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Abstract 

We propose a trajectory planning and control theory which provides explanations at . 

the computational algorithm, representation, and hardware levels for continuous 

movement such as connected cursive handwriting. The hardware is based on our 

previously proposed forward-inverse-relaxation neural network (Wada and Kawato, 

1993). Computationally, the optimization principle is the minimum torque-change 

criterion. At the representation level, hard constraints satisfied by a trajectory are 

represented as sets of via-points extracted from handwritten characters. Accordingly, we 

propose a via-point estimation algorithm that estimates via-points by repeating the 

trajectory formation of a character and the via-point extraction from the character. It is 

shown experimentally that for movements with a single via-point target, the via-point 

estimation algorithm can assign a point near the via-point target. Good quantitative 

agreement is found between human experimental data and the trajectories generated by the 

theory. 
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1. Introduction 

Handwriting production is an attractive subject for human motor control studies. 

When one produces cursive handwriting, in the central nervous system (CNS) a symbol 

that represents a character must be transformed into a motor command stream. This 

transformation process raises several questions. How can the CNS represent a character 

symbol for producing a handwritten letter? Is there an intermediate representation for 

handwriting? By what principle can motor planning be made or motor commands be 

produced? 

In reaching movements, trajectory formation is an ill-posed problem because the hand 

can move along an infinite number of possible trajectories from the starting to the target 

point. However, humans can effortlessly and consistently move an arm between two 

targets along one of an infinite number of trajectories. Therefore, the brain should be able 

to compute a unique solution by imposing an appropriate criterion to the ill-posed 

problem. For example, a smoothness performance index can be introduced to solve this 

problem. Flash and Hogan (1985) proposed a mathematical model, the minimum-jerk 

model. They proposed that the trajectories followed by the subjects'anns tended to 

minimize the integral of the square of the jerk (rate of change of acceleration) of the hand 

position in Cartesian coordinate space, integrated over the entire movement. Their 

proposed perf onnance index is the following quadratic measure: 

c, 廿。:,H¥s r + (~r r, (1) 

Here, (X, Y) are Cartesian coordinates of the hand andがsthe movement time. Their 

model is based solely on the kinematics of movement, hence, it is independent of the 
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dynamics of the musculoskeletal system. 

On the other hand, based on the idea that the objective function must be related to 

dynamics, Uno, Kawato and Suzuki (1989) proposed the minimum torque-change 

criterion, which accounts for both the desired trajectory determination and the dynamics 

of trajectory control. The computational theory postulates that the trajectory of the human 

arm is determined so as to minimize the time integral of the square of the rate of torque 

change. The following is a quadratic measure of performance: 

ら =J。り土(~J'dt (2) 

where -r i is the torque generated by the j-th actuator of M actuators, andりisthe 

movement time. It is apparent that this objective function is critically related to arm 

dynamics. For movements between a pair of targets just in front of the body, predictions 

by both computational models were close to the experimental data. However, the 

trajectories predicted by the minimum torque-change model were quite different from the 

minimum-jerk model in four behavioral situations, where it was found that the minimum 

torque-change model predicted the actual data better than the minimum-jerk model (Uno, 

Kawato and Suzuki 1989, see also Kawato 1994 for review ohecent data). 

Furthermore, Uno, Suzuki and Kawato (1989) have proposed a minimum muscle-

tension-change model in which the objective function is the sum of the square of the rate 

of change of muscle tension, integrated over the entire movement. It is a biologically 

more plausible model than the minimum torque-change model. If the joint torque were to 

be generated by only one muscle, and if its moment arm were constant regardless of the 

joint angle and the same for all the different muscles, then the minimum muscle-tension-

change model would be identical to the minimum torque-change model. However, joint 
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torque is generated by a number of muscles, muscle moment arms are different, and 

moment arms do depend on joint angles. Thus, the minimum muscle-tension-change 

model is quite different from the minimum torque-change model. 

Recently, the minimum muscle-tension-change model has been extended to the 

minimum motor-command-change model (Kawato 1992), which solves the enormous 

excess degree of freedom in the CNS by the smoothness principle in the state space of the 

CNS. It seems more plausible to impose the smoothness constraint at the CNS level than 

at the peripheral level. 

Regarding the hardware level, the unique trajectory that yields the best performance of 

Eq. (1) is readily computed by applying the Euler-Lagrange equation. Several hardware 

models that can compute minimum-jerk trajectories have been proposed using recurrent 

neural networks (Jordan 1989; Massone and Bizzi 1989; Hoff and Arbib 1992). On the 

other hand, because the dynamics of the human arm is nonlinear, finding a unique 

trajectory based on the minimum torque-change model and the minimum muscle-tension-

change model is a nonlinear optimization problem. Thus, it is a rather difficult 

optimization problem. To generate a trajectory based on the minimum torque-change 

model, Kawa to. et al. (1990) proposed the cascade neural network, which is a cascade 

structure of the forward dynamics model (FDM). Conversely, a neural network model 

for the minimum torque-change criterion that uses the inverse dynamics model (IDM) was 

proposed by Nakamura et al. (1990). There are several criticisms of these neural 

networks: (1) their spatial representation of time, (2) back propagation is essential, and 

(3) they require too many iterations. Therefore, we have proposed a new algorithm and 

hardware model, FIRM(Fo畑 ard-InverseRelaxation Model) for trajectory formation, 

which uses both a FDM and an IDM (Wada and Kawato 1993). This model can be 
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implemented as a biologically plausible neural network. 

Computational theories, algorithm and hardware models in reaching movement have 

been intensively studied and have become quite advanced. We wish to apply some of 

these ideas to handwriting. A variety of different handwriting models (Hollerbach 1981; 

Morasso and Mussa Ivaldi 1982; Edleman and Flash 1987) have been proposed. 

Hollerbach proposed a handwriting model based on oscillation theory. Coupled 

oscillations in horizontal and vertical directions produce letter forms. In this oscillation 

model, the vertical velocity zero-crossing in the velocity space diagram is crucial from the 

standpoint of control. Morasso and Mussa-Ivaldi proposed a trajectory formation model 

using a spline function, and reconstructed a handwritten character using the formation 

model. Edleman and Flash (1987) proposed a handwriting model based on snap (fourth 

derivative of position) minimization. The representation of a character was four basic 

strokes, and a handwritten character was regenerated by combining several strokes. An 

interesting point in Edleman and Flash's model is that it is based on a minimization 

principle, which is_ computationally close to our proposed handwriting model. In a sense, 

they extended their computational theory for reaching movement to the handwriting 

model. However, the minimum jerk approach of Flash and Hogan (1985) for reaching 

movements is different from Edleman and Flash (1987) theory for handwriting. At the 

representation level, the handwriting model uses the four strokes while the reaching 

model used a target and via-points. It seems that there was no compelling reason for 

selecting the strokes. We believe that the simplest representation for reaching movement 

is the boundary conditions in the optimization problem, that is, the starting point, final 

point and the motion duration. 

In this paper, we propose a handwriting model whose computational theory and 
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representation and hardware are the same as the model for reaching movements. Our 

proposed computational model for cursive handwriting generates a trajectory that passes 

through many via-points. However, it is quite difficult to determine the small number of 

via-points needed to reproduce a cursive handwritten character. This is not only a crucial 

problem for the CNS but also for engineering fields. We propose an algorithm that can 

determine the via-points of the handwritten character, based only on the same 

minimization principle and which does not use any other information such as zero-

crossing velocity (Hollerbach 1981). 

Edelman and Flash (1987) have pointed out the difficulties in determining via-point 

locations. They have argued two points: (1) "Parsimony of representation requires to 

restrict the number of points defining the curve to a minimum." (2) "One must have a 

good reason for the choice of every via point locus." The importance and difficulty of 

these two problems can be understood when the problem of extracting the via-points from 

a given character trajectory is considered in attempting to reconstruct the character 

trajectory. It is clear from approximation theory that the character can be regenerated very 

accurately if the number of extracted via-points is very large. Appropriate via-points can 

not be assigned according to a regular sampling rule if the sample duration is constant and 

long. Therefore, there is an infinite number of combinations of numbers and via-point 

positions in the problem of extracting via-points from a given trajectory, and a unique 

solution can not be found if a trajectory formation theory is not identified. That is, it is an 

ill-posed problem. To resolve this difficulty, we propose an algorithm to determine the 

boundary conditions, called the via-point estimation algorithm, which finds the via-points 

by iteratively computing both the formation module (FIRM) and the via-point extraction 

module. The basic concept of ou~model is that the via-point extraction (pattern 
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perception) is made possible by identifying and directly utilizing a trajectory formation 

neural network (pattern generation). 

In this paper, we first discuss the computational theory for cursive handwriting. 

Then, we present the structure of our proposed handwriting model. Finally, we show 

that the human movement data are reproduced well by the proposed handwriting model 

when via-points are extracted by the via-point estimation algorithm. 

2. A computational model for cursive handwriting 

When a human learns to perform a movement pattern as a skilled motion, how is the 

movement pattern represented in the CNS? Consider a reaching movement such as when 

one reaches his/her hand toward a cup (Figure 1), which involves a hierarchical structure 

of motion planning. Several'conditions required to achieve the goal of movement are 

derived from the visual information. Especially, in a reaching movement, the starting 

point, final point and the motion duration should be specified. These are the boundary 

conditions for the minimization problem and can also be regarded as a central 

representation for reaching movement. A trajectory is planned by a minimization 

principle such as the minimum torque-change criterion. The FIRM provides a hardware 

model as well as an algorithm to generate the optimal trajectory. Finally, a joint torque or 

a muscle tension stream is computed to accomplish the movement. Then the movement 

trajectory is realized. We believe that the boundary conditions for reaching movement are 

the siinplest among all kinds of arm movement representation in CNS. Handwriting, on 

the other hand, is complex to specify. We propose a handwriting model to keep the 

theory for the reaching movement as much as possible. Our basic hypothesis for 
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Figure 1 A handwriting model. 
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handwriting has three parts: (1) the computational theory is the minimization principle, 

particularly the minimum torque-change criterion; (2) the representation is a set of via-

points that expresses the character; and (3) the hardware is based on the FIRM 

architecture. That is, when a human plans a cursive handwritten character, he/she should 

solve an optimization problem whose boundary conditions are many via-point positions 

instead of a few boundary conditions in the reaching movement. According to the above 

hypothesis, our proposed handwriting model is completely the same as the model of 

reaching movement in Marr's three-level understanding of the brain function (Marr 

1982). 

The computational theory-level, the hardware-level and the algorithm-level in the 

reaching movement are easily transferred to the cursive handwriting model. However, it 

is quite difficult to determine the via-point representation so as to reproduce a cursive 

handwritten character. We propose an algorithm to extract the via-points of the 

handwritten character. The via-point extraction problem is formulated to find the 

minimum number of via-points which can reproduce the given trajectory within a given 

error bound. Note that this via-point extraction problem is a nonlinear optimization 

problem. The objective function to be minimized is conceptually understood as the sum 

of the following two terms, the smoothness performance index of the minimum torque-

change criterion and the data constraint which is defined by the error between the given 

trajectory and the reproduced trajectory. This objective function is minimized under a 

dynamic constraint given by human arm dynamics. 

The via-point estimation algorithm can also be understood as a data compression 

algorithm that transforms a trajectory into a small number of feature points, which are the 

features of a symbol such as the handwritten character. Additionally, in a complex 
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movement such as that of the Japanese toy, Kendama (stick and ball), the points extracted 

by the algorithm are the key to the success of the play (Kawato et al. 1994). 

3. A trajectory formation neural network (FIRM) 

In this section, the trajectory formation model (FIRM) shown in Figure 2 is 

explained. The FIRM can generate a trajectory with many via-points within a much 

smaller number of iterations than our previous cascade model (Kawato et al. 1990). 

Therefore, if the via-point information of a character estimated from an actual handwritten 

character is given to the FIRM, the model can provide an optimal character trajectory. 

The FIRM uses a FDM, an IDM and a trajectory formation mechanism, which generates 

an approximate minimum torque-change trajectory. It does not require spatial 

representation of time or back propagation in iterative computation. The following 

邑
Forward Dynamics Model 

(FDM) 

Ste 

Compensatory Trajectory 
Generation by Linear 
Approximated Model 

r+sけ）

Step 2 

Smoothing Torque 

0+ t..8 

Inverse Dynamics Model 

(IDM) 

Step 1 

S : smoothing operator 

r
 

Figure 2 
Trajectory formation model. (Forward-Inverse Relaxation Model). Neural 
network schema for arm trajectory formation using the forward dynamics 
model and inverse dynamics model. 
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algorithm is shown in Figure 2: Step 1. The torque is calculated from the joint angle 

trajectory that satisfies the terminal condition using the IDM, where 0 + tJ.0 satisfies 

the terminal conditions. Step 2. The torque is smoothed. Step 3. The terminal condition 

errors are found by generating the joint angle trajectory from the torque smoothed in Step 

2 through FDM. Step 4. By finding a solution to the linear optimization problem, the 

compensatory trajectory△ 0, which cancels the terminal-condition errors, is obtained. 

The approximate optimal trajectory based on minimum torque-change is obtained by 

repeating Steps 1 to 4. 

The FIRM proposed in Wada and Kawato (1993) was able to generate a trajectory 

with a via-point. Moreover, the algorithm of the FIRM can be easily extended to generate 

a trajectory with many via-points and compute an approximate optimal trajectory in 

several iterations. When the arm dynamics are approximated linearly as in the dynamics 

equation Eq. (3), there are two methods which generate the compensatory trajectory in 

Step 4 of the extended FIRM algorithm. 

-r i = I噂j (j= 1,-・・, M) (3) 

where -r is the torque generated by the j-th actuator. I and 0 are the inertia of the 

link and the acceleration of the j-th joint angle, respectively. 

The first method is that the compensatory trajectory can be generated by using the 

spline function because the minimum-jerk criterion is equivalent to the definition of the 

spline function. That is, the compensatory trajectory is formulated by the spline function 

minimizing the following criterion. 

S:'(d;; ぐ）2 dt (4) 

However, an inverse matrix have to be calculated in the spline method, that is, the 
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required spline coefficients are computed using matrix inversion. Since we believe that 

calculating the inverse matrix is not plausible in biological system, we use the second 

method in FIRM. 

The second method is shown below and in Figure 3. The trajectory passing through 

a via-point is produced sequentially. Suppose that the position of via-points and the time 

passing through via-points are given. 

(Step 1) A trajectory between a starting point and a final point is generated by using the 

minimum principle for the approximated linear dynamics such as Eq. (3). 

(Step 2) The via-point V 4 with the minimum value of a criterion, which is explained later, 

is selected. Then the trajectory V s-V 4-Vf is generated. This generated trajectory 

is added to the trajectory that has already been generated in step 1. The position 

error of the start point and the end point equal 0, since prior sub-trajectory 

generation has already compensated for the positional error. Thus, the boundary 

conditions of the generated trajectory at the start and end point become 0. The 

velocity and acceleration constraints at the start and end point are set to 0. 

(Step 3) The via-point VS with the minimum value in step 2 is selected. The trajectory 

V 4-V5-Vf is generated in the same manner as step 2 and is added to the 

trajectory generated in step 2. 

(Step 4) The selected via-point is V2. By repeating the procedure of generating and 

adding, a compensatory trajectory is obtained. 

In calculating a trajectory passing through many via-points, the j-th actuator velocity 
. j .. j 

constraint 0 and acceleration constraint 0 at the via-point i are set by minimizing the 
via via 

following equation. The time of the start point t of the generated trajectory is that of the 
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Figure 3 

An algorithm for producing the compensatory trajectory in FIRM. 
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via-point located just before the assigned via-point i (time t), and the time of the end 
via 

point t~of the generated trajectory is that of the via-point lo~ated just after the assigned 

via-point i. 

J (0 i_'0 i_) 
Via Vヽa
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Finally, we explain the criterion to select a via-point among the given via-points. As 

discussed in Appendix, the orthogonality of all the trajectories passing through each via-

point can be proved. In the second method, the compensatory trajectory is represented as 

the following. 

ej j

1

 
¢
 

ーc
 

＋
 

j 

C 2 <p 2 ＋
 

j 

C 3 <p 3 ＋
 

j 
+ C <p 

n n 
(8) 

where <p. (i=l, 2 ） , ・・・, n represents a nonnahzed orthogonal funcnon; c. represents a 

Fourier coefficient; and n represent the number of via-points. 

orthogonality of all the trajectories, the following equation is obtained. 

Because of the 
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f:'(d'~;)'dt~c: 
dt 

2 2 2 
+ C + C 十・・・+ C 

2 3 n 
(9) 

2. 
where c. 1s calculated by (A.14). The criterion in the second method is c .. That is, the 

second method uses a sequential procedure to generate an trajectory by minimizing Eq. 

(9) by assigning every via-point. However, the method need not calculate an inverse 

matrix and it is expected that the generated trajectory by the second method is an 

approximated optimal trajectory. 

4 A representation for cursive handwriting 

4.1 A via-point estimation algorithm 

Next, we show an algorithm that estimates via-points from the actual character 

trajectory. As discussed above, the following three prerequisites should be met in the 

via-point algorithm: (1) the number of the via-points is minimum, (2) there is a good 

reason for the choice of every via point locus, (3) the trajectory passing through via-

points is the optimal trajectory based on the computational theory. In the following, we 

will show that by combination of a via-point estimation procedure and a trajectory 

formation procedure, our proposed algorithm can extract the approximately minimum 

number of via-points from a given trajectory 0 with a given level of error threshold 8 
data 

(the via-point estimation procedure). If a set of via-points V={ P1 , P2 , P3 , ... , ぢ｝

are given and the arm dynamics is known, we can calculate the optimal minimum torque-

cha~ge trajectory 0 (V) passing through these via-points (the trajectory formation 
opヽ

procedure). The via-point estimation problem can be formulated to find the set V with the 

minimum N giving a traject~ry which satisfies (0 data - 0 (V)) < o for arbitrary 
opt 
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time. To find the set V with the minimum N is an optimization problem and to generate 

the trajectory 0 (V) from Vis another optimization problem. The former optimization 
opt 

problem is in perception domain, and the latter optimization problem is in motor-control 

domain. These optimization problems, which are related to the above prerequisites (1) 

and (2), are examined mathematically in the Appendix. The following two important 

properties of the proposed algorithm are proved there. First it is shown that the generated 

trajectory has the completeness property. That is, by increasing N, 0 (V) can 
opl 

approximate any 0・with infinite accuracy. Second, it is shown that the algorithm finds 
data 

V with approximately minimum N when 0 data'8 and arm dymanics are given. The 

above condition (3) is clearly satisfied because the trajectory is generated by the FIRM. 

Our via-point estimation algorithm uses FIRM again as an important hardware module 

and this suggests a duality between movement pattern formation (FIRM) and movement 

pattern perception (via-point estimation). 

4.2 A via-point extraction module 

Our proposed via-point estimation algorithm (Figure 4) is essentially based on the 

same minimization principle as that for trajectory formation. This algorithm consists of 

two modules: a via-point extraction module and a trajectory formation module. The 

trajectory fonnation module is the FIRM. 

In this section, the via-point estimation module is explained. In this via-point 

extraction module, there exists a via-point extraction procedure and a trajectory 

production procedure, and they are iteratively computed. Trajectory production in the 

module is based on the minimum-jerk model (Flash and Hogan 1985) in joint angle 

space, which is equivalent to the minimum torque-change model when an arm dynamics 
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is approximated as in Eq. (3). 

The procedure for via-point extraction is illustrated below and in Figure 5. 

(Step 1) A trajectory between a starting point and a final point is generated by using the 

minimum principle for the approximated linear dynamics such as Eq. (3). 

(Step 2) The point on the given trajectory with the maximum error value between the 

given trajectory and the generated trajectory i.n step 1 is selected as a via-point 

candidate. 

(Step 3) If the maximum value of the sum of the square error is less than a threshold, the 

procedure above is terminated. If the maximum value of the sum of the square 

error is greater than the threshold, the via-point candidate is assigned as via-point 

i and a trajectory based on the minimization principle is generated from the 

starting point through the via-point i to the end point. This generated trajectory 

is added to the trajectory that has already been generated in step 1. By the same 

reason as in section 3, the boundary conditions of the generated trajectory at the 

Via-Point Extraction 
Module 

f。t;古（匹）ー此Jt))dt

• Min 

Via-Point Assignment 
to Decrease the Above 
Trajectory Error 

Figure 4 

Minimum Torque-
Change Trajectory 

Via-Point Information 
(Position・Time) 

Trajectory 
Formation Modul 

I。`巳）2dt 

• Min 

Trajectory Generatio 
Based on Minimum 
Torque-Change 
Criterion 

Via-point estimation model. ~is the torque generated by thej-th actuator of 
M actuators, and 0 1 (t), 0~,a (t) are the position generated by the model 
and the position of the given trajectory of the}-th joint angle, respectively. り
is the movement time. 
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start and end point become 0. The velocity and acceleration constraints at the 

start and end point are set to 0. The velocity and acceleration at the via-point i 

are given by Eq. (6) and Eq. (7), respectively. 

(Step 4) By repeating Steps 2 and 3, a set of via-points is found. 

Finally, the via-points are fed to the trajectory formation module, and the trajectory 

based on the minimum torque change criterion is produced. The generated trajectory and 

the given trajectory are then compared again. If the value of the sum of the square error 

does not reach the threspold, the procedure above is repeated. 

The algorithm of the trajectory production in the via-point extraction procedure is 

almost the same as that in the FIRM. A difference between FIRM and the via-point 

extraction procedure is how to select the via-point. The FIRM select the via-point by 

minimization and the via-point extraction procedure select the via-point by maximization. 

The via-point estimation module minimizes the error between a given trajectory and a 

generated trajectory and the trajectory formation module minimizes the smoothness 

constraint. From this point of view, our proposed model, which minimizes the data term 

Eq. (10) and the smoothness term (11), is related to the standard regularization theory in 

computational vision (Poggio et al. 1985). 

l。tijt(ej (t)一已 (t))2 dt (10) 

I。り !.(~rdt (11) 

where 0 is the position of the j-th joint angle. H 
data 

owever, our model does not m1mm1ze 

the sum of the two terms simultaneously, but minimizes each term alternately. This 
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model does not find a global optimal solution but can find an approximated optimal 

solution with respect to the minimization of the performance index of the regularization 

theory. 

5. Performance of the via-point estimation algorithm 

In this section, we show that the via-point estimation algorithm can extract appropriate 

via-points by applying the algorithm to arm movement data. In the following simulation, 

we use the same mathematical dynamics equation as those in Uno, Kawato and Suzuki 

(1989) and the same physical parameter values as those in Kawato (1994) and Uno and 

Kawato (1994). 

The efficacy of the via-point estimation algorithm is confinned by reproducing human 

movement data with one via-point target. The start, final and via-point targets in the 

movement are designated to the subject (Figure 6). Two movements (T3->Pl->T5 and 

T3->P2->T5) are examined. The target points (start, via-point, final), the human 

movement data measured by the OPTOTRAK system and the estimated via-point are 

shown in Figure 6 (a). The solid lines show measured trajectories. Pl and P2 (open 

circles) show target via-points. The filled circles show the via-points estimated by the 

algorithm. It is clear in Figure 6 (a) that the estimated via-points are close to the target 

via-points and that the via-point estimation algorithm can accurately estimate a given via-

point in an actual hun:ian movement. 

Furthennore, the tangential velocity and the curvature in movement T3->P2->T5 are 

shown in Figure 6 (b) and (c), respectively. The estimated via-point is not located at a 

peak curvature, but is estimated at a point in the direction of the final point near the peak 
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Figure 6 
A result of via-point estimation in a movement with a via-point. Two 
movements (T3->Pl->T5 and T3->P2->T5) are examined. The symbol O 
and the solid lines show the target points and measured trajectories, 
respectively. Pl and P2 show target via-points. The symbol● shows the 
via-points estimated by the model. The estimated via-points were close to 
the target via-points. 
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curvature. Also, in the velocity curve, the estimated point is extracted at a point in the 

direction of the final point near the minimum of the velocity. Thus, the extracted via-

points do not exactly coincide with kinematically definable feature points with maximum 

curvature or m1mmum velocity. 

6. Performance of the handwriting model 

In this section, we discuss the via-points estimated from actual handwriting 

trajectories and the relation between the via-points and the tangential velocity profile, and 

the curvature profile. Figure 7 (a) and (d) show the measured cursive handwritten 

character, the estimated via-points and the regenerated character trajectory. In Figure 7, 

(b) and (e), and (c) and (f) show the tangential velocity profile and the curvature profile, 

respectively. The estimated via-points are classified into two groups. The via-points in 

one group are extracted at near the minimum points of the velocity profile or near the 

maximum points of the curvature profile. Let us call this class of via-points as kinematic 

feature points. The via-points of the other group are assigned to positions that are 

independent of the above points. Let us call this second class of via-points~s dynamic 

feature points. The via-points extracted from single via-point movements in the previous 

section are classified as kinematic feature points. Generally, the minimum of the velocity 

or the maximum of the curvature are considered to be the kinematic characteristics of the 

several orders of temporal derivatives of the movement trajectories. 

We confirmed that a given trajectory can not be reproduced by using only the 

kinematic feature via-points (Figure 8). This shows that the dynamic via-points are 

important. That is, by using a method based on the minimization principle, which is a 
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Figure 7 Estimated via-points in an example of cursive handwriting. 
Graphs (a), (b) and (c) show the trajectory, velocity profile and curvature 
profile for'abc'. The via-point estimation model extracts a via-point 
(segmentation point) between characters. 
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Figure 7 Estimated via-points in an example of cursive handwriting. 
Graphs (d), (e) and (f) show the trajectory, velocity profile and curvature 
profile for'def'. The via-point estimation model extracts a via-point 
(segmentation point) between characters. 

-24-



0.60 , .......... measured trajectory 
- trajectory generated by the model 

0.55~ @ via-point 

I I 

(minimum points of velocity) 

I s I 0.50 
~ 

0.45 

0.40 
-0.10 0.00 0.10 

X [m] 

(a) 

0.5 

I ― 

0.4 

0.3 

. .0 g ... 
0.2 

0.1 
~ r 

0.0 

゜
1 2 3 4 5 

Time [sec] 

(b) 

Figure 8 
A trajectory reproduced by using only the minimum of the velocity. 
Graphs (a) and (b) show the trajectory, velocity profile for'abc'. 
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quite different criterion from the minimum of the velocity or the maximum of the 

curvature, our proposed model can estimate points that can not be selected by any 

kinematic criterion. Moreover, the number of via-points is controllable by changing the 

regenerated trajectory error. 

Finally, we point out that the via-point estimation algorithm extracts via-points 

between characters, that is, segmentation points, which are important in handwritten 

character recognition. Based on these via-points, we have already succeeded in pattern 

recognition of handwritten connected characters without using a word dictionary Cv.f ada et 

al. 1994). 

7. Discussion 

Our proposed handwriting model is composed of via-point representation, the via-

point estimation algorithm, and the trajectory formation model based on the minimization 

principle. In experiments, good qualitative and quantitative agreement was found 

between human data and the trajectories generated by the model. Our model is unique in 

that the same optimization principle and hard constraints used for reaching movement are 

also used for cursive handwriting. Our representation is based on the minimization 

principle, and does not use a priori knowledge. Therefore, it is quite different from other 

models (Hollerbach 1981; Morasso and Mussa Ivaldi 1982; Edelman and Flash 1987). 

Furthermore, the actual via-points extracted by our proposed algorithm include the 

kinematic feature points used in Hollerbach (1981), Morasso and Mussa Ivaldi (1982), 

Edelman and Flash (1987). We demonstrated that features such as the minimum velocity 

point are important, but insufficient for reconstructing the trajectory if the same 
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optimization principle as the reaching movement is used. Edelman et al. (1990) extracted 

segmentation points (called anchor points) using their handwriting model (Edelman and 

Flash 1987). Their method of extracting anchor points is a practically derived method, 

and uses motor knowledge indirectly, which is quite different from what our proposed 

model does. 

Finally, we discuss the proposed model from a movement-pattern recognition point of 

view. Hoffman et al. (1993) and Rumelhart (1993) proposed a neural network 

recognition system, which established quite a good recognition rate for cursive 

handwritten characters, based on Hollerbach's handwriting model (Hollerbach 1981). 

Their models only make indirect use of the knowledge of motor control; that is, the 

feature inputs to the network are basically the vertical velocity zero crossing and the mid-

point between vertical velocity zero crossing points. Rumelhart also used several other 

feature points. The feature points that are fed to their recognition system are almost the 

same as the via-point extracted by our via-point estimation algorithm. However, in the 

oscillation theory, the mid-points are not assigned as features of handwritten characters. 

On the other hand, our via-point estimation algorithm can assign both the vertical velocity 

zero crossing and the mid-point. This indicates that our proposed via-point algorithm 

could be applied to a recognition model. In the accompanying paper (Wada et al., 1994), 

we further explore this possibility. 
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Appendix Mathematical consideration of the via-point 

estimation model 

In this appendix, we first mathematically show that a given trajectory is approximated 

by a trajectory generated using the extracted via-points with infinite accuracy 

(completeness). Second, we demonstrate that the number of extracted via-points for a 

given threshold is approximately the minimum (optimality). In (1), we prove that each 

trajectory passing through each via-point is orthogonal to each other. Then in (2), by 

using the orthogonal functions, we show that the Fourier series is complete. Finally, in 

(3) it is shown that the number of assigned via-points is approximately minimum. 

1 rtho onalit f a ra・ector assin throu h the via-oin 

The following discussion of orthogonality holds for each joint; however, the suffix 

denoting the joint is omitted. Mathematical relationship between the trajectories generated 

in Step 3 of the via-point extraction module is considered. Consider two trajectories 

among three generated trajectories Vs-VJ, 匹 V1-VJ,Vs-V2-V1 in Figure 5. The start time 

and final time of one trajectory are inside those of another trajectory. When a via-point V3 

is assigned between Vs and V2 and a via-point凶 isassigned between VJ and VJ, the 

trajectories Vs-V3吟 andV1-V4-V1do not overlap in time. Furthermore, trajectories that 

overlap in time, such as V3-V2-V1 or V2-VJ-V4, are never generated because the via-points 

extracted by the via-point estimation algorithm are always extracted between two via-

points that have already been assigned. 

By extending the above discussion, the orthogonality of all the generated trajectories 

f or a given data traJectory 1s shown. Here, r , i 2, f 3 , • • •, f are the jerk of the 

trajectories generated by Step 3 (see section 4). The relation between the start and final 
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point of trajectories i and} is classified into the following two cases: 

(a) Trajectories i andj do not overlap in time. 

(b) Trajectories i and j overlap in time. In this case, the start time or final time of 

trajectories i andj are the same, or the start and final times of trajectory i are included in 

the movement time of trajectory j. 

Case (a): 

It is clear in case (a) that Eq. (A.1) holds. (where t is motion duration.) 
f 

I。:/(y'、）（グ）枠
Case (b): 

＝ 

゜
(A .l) 

Here, t 
I 

o' f 
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Let 11 be an integral of the first term and h be an integral of the second term on the right-

hand side of (A.2). 
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Note that when the ann dynamics is approximated by a point mass dynamics equation 

such as (3), the optimal solution of the minimum torque change criterion is equivalent to 

the minimum jerk trajectory in the joint space and is represented as a 5th order 

polynomial. Thus, Eq. (A.5) holds. 
6 

d y_ 
J 

dt 
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(A .5) 
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2 en ral F urier . erie. ex an. ion of the tra・ector and com leteness. 

Next, we show that the compensatory trajectories generated in the via-point estimation 

algorithm constitute a complete set. Thus, the data trajectory can be expressed by the 

に
following equation. 

-= Ic. 柑．
i=l 

、、 (A .8) 

where 0 is the given trajectory and沿
data 

. represents a normahzed orthogonal funct10n of 

the compensatory trajectory尻.Also, an inner product of the function space is defined 

by the integral of the jerk as follows. 

(J ,g)三］。:,(『）（ぽylt

(r j , r j) llri r ＝ J。:,(尻）2 dt ＝ 『/(y、)2 dt 
i。
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c; represents a Fourier coefficient and is defined by the following equation. 

C i = (e data'<p i) (A .9) 

Suppose that there are n via-points and compensatory trajectories cp i (i = l ,•·,n) 

produced by using the via-points. The following partial sum of the series is defined. 

0 sub 三 a1cp1 + a2侶+a3cp3 + ... + a,.<p,. 

The following L2 error is considered. 
2 

J = f。:,(e・data ーに） dt 

(A.10) 

(A.11) 

J gives the m1mmum square error at a. = c.. Thus, supposing a. = c., the following 

inequality is given by J~0. 

ll0da,a r ~ c叶＋ 叶＋ 叶＋・・・+C: ) 
0 data is the given trajectory and 110 data 112 is the square norm of the jerk. Thus, this is the 

(A.12) 

upper bound. Therefore, it is clear that the infinite series Ic. converges. Thus, c 
i=I 

converges to 0. 

Also, the square of the Fourier coefficient is represented as (A.13), which is the 

integral of the square of the compensatory trajectory jerk. 

C: = r 1 ('..)2 t; 2 

゜
y i dt = f / (兄） dt (A.13) 

The following equation is the result of the integral of the square of the jerk c. calculated 
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Furthermore, it is found that the second component of the right-hand side of (A.14) is 
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positive and lower bounded. Because c → 0 as n becomes sufficiently large, { 80 2 n } 

becomes also sufficiently small. Furthermore, from the definition of t the following 
via 

holds. 

I edata (t) -{rl (t) + Y2 (t) + ... +い (t)}I 

~I 0 data < <a) -{ r 1 < <a) + r 2 <心）十...+ Y,. ーl(t:a)}I

= I 80,. I < t: (A .15) 

where O < t < t 
f 

That is, Eq. (A.16) holds for arbitrary t (0 < t < t). 

le 血• (I) —苫、¢、(,) I < e f 

n-1 

(A.16) 

Therefore, the partial series Ic. <p. (t) unifonnly converges to the given trajectory 
i=l 

0 data (t) (uniform convergence). 

Next, J defined by (A.11) is estimated. The continuity of 0 sub is shown first. It is 

shown by straightforward calculation that the 3rd and 4th time derivatives of y. are 

continuous when r; is produced by the velocity Eq. (6) and the acceleration Eq. (7). It 

is also clear that the 5th time derivatives of r i is discontinuous at the estimated via-point 

time. Suppose that the 6th time derivatives of the given data trajectory exists and is 

continuous. The velocity and acceleration of 0 and 0 at the start time and final time data sub 

are equal to O and the position of 0 and 0 are the same. Then, since 0 is a 5th data sub sub 

polynomial in time, the 6th time derivatives of 0 is equal to 0. Accordingly, because 
sub 

. d60 
of the contmmty of 0 0 and 

sub 

data sub 
, J is given by (A.17) when J is divided into 

dt 

piecewise continuous parts in 5th derivative of y. and is calculated by repeating the 

integration by parts and by using continuous conditions. 

d60 

J = -J。:I (0 dataール） ta dt 
dt 
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ぷ0
data 

As a critical step, let us assume that satisfies the Lipshitz condition in 
dt 

0 ::; t ::; t . That is, the Lipshitz constant L exists. From the discussion of the 

uniform convergence in (A.16), the following equation holds for a small value 8 when n 

is large. 

I 0 data - 0 sub I~D 
Thus, we can obtain the next inequality from Land (A.18). 

・d6  0 I。;,(e血ta ーに） 6血ra dt :S: L・8・t 1 
dt 

(A .18) 

(A.19) 

L and t are constant values when e is given. Therefore, it is possible that a 
J data 

sufficiently small o is obtained when n becomes large, producing the following equation. 

〇::;;J。:I (e・data ーら） dt ::;; E' (A .20) 

Now, we can say that the normalized orthogonal function見iscomplete. That is, it is 

shown that the Fourier series generated by the proposed algorithm is complete, and the 

given trajectory can be reproduced to an arbitrarily specified degree of closeness by using 

a sufficient number of via-points. For simplicity, a one-joint system was treated here; 

however, the same discussion can be applied to a multi-joint system and Eq. (A.18) will 

hold for the sum of the joints. 

(3) The optimality of the nt1mber of via-points 

We show in this section that our algorithm not only selects the complete orthogonal 

function, but also, by using a finite number of via-points, our method of estimating the 

via-points yields close to the smallest error. 
m 

Assume l via-pomts produced the compensatory trajectory cp i (i = l ,-・ ・, l). The 

following partial sum of the series is then defined, where m (m = 1, ・・・,M) shows the 
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c, 例 (A .21) 

The square of the error between the given trajectory jerk and the generated trajectory jerk 

is computed in the same manner as in (A.11). 

旦I。:I (四ta)2 dt - [ (C lm r ＋
 
（り）2 ＋

 
(c; r + ... +(パ）2 ]}  (A .22) 

The first term inside the {} in (A.22) is constant when the trajectory is given. Therefore, 

to approximate the jerk of 0 by a rather small number of orthogonal functions, it is data 

critical that the second term in (A.22) be maximized, where, (ご）2 is defined in the 

same manner as in (A.13). Accordingly, this requires that the sum of the integral of the 

square of each compensatory trajectory jerk be maximized when a via-point is extracted. 

However, it is quite difficult to find an optimal solution without information about the 

number of via-points l because the number of combinations of the number of via-points 

and the positions of the via-points is infinite. Our algorithm uses a sequential procedure 

to extract the via-points and finds an approximated solution by maximizing the square of 

the integral of the jerk by extracting every via-point. 

By calculating the square of the integral of the jerk using the estimated via-point 

velocity Eq. (6) and acceleration Eq. (7), Eq. (A.23) is given as a function of via-point 

ume t .. 
via 

ヽ
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i
 

i
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t
 

（
 

J
 

M 

＝ミ)cim(tし））2 ＝ 因｛…釘 (tし）r[f 
via 

+ t~ ~,:、"r} (A.23) 

where 80「isdefined by the following equation, that is, a residual trajectory for the 

partial sum of series. 

釘（心）=0こ(tし）ー｛汀（［し）＋汀 (tし）＋．．．＋乙 (tし）｝
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Below we show that the via-point time t that maximizes the sum of the square of the 
via 

I 
. M 2 

residual trajectory互釘 (ti.)} is an approximated solution that maximizes Eq. 
v,a 

! 

(A.23). The following equation can be derived by differentiating Eq. (A.23) with respect 

to <a・ 
di 
ーマ~

dt 
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+ 50釘 (t し）［り~<.. -t ll (A.24) 

The right-hand side of (A.24) becomes O when the following equation holds. 

i{ 200; (tし）d80 ,"d:tし）十 s{o0;・(1し）r[り一It'.、a ー：J }=0 (A .25) 

Eq. (A.25) becomes O when the first term becomes O and the via-point is located at the 
M 

mid-point of the motion duration. Also, the time that maximizes I { 8釘(t'. is 
v,a 

） 
m=I 

｝ 

equivalent to the time when the first term on the left-hand side of (A.25) is equal to 0. 

One method of finding a good approximation of the solution to (A.25) is to search for the 
• • • M . 2 

pomt that・max1m1zes m~l { 80 im (心）｝ around the mid-point of the motion duration. 

In several movements, we confirmed by numerical computation that the maximum point 

of (A.23) and the maximum point of the sum of the square of the residual trajectories are 

almost the same. Accordingly, it is shown that our proposed model can extract an almost 

optimal number of via-points to approximate the given trajectory jerk with a finite number 

of orthogonal functions. Thus, we can say that the via-point estimation model can 

estimate the smallest number of via-points required to reproduce a character. 
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