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1 . Introduction 

The auditory system uses differences that occur in the harmonic 

structure of concurrent sounds, such as speech, to separate them. This is 

one aspect of what is known as the "cocktail-party effect". 

Several models have been proposed to explain how this is done (see de 

Cheveigne 1993 for a review). They usually assume that signals to be 

separated are purely harmonic. Psychoacoustic and physiological 

experiments designed to test them likewise employ such stimuli. However 

real speech is often very imperfectly harmonic, and it is not clear how well 

the models will work in that case. 

In order to determine how well a model can perform its task on "real" 

speech, I implemented its basic processing scheme as a front-end to a speech 

recognition system and measured the effect on the rates in a recognition 

task. To the extent that this processing reflects that of the perception model, 

and that the task is typical of the perception of speech in "real" situations, 

the results should give some indication of the plausibility of the model. 

It is stressed that the aim is四 1to develop a speech separation system. 

The results might however be of some use in designing such a system. I 

also do not wish to reproduce quantitatively the recognition rates obtained 

in psychoacoustic experiments. To do so would require postulating many 

details of the physiological implementation, and thus obscuring the 

essential features of the model. Instead, I wish to find out if its processing 

principle, implemented in some form, can be effective in tasks typical of the 

"real world". 

1.1. A physiological model of time-domain cancellation 

Various schemes for harmonic sound separation have been proposed, 

both as perception models and signal processing methods. Most of them 

assume some form of frequency analysis, but it is also possible to imagine 

harmonic sound separation in the time domain, for example using the 

neural equivalent of a time-domain comb-filter (de Cheveigne, 1993). Fig. 1 

shows such a filter applied to one channel (group of fibers with similar 

characteristics) of the auditory-nerve. The characteristics of the gating 

neuron are such that it lets pass every spike that arrives along the direct 

path, unless a spike arrives simultaneously along the delayed path. 

Simulation of this filter with data recorded in the guinea-pig auditory-nerve 

shows that such processing can be effective in separating the correlates of 

each individual vowel from the neural response to a mixture of the two. 
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An array of such filters, all tuned to the same lag, might process the 

entire auditory-nerve response pattern. The effect of the neural filter is 

similar (though not equivalent) to that of a time-domain comb-filter 

operating on a linear representation. If we model it in this way, and neglect 

other sources of non-linearity, we can invert the order of the filtering and 

replace the array of filters with a single filter preceding cochlear filtering and 

operating on a linear representation of the signal (Fig. 2). We can consider 

that this simple comb-filter represents (at a certain level of abstraction) the 

time-domain mechanism of our physiological model. 

cochlea 
inhibitory 

synapse 

delay line 

0-
gating neuron 

Fig. 1. Neural filter for harmonic sound cancellation_. The delay is 

adjusted to equal the period of the interference. Any spike preceded by 

another spike at that delay is eliminated from the spike train. 

delay line 

cochlear 

filter bank 

Fig. 2. Equivalent model operating on a linear representation of sound. 
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The effect of a cancellation-type comb filter is easy to understand in the 

time-domain. If the period of an interfering signal equals the lag (delay) 

parameter of the filter, it is in effect subtracted from itself and the output is 

zero. It can be also understood in the frequency domain by remarking that 

the comb filter has a series of zeros equally spaced at multiples of the 

inverse of the lag parameter (Fig. 3). If the components of the interference 

coincide with that series, then it is canceled. 
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Fig. 3. Transfer function of a comb filter of impulse response 
h(t) = (o(t) -o(t-L)) /2, with L = 1 ms. 

1.2. Questions 

As other models, this model assumes that speech is perfectly periodic, 

and it is thus not certain how well it can cope with the aperiodicity of real 

speech. If the interference is not perfectly periodic, it won't be perfectly 

canceled. In addition, filtering may cancel useful information within the 

target signal. 

In this work, I examine the following questions: 

1) Is time-domain cancellation effective applied to real speech, and to 

what extent ? 

2) What are the relative impacts of the two factors that limit 

effectiveness: interference cancelation residue and spectral distortion of the 

target? 

3) Is it possible reduce the effects of spectral distortion by applying 

similar distortion to reference templates? 

4) Is time-domain processing better, in some sense, than frequency-

domain processing? 

5) Is harmonic cancellation of interference better, in some sense, than 

harmonic enhancement of the target? 
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I also investigate several other issues, such as resolution of 

fundamental frequency resolution, and the choice of feature format (linear 

spectrum vs log spectrum or cepstrum). 

2. Metho'ds 

2.1. Principle 

The effects of interference and interference reduction processing were 

assessed by measuring their effects on the recognition scores of a speech 

recognition system. 

2.2. Recognition task and method 

The task was to recognize words belonging to a set of 100, by 

comparison with reference templates. The speech recognizer used DTW 

pattern-matching between arrays of feature vectors, using standard 

Euclidian distance. Features were based on 128 coefficient linear magnitude 

spectra calculated using a 256-point Hanning-window at a 128 sample frame-

rate. Each 128 coefficient spectrum was condensed to a 16 coefficient vector 

by averaging sa~ples 8 by 8. 

The results presented here are essentially based on this representation, 

but others were also tried, in particular a 16-coefficient FFT cepstrum with 

"Tohkura weighting" (Tohkura 1987). 

2.3. Target, reference, and interference database 

The database consisted of one hundred short Japanese words taken 

from the ATR database (Kuwabara et al. 1989). Speech data were sampled at 

12 kHz, 16 bits resolution. "Silent" portions were eliminated, based on 

labels. The same word set was used for targets and for reference templates, 

and also as interference. 

Each target word was paired with another word from the word set 

chosen at random. Each word of the set served exactly once as target and 

once as interference. Words were of similar duration and started together, 

and the degree of overlap of their signals was therefore high. The 

componenお wereadded at signal-to-noise ratios (SNR) of 6, 0, -6 and 12 dB. 

SNR was defined globally and implemented by applying a fixed factor to 

either component in a pair. No attempt was made to control the SNR 

within each individual pair. Fig. 4 shows the long-term spectrum common 

to both target and interference. 
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Fig. 4. Long-term spectrum of speech in database. 

Target and interference were each voiced for 56% of all frames, and 

together for 41 % of all frames. Fig. 5 shows the FO histogram common to 

both target and interference speech. The distribution is relatively narrow, as 

reflected by the histogram of frame-by-frame FO differences (Fig. 6). A large 

number of frames have a small FO difference, making the task of separating 

them on the basis of FO difference relatively difficult. Perceptual 

experiments suggest that a difference in FO can be fully exploited to improve 

recognition as long as it is larger than 3 %. Such is the case of 75% of the 

frames for which both target and interference are voiced. 
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Fig. 5. Histogram of fundamental periods in database. 
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Fig. 6. Histogram of differences between FOs of target and interference. 
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2.4. FO estimation 

Pitch estimation used a standard AMDF (Average Magnitude 

Difference Function) algorithm. Details can be found in de Cheveigne 

(1993). In brief, the algorithm searches for an absolute minimum in the 

output magnitude of a comb filter (averaged over a time window). The 

period is taken to be the value of the lag (delay) parameter at the minimum: 

it is at this value that the input signal has been most effectively cancelled. 

The method is therefore appropriate for estimating FO for cancellation 

purposes. The definition of the AMDF is: 

N/2-1 

AMDF(i,k)= L, に—si+m+kl
m=-N/2 

where i is the analysis index and l the lag. In order to amplitude-

normalize the tunction, eliminate the zero at zero lag, and attenuate 

spurious dips at short lags, the value at each lag was divided by the mean of 

values for shorter lags: 

AMDF'(i,k) = AMDF(i,ky(l/ k)±AMDF(i,m) 
m=l 

The depth of the period dip in this function is the basis for a 

"periodicity measure" defined as: 

PM = -Iog2(AMDF'(T)) 

This measure gives an indication of the reliability of period estimation; 

it is large (2 to 6) where the speech signal is voiced and steady-state, and 

small during unvoiced parts and transitions. 

The definition of lag used here corresponds to positive shifts of the 

signal index (the same convention is used later on for comb-filtering). FO 

estimates are time-aligned to correspond with the middle of the analysis 

window. 

To increase the resolution of FO estimation, the signal was upsampled 

4 times by linear interpolation, and low-pass filtered by convolution with a 

1 ms square window. Integration window size N was 1600 samples (33.3 

ms). The search range for the fundamental period corresponded to an FO 

range of 60 to 300 Hz. Period estimates were produced at a frame rate of 2.5 

ms, and expressed in terms of samples of the original sampling rate (12 

kHz). All other processing was performed at the original sampling rate. 
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When the periodicity measure fell below 1.0 the speech was considered 

unvoiced and the period estimate was gated to zero. No other smoothing or 

error correction processing was used. Estimates were obtained from speech 

before mixing: no attempt was made to obtain them from mixed speech (see 

de Cheveigne 1993 for a discussion of this problem). 

2.5. The time-domain cancellation comb-filter 

The comb filter was implemented as. a simple subtraction on the time-

domain signal: 

s~= (s昂 -s.. +1)/2 

The lag parameter I was typically controlled by the FO of the interfering 

voice. In the case of fractional FO estimates, adjacent signal samples were 

interpolated. During non-voiced portions no filtering was applied; the 

onset and offset of filtering were smoothed by applying a raised-cosine ramp 

with a duration of 4.2 ms. 

2.6. Filtering prior to mixing 

The steps of addition and comb-filtering are both linear, and can 

therefore be swapped. Target and interference were therefore comb-filtered 

before mixing, with the same filter. This allows us to investigate separately 

the two factors that limit the effectiveness of voice cancellation: interference 

cancellation residue, and spectral distortion of the target. 

2.7. Significance level of results 

Formal significance tests were not done. However based on the criteria 

of the McNemar test (Gillick and Cox, 1989), one can give an upper limit of 

significance of individual differences. Individual differences of 5 words (5 

%) or less fail to meet the 5 % significance criterion. Differences of 6 words 

or more may or may not meet this criterion, according to how the errors are 

distributed. Given the distribution trends observed, the main results (Fig. 

16, 17) at least are statistically significant. 

3. Factors that limit the effectiveness of voice cancellation 

3.1. . Interference cancellahon residue 

The residue is whatever is left over from the interference signal after 

filtering. If the interference were perfectly periodic, this residue would be 

zero. In practice, periodicity is rather imperfect, even within voiced 

sections, and a considerable amount of energy belonging to the interference 

is still present at the output. The input/ output characteristics are detailed in 
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Fig. 7 for the interference signal (period equal to filter lag), and the target 

(period unrelated to filter lag). 

The interference is a廿enuatedmost in the lower frequency region. The 

target is also slightly affected, which is understandable because target and 

interference have FOs that are close. Filtering gives the target a 6-7dB 

advantage within the 0-1.3 KHz range where most of the energy is 

concentrated (Fig. 4). This advantage tapers off to 2 dB at higher frequencies. 

During clean voiced portions of the interference the rejection ratio may 

locally be much greater. The interference residue is the inevitable 

consequence of the imperfect periodicity of speech. 
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Fig. 7. Long-term spectrum rejection ratio of a comb filter tuned to the 
period of the interfering speech. 
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3.2. Spectral distortion of target. 

The cancellation process inevitably also affects the target. Target 

components that happen to fall within the harmonic series of the 

interference are: canceled, others may be attenuated. In the extreme case 

when the FO of the target is equal to that of the interference or a multiple, 

the target is eliminated together with the interference. In the general case, 

the distortion can be described as an interference (moire) pattern between 

the harmonic series of the target and the comb-filter frequency response. 

The transfer function of the comb filter has an infinity of zeros equally 

spaced at multiples of the inverse of the lag parameter: 

IH (f)I = lsin(2虚）I
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Interaction with the target line spectrum is best illustrated by 

supposing that the target has a flat envelope (Fig. 8). The result of the 

interaction is illustrated in Fig. 9. 

゜
200 400 600 800 1000 

Hz 

Fig. 8. Linear magnitude spectrum of target and transfer function of 
comb filter. Period of target and lag of filter are 102 and 96 samples 
respectively. 

゜
1000 2000 3000 

Hz 

4000 5000 6000 

Fig. 9. Linear magnitude spectrum of output of comb filter. 

The output spectrum is the input spectrum multiplied by a function: 

jH (f)! = lsin(2司T-Ll)I

that is identical in shape to the transfer function of filter of lag L'= IT-

LI. This trans~er function has zeros at multiples of 1/ IT-LI. The spectral 

distortion of the;target can thus be described as the effect of comb-filtering at 

a "difference lag" that depends on fundamental periods of both target and 

masker. 

The distortion can also be represented in the cepstral domain, where 

multiplication is represented by addition. The cepstrurn of a cancellation-

type comb filter of impulse response 

h(n) = 8(n)...:. 8(n -N) 

is (Rabiner and Schafer 1978): 
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p(n) =一(l/2)L,
、-8(n-rN) 

r=I r 

The cepstrum representing the effect of comb-filtering a periodic signal 

with a lag that differs by 6 samples is plotted in Fig. 10. It shows peaks at 

multiples of the difference lag. 
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Fig. 10. Short-time portion of cepstrurn representing the effect of comb-
filtering a periodic signal. 

This analysis assumes that the target is perfectly periodic, which is real 

speech is not. In particular, the shape of the spectral distortion is very 

sensitive to the width of the components of the spectrum. Simulation with 

real speech shows that actual distortion can depart considerably from this 

description. 

4. Results 

4.1. Recognition rate as a function of SNR. 

The effect of adding interference to the target speech is shown in Fig. 

14. With no interference (SNR = 00) the rate is 100% which is as expected, as 

the task of matching words to templates belonging to the same set is trivial. 

Likewise when there is no signal (SNR = -00) the recognizer is guaranteed to 
fail and the rate is thus 0%. At intermediate SNR the rates are relatively 

low, which is natural since interference signals belong to the same set as the 

target and are in therefore in direct competition. At an SNR of O dB the rate 

is less than 40 %. These rates constitute a baseline from which eventual 

improvements can be measured. 

10 



100 

80 

~ 
.5 60 

2 40 
~ 

20 

゜10 5
 ゜

-5 -10 -1 5 

dB SNR 

Fig 14. Recognition rate as a function of SNR for target mixed with 
interference. 

4.2. Effect of the interference residue. 

Here, the interference was canceled by a comb filter tuned to its period 

before mixing with the target. The target was thus unaffected by spectral 

distortion. This allows us to assess the effects of interference cancellation 

residue by itself. At each SNR level the residue was added with the same 

weight as in the uncanceled case (actual SNR was therefore higher than 

nominal SNR). 
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Fig. 15. Recognition rate as a function of SNR of target speech mixed 
with interference cancellation residue. 

The distance from the 100 % line reflects the effect of the interference 

residue on recognition. It is of course greater at low SNR. The distance 

from the lower dotted line shows the effect of filtering the interference, 

about equivalent to reducing its level by 12 dB. This is more than one 
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would expect based on Fig. 7. That we observe a greater difference here is 

probably due to1 the fact that1 in addition to reducing the amplitude of the 

interference1 comb filtering also distorts it and makes it less apt to compete 

with the target for recognition. 

4.3. Effect of spectral distortion of the target 

The experiment was repeated applying comb filtering to both 

components. Comparison with the previous case allows us to measure of 

the effect of spectral distortion. 
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Fig. 16. Recognition rate as a function of SNR for comb-filtered mixed 
speech (filtered target + residue of interference cancellation). 

Compared with no filtering, comb-filtering allows a clear increase in 

recognition rate at low SNR. At high SNR this increase is smaller, as the 

distortion introduced by the filter overcomes the benefit of interference 

reduction. At infinite SNR, spectral distortion does not affect the 

recognition rate, but this is most certainly due to a ceiling effect. 

Spectral distortion has its greatest impact at high SNR, where it 

eliminates much: of the benefit of filtering. This is a major problem for the 

design of a practical system, as such a system would probably only be of use 

when its performance is relatively reliable, ie at high SNR. Unfortunately 

the penalty of spectral distortion then outweighs any benefit of noise 

reduction. 

4.4. Reference template adjustment 

Spectral distortion disturbs recognition because the distorted targets 

don't match the templates so wen. This suggests a scheme for reducing the 

effects of the distortion: distort the templates too, before matching. For this 
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we must know precisely the spectral distortion that affects the target. The 

analysis of sectiqn 3.2 suggests a way to estimate this distortion, knowing the 

fundamental frequencies of both target and interference. 

Template adjustment was implemented in the frequency domain by 

multiplying the reference template spectral features by the transfer function 

of a comb filter・tuned to the difference between the periods of target and 

interference. The result is presented in Fig. 17. 
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Fig. 17. Recognition rate as a function of SNR. The line with markers 
is for comb-filtered mixed speech with reference template adjustment. 

At low SNR there is little benefit, but at high SNR template 

adjustment allows us to regain much of what was lost to spectral distortion. 

If this result is confirmed for more realistic tasks and more mainstream 

recognition techniques, the scheme might be of practical use for noise 

reduction in speech recognition systems. 

4.5. Frequency'. vs time-domain processing. 

Most other; published schemes for voice separation work in the 

frequency doma1n. Time-domain processing has several advantages: the 

processing filter can be short, and it can adapt quickly to changes in the FO of 

the interference. On the other hand frequency-domain filtering is more 

"predictable" in terms of spectral distortion. Fig. 18 shows the rates obtained 

when the time-domain cancellation filter is replace by the "equivalent" 

frequency domain comb filter, based on the mean period value within the 

analysis frame. 
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Fig. 18. Recognition rates as a function of SNR Lines with marks are 
for frequency-domain cancellation. Lines without marks are for time-
domain cancellation (same as data in Fig 17). Upper lines are with 
template adjustment, lower lines are without. 

The differences in rate are too small for reliable interpretation. The 

most one can say is that they do not contradict our interpretation that time 

domain processing may be more effective for cancellation, but that spectral 

distortion produced by frequency-domain processing is more accurately 

represented in the matched distortion applied to reference templates. 

A fair comparison of time-domain and frequency-domain processing 

would require implementing the more sophisticated techniques that have 

been proposed in the literature (for example Parsons 1976). 

4.6. Enhancement vs cancellation. 

In principleし， onecan just as well enhance a harmonic target as cancel 

harmonic interference. Each strategy has advantages and disadvantages, as 

listed below: 
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Cancellation: 

• Works whatever the target 

(vowels, consonants, etc.) but the 

interference must be harmonic. 

• FO of interference can be better 

estimated when SNR is low, so 

cancellation is easier in this case. 

• Cancellation causes spectral 

distortion of the target. 

• Cancellation can be implemented 

with a filter with a very short 

impulse response. 

Enhancement: 

• Works whatever the interference, 

but the target must be harmonic 

(only voiced parts can be enhanced). 

• FO of target can be better estimated 

when SNR is high, so enhancement 

is easier. But speech separation is 

less necessary in this case. 

• Enhancement does not cause 

spectral distortion (if the target is 

perfect! y harmonic). 

• Effective enhancement requires a 

filter with a long impulse response 

(maybe impractical because speech 

m non-stationary). 

Some of these arguments depend on the harmonicity and stationarity 

of target and/ or interference, and it is difficult to predict how they apply to 

real speech. I therefore compared the two using our speech recognition 

paradigm. Enhancement can for example be implemented with a comb filter 

defined by the following impulse response: 

N-1 

h(t) = c11 N) Lo(t-kL) 
l:=0 

This consists of N "prongs" equally spaced at intervals of the lag 

parameter L, which is adjusted to the period of the signal to be enhanced. In 

theory, the ratio of enhancement of the target is equal to the number of 

prongs. A high ratio therefore requires a long impulse response, which may 

then be less effective due to the non-stationarity of the target. The practical 

enhancement ratio (output SNR for a O dB input SNR) for the database is 

plotted in Fig. 19: 
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Fig. 19. Enhancement ratio as a function of the number of "prongs" in 
the impulse response of the enhancement filter. The dotted line 
shows the ratio attained by a cancellation filter. 

Enhancement is at its maximum for a 3-pronged filter. Adding prongs 

makes the filter less effective. The ratio is far from its theoretical value (6 

dB for 2 prongs), and from the ratio attainable using cancellation. Adding 

prongs also increases spectral distortion (which should in theory be zero for 

enhancement). This can be quantified by defining a measure of spectral 

distortion, based on the spectral feature vectors before (f) and after (f') 

processing: 

噂 (I,-加喜）'"
The spectral distortion measure is plotted in Fig. 20. It remains less 

than that caused by cancelation until the filter is 8 prongs in length. 
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Fig. 20. Spectral distortion as a function of the number of "prongs" in 
the impulse response of the enhancement filter. The dotted line 
shows the spectral distortion produced by a cancellation filter. 

The recognition rates are plotted in Fig. 21. At most SNR levels a 3-

prong filter gives the best rates, which remain far below those attained by 

the cancellation filter (with template adjustment). Enhancement is clearly 

less effective than cancellation for this task. 
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Fig. 21. Recognition rate as a function of the number of "prongs" in the 
impulse response of the enhancement filter. The rates for N=l are the 
same as for no filtering. 

Cascaded cancellation and enhancement filters provide the best 

rejection ratio, and a distortion ratio below that of cancellation alone, but 

the recognition rates are nevertheless less good than for cancellation alone 

(not shown). 

4.7. The effect of FO mistuning. 

It is interesting to know how the accuracy of FO estimation affects the 

effectiveness of filtering. To investigate this question, I systematically 

mistuned the FO estimates used for comb filtering. The effect on rejection 

ratio is shown in Fig 22. Mistuning has little effect on spectral distortion. 
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Fig. 22. RMS rejection ratio as a function of FO mistuning. 

Recognition rate as a function of mistuning is shown in Fig. 23. The 

rates level off after 4 samples (approximately 4 %). This means for example 

that, to cancel interference effectively, a system must estimate FO with an 

accuracy better than 4 %. Also shown is the rate when the resolution of FO 

estimation is limited to 1 sample, rather than the 1 / 4 sample resolution 

obtained by upsampling. 
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Fig. 23. Recognition rate as a function of FO mistuning, for different 
signal-to-no!se ratios. 
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It is interesting to compare the tuning of the cancellation filter with the 

tuning of rates measured in psychoacoustic "double-vowel" experiments. 

Fig. 24 shows the rates of recognition of synthetic vowels by human subjects, 

obtained by Culling and Darwin (1993). The rates are for individual vowels 

in a mixture, as ,calculated by taking the square root of the published "both-

correct" rates. These experiments and theirs are of course for the most part 

incomparable, but it is interesting to note that the levelling off of 

recognition rate as a function of mistuning occurs in a similar region. 
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Fig. 24. Rate of recognition of synthetic vowels in a pair, by human 
subjects, as a function of difference in FO. 

4.7. Cepstrum vs spectrum. 

The experiment was repeated using a 16-point cepstrurn representation 

with Tohkura-weighting, instead of the 16-point linear magnitude spectrum 

representation. 

The cepstrurn representation appeared to be less sensitive to 

interference, as evident in Fig 25. The effect of filtering is also smaller, 

equivalent to 2 to 3 dB increase in SNR, as opposed to 9 dB for the linear 

spectrum representation. The rates obtained after filtering are thus less 

good. Template adjustment was implemented in the spectral domain 

(before calculation of the cepstrum) and also in the cepstral domain as either 

a filter (subtracting the ideal comb-filter cepstrum) or a lifter (setting to zero, 

in the target and reference cepstra, the coefficients for which the comb-filter 

cepstrum is non-zero, fig 26). The effect of template adjustment was very 

small (not shown). 

19 



~ 
C: 

苔... 

100 

80 

60 

40 

20 

0ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・_・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・::,-
I I I 

10 5 

゜
-5 -1 0 -1 5 

dB SNR 

Fig. 25. Recognition rate using cepstral coefficients, as a function of 
signal to noise ratio. 
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Fig. 26. Top: lifter used to mask distorted cepstral portion of both target 
and reference. Bottom: cepstrum representing ideal distortion. 

Similar results were found when log spectrum coefficients were used. 

The discrepancy with the linear representation can be interpreted by saying 

that the linear representation puts a strong weight on the portions of the 

pattern that have a strong amplitude. Since amplitude correlates with 

voicing, it gives a strong weight to portions where the harmonic separation 

schemes are effective. On the other hand the cepstrum and log-spectrum 

representations give an equal weight to low and high amplitude portions, 

and thus dilute the effects of harmonic separation. Which representation is 
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most appropriate in applications that require speech separation is a question 

that needs to be ,investigated. 

4.8. Some Things it Would be Nice to Try. 

1) A better database. This one is too small. Reference words and target 

words are identical, so the recognizer may use cues that are particular and 

unreliable. The、FOshave a too narrow distribution. 

2) Data representation based on cepstrurn features weighted by energy 

(or some power of energy, for example 1/2). This would allow us to test our 

interpretation of the discrepancy between linear spectrum and cepstrum 

coefficients, and possibly combine the advantages of both. 

3) Low-pass filtering. Fig. 7 suggests that cancellation is more effective 

at low frequency, so restricting the features to that portion may prove 

effective. 

4) Formal tests of the significance of results. 

5. Conclusions 

The experiments brought relatively clear answers to the questions we 

formulated, but may not be clear at this stage which are pertinent for 

perception models, and which for speech processing. 

The conclusions one can draw concerning perceptual models of 

harmonic sound separation are: 

1) Time-domain processing is effective for interference reduction, even 

given signals with imperfect periodicity such as speech. Before extending 

this conclusion . to a neural model such as proposed in 1.1, one must 

however investigate in detail how processing effectiveness might be affected 

by differences in signal representation (neural vs linear) and processing. 

2) In a task where harmonic enhancement and harmonic cancellation 

were both a priori possible, enhancement was much less effective than 

cancellation. rt'is likely that this conclusion is valid also for auditory 

processing in similar conditions. 

3) Knowledge of the distortion caused by filtering can be used to reduce 

the effects of distortion on pattern matching. Another way of formulating 

the process of filtering-plus-template adjustment is to say that the system 

puts zero weight on the portions of the spectrum that contain information 

that it cannot attribute with certainty to the target. Such a strategy might 

also be at work in the auditory system. Non-uniform weighting of 

information can :be applied along other dimensions as well, such as time. 

This suggests an explanation of CMR effects: knowledge of the interference, 
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gained from monitoring the amplitude of off-signal channels, is used to 

apply a non-uniform weight to on-signal channels. In effect, the auditory 

system listens for the signal in valleys of the masker. 

The conclusions that one can draw concerning processing schemes for 

voice separation are: 

1) Time-domain comb-filtering is effective for reducing the effects of an 

interfering voice on speech recognition. Some evidence was found to the 

effect that it is better than frequency-domain processing because it can cope 

more easily with non-stationarity, but comparisons must be made with 

more sophisticated schemes before firm conclusions are drawn. One can 

argue that time-domain processing makes full use of the harmonic 

structure: to go beyond requires other assumptions, such as continuity in 

the timbre domain, etc .. 

2) The effects of spectral distortion can be reduced by adjusting the 

reference features to match the distortion of the target features. This boosts 

performance in the high-SNR region important for applications. 

3) Less clear results were obtained when cepstrum features were used. 

This question requires further examination, as cepstrum or log spectrum 

features are more often used for speech recognition than linear spectrum 

features. 

4) Harmonic cancellation requires that the FO of the interference be 

estimated with an accuracy of at least 4%. The template adjustment scheme 

requires knowledge of the FO of both target and interference. 
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