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Abstract 

The importance of projective invariants to many machine vision tasks such as model-based 

recognition has been recognized. A number of recent studies on projective invariants in a sin-

gle view concentrate on coplanar objects: coplanar points, coplanar lines, coplanar points and 

lines, coplanar conics, etc. This paper presents a study on projective invariants of noncoplanar 

objects, i.e., 3-D objects. A new projective invariant is derived from five lines on two adjacent 

planar regions in a single view. The condition under which the invariant is nonsingular is also 

described. In addition, we present some experimental results with real images and find that 

the values of the invariant over a number of viewpoints remain stable even for noisy images 

and that a 3-D object has its own proper value of the invariant. Therefore, we no longer need 

assume coplanar objects. We can directly treat 3-D objects to calculate projective invariants. 

Key Words: projective invariant, adjacent planar regions, nonsingularity, 3-D object recog-

nition. 
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1 Introduction 

We human beings can easily recognize objects in 3-D through visual 2-D information. In-

formation projected onto the image plane depends on the position of an object relative to a 

viewpoint, which results in numerous different images, even for the same object. This com-

plicates many problems in machine vision. Therefore, extracting the properties that remain 

invariant under any change in viewpoint would provide useful information. In other words, it 

leads to powerful methods [6), [10) of supporting a number of machine vision tasks such as ob-

ject recognition to extract projective invariants, i.e., functions that are unaffected by a change 

in viewpoint and which are characterized by images of points, lines or curves constructing an 

object. For instance, a typical approach to model-based object recognition is divided into two 

procedures: for a given image, 1) to determine the position of an object relative to a viewpoint, 

i.e., pose determination; and then 2) to compare the given image of an object with one that is 

stored in a library of images to identify the object. However, if we can calculate the projective 

invariants of an object, attaching the values of the invariants to images in the library allows 

a reduction in the number of images to be compared without executing procedure 1), and 

makes it possible to directly compare the given image with one in the library [2), [9). As for 

the problem of model description, how to describe the shape of an object is the main concern. 

Using invariant shape descriptors is definitely efficient since such descriptions are unaffected 

by a change in viewpoint. As has been seen, projective invariants are not only important but 

are also readily applicable to the field of computer vision. 

From this point of view, the importance of invariants has been recognized since the origin 

of the field of computer vision in the 1960s. On the other hand, projective invariants were a 

very active mathematical subject in the latter half of the 19th century. However, until recently 

only one projective invariant [3), the cross ratio of four points on a line, had been used in the 

field of computer vision. Only over the past few years have we highlighted other invariants. 

During this time, several projective invariants have been derived and are now being used 

in machine vision applications. For instance, two invariants of five points on a plane [1 ], two 

invariants of five lines on a plane [6], one invariant of two lines and two points on a plane [11], 

two invariants of two coplanar conics [4]. If we assume an object to be coplanar, there are 

many such projective invariants, as listed above. This fact encouraged us to devote ourselves to 
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finding projective invariants for 3-D objects. However, Burns-Wiess-Riseman [6] and Moses-

Ullman [5] proved that one cannot calculate any invariant of the image of a set of general points 

in three dimensions from a single view; one requires at least two views. However, this does 

not necessarily ind~cate that one cannot calculate any invariant for a 3-D object from a single 

view even if we impose an assumption on an object. In fact, Rothwell-Forsyth-Zisserman-

Mundy [7], [8] showed that there exist three projective invariants of normal vectors of six planes 

for a trihedral object1. _ 

This paper is a study on projective invariants of 3-D objects on which some assumptions 

are imposed. It is shown that there exists one projective invariant of five lines on two adjacent 

planar regions. Moreover, a condition for nonsingularity, i.e., well-definedness and nondegen-

eracy, of the invariant is also given. Since the set of polygons with two adjacent planar regions 

(five lines are assumed to exist) includes the set of trihedrons (six planes are assumed to exist), 

the invariant derived in this paper can be applied to more general 3-D objects. 

This paper is organized as follows: In Section 2 in preparation for further investigation, 

we describe a property of three lines on a plane. In Section 3 we first regard a line as the 

intersection of two planes and then consider a relationship between the parameters that de-

termine the planes and the vector that is obtained through observing the intersection line of 

the planes. Next we consider the change in the values of the parameters ,of planes over a 

number of viewpoints. In Section 4, we assume the values of the parameters of planes to be 

known and derive properties that are characterized by the vectors obtained through observing 

the intersection lines. In Section 5, we eliminate the assumption; properties of the vectors 

are investigated without using the above assumption. And it is shown that there exists one 

projective invariant of five lines on two adjacent planar regions. Furthermore, a necessary and 

sufficient condition for nonsingularity of the invariant is also given. Some experimental results 

with real images are presented in Section 6. In this paper, we assume that an object rigidly 

moves around a fixed viewpoint. We also assume that the focal length is the unit length and 

that the correspondence of lines among images is known. 

1 If all the vertices of an object are characterized as the intersection of only three planes, it is called a 

trihedral object, or simply a trihedron. 
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2 Three lines on the image plane 

Consider a perspective projection whose origin O coincides with the center of a lens and 

whose z axis is aligned with the optical axis (see Fig.1). Then z = 1 is the image plane. Denote2 

by X = (X, Y, lf the coordinates of the image of a point (with coordinates z = (x, y, z戸） in 

3-D. Then we can easily see the following relationship: 

X 
X=-, 
z 

y 
Y=-. 
z 

(2.1) 

When we observe a line aX + bY + c = 0 (a2 + b2 -:/ 0) on the image plane, we obtain a 

vector (a, b, cf. Note that we can only determine it up to a scaling factor. The following fact 

is widely known for three different lines on the image plane. 

Observation 2.1 Let three different lines i (i = 1,2,3) on XY-plane be 

aiX + bi Y + Ci = 0 (2.2) 

(where ar + bf =f-0). Then the necessary and sufficient condition under which they do not 

share a common point is 

a1 a2 a3 

det I b1 b2 b3 

C1 C2 C3 

ヂ 0. (2.3) 

ロ

Here we consider the meaning of the value of the left-hand side of (2.3). (2.2) of line i is 

rewritten as 

(ai, bi, ci? ・X = 0. (2.4) 

Since X is the coordinates of any point on line i, (ai, bi, Ci汀representsthe normal vector of 

the plane on which both the origin and line i are. This plane is called the interpretation plane 

of line i (see Fig. 2). Therefore, for three lines i (i = 1, 2, 3), the value of the left-hand side of 

(2.3) represents the volume of a parallelepiped in three dimensions, which is constructed by 

the normal vectors of the interp・retation planes of the lines. 

In this paper, we concentrate on this volume to derive an invariant. 

2We use a column vector. 
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Remark 2.1 As pointed out before, we can only determine vector (ai, biぶ）T up to a scaling 

factor when we observe a line on the image plane. However, we can eliminate this indeterminacy 

by setting a criteria such as ai = l or the normalization of the vector. 

3 Planes and lines in 3-D 

3.1 Line as the intersection of two planes 

ロ

A line in 3-D going through the origin or being on plane z = 0 makes just a point, or no 

image on the image plane. In this paper, a line is assumed neither to go through the origin 

nor to be on plane z = 0. In other words, a line is assumed to be perspectively projected to a 

line on the image plane. Such a line is called a line in a general position. 

A line in a general position in 3-D is uniquely determined as a pair of planes, each of which 

never goes through the origin (see Fig. 2). Therefore, we represent a line as a pair of planes. 

Let two planes i (i = 1, 2) in 3-D be 

ai x + biy + Ci z + di = 0 (3.1) 

(where di• (af +bf+ c;) i= 0). Denote by ni the normal vector of plane i, then 

ni = (ai, bi, Ci f. 

And (3.1) is rewritten as 

柘 ・x+ di = 0. (3.2) 

Hence, x, the coordinates of a point which is on both the planes, satisfies 

い(n;・允十 d;) = 0, 
i==l 

(3.3) 

where入i(i = 1,2) are real numbers. 

As seen above, the vector that is obtained when a line is observed on the image plane is 

the normal vector of the interpretation plane of the line. By fixing the values of入i(i=l,2)

so that the coordinates of the origin O satisfy (3.3), we obtain the interpretation plane of the 

intersection line of planes 1 and 2: 

(d2柘— d1加） ·X 0. (3.4) 
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Therefore, d2n1 -d1 n2 is the normal vector of the interpretation plane of the intersection line 

of planes 1 and 2; we obtain d2n1 -d1 n2 when we observe the line determined by ni and 

di (i = 1, 2). 

Remark 3.1 Note that we have indeterminacy of a scaling factor between vector d四 1-d1n2

and the vector we actually obtain as a result of observing the line. ロ

Remark 3.2 If we set di= 0 in (3.1), then all the lines on plane i are observed to be the same 

line on the image plane. This shows that the normal vectors of their interpretation planes 

coincide. 口

3.2 Planes after a motion 

Let a point (with coordinates記） change its coordinates to x'after a motion. Here a rigid 

motion, i.e., a rotation arou_nd the viewpoint followed by a translation, is assumed to be 

admissible. Therefore, 

ぷ=Rx+t (3.5) 

(where R E S0(3), t E即） • Note that R and S0(3) denote the set of real numbers and the 

special orthogonal group of degree 3 over R, respectively. 

Substituting (3.5) into (3.2), it follows that 

(3.2) ⇔ ni・R―1位'-t) + di = 0 

⇔ (R和）・ (x'-t) +di= 0 

⇔ (Rni)・x'+ {di -(RTt)・ni} = 0. 

Therefore, plane i of (3.2) moves to 

I ni ・北十 d~

゜
(3.6) 

after the motion of (3.5), where 

n-I 
i 
Rni, 

9.9“ 
d
 
di -(RTt)・ni, 

(3.7) 

(3.8) 

Hence the relationship among the parameters that determine the plane before and after a 

motion is given by (3.7) and (3.8). 
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4 Properties on the image plane derived from planes 

In Section 3, we learned that when. we observe the intersection line of two planes i,j (i,j 

are natural numbers), we obtain vector nij, which is characterized by 

nii = di和ー dini. (4.1) 

In addition, we also learned that plane i of (3.2) moves to that of (3.6) after a motion, and 

that ni, n;, di, d; satisfy (3. 7) and (3.8). In this section, we investigate the properties of vectors 

nり,when we are given certain planes in 3-D, i.e., ni and di. 

Suppose that four different planes 1, 2, 3, 4 are given. We consider n12, n23 and n34, which 

are obtained by observing their intersection lines (see (4.1)), and then define a 3 x 3 matrix 

M1234 whose column vectors are these three vectors: 

M1234 := [ n12 I n23 I n34 ] . (4.2) 

Remark 4.1 When the three lines, i.e., the intersection line of planes 1 and 2, that of planes 

2 and 3, and that of planes 3 and 4, satisfy one of the following: 

(I) they share a common point in 3-D, 

(II) they are parallel, 

the value of the determinant of M1234 is zero since these three lines share a common point 

on the image plane through the perspective projection (see Observation 2.1). We assume that 

these three lines satisfy neither (I) nor (II). ロ

In a similar way, we consider n伍，n伍andn匂， anddefine a 3 X 3 matrix M伍 characterized

by them: 

M~234 := [ n~2 I n~3 In伯］． (4.3) 

M1234 and M伍 havethe following properties. 

Lemma 4.1 Let rankM1234 = 3. Then, 

rankM~234 

d2 d3 detM~234 

3. 

d; 必detM1234.

、
1
,

、ー、

4

5

 

• 4
4

 

，
ー
‘
(
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Proof: Since the properties (I) and (II) in Remark 4.1 for three lines remain invariant after 

any motion, we immediately obtain (4.4) (see Observation 2.1). 

Let D況：= det[ ni I ni I nk] (i, j, k E {1, 2, 3, 4}). Then we obtain 

detM1234 = det[ d四 1-d1n2 Id四2-d四3ld西— d匹］

- d2必d4D123+ d2必（一ん）D124 +む（一必）（一ん）D134 + (一出）（一必）（一ん）D234 

- d迅{d4D123 -d3D124十必D134-d1D234}. . (4.6) 

Similarly, for i,j,k E {1,2,3,4} define Dijk := det[ ni I n1 In~]. Since (3.7) yields Dijk = 

Dijk, 

detMt234 = d;d; {d~D~23 -d;D~24 + d;D~34 -d~Dふ34}

d;d; [ { d4D123 -d3D124十必D134-d1 D234} —• ], (4.7) 

where 

△ = { (RT t)・n4} D123 -{ (RT t)・ 四}D124 + { (RTt)• 叫D134-{ (RTt)・n1} D234. 

It is easy to see 

△ ＝如t[n1 I n2 I (RTt) x (n3 X n4)] + det[ (RTt) x (n1 x n2) I n3 I n4] 

(n1 X妬）・ (RTt)X (n3 X n4) + (RTt) X (n1 X朽）・ (n3X n4) 

0, 

which yields (4.5) from (4.6) and (4.7). ロ

Lemma4.1 shows that the ratio of the value of the determinant of M1234 to that of M:234 is 

dependent only on planes 2 and 3; it is independent of the choice of planes 1 and 4. Hence, 

we replace plane 4 with another plane, plane 5, which yields 

d2 d3 detM伍=d; 必detM1235.

This is combined with (4.5) to obtain the following lemma (see Remark4.2). 

Lemma 4.2 For M1234, M123s, M~234 and M~235, 

detM~234 detM123s = detM1234 detM~235. 

(4.8) 

(4.9) 

ロ
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Remark 4.2 If d; = 0, then both the intersection line of planes 1 and 2, and that of planes 

2 and 3, are observed to be coincident after a motion (see Remark 3.2). On the other hand, 

if d; = 0, then both the intersection line of planes 2 and 3, and that of planes 3 and 4, are 

observed to be coincident. These facts show that if d; • d; = o・then the number of visible lines 

changes before and after a motion. In this paper, we do・not assume such a change occurs, 

which leads to d; ・d; :/ 0. ロ

5 Invariant of lines on two planes 

In the previous section, we derived the properties characterized by the vectors that are 

obtained on the image plane when the values of the parameters (ni and di), which uniquely 

determine lines, are given. Here, we investigate the properties of the vectors we can actually 

obtain, without assuming the known values of ni and di. 

5.1 Invariant of five lines 

As str~ssed before, there is a scaling indeterminacy between vector nij that is derived from 

planes i,j (i,j are natural numbers), and the vector we actually obtain through observing 

their intersection line (see Remark 3.1). Hence, denote by Nii the vector we actually obtain 

through observing the intersection line. Then 

N;i = Pii叩 (Pii-:J 0) (5.1) 

is satisfied. Here Pii is a scaling factor and its value is not known. Define Nijkl (i, j, k, l are 

natural numbers) as a counterpart of !vlijkl: 

Nijk/ := [ Nij I Njk I Nkl ]. 

(5.1) and (5.2) yield 

detNijkl = Pii・Pik・Pkt・detMijkl・

(5.2) 

(5.3) 

We also denote by N~i the vector we actually obtain after a motion, and similarly define Nfjkl・

Note that N~i = Pij的 (P;i=/= 0) where the value of Pij is unknown. Then we obtain the 

following theorem. 
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Theorem 5.1 Let rankNi23j = 3 (i = 1,6; j = 4,5). Then, 

rankN函=3. 
detN1234・detN623s 

detN123s・detN6234 

detN{234·detN~235 
detN{235·detN~234. 

(5.4) 

(5.5) 

Proof: Definition of Nijkl leads to rankNijk/ = rankMijk/• Similarly, rankN如=rankMijk/・ 

These yield (5.4) from Lemma 4.1. 

From (5.3) we obtain3 

LHS of (5.5) 
P12 p23 p34 P62 p23 p35 detM1234・detM623s 

P12 p23 p35 P62 p23 p34 detM123s・detM6234 

detM1234・detM623s 

detM123s・detM6234. 
(5.6) 

On the other hand, it is easy to see 

RHS of (5.5) = p伍 p伍 p虹 p笛 p伍 p属 detM~234·detM~235
p伍 p伍 p蜘 p如 p如 p匂 detMi235·detM~234

detM{234·detM~235 
detMi235·detM~234. 

By replacing plane 1 with plane 6 in (4.9), we obtain 

detM~234 detM623s = detM6234 detM~235. 

(5.6) and (5.7) yield (5.5) from (5.8) and (4.9) in Lemma4.2. 

Theorem 5.1 shows that there exists a projective invariant 

I 
detN1234・detN623s 
・= 
detN123s・detN6234 

(5.7) 

(5.8) 

ロ

(5.9) 

for five lines, which are characterized a.s the intersections of two of six planes. 

In the subsequent sections, we characterize the structure of the above five lines and give a 

necessary and sufficient condition under which the invariant never becomes singular. 

5.2 Construction of five lines 

Projective invariant J is calculated from the following five lines: 

3LHS and RHS mean the left-hand side and the right-hand side, respectively. 
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• L12 (the intersection line of planes 1 and 2), 

• L23 (the intersection line of planes 2 and 3), 

• L34 (the intersection line of planes 3 and 4), 

• L35 (the intersection line of planes 3 and 5), 

• L62 (the intersection line of planes 6 and 2). 

The structure of these five lines in 3-D is characterized as follows: 

1. The five lines are all on plane 2 or plane 3, 

2. The intersection line of planes 2 and 3 is included (L23), 

3. There are two lines on plane 2 in addition to L23 (L12 and L62), 

4. There are two lines on plane 3 in addition to L23 (L34 and L3s). 

Therefore, there exists a projective invariant J for five lines on two planes (planes 2 and 3 

above). The five lines include the intersection line of the two planes, and two other lines on 

each plane. 

5.3 Condition for nonsingularity 

In this subsection, we give the necessary and sufficient condition under which the invariant 

J is nonsingular: the condition for nonsingularity of I. Here we define "An invariant is nonsin-

gular" as "The value of the invariant is never any: 0, oo, or 0/o ". From (5.9) it is easy to see 

that I is nonsingular if and only if the value of the determinant of Nijkl is not zero. Therefore, 

the necessary and sufficient condition under which J is nonsingular is that the value of the 

determinant of Mijkl is not zero (see (5.3)). 

Observation 2.1 tells us that when three lines on the image plane do not share a common 

point, the value of the determinant of M;jkl is never zero, which yields the following theorem 

(see Remark4.l). 

Theorem 5.2 The necessary and sufficient condition under which I in (5.9) is nonsingular is 

that the five lines on two planes have the following property: 

10 



For three lines, i.e., the intersection line of the two planes, and any two noncoplanar lines 

from among the other four, (I) and (II) are satisfied. 

(I) They never share a common point in 3-D. 

(II) They are not parallel. D 

Since the size of an object we treat is finite, we can calculate the invariant J when we observe 

five line segments on two planar regions. Note that we have to observe the intersection line 

segment of the two regions. Therefore, the assumptions imposed on an object for which we 

can calculate the invariant J are 1) that there exist two adjacent planar regions, 2) that the 

intersection line segment of the two regions is observed, 3) that two other line segments on each 

region are observed, and 4) that these five line segments satisfy the condition for nonsingularity 

of the invariant (see Theorem 5.2). 

Remark 5.1 When we observe six points on two planes such that 

• there are two points on the intersection line of the two planes and, 

• there are two other points on each plane, 

it is easy to see that we can construct five lines on two planes, from which we can calculate 

invariant I and which satisfy the condition for nonsingularity (see Fig. 3). This shows that 

there exists the same invariant for six points on two planes. ロ

6 Experimental results 

In Section 5, we proved the existence of the projective invariant J of five lines on two adjacent 

planar regions. The five lines there include 1) the intersection line of the two regions; and 2) 

two other lines on each region. In addition, to guarantee nonsingularity of the invariant, two 

conditions have to be satisfied: 3) that the intersection line and any two noncoplanar lines 

from among the other four never share a common point in 3-D; and 4) that the intersection 

line and any two noncoplanar lines from among the other four are not parallel. On the basis 

of these results, our experimental results with real images are shown. 
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We obtained several images4 of the polygon in Fig. 4 using a fixed camera. The polygon 

was randomly moved by hand. For each image, we first applied a low pass filter of a 3 x 3 

weighted kernel window to reduce noise. We then calculated the Laplacian with an 8-neighbor 

weighted coefficient matrix to extract the edges (Fig. 6). Next, to each edge in the image, we 

apply the method of least squares to find the equation of the line that represents the edge. On 

the other hand, we attached labels to the planar regions and edges of the polygon (see Fig. 5) 

and chose the planar regions (A) and (B) as two adjacent. We then selected five of seven 

edges 1, 2, ... , 7 on either planar region (A) or (B) to calculate the value of invariant J. There 

are nine combinations of five of the seven lines that include5 line 3, the intersection of planar 

regions (A) and (B), and two other lines on each of planar regions (A) and (B). However, 

we essentially have only four combinations that give independent values of the invariant (see 

definition I in (5.9)). Thus, for the lines that were obtained from six edge images (a), ... , 

(f) in Fig. 6, we calculated the values of these four invariants, which are shown in Table 1. 

We denote by lijklm the invariant of five lines i,j, k, l, m (i,j, k, l, m E {1, 2, ... , 7}). For each 

invariant, we also showed the mean m over the six images, the standard deviationび andthe 

percentage of the standard deviation of the mean. 

Table 1 shows that all of the values of Iijklm are almost constants: they remain stable in 

spite of a change in viewpointこFurthermore,their values significantly depend on a choice of 

five lines, i.e., a combination of observed lines, which shows that each object generally has its 

own proper value of /. Therefore, the value of I can be important in identifying one object 

out of many. 

As shown above, for a real 3-D object we found the invariant I that is unaffected by a change 

in viewpoint and which has its own proper value. 

7 Conclusion 

We proved the existence of one projective invariant J of five lines on two adjacent planar 

regions. These five lines include 1) the intersection line of the two regions; and 2) two other 

4Each image consists of 480 x 512 pixels. And each pixel is assigned a natural number from O ~ 255 as the 

value of its grey level. 

5The line i denotes the line representing the edge i (i E { 1, 2, ... , 7}). 
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lines on each region. Furthermore, the necessary and sufficient conditions for nonsingularity 

of the invariant are 3) that the intersection line and any two noncoplanar lines from among 

the other four never share a common point in 3-D; and 4) that the intersection line and any 

two noncoplanar lines from among the other four are not parallel. 

We applied these theoretical results to real images, and found that the values of the invariant 

remain stable even for noisy images. Furthermore, we also found that an object generally has 

its own proper value of the invariant. Left for future investigation is the theoretical analysis 

of the noise sensitivity of the invariant. 

Even though the importance of projective invariants to a number of machine vision tasks 

has been recognized for many years, we have found quite a few invariants for 3-D objects. 

When we impose no assumption on an object, we cannot obtain any invariant from a single 

view [5), [6). However, if we impose some assumptions on an object, an invariant can be derived 

from a single view as shown in this paper. We should concentrate on how far we can generalize 

our current results so that we can use invariants with greater frequency. It should also be 

helpful to investigate properties for the case where an invariant becomes singular so that we 

can use invariants even in that case. 
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Fig. 1: Perspective projection centered at the origin 
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Fig. 2: Line i and the normal vector of its interpretation plane 

Fig. 3: Five lines derived from six points on two planes 
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Fig. 4: A polygon used to calculate projective invariant 

Fig. 5: Labels for planes and lines of the polygon in Fig. 4 
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Fig. 6: Extracted edges from images of the polygon in Fig. 4 

We obtained several images of the polygon in Fig. 4 using a fixed camera. 

The polygon was moved randomly by hand. For each image, we first applied 

a low pass filter of a 3 x 3 weighted kernel window to reduce noise. We then 

calculated the Laplacian with an 8-neighbor weighted coefficient matrix to 

extract edges ((d) is the extracted edge image for Fig. 4). 
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Table 1: Values of invariant J 

Shown are the values of I calculated from the lines representing the edges in Fig. 6. Also 

shown are their means m, standard deviationsぴ andthe percentages of the standard deviations 

of the means. 

124357 124367 114357 114367 

(a) 0.043451 -0.46719 0.15229 -0.30025 

(b) 0.039659 -0.39997 0.14043 -0.25306 

(c) 0.042730 -0.45133 0.14967 -0.28919 

(d) 0.043441 -0.43375 0.15562 -0.26561 

(e) 0.039769 -0.39784 0.14500 -0.24465 

(f) 0.041425 -0.46856 0.14702 -0.30678 

m 0.041746 -0.43644 0.14834 -0.27659 

()" 0.001583 0.02894 0.004880 0.02354 

び/m(%) 3.79 6.63 3.29 8.51 
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