2肛，x2十柘(Axぃx2+入F)G年 2+ Bx1,x2似，x2-Dx1,x2 (A年 2+入F)

(Ax1,x2十枯）(Cエぃx2+ --¥a) -B; 心

(13~ 

Thus, we have the following massively parallel Gauss-Seidel relaxation algo-

rithm. 

p[k+l) 
工1,x2
Q[k+l) 
x1,x2 

p[k] + b (J[k] aXl,X2 XぃX2 工1,x2 x1 ,x2 + Px1 ,x2 , 
p[k] + d (J[k] CxいX2Xl, 工2 エ1,工2Xぃx2+ qx1芯2 (14) 

where k is an index of iterative operations, and a孔x2'b工1ぶ2,Cxぃx2,dエぃx2,
転，x2,and qx1,x2 are quantities which are computed at each lattice point 

prior to the relaxation. They are defined as 

a年 2= 枯 (C'.工1ぶ2十柘）/Uxぃエ2'
bxぃXJ = 一柘B工1,x2/lJ.エ1,x2,
伝，x2 =—入F肛，x2/lJ.エ1,エ2l 
d互 X2 = 柘 (A丘 x2+入F)/Uxぃエ2,
P全 2 = {B互エ2Dxぃx2-Cエぃエ2(C'. 工1ぷ2十心）}/TJ全 2'
知，x2 = {Bx1, エ2似，エ2-Dx1,x2 (A年 2十枠）}/TJエ1心2

(15) 
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where T}エ1,x2 = (Ax1 ,x2 +入F)(C'.工1,っ+-Xa)-B如2.Note that at points hav-
mg no data, aか X2= dか X2= 1, bx1,x2 = Cエ1,x2= Px1, 工2= q工1,:&2= 0 and 
therefore, the relaxation becomes a filling-in process. 
This algorithm can be implemented by the massively-parallel network 
shown in Fig. 4. 

2.3 Steepest Descent Algorithm for Optimization 

Another algorithm is possible for minimization of the function (9). The equi-
librium point of the following linear dynamical system provides the optimal 
solution. This formalism is important for analog hardware implementation. 

dF(x) 8E(2)[F, G] 
=-w 

dt 8F(x)' 

dG(x) 8E(2)[F, G] 
=-w 

dt 8G(x) . 
(16) 

Discrete approximation of this scheme is the steepest descent algorithm. 

FX[k1 +I] ,x2 F見2-2w{(Ax1,x2 +入F)f;」71,x2
+ B歪 2壼，x2+cエ心―心嬰ら｝，

Qx[k+1,xl2 ] Qx[k1 ] ,x2 -2w{B x1 ,x2 px[k1 ] ,x2 

＋ (Cx1,x2 +心） Gし~),x2 -Dx心―柘翌，xJ (17) 

This technique is not suitable for digital computers, since its convergence is 
very slow. 

2.4 . Simulation Results 

We performed computer simulations by using data sets for various conditions. 
We show several results from these simulations in this subsection. 

We discretized the space of x into 512 x 512 in a 2-dimensional array. The 

optimization algorithm is based essentially on the Gauss-Seidel relaxation 
which was derived in section 2.2. The algorithm was implemented on a CM-
2 massively parallel processor. 

Figure 5 shows the results of the first experiment for two planar surfaces 
y = f1(x) = 0.8 and y = J2(x) = -0.8. 10000 points were randomly 
generated for each surface. Then, about 4000 points were removed from the 

upper surface so that the upper surface had striped areas with no supporting 

data. It should be noted that some data overlapped each other, i.e., they 
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were truly transparent, since we were not concerned about the generation 
of multiple points at the same position x. We added Gaussian noise with 

standard deviation a-= 0.05. The regularization parameters were set at 
入p=入0 = 6.0. As the results show, we have overlapping surfaces even in 
the area with no data on the upper surface. Human perception of this kind 
of'ghost'surfaces, which can be seen as subjective transparency, is a familiar 

phenomenon [29) [10). 
The second experiment (Fig. 6) demonstrates the capabilities for a'dis-
continuous'surface. The data of the two surfaces are generated so that they 
form stripe patterns of reverse phase. The number of points on each surface 
were approximately 5000, and the other parameters were chosen in the same 

as in the first experiment. 
The third, fourth and fifth experiments (Figs. 7, 8, 9) investigated the 
behavior when the algorithm was applied to complex situations. We used 
superposition of a planar surface and a surface with sine shape. Equations 

of these surfaces were 

!1 (x) : 

瓜x):

-0.5 + N(O, が），
2 sin 31r (x2~ 戸） +N(O足）． (18) 

N(m, a2) denotes Gaussian noise of mean m and standard deviation a. The 
number of data points and standard deviations of noise were as follows. 

• Experiment #3: N1 = 10000, 凡=20000, a = 0.05 

• Experiment #4: N1 = 10000, N2 = 10000, a = 2.0 

• Experiment #5: N1 = 1000、N2= 10000、a=0.05 

The regularization parameters were set at入p=柘=12.0. 
The initial values for the functions F and G in all the experiments were 
set to zero, i.e., FJ此 =G闘，x2= 0. 

2.4.1 Discussion 

From the above simulations, we observe the following about the properties 
and problems of the theory and algorithm presented here. 
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1. From experiments #1 and #2, we see the capability of reconstruct-
ing transparent surfaces even if the data for the surfaces are partially 
lacking. 

2. Experiment #2 is nothing but an active demonstration of Prazdny's 
idea of representing discontinuities by multiple overlapping surfaces 

[22]. 

3. Experiments #3-#5 show the capability and limitation of MVSRT for 

reconstructing nonplanar curved surfaces and intersections. The algo-

rithm cannot directly represent intersection of surfaces. However, this 
limitation is common for other multi-layer representations. Although 

the reconstructed surfaces do not touch each other at the intersec-
tion point, we can detect the possible intersection by testing condition 
{G(x)}2 -4F(x) = 0 of Eq. (7)・ usmg a certam threshold to account 
for the noise in the estimated functions. 

4. From experiment #4, we see noise tolerance of MVSRT. 

5. From experiment #5, we see that even if the density of sample data is 

not evenly distributed for the two surfaces (in this experiment, the ratio 

of the density is 10.0), the multiple-surface reconstruction succeeds. 

In summary, MVSRT was verified for various conditions of noisy data. 
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3 General Theory of Multi-Valued Standard 

Regularization Theory 

This section gives a general formulation and derives properties for MVSRT. 
First, we derive a constraint equation for the h-valued scalar function and 
standard regularization theory is applied to these constraints. Next, the 
theory is extended into vector-valued functions. 

3.1 Regularization of h-valued scalar function 

We assume that the data is to be modeled by overlapping h surfaces y = fi(x) 
(i = 1,2, ・・•,h). The constraint equation for the h-fold surface is: 

IT (y -fi(x)) = Yh -平(x)yhー1+亭 (x)l-2-... 
i=l 
+(-lt1r罰x)= 0 (19) 

(h¥)(k = 1 h) 1 where 1rk x • ・ ・, are e ementary symmetnc express10ns of fi(x)(i = 
1, ・ ・ ・, h) defined by 

h 
亭(x) = Lfi(x), 

i=l 
h h 

亭(x) = L L fi1 (x)fゎ(x),
i1=lら=i1+l．． ， 

亭(x) = f1(x)f2(x)・・・fh(x). (20) 

(h) Then, we can formulate a regularization problem with respect to 1rk (x) 
instead of fi(x). The transformation (20) becomes singular mapping only 
when the h-degree algebraic equation with respect to y (19) has at least one 
multiple-root solution. Therefore, an inverse transformation exists except for 
this case. 
The inverse transformation can be obtained by solving the h-degree alge-
braic equation with respect to¢: 

A(h)(¢) =松ー 4四(x)<phー1+吋叫x)<ph-2_ ... 
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+(-1)怜や(x)= 0. (21) 

In a similar way to the case of a two-fold surface, an indeterminacy exists in 

the permutation between fi(x)(i = 1, 2, ・ ・ ・, h). 
Therefore, the energy functional for the h-fold surface can generally be 
written as 

閉h)[平，亭，・・・，亭］＝
翌痢ー平(x(i))Ytit+亭(x(i))蛉・戸一・・・

h 

+(-lt1rih)(x叫}2+ I: ふ11st)亭(x)ll2. (22) 
k=l 

(h) This energy functional is quadratic with respect to unknown functions匹 (x).
Therefore, its Euler-Lagrange equation becomes linear. This fact enables us 
to derive relaxation algorithms with guaranteed convergence to the optimal 
solution. 
The solutions of the algebraic equation (21) can be implemented by sev-

eral numerical methods for solving higher-order univariate algebraic equa-
tions. In our case, it is convenient for us if all the solutions are obtained 

simultaneously. The iterative method known as the Durand-Kerner method 

meets our purpose. 

ik+l) [_k) _ 
J = <p J 

砂（副）
h 
I1 (か— rl>t] . 
i=l#j 
］ ）  

(23) 

It is known that this is equivalent to the Newton-Raphson method applied 
to the simultaneous algebraic equation, Eq. (20). This algorithm does not 

work in the multiple root case. However, the exact multiple-root case does 
not occur in real cases of noisy data. 

3.2 Extension to multi-and vector-valued functions 

The regularization of vector-valued functions emerges when extracting op-

tical flow[9]. One might think that the regularization of multi-and vector-

valued functions can be simply achived by independently extending each 
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component of the vector into a multi-valued function. However, the multi-
valuedness causes ambiguities in correspondence between components of the 
vector. Therefore, a more accurate model should be incorporated. 
In the case of vector-valued functions, y = f(x) (y E R兄X E Rn), the 
constraint for MVSRT must be formulated by using the tensor product as 
follows. Suppose each function fk(x)(k = 1, 2, • • •, h) corresponds to each 
vector field. The direct constraint for the h-valued function is given by 

(y -f1(x))R(yーも(x))R• ・ • R(y -fh(x)) = 0, (24) 

where 0 denotes the tensor product (Kronecker's product). This formalism 

has redundancy in the number of component equations. Actually, the number 
of component equations in Eq. (24) is m尺althoughthe number of original 
components is m. To reduce this redundancy, we can symmetrize the order 
of functions in Eq. (24). We then have m凡 componentequations. There 
is still redundancy. However, this redundancy is only used for removing the 
ambiguity of the correspondences between components of the vector-values. 

3.2.1 Constraints for the case of h = 2 and n = 2 

In the following, to explain these issues, we show MVSRT of the case h = 
2 and m = 2, i.e., the two-valued 2-dimensional vector-valued function in 
detail. In this case, the constraint can be written as 

1 
-{(y -f1(x))R(yーも(x))+ (yーも(x))R(y-f1(x))} = 0, (25) 
2 

where we denote the two two-dimensional vector-valued functions by 

y = f1 (x) = U1,1 (x), 恥 (x)f'
y = f2(x) = (h,1 (x), 恥 (x)f.

Constraint (25) can be written in component form as 

Yi -U1,1(x) + f2,1(x)) Y1 + f1,1(x)f2,1(x) = 0, 
y多ー U1,2(x)+ f2,2(x)) Y2 + f1,2(x)f2,2(x) = 0, 
2y1ぬー (f1,2(x)+ h,2(x)) Y1 -U1,1(x) + h,1(x)) Y2 

(26) 

+ (f1,1(x)f2,2(x) + f1,2(x)h,1(x)) = 0. (27) 
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These constraints can be transformed into the following linear forms with 

respect to functions F1(x), G1(x), 凡(x),ら(x)and H(x). 

where 

Yi+ G1(x)y1十凡(x)= 0, 
砂＋ら(x)ぬ十凡(x)= 0, 
2Y1Y2十ら(x)め＋伍(x)y2+ H(x) = 0. 

凡(x) = !1,1 (x)f2,1 (x), 
凡(x) = f1,2(x)恥 (x),
伍(x) = -U1,1 (x) + !2,1 (x)), 
ら(x) = -U1,2(x) +恥(x))'
H(x) = fi,1(x)h,2(x) + !i,2(x)h,1(x). 

(28) 

(29) 

3.2.2 Regularization problem for h = 2 and n = 2 (1) 

Constraints (28) can be used to determine unknown functions凡(x),凡(x),
伍(x),G2(x), and H(x) by the following standard regularization problem. 

E(2,2)[Fi, A, Gi, G2, H] = 

喜知ぷ＋伍(x(;))Y1c;)十凡(x叫r,
＋互｛（如(i)r十伍(x(i))Y2(i)+凡(x叫｝
1 N 

＋心｛2 i=l 2Y1(i)ぬ(i)+ら(x(i))Y1(i)+ G1(x叫恥+H(x(i))} 
2 

+知11s凡凡(x)『＋伍11s乃凡(x)ll2
＋、~G1IISa1 G1(x)ll2 +、)しa2IISa2G2(x)ll2 +、¥HIISHH(x)ll2 (30) 

where杭，岳，入G1,入c2,and紐 areregularization parameters, and SF1, S和
臨， Sc.,and SH are regulanzat1on operators for functions凡(x),的(x),
G1(x), ら(x),and H(x) respectively. In this case, the number of'linear' 
functions凡(x),凡(x),G1(x), G2(x), and H(x) are greater than the num-
ber of original functions Jぃ(x),f1,2(x), h,1(x) and f2,2(x). Therefore, this 
energy function has one extra freedom. 

17 



3.2.3 Regularization problem for h = 2 and n = 2 (2) 

Another possible algorithm is the component-wise approach. First, we com-

pute functions Fi(x), G1(x), F2(x) and G2(x) by independently solving the 
following two standard regularization problems. 

N 

E(2,2a)[Fi, G』＝互{(Y1(i))2 + G1(X(i))Y1(i) +凡(x叫r
+AF1 IISF11町(x)ll2+入G11!Sa1G1(x)ll2, (31) 

and 

N 

E(2,2bl[F2, G2) = L { (ぬ(i)r+ G2(X(i))Y2(i) +恥(x叫r
i=l 

＋入F2IIS凸凡(x)I『＋入a2'1Sa2G2(x)JJ2. (32) 

Then, by using the computed functions似x)and似 x)of伍(x)and 
伍(x),we formulate the third standard regularization problem with respect 
to the function H(x): 

N 

E(2,2c} [ H) =区{2Y1(i)Y2(i) +似X(i))Y1(i)+似X(i))Y2(i)+ H(x(i)) r 
i=l 

+伍IISHH(x)ll2 (33) 

會

3.2.4 Inverse transformation of the transformation for lineariza-
tion 

The number of unknown functions has redundancy against the original func-
tions. This redundancy makes it possible to choose a unique solution for the 

inverse transformation of transformation (29) as follows. First, we have two 

candidate solutions from functions F1(x), F2(x), G1(x), and G2(x), 

f1(x) = U+,1(x),J+,2(x)f, f2(x) = U-,1(x),J""'",2(x)f, (34) 

and 

where 

f1(x) = U+,1(x)J-,2(x)f, も(x)= U-,1(x),f+,2(x)f, (35) 

fぃ(x)= 1 [-G1(x) +沢G1(x)}2-4凡(x)j, (36) 
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f-,1(x) =½[-G1(x) -V饂 (x)}2-4凡(x)], (37) 

f+,2(x) =½[-G2(x) +沢伍(x)}2-応(x)], (38) 

and 

f-,2(x) =½[-G2(x) -V{ら(x)}2-4凡(x)]. (39) 

This two-fold ambiguity can be resolved by using the remaining function 
H(x) by choosing a solution giving smaller a residual of 

JH(x) -f1,1(x)h,2(x) -f1,2(x)f2,1(x)J (40) 

at each point x. 
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4 Conclusion 

We have extended the standard regularization theory so that it can handle 
multi-valued functions. The representation of the multi-valued function is di-
rect and no auxiliary field parameter is necessary. By simple substitutions of 

unknown functions, we have standard regularization problems, i.e., quadratic 
convex minimizations. This has a great advantage over conventional formal-
ism including approaches using the line process and the multi-layer repre-

sentations which have common difficulties in optimizations of their energy 

functionals. 
The proposed extension has many possible scientific and engineering ap-

plications. Since the regularization theory provides a fundamental principle 
of the human early visual system, the proposed framework provides a model 
of multiple surface reconstruction for complex discontinuous surfaces and 

transparency perception. 
The standard regularization theory also provides a general theory for 

spline approximations and (generalized) radial basis function ((G)RBF) meth-
ods for computational learning(21]. Our extensions can also help these meth-
ods to be extended into multi-valued functions. These subjects will be dis-
cussed elsewhere. 
There are, however, several important remaining issues for future inves-

tigations as listed below. 

1. The number of surfaces in entire space should be determined automat-

ically. This can be viewed as a model selection problem. Theoretically, 
the degeneracy of the constraint satisfaction can indicate the redundant 

number of surfaces, and can be detected by computing the rank of the 
very large simultaneous linear system of the Euler-Lagrange equation 

(e.g. Eq. (12)). However, it is difficult to implement this test for such 

a large system. An alternative method is to evaluate the residual of 
the energy functional of each multiplicity and to use an information 

criterion to choose the most'economical'model. This may be much 

easier to implement. 

2. Local determination of the number of the surfaces is important for 

applications to discontinuous surface reconstruction problems. This 

may be possible with a local model selection algorithm or by testing 
the lack of supporting data. 
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3. The definition of distance is complicated, since the distance of a certain 
data point to multiple surfaces is not simple Euclidean distance to one 

of the surfaces. Accordingly, the noise model of the constraint equation 
is complicated due to the nonlinearity of the transformation between 
the transformed functions and the original functions. This makes the 

det_ection of intersection of surfaces an ambiguous and difficult problem. 
One solution to this problem is to impose the smoothness constraint 

on the original functions at the time of inverse transformations. 
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(• Data points) 

X 

Figure 1: Example of data set that is characterized by two-fold surfaces (curves). 



y
 

Y = f2(X) 
Equation of two-fold surface: 

(y-fi (x))(y-ii (x)) = 0 

X 

Figure 2: Constraint equation of two-fold surfaces. 



炉ー(ft(x)+ /2(x))y+ fi(x)fi(x) = O Nonlinear constraint 

Transformation 

F(x) = fi(x)/2_(x) 

G(x)=ー(/i(x) + /2 (x)) 

一一一一-
一

I~~::.r二：nr[: 二n../{G(x)}2 -4F(x)] 
~ 

沢+G(x)y + F(x) = 0 Linear constraint 

Constraint of real solutions: {G(x)} 
2 -4F(x)~O 

Figure 3: Transformation and inverse transformation for the linear constraint. 



{G[k) 2 -4F[k) 
x1.x2} x1 • .i:2 

{G[k] }l -4F[k] 
.x,, 石 "• ・エ2

2 2 

lk] lk] 
1,x1, エ2'2,X1,X2 

Figure 4: Network of Gauss-Seidel relaxation method for two-fold f -sur ace reconstruction. 
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(a) Test Sample data (See text). (b) Result after 500 iterations (side view). 

(c) Result after 10000 iterations (side view). (cl) Result after 10000 iterations. 

Figure 5: Results of experiment #1. 



(a) Test Sample data. (b) Result after 500 iterations (side view). 

(c) Result after 10000 iterations (side view). (d) Result after 10000 iterations. 

Figure 6: Results of experiment #2. 



(a) Test Sample data. (See text). (b) Result after 500 iterations (side view). 

(c) Result after 2000 iterations (side view). (cl) Result after 2000 iterations. 

Figure 7: Results of experiment #3. 



(a) Test Sample data (See text). (b) Result after 500 iterations (side view). 

(c) Result after 2000 i tera.tions (side view). (d) Result after 2000 iterations. 

Figure 8: Results of experiment #4. 
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(a) Test Sample data (Seeしext). (b) Result after 500 iterations (side view). 

(c) Result after 2000 iterations (side view). (cl) Result after 2000 iterations. 

Figure 9: Results of experiment #5. 
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