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Abstract 
We investigate experimentally the dynamic behaviors of an oscillatory neu-

ral network. Computer simulations show an interesting characteristic: the au-
tonomous generation of a limit cycle near a memory (memory retrieval with am-
biguous fluctuation) for an input near a memory, and of a chaotic orbit among 
memories (autonomous search) for an input far from memories. We also analyze 
theoretically a few restricted behaviors near a memory. 
This type of neural network can treat spatiotemporal pattern processing in the 
brain. As an example of dynamic information processing, it is shown that contin-
uously transformed pattern cycles for three J apanease characters are embedded 
in the limit cycles of the oscillatory neural network by a learning method. The 
existence in the brain of a continuously transforme~patte~n operation for a char-
acter is also discussed from the cognitive psychological pomt of view. 
The characteristic behavior of limit cycle or chaos according to an input in our 
oscillatory neural network may be useful for developing a dynamic information 
processing mechanism for a spatiotemporal pattern in the brain. 

Keywords-Oscillatory neural network, Dynamic information processing, Spatiotemporal pattern, 
Limit cycle near a memory, Chaotic orbit among memories, Continuous transformation, Learning 
of recurrent network 

*This paper is submitted to Journal of Neural Networks, Pergamon Press. 
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1 INTRODUCTION 

This paper investigates the dynamic behaviors of an oscillatory neural network, mainly through 
computer simulations. We show an interesting characteristic: the autonomous generation of a limit 

cycle for an input near a memory, and of a chaotic orbit among memories for an input far from 
memories. We also analyze theoretically a few restricted behaviors near a memory. 

This type of neural network can treat spatiotemporal pattern processing in the brain. As an 
example, it is shown that continuously transformed character patterns are embedded in the limit 
cycles of the oscillatory neural network by a learning method. 

As a motivation of this paper from physiology, oscillatory phenomena have recently been ob-
served in the visual cortex and olfactory bulb in mammalian brains. In the cat visual cortex (Areas 
17 and 18), stimulus-specific synchronized oscillations of 40-60 Hz have been reported by both 

Eckhorn et al. (1988) and Gray et al. (1989, 1990) using moving bar stimuli. 
Eckhorn et al. recorded coherent or synchronized oscillations between orientation cells of area 17 
and movement direction cells of area 18, at distant cortical positions within a cortical column. And 

Gray et al. found that there are synchronized oscillations only between cells with similar orientation 
preferences, and which are separated by large cortical distances. 

These synchronized oscillations have received much attention as ;:i.. feature-binding mechanism in 
the brain (Eckhorn et al., 1990b; Lummer & Huberman, 1992; Sompolinsky et al., 1991). 

Freeman et al. (Sakarda & Freeman, 1987; Yao & Freeman, 1990) have reported that, in rab-
bit olfactory bulb, near-limit cycle activity occurred for a perceptible specific odor and also that 

chaotic activity occurred for a novel odor. However, the chaotic dynamics is not considered a disor-
dered randomness but a new type of information processing with an autonomous search mechanism 

(Tsuda et al., 1987; Mori, Davis & Nara, 1989; Yao & Freeman, 1990). 
Thus, oscillatory neural networks are of interest not only in physiology, but also in dynamic infor-

mation processing for a spatiotemporal pattern in the brain. 

To generate a spatiotemporal pattern or time-sequential pattern, an asymmetrically connected 
network, e.g., excitatory and inhibitory (E-I) connections, is important (Amari, 1972b). In the 
state of the art, several types of artificial or physiological oscillatory neural network models have 
been reported. These networks can be classified roughly into the four following types. 

1. A network with mutual E-I cell connections (Baird, 1986; Lie & Hopfield, 1989; Yao & 
Freeman, 1990; Grossberg & Somers, 1991). 

2. An associative memory model with asymmetric random connections (Mori, Davis & Nara, 

1989; Wang, Picheler & Ross, 1990; Renals & Rohwer, 1990). 

3. A network based on the E-I effect with dynamical thresholds or time delays as an adaptation 

(Matsuoka, 1987; Eckhorn et al., 1990a; Wang et al., 1990; Horn & Usher, 1991; Konig & 

Schillen, 1991). 

4. Nonlinear coupled oscillators (Sompolinsky et al., 1991; Niebur et al., 1991; Kuramoto, 1991; 
Lummer & Huberman, 1992). 

Since these network models are complex nonlinear systems, the theoretical analyses in the general 
case are intractable. However, early research by Amari (1971, 1972a) pointed out the oscillations 

by the mutual effect of E-I cells, and analyzed theoretically an oscillatory condition. In the case 
of a discrete state (threshold element networks), the theoretical analyses of the stability of an 

equilibrium state and state transition are reported (Amari, 1972b). From the above suggestions, 
we consider an oscillatory neural network with E-I pairs. 

＼
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On the other hand, in order to embed a spatiotemporal pattern into an orbit of a network, 
learning is necessary. For continuous spatiotemporal patterns, a learning method has been proposed 

independently by Sato (1990) and Pearlmutter (1989). Sato et al. have shown that a Lorentz 
attractor as low-dimensional chaos (Sato et al., 1990a), and fluctuations of voice waveforms (Sato 
et al., 1990b), can be obtained by using the learning algorithm for a recurrent network. 
However, it is an issue whether the computation for the learning algorithm becomes very large 
because the bifurcations cause structural instability. In a recurrent neural network, the learning 

for a given case is intractable because of bifurcations (Doya, 1992). 
In an attempt to avoid the above problem, we improved on Sato's learning method for the oscil-

latory neural network, which is a specialized recurrent neural network. For hand-written Japanese 
hiragana characters, the continuously transformed pattern cycles are embedded in the limit cycle 

of the oscillatory neural network by the improved learning method without the temporal inverse 

process. 
Also, we discuss a continuous transformation of perception from the cognitive psychological point 

of view. The existence in the brain of such a continuously transformed pattern operation for a 

character 1s suggested. 
The characteristjc behavior of a limit cycle or chaos according to an input in our oscillatory 

neural network may be useful for developing a dynamic information processing mechanism for a 

spatiotemporal pattern in the brain. 

2 OSCILLATORY NEURAL NETWORK 

It is plausible that oscillations in the brain are basically due to the mutual effects of E-1 cells. In 

this paper, we consider the following oscillatory neural network with a simple network architecture 
among E-1 cells, which has an interesting characteristic obt叫nedfrom the later simulation results 

(in section 4 and 5). 
The network is constructed of excitatory neuronal groups and inhibitory neuronal groups, both of 

which include N-cells. In the network, each cell is considered not a single neuron but a mean-field 
approximation of neuronal groups (Wilson & Cowan, 1973; Schuster & Wagner, 1990). 
Each excitatory cell is connected to an inhibitory cell to form a corresponding pair and has mutual 
connections to other excitatory cells. On the other hand, each inhibitory cell has only one connection 
to the corresponding excitatory cell. The network architecture is shown in Fig. 1. The dynamic 

equations for their activation are as follows. 

i;= ー町 +a(斉伍—K伽+1} (1) 

Yi = -y; + G (.E吋悩）， (2) 

G(z) = ; 2 arctan (~) , (3) 

{ W;; = に比均 (N=M), 
(4) 

Wij =い翠=1lf芍＋妬 (N> M). 

Where Xi denotes the time-differential of the variable Xi, each叩 andYi are the averaged pulse 

density for excitatory and inhibitory cells, respectively, G(z) is a sigmoid function from averaged 
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membrane potential to averaged pulse density and a is the slope of G(z). 
The mutual connection Wij between the ij-th excitatory cells is defined by the correlation matrix 
of M's memory pattern舒 (eachelement is a binary value, 士1),and妬 denotesKronecker's delta. 

From the characteristics of the correlation matrix, it is clear that Wii = 1 or (N + M)/N (N = 

M or N > M) and Wij = Wji• The connections for the i-th E-I pair are inhibitory: -K腐and
(i) 

excitatory: KIE. Ii is the input or input bias for the i-th excitatory cell. The output pattern is 
given by the activation values of excitatory cells; Xi(t). 

In the next section, in order to simplify the stability analyses near a memory in the state space, we 
consider an oscillatory neural network with homogeneous E-I pairs, which have the same connection 

weight values Km  and KEI・However, when the network is learned (in section 5), the parameter 

K醤ischangeable for the cell number i. 

3
 

RESTRICTED STABILITY ANALYSES 

Theoretical analysis of the oscillatory neural network is intractable in the general case. To investi-
gate a typical behavior of the oscillatory neural network, we ran computer simulations, which results 

are shown in the next section. However, we can theoretically analyze a few restricted behaviors 
near a memory in the state space, which arise in simulation. 

3.1 Perturbation Analysis of an Asymptotical Stable Point 

In the network without coupling pairs (KIE= 0) which is considered to be an associative memory 
model with an input bias; Xi = -Xi + G(I: 似W的+Ii)三 F(i Xい砂，..., XN), an asymptotical 
stable point near a memory !c, is assumed for an input bias, i.e., there are negative real parts of 

the eigenvalues for the linearized equations at the equilibrium point函～士1.Since an input bias 

similar to a memory pattern tends to stabilize the memory pattern, the assumption is expected for 
a large input bias similar to a memory pattern. The analysis of a condition for the assumptions is 
beyond the scope of this paper. 

Under the assumption, when the value of K1E is sufficiently small, we show the existence of a 
similar asymptotical stable point in the oscillatory neural network by perturbation analysis. 

The variable Yi is converted to the following term on the.nullcline釦=0, that is Yi= G(KIExi), 
For a sufficiently small value KIE三 c> 0, 

祐 =G(Krn叩） = G(O) +幻G'(O)+ 0(内＝已E+ 0(召）．

Here G'(z) = 2a/7r(z2 + aりdenotesthe derivative of G(z). 
On the nullcline: Yi~ 芸c:,the equation (1) is approximated to 

N 
2KErc 

出＝一叩 +G(~W,況j--—-xi+ Ii)三 Fi(x□z, ... ,xN) 
j=l 

1ra 

(5) 

(6) 

Note that the self-excitatory connection weight Wii is slightly changed: Wfi = Wii —笑庄 +0(召）．
We consider the solutions, i.e., equilibrium points, of Fi(x1, 砂，...,xN) = 0. 

At a solution {函},we obtain the following matrix-vector form of perturbation expansion, 

●

I

,

 

［内]xk=xk= [Fi]xk=元k+ [8Fi/8xj]咲＝元K 如十 diag[8Fi/8Wii]8Wii + (higher order). (7) 
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By the assumption, the first term [Fi]xk=元kis zero. 
Assuming that the Jacobian matrix is invertible, there will be a fixed point at x十 6xwhere 

如＝ー [8凡/8叫云~=元k diag[8Fi/8Wii]エk=元k6Wii ~ O(c). Therefore, a solution of [E'i] = 0 exists, 
which is a slightly changed equilibrium point: 函＝函 +£xi+O(c2). 

Next, we discuss the stability of the slightly changed equilibrium point {函｝．

In the oscillatory neural network, the Jacobian matrix of the linearized equation at the equilibrium 

point {函}is, 
•• 

．
．
．
．
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Where the i-th function value GらisG'(W, 誌 +I:丑iw凸+Ii), 
By a simple calculation of 

N N 
2底 I函

N 

G位=G'(LWii初十 Ii)+c(L Wij吟― ) G"(LWii拓十 Ii)+0(召）， (9) 
j=l i=l rra j=l 

the Jacobian matrix has the form A+  c:B + O(c:2). The matrix A is the Jacobian matrix of the 

non-coupling system at the equilibrium point {函},whose eigenvalues have negative real parts by 
the assumption. And the matrix c:B is a perturbation matrix. 

Note that the equilibrium point is asymptotically stable for a sufficiently small I(IE三 c:,because 

the matrix Bis bounded by O < G"(z) :::; 1/叫，ー1<函ふく 1,Wii = l or (N + M)/N, Wij = 
0(1/N). Thus, we obtained the following result. 

Theorem 1 It is assumed that there is an asymptotical stable point near a memory in the non-

coupling system, and that the Jacobian matrix at the equilibrium point is invertible. 

Under the assumptions, the oscillatory neural network with a sufficiently small coupling parameter 

Krn三 c:also has a similar asymptotical stable point. 

3.2 The Necessary Condition of the Oscillation for one E-1 pair 

We discuss the necessary condition of the Hopf bifurcation for one E-I pair. If only an E-I pair 
is destabilized under the other stable pairs at an equilibrium point near a memory, the condition 

can be applied for the case of the oscillatory neural network with E-I pairs. Though this is not 

a general case but a special case to produce a oscillation in this network, we encounter it in the 

computer simulation. 
In the following, the discussion is restricted in one E」pair.It is assumed that there is only one 

equilibrium point (函，祐） for a large input bias I;> 0 (see Fig. 2). 
The linearized equation at the equilibrium point (函ふ） is, 

(~t) = (-111嘉忍〗~e) -K門~1(Ve)) (!;) . (10) 

Here Ve, Vi are Ve三 W泣 i-](EI祐十 Ii,Vi・三 I〈IE垢， respectively.
Since the eigenvalues入ofthe Jacobian are the solution of入2-(Tr)入+(Det) = 0 using Trace (Tr) 

and Determinant (Det) for the matrix, the eigenvalues are 

入=[ (Tr) 士 ✓(Tr)2 -4(Det)] / 2. (11) 
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For the Hopf bifurcation, it must be satisfied that both eigenvalues of the Jacobian are imaginary. 
The condition is equivalent to (Det) > 0 at (Tr)= 0 (Guckenheimer & Holmes, 1983). 

Theorem 2 To make the Hopf bifurcation at a unique equilibrium point for one E-I pair, the 

conditions KEI > w; 訂 x7/2 and Wii 2'. 1ra are both necessary. 
Proof. First, the condition for (Tr) = 0 is discussed. 
From the condition (Tr)= -2 + w; 国 (ve)= O, 

2 
＝ 

wii 
G'(Ve)= 

2a 

1r(a2十母）＇
(12) 

is obtained, and the condition (Tr) = 0 is equivalent to亨＋硲） = aWii• 
If Ii > O, that is, Ve > O, is assumed, using Ve = ✓ a(Wii -rra)/rr, 

吋=G(ve) =~arctan げニエ= const. 
1l'rra  

The term Ve = Ii + w; 匹 t-KEI叶 isput into the equation (12) , which is arranged on Ii・

(13) 

-1r Il -21r(WiiXi -KE1yl)Ii -1r(WiiXi -KE1Yl)2 + a(Wii―1ra) = 0. (14) 

To satisfy this condition, it is necessary that the quadratic equation (14) on Ii have real roots. By 

the discriminant D = 41ra(Wii -1ra)~O, the condition Wii~1ra is necessary. 
Second, the condition for (Det) > 0 is discussed at (Tr)= 0. 

恥 (Tr)=-2 + WiiG'(ve) = 0, 

(Det) = 1 + G'(Ve)[ -Wii +}くIE底 1G'(Vi)] (15) 

= -1 + 21'白訊EIG'(Vi)/Wii> 0, (16) 

is equivalent to the condition Wiiく 2Krn底 1G'(Vi),
The term Vi = }くrnxtis put into inequality (16), which is arranged on KIE, 

wiiく
4aKE1Krn 

1r(a2 + (Krn吋）か

(~ 立（碍）2)]<,_くわー(4aKE1)i〈IE+ (Wii1raり<o. 
To satisfy the inequality (18) on Krn(> 0), the discriminant 

D = (4aKE1)2 -4(Wii1r(xt)2)(Wii1ra2) = 16a2[ (KE1)2 -(Wii1rxtf2)2] > 0, (19) 

(17) 

(18) 

is necessary. 

Consequently, the condition J(EI > Wii1rx7 /2 is necessary. (QED). 

Thus, under several assumptions, we have obtained two theoretical results: an asymptotical 
stable point near a memory for a sufficiently small KIE, and the necessary condition of the Hopf 

bifurcation for one E-1 pair, although they are references to the restricted behaviors near a memory. 

4 DYNAMIC BEHAVIORS OF THE NETWORK 
•il 

In this section, we show the main result of this paper using computer simulations. A limit cycle 

is generated for an input near a memory, while a chaotic orbit is generated for an input far from 
memories. 
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4.1 Simulation Results for One E-I pair 

As a basic hehavior of the oscillatory neural network, the simulation result for only one E-1 pair is 

shown below. The stability map for parameters Ji and KIE is shown in Fig. 3. In order to satisfy 
the necessary conditions of the Hopf bifurcation of one E-1 pair from Theorem 2, the parameters 

are set to Wii = 1.0, KEJ = 2.0, a= 0.1. At the bifurcation point, whether an oscillation actually 
occurs depends on the input bias. 
On the dotted line in Fig. 3, oscillation does not occur at some candidate points for the Hopf 
bifurcation because the candidate points become saddle points as (Det) < 0 at (Tr)= 0, and give 
birth to another stable point through bifurcation. 
For a greater value of KIE, the joining of two points with one unstable point causes an oscillation. 
This is not the same case as the Hopf bifurcation of Theorem 2 but rather a Birth-Death bifurcation. 

From the results of the simulation of one E-1 pair, the maximum frequency is limited by the value 
of KIE. When the value of KIE is fixed (KIE = 1.0), the frequency is increased by decreasing 

the value of Ji (Fig. 4). The initial states are set at叩(0)= Ii and Yi(O) = 0. Moreover, resonant 
phenomena can be found for a forced sinusoidal input. 

4.2 Trajectories in the 3D-Pattern Space 

The trajectories of the oscillatory neural network model are shown with an example of 3 E-I pairs. 

Each of the three memory patternsむ；が=(1, 1, 1), e = (1, -1, -1), e = (-1, -1, 1), is set into 
the auto-correlation matrix. In order to satisfy the condition of Theorem 2, the parameters are set 
to KE1 = 2.0, a= 0.1, (Wii = 1, from N = M). The bifurcation parameter Krn is variable. 
The activation values of excitatory cells are explained by a point in the three-dimensional coordi-
nates {叩}.Each memory pattern is explained by the vertex of the cube; -1~ 叩s;1 (i = 1 ~ 3). 
An input bias {Ji} for excitatory cells is given by a (-1, 1) uniform random pattern. The initial 

states are set at Xi(O) = Ii and Yi(O) = 0. 
When the value of Krn is sufficiently small (Krn = 0.05), the asymptotical stability near 

a memory is shown in Fig. 5(a). The trajectories converge to an equilibrium point near each 

memory. Also, for the case of J<くIE= 0.3, we show the trajectory after the Hopf bifurcation of 

the third pair x3 -y3 (Fig. 5 (b)). The results are references to the cases of Theorem 1 & 2, 
respectively. 

At a larger value, Krn = 0.5, we show examples of limit cycles as stable orbits (Fig. 6). For an 
input pattern near the memory pattern, the oscillation converges to a simple limit cycle. However, 

for a pattern far from the three memory patterns, the oscillation becomes a chaotic complex orbit. 
Though the limit cycle is almost independent of the initial states of the cells, the orbit begins to 

depend on the initial states as an input far from the memory patterns. Since another orbit exists 
for a slightly different input bias, there are many limit cycles in the pattern space. 

It is shown that higher freq ency waves exist for a large value of KIE in Fig. 7. For the case of 

a small value of J<偉 inFig. 7 (a), there are simple low frequency waveforms of町(t).However, 
for the case of a large value of Krn in Fig. 7 (b), there are complex waveforms of叩(t)with high 

frequencies. 
The distance between叩(t)andぐJ.is evaluated by the overlap function mμ(t) (Horn & Usher, 

1991). The recognition result is given by the maximum peak value of叩 (t)or the maximum 

fraction of the timer; mμ(r) > (threshold value). 

1 N 

叩 (t)=ーとt戸(t).
N 

j=l 

(20) 
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In the example in Fig. 8 (a), the orbit is a vibration between vertexぐand(3. However, in Fig. 8 
(b), the orbit is very complex and wanders among three memory pattern vertexes. 

4.3 Synchronized Oscillations and Spectrum Analysis 

For the previous example, the synchronization of cells and the chaotic character of the orbit are 

investigated for an input, whether near or far from the memory patterns. 
The cross-correlograms (temporal cross-correlations) between the activations of excitatory cells 

are shown in Fig. 9. Three histograms are respectively related to X1 -xゎ X2-X3, 硲ー x1,below. 
The auto-correlograms (temporal auto-correlations) for each activation; 吐叩，硲， areshown in 
Fig. 10. For an input near a memory pattern, these activations are synchronous and make the 
limit cycle in Fig. 9 (a) and Fig. 10 (a). However, for an input far from the memory pattern, they 

are asynchronous in Fig. 9 (b) and Fig. 10 (b). Since the temporal correlations are vanishing, it is 
shown that future activities are unpredictable, which is one of the characteristics of chaos. 

The chaotic characteristic of the orbit is also investigated by spectrum analysis for the waveform 
of the overlap function m1(t). In Fig. 11 (a), there are several sharp peaks for an input near a 

memory pattern. However, in Fig. 11 (b), a continuous spectrum with various frequencies exists 
in the waveform for an input far from the memory patterns. This continuous spectrum shows the 
chaotic character of the orbit. For another m2(t) and m3(t), the same results are obtained. The 

left-hand side of each spectrum is a DC element whose frequency is zero. 
The occurrence of. chaotic attractors near quasi-periodic orbits on the m-torus (m ;?: 3) is 

suggested by Ruelle and Takens et al. (1971, 1978). If many oscillators (more than 3) each have 
an independent frequency and are weakly coupled, a chaotic orbit can occur. 
In the proposed model, each E-I pair is an autonomous oscillator and is weakly coupled by the 
auto-correlation matrix Wij = 0(1/ N). Thus, for an input far from the memory patterns, it can 
be considered that the chaotic orbit bifurcates from the torus through the simple limit cycle by 

Ruelle-Takens's scenario. 

The main result of this paper is that we obtained the following characteristic behavior. 

• a limit cycle near a memory (memory retrieval with anbiguous fluctuation) for an input near 

a memory 

• a chaotic orbit among memories (autonomous search) for an input far from memories 

雫

'

,
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，
 5 LEARNING OF CONTINUOUSLY TRANSFORMED PAT-

TERN CYCLES 

In this section, continuously transformed pattern cycles are embedded in the limit cycle of the oscil-
latory neural network by learning. It is considered that the physiological synchronized oscillations 

may be related to some kind of orderly process such as the cognitive psychological transformational 
operation of characters. The existence of such a transformation in the brain is discussed from the 

cognitive psychological point of view in the next section. 
An example of continuous transformation for hand-written characters is explained. Then, an im-
provement of Sato's learning method is investigated in order to efficiently embed these continuously 

transformed patterns in the limit cycles of the oscillatory neural network. 

5.1 Continuously Transformed Pattern 

For various character patterns in a category, it is considered that the main factors of the distinctions 
are shift, and local distortion as a nonlinear transformation. 

In a simulation of guessing age using a transformed face image, a continuous transformation of 
both shift and distortion has been used (Shaw & Wilson, 1976). The transformation is defined by 
the combination of shift transformation for the coordinates of the whole image by degree </>, and 

the following cardioid transformation, 

r new = r (1 - k sin 0) , 

0new = 0. 

(21) 

(22) 

Where, k is the parameter for the amount of distortion. 
An example of a character pattern series by shift/distortion transformation is shown in Fig. 12. 
Although it is not clear whether something like this transformation exists in a pattern recognition 

process or perception in the brain, in this paper the transformation is assumed to be an example 
of the psychological continuous transformation of characters. 

Of course, the transformation of direct images is used only for simplicity. More exactly, we must 
consider transformations not of the pattern images but of the internally represented patterns which 

are preprocessed by something like feature extractions. 
Each transformed pattern cycle is used as a teacher signal for the excitatory cells. In the next 

subsection, we will discuss the learning method. 

5.2 Learning Method Without Temporal Inverse Process 

The character patterns used in this simulation are explained. For input patterns, Japanese hiragana 

characters of three categories: a, i, u, are used from the ETL9 hand-written Japanese character 

database. Each binary pattern (64x63 pixels) from the ETL9 database is converted to a mesh 
density pattern (16x16 = 256 gray levels) after normalization of size. These patterns are shown in 
Fig. 13. 
Thus, the oscillatory neural network has 256 E-I pairs. Continuously transformed density patterns 

will be cyclically reconstructed by the network after learning. 
For a recurrent neural network with feedback loops, a learning algorithm h邸 beenproposed 

(Sato, 1990; Pearlmutter, 1989). If the learning algorithm is directly applied to this network, 

the values of the bifurcation parameter I(『iare updated through the temporal inverse process. 

Changing the bifurcation parameters gives nse to a loss of structural stability, and an increase in 

computation time to handle the iterations. 
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(i) 
When the value of KIE is fixed as a constant value Krn, the learning method becomes efficient 

without the temporal inverse process 1. However, we must note that the fixing of KIE restricts the 

ability of the network. 
The improved learning method is processed as follows. 

First, three memory patterns are defined by each averaged sample pattern (each element is converted 

to a binary element, 士1)in each category. The values of connection weight coefficients Wij are 

initialized by the auto-correlation matrix using these memory patterns, and both Krn and K腐are

initialized to satisfy the oscillatory condition of Theorem 2 (Krn =噂=2.0, a= 0.1). 
By the effect of the auto-correlation matrix, since the trajectory for an input near a memorized 
character pattern may not converge to a stable point or chaotic attractor, but to a limit cycle near 
the memory point, it is possible that the learning of the transformational cycles from the limit cycle 
near the memory point does not need to alter the structural stability. 

Second, the learning of a continuously transformed pattern is iterated using the teacher signals 
for excitatory cells. The teacher pattern cycles are created by the shift/distortion transformation. 
In the learning of these connection coefficients, one cycle of the teacher pattern series is divided 

into a number of sections. 
On each section, the teacher pattern is given continuously by a linear (or spline) complement 

between two transformed binary patterns. In the learning for a section, each excitatory cell is 
clamped by the teacher signal, and the connection weight coefficients are updated by the steepest 

descent direction method for the error function E. 
In order to equalize the activation value Xi(t) to the teacher signal Qi(t), the forced input Ji(t) is 

defined as follows (Ji(t)→ O; 叩(t)→ Qi(t)). 

E = ! JT+TB N 

2 T 
L[ Ji(t) ]2dt, 
i=l 

み(t)= Qi(t) + Qi(t) -G(viil(t)), 

N 

紗(t)= LWijQi(t) -J(腐Yi(t)+ Ii, 
i=l 

△ Wii = 
{)E 

-77 . 
{)W・・

” 

(23) 
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(26) 

Where, [T, T +TB] is the time required for one section of the learning. 77 is a learning coefficient. 
According to the calculations of Sato's learning algorithm (Sato, 1990), the learning equations 

are obtained as follows (see Appendix). Where Pi(t) is a Lagrange multiplier. 

Pi(t) = -Ji(t), 

叫＝一7J;T+TB [ Pi(t)G'(紗(t))xj(t)]dt, 
T 

△K醤=7J JT+TB[ Pi(t)G'(紗(t))Yi(t)]dt. 
T 

‘
.
＇
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The learning for a pattern cycle is integrated with updatings of some sections, and these processes 

are also iterated for all learning sample patterns until reaching a small error value. 

1personal communication with Dr. Masa-aki Sato of ATR Human Information Processing Research Labs. 
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5.3 Simulation Results 

As the memory patterns, three handwritten hiragana characters; a, i, u are shown in Fig. 13. Each 
pixel is displayed using 256 gray levels. 

In Figs. 14 and 15, the output pattern series before learning are shown from upper-left to 

lower-right. In this case, the connections Wij are defined by the auto-correlation matrix. For a 
character input, the pattern series in Fig. 14 is periodically changing near the memory pattern, 

though many of them are not read as the characters. 
For a random input, the pattern series in Fig. 15 is chaotic while autonomously searching among 

the memory patterns and the white-black inverse patterns. We can see the transition; inverse u 

(27-29th)→ u (35-38th)→ inverse i (46-49th)→ i (55-58th)→ a (60-62th)→ inverse i (65-67th) 
→ inverse a (69-70th). 
However, the output pattern series after learning each pattern with 1000 iterations is shown in Fig. 
16. It is shown that the teacher pattern cycle in Fig. 12 is embedded in the limit cycle. For another 
two categories or characters, the same results are obtained. 
In contrast, for a random input after learning, the output series shows a chaotic search similar to 
the series before learning. The integrated error in each cycle is converged before 1000 iterations. 

6 SUMMARY AND DISCUSSION 

We have investigated experimentally the dynamic behaviors of an oscillatory neural network with 

E-I pairs, and also analyzed theoretically a few restricted behaviors near a memory in the state 

space. Computer simulations of a three-dimensional case have shown an interesting characteristic: 

the autonomous generation of a limit cycle near a memory for an input near a memory, and of 
a chaotic orbit among memories for an input far from memories. The purposes of information 
processing include memory retrieval with ambiguous fluctuation and autonomous search among 
memories, respectively. 
Thus, the function of the network is not fixed, but drastically changeable according to the relation 
between an input and memories (distance or correlation, etc.). In order to realize dynamic infor-
mation processing for a spatiotemporal pattern in the brain, this changeability may be one of the 
advantages of such a nonlinear, non-equilibrium system. 

As an example of dynamic information processing, it has been shown that continuously trans-

formed pattern cycles for three Japanease characters are embedded in the limit cycles of the oscilla-

tory neural network by the improved Sato's learning method without the temporal inverse process. 

In this higher-dimensional case, we show the characteristic orbit (limit cycle or chaos which changes 
according to the input). However, there are something about dynamic information processing in 

the brain that are unclear. 
In the following, we will discuss the continuous transformation of perceptions from the cognitive 

psychological point of view. 

It is considered that a human will use conceptions not only of the invariant amounts, but also of the 
continuity of the transformation, to perceive various objects as the same pattern or concept (Piaget, 

1970). For example, mental rotation is a well known process of inner-pattern transformation in the 
human brain. 

Of course, the conventional process of using features is not denied; both mechanisms may be 
selectively or cooperatively processed according to the situation. Takano (1989) has reported that 

if there are obvious distinctions of the elements or the relations between the line segments of figures, 
mental rotation is not performed and the similarity is decided by the distinctions of the features. 

On Piaget's genetic epistemology (Piaget, 1970; Sigel & Cocking, 1977), the construction of the 
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concept of conservation for material amounts is shown, and these amounts can be operated by a 
child after the age of 7 ~ 8. In Piaget's theory, which is based on considerable experience in the 
field of psychology, the following are expressed. 

1. At this stage (age 7 ~'8), a mental image is changed from a static image to a dynamic image 

for motion or transformation using operations. 

2. Since invertible and elastic sensual-motional operations can be used, the expected image 
becomes more concrete (e.g. for a relation between forms and amounts to a transformation 
from "sausage" to "ball"). 

3. After this stage, the concepts of conservation, quantity, categorization and sequential for-

mulation are acquired by using the inner continuous operations, and functional images are 

constructed only by perception. 

In relation to Piaget's theory, Tanaka (1969) has reported that the conceptual and operational 
cognition stage starts from the age of 7 ~ 10 by experimental tests for the similarity of figures. 
It is shown that a child (age 3 ~ 4) discriminates the similarity from only a few local features by 
ignoring the global form. But an older child (age 8 ~ 9) does so using operations. The results are 
not only unexplainable by conventional recognition methods based on feature extractions, but also 

show the existence of inner-transformations or operations. 

However, Yokose (1986) has reported interesting results for recognition of the alphabet and 
Japanese katakana characters by testing subjects ranging from elementary school students to college 

students. The response time is proportional to the degree of distinction and the recognition rate is 

proportional to age. It is believed that this is because an inner transformation takes considerable 

time for a greater distinction and some students are not yet able to do this. These results are 
relevant to Piaget's theory. 

Another reason for the existence of the inner transformations is supported by the transforma-

tional structure theory of pattern cognition (Ito, 1975; Imai, 1986). In this theory, the judgements 
of pattern "similarity" and "goodness" are determined after selecting and operating a cognitive 

pattern transformation. They pointed out that the recognition of transformation structures is 
an essential factor in determining perceptual classification or categorization. The selection in the 

transformational structures corresponds to whether mental rotation has to be performed in Takano's 
theory. 

Consequently, it is believed that an inner continuous transformation is used in the pattern 
recognition process. However, it is not yet clear what kind of transformation is processed in 

the brain. To clarify this, we must investigate the inherent transformational operations in the 
recognition of various character patterns. Also, the ability of the oscillatory neural network to 
handle spatiotemporal pattern processing will be investigated in further study. 
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A Appendix: Derivation of the Learning Equations 

First, both N variables Xi(t) and祐(t)are denoted by 2N variables zk(t), and other variables are 
also renewed using the same names. 

叫t) = 一殊(t)+ G(Uk(t)), 
2N 

叫 t) = I:wk巧 (t) (k r/. V). 
i=l 

叫t) = Qk(t), 
Jk(t) = Qk(t) + Qk(t) -G(uk(t)), 

2N 

叫 t) = I:w. 幻;Zj(t)+ h (k EV). 
j=l 

(30) 

(31) 

(32) 

(33) 

(34) 

•
ー

Where V denotes the set of visible units, which are clamped by the teacher signal Qk(t). 
Using the Lagrange multiplier Pk(t), the error E(W) is defined. 

E(W) = t:'dt [心-五麟+Q, -G(u,)-J,)一蓋凡｛社十 z,-G(u,)) l・(35) 

The variation oE(W) by oW is derived as follows. 

籾 (W) =区kEV紐砧＋江¢V紐・o殊＋江級oPk+江・孤兄owkj

= f存dt[I: 辰 v(Jk+ Pk)oJk 
ー江¢v{Pk(年＋伍）ー OZkLj PjG'(Uj)Wjk} (36) 

+ LkEV 0凡{Qk+ Qk -G(uk)-Jk} +区履yOPk{森十 Zk-G(Uk)} 

＋喜・邸 (Uk)ZjOWkj] . 

The variation of each variable by oW is defined as follows. 

砧 (tI W) = Jk(t I W + 8W) -h(t I W) (k EV), 

伍 (tI W) = 殊 (tI W + 8W)一殊(tI W) (k rf_ V), 

紅な(tI W) = Pk(t I W + 8W) -A(t I W). 

(37) 

(38) 

(39) 

The third term of equation (36) is cancelled out by equations (30) and (33). Assume that 
the Lagrange multiplier Pk(t) satisfies the following equations. By the following definition, the first 
term of equation (36) is also cancelled out. 

Pk = -Jk (k E V), 
凡=pk -Lj PjG'(Uj)Wjk (k r/. V). 

(40) 

9-
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The second term of equation (36) is also cancelled out using the initial and boundary conditions 
of the integration. 

[the second term] = -f存dtLk¢v(P. 砂森＋凡伍）

＝ ー江¢v[Pk伝］昇 (41) 
＝江¢V{凡(TlI W)伍 (TlI W) -Pk(T2 I W)伍 (T2I W)} = 0. 

Consequently, only the fourth term remains. The learning equations are obtained. 

oE(W) = jr2 dt L邸 (Uk)ZjOW,柑 9

TI kj 

8E T2 

叫＝―窃面；＝一TJh1 dt[ PkG'(Uk)召］．

(42) 

(43) 

Next, return the variables殊 (t)to variables Xi(t) and防(t),and rewrite the learning equations. 

In order to reduce the temporal inverse processes of攻）， (i) 
t the value of KIE must be fixed. 

(i) 
If the value of KIE is fixed, the Lagrange multiplier is unnecessary for hidden unit防(t)from 
equation (43). However, this means that the ability of the oscillatory neural network is restricted. 

(i) 
Thus, the learning equations of connection weight coefficients Wij and J, <EI• which connect 

into visible units (excitatory units), are obtained as follows. This process is efficient without the 

temporal inverse process of the Lagrange multiplier. 

Pi(t) =―み(t),

T2 

叫＝一7Jj [ Pi(t)G'(vii)(t))xj(t) ]dt, 
Tl 

T2 

△K腐=7J J [ Pi(t)G'(vi')(t))祐(t)]dt. 
Tl 
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B FIGURES AND CAPTIONS 

wu 

Figure 1: Oscillatory neur叫 network.Xi and Yi are excitatory and inhibitory cells, respectively. -l 

and→ denote inhibitory connections and excitatory connections, respectively. 
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(a) Stable Point (KIB : small) (b) Limit Cycle (Km : large) 

Figure 2: Vector field around the equilibrium point in one E-I pair. (a) When the value of Krn is 

sufficiently small, there is only one asymptotical stable point (for a large input bias). (b) However, 

an oscillation occurs by increasing }, くIE・ ＇ー
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(High Frequency) 

1.0 2.0 
Krn 

Figure 3: Stability map for parameters Ii and KJE. The solid line denotes the critical line between 

the stable (or saddle) point and limit cycle. The dotted line denotes the no-oscillation case at the 

candidate of the Hopf bifurcation. 
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(a) Ji= 1.4 rv 1.0 (b) Ii= 0.8 ~ 0.4 

Figure 4: Waveforms of x;(t) and祐(t)for the input biases I; of one E-I pair. The frequency is 

increased by decreasing the value of input bias I; ・
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Figure 5: Examples of asymptotical stability and Hopf bifurcation. (a) Convergence of trajecto-
ries to the asymptotical stable points near memories. (b) Limit cycle oscillation after the Hopf 

bifurcation of the third pair硲一 y3.
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Figure 6: Two limit cycles and a chaotic orbit in the pattern space (KIE= 0.5). In this figure, three 
orbits are superimposed on the same space. However, the dynamics in phase space is drastically 

changed (e.g. limit cycle← chaos) by the input pattern. 
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Figure 7: Time course of the activation xi(t). 
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Figure 8: Time course of the overlap function mμ(t). 
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Figure 9: Cross-correlograms between the activations叩 (t)-Xj(t). Each histogram denotes the 

correlation at a given time. 
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Figure 10: Auto-correlograms for the activation叩 (t).
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(b) input far from the memory patterns 

Figure 11: Power Spectrum for the waveform of州 (t).(a) Several sharp peaks of a harmonic limit 

cycle. (b) Continuous spectrum with various frequencies, as chaotic character. 
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Figure 12: Example of a continuously transformed pattern cycle. 

ぁ ぃ ぅ
Figure 13: Three hand-written hiragana character patterns: a, i, u. Each pixel is displayed using 
256 gray levels (from the value -1: white to +1: black). 
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Figure 14: Output series for a character input before learning. These change periodically near the 
memory pattern, though many of them are not read as the character. 
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Figure 15: Output series for a random input before learning. These show autonomously chaotic 

searching among the memory patterns and the white-black inverse patterns. 
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Figure 16: Output series for a character input after learning (TJ = 0.0001). These show the trans-
formed pattern cycle of the teacher signals. 
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