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Speaker-Independent Speech Recognition Using an Auditory Model 
Front End that incorporates the Spectra-Temporal Masking Effect 

Abstract: 

Kazuaki OB ARA, Kiyoaki AIKA WA , and Hideki KAWAHARA 

ATR Human Information Processing Research Laboratories 
ATR Auditory and Visual Perception Research Laboratories 

2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan 

email: obara@atr-hr.atr.co.jp 

Speaker-independent speech recognition experiments using an auditory 

model front end with a spectro-temporal masking model demonstrated the 

improvement in recognition performance and outperformed both auditory front 

ends without the masking model and traditional LPC-based front ends. An auditory 

model front end composed of an adaptive Q cochlear filter-bank incorporating 

spectro-temporal masking has been proposed [J. Acoust. Soc. Am., Vol. 92, No. 4, 

Pt. 2, pp.2476, 5pSP8, Oct. 1992]. The spectro-temporal masking model can 

enhance essential phonetic features by eliminating the speaker-dependent spectral 

tilt that reflects individual source variation. It can also enhance the spectral 

dynamics that convey phonological information in speech signals. These advantages 

result in an effective new spectral parameter to represent speech models for 

speaker-independent speech recognition. Speaker-independent word and phoneme 

recognition experiments were carried out for Japanese word and phrase databases. 

The masked spectrum was calculated by subtracting the masking level from 

logarithmic power spectra extracted using a 64-channel adaptive Q cochlear filter-

bank. The masking levels were calculated as the weighted sum of the smoothed 

preceding spectra. To cover the variability of the time sequences of the spectrum, 

multi-template DTW and Hidden Markov Model were used as the back-end 

recognition mechanism. 
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1. Introduction 

This paper proposes enhancement of the cochlear filter for speech recognition 

by implementing 

attempts to 

a
 

spectra-temporal masking 

implement auditory models into 

effect. There 

speech 

have 

recognition. 

been 

The 

many 

major 

motivation for this is to represent speech spectra more precisely. We proposed an 

adaptive Q cochlear filter model. The adaptive Q cochlear filter is a non-linear 

filter that simulates the asymmetrical and power level dependent filtering of the 

basilar membrane. We showed that the adaptive Q cochlear filter combined with a 

「

1

,

｀

lateral inhibition performs well in both n01sy and reverberant envirorunents. 

However the system performance was poor for unknown speakers [Obara, K., et. 

al. 1991a, b]. 

Recent auditory perception research has shown that the forward masking 

pattern becomes more widespread over the frequency axis as the masker-signal 

interval increases [Miyasaka, E., 1983]. This spectra-temporal masking 

characteristic is considered to be effective for eliminating the speaker-dependent 

spectral tilt that reflects individual source variations, and for enhancing the spectral 

dynamics that convey phonological information in speech signals. 

We implement this spectro-temporal masking effect into the cochlear filter 

with the aim of improving the performance of speaker-independent speech 

recognition. In this study, only the forward masking effect was taken into account 

because it might be more prominent than backward masking at the auditory 

peripheral level. 

2. Adaptive Q
 

cochlear 

It is known that the filtering characteristics 

filter 

of the basilar membrane(BM) 
'̀＼
I
i
i
'
 change adaptively according to the incoming sound intensity. In other words, the Q 

of the BM filtering becomes high when the sound pressure level of the input speech 

is low,and the Q becomes low when the sound pressure level of input speech is high. 

An adaptive Q cochlear filter(AQF) that simulates these level-dependent filtering 

characteristics of the BM was developed[Hirahara, 1989, 1990]. The adaptive Q 
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cochlear filter is composed of a NOTCH-BPF combination and adaptive Q circuits 

connected to each BPF output as shown in Fig.I. 

Fig.I 

The Adaptive Q circuit consists of a second-order low pass filter(LPF)whose Q is 

determined by a Q decision circuit. The Q decision circuit determines the Q using 

the output power of the BPFs, that is, the Q of the LPF becomes high when the 

output power of the BPF is low, and the filtering Q of the LPF becomes low when 

the output power of the BPF is high. 

This AQF has the following features: 

1) Level-dependent frequency selectivity. 

2) Level-dependent automatic gain control. 

3) Level-dependent resonance frequency shift. 

The advantage of the third feature is not yet clear, the first two features seem 

to be useful for speech feature extraction because the signal-to-noise ratio of weak 

components is improved by increasing both the gain and the Q of the filter channel. 

Thus weak consonants and higher formants are enhanced and spectrograms obtained 

by AQF are much more distinct than those of the fixed Q cochlear filter or 

traditional D百 (Fig.2).In addition, abrupt spectral changes are also enhanced 

because of the lag in Q Adaptation. These advantages of the AQF seem to be 

effective for the front-end of a speech recognition system. 

Fig.2 
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3. Forward Masking Model 

3.1 Forward masking model and its formalization 

The spectra-temporal masking is modeled so as to simulate two essential 

characteristics of the forward masking effects with increasing masker-signal 

interval: The exponential decay of the masking Level and the smoothing of the 

masking pattern. Fig. 3 illustrates how the masking characteristics are modeled. In 

this figure, a spectral peak moves toward a lower frequency(the solid curve shows r 

the current spectrum). The masking effect caused by the older spectrum gradually 

decays and becomes more frequency-smoothed. The smoothed spectrum is 

integrated into the masking pattern. The hatched area corresponds to the perceived 

effective spectrum. 

Fig.3 

The masked spectrum, P(u, v), which corresponds to the perceived spectrum, 

is modeled to be the current spectrum, S(u, v), and the current masking level, M(u, 

v), as, 

P (u, v) = Max { { S (u, v) -M (u, v)} , 0. 0 } 

M(u, v) = A(u, v) + D(v) 

(1) 

(2) 

Here, u and v represent the channel number and frame number of the 

spectrum. The current masking level, M(u, v), is composed of two components, 

A(u, v) and D(v). A(u, v) represents the weighted sum of the power-normalized 

preceding spectra S迅u,v), and D(v) represents the weighted sum of the average 

power SAv(v) of the preceding spectra. 

A(u, v) is calculated as, 

A(u,v) =~ 見〗〗;v(j,k)-SN(u+j,v-k))] (3) 
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W (j, k) = { 0. 54 + 0. 46・cos (p  . j)  }・a . ,6 (k -1) 
(N +k) 

(4) 

WU, k) is the Hamming window for smoothing a spectrum, where the window 

width gets wider and the weight decreases exponentially as a function of the interval 

between the current and the preceding spectra. K funits the duration of the masking 

effect. N is the initial width of the Hamming window. a is the initial weight of the 

power normalized spectrum and p is the decay rate of the weight. 

D(v) is calculated as, 

K 
D(v) = I(y•8(k-l)·SAv(v-k)) 

k=l 
(5) 

SAv(v-k) represents the average power of the frame (v-k). y is the initial 

weight of the average power and 8 is the decay rate of the weight. 

In this report, the masking model parameters are determined to be K=3, N=ll, 

a=0.25, ~=0.5, y =0.5and y=0.5, by preliminary experiment. 

3.2 Characteristics of the masking model 

Fig.4 schematica且yillustrates the effect of the masking model. In Fig.4(a), the 

spectral peak moves toward a lower frequency with a steady spectral tilt, and in 

Fig.4(b), the spectral peak moves toward a higher frequency at a different speed. 

Fig.4 

When the speed of the spectral peak is 0, the masking model gives the output 

shown in thin lines. When the spectral peak moves faster, the masking mode gives 

the output shown in thick lines. This means that steady spectral features, such as 

spectral tilt, are reduced. On the other hand, the spectral dynamics, i.e. spectral 

peak movement, is enhanced by the masking model. These characteristics of the 

masking model seem to be effective for feature extraction in speech recognition. 

This is because the spectro-temporal masking model can enhance common phonetic 

5 I 12 

---—----------- --------- -—------—----- ----



features by eliminating the speaker-dependent spectral tilt that reflects individual 

source variation and also enhance the spectral dynamics that convey phonological 

information in speech signals. 

Fig. 5 shows the spectrogram of the utterance "iyoiyo" by a male speaker. 

Fig.5(a) is the spectrogram of the AQF output Fig.5(b) is the masked spectrogram 

by the masking model and Fig.5(c) is the masking pattern calculated by the masking 

model. L_．
し

Fig.5 

The masking pattem(Fig.5(c)) reflects the spectral tilt of the AQF spectrum. 

As a the consequence, the masking model reduces the spectral tilt of the masked 

spectrum. Comparing Fig.5(a) and Fig.5(b), spectral dynamics of the frequency 

and time axes are enhanced by the masking model. The masked spectrum gave a 

much more distinct spectral representation than did the AQF output. 

The effectiveness of the masking model in speaker-independent speech 

recognition was investigated in multi-template DTW word recognition and HMM 

phomene recognition. 

4. Experiments 

4.1 Experimental conditions 

Speech recognition experiments were performed for 216 phonetically balanced 

Japanese words uttered by 10 male and 10 female speakers. The sampling rate of ¥ 

the speech was 12 kHz. Two types of cochlear filters were tested: the adaptive Q l 

cochlear filter and the fixed Q cochlear filter. The fixed Q cochlear filter is a 

simplified version of the adaptive Q cochlear filter, which simulates only the 

asymmetrical filtering of the basilar membrane. The cochlear filters were 

compared with a Bark scale bandpass filter based on DFT, LPC cepstrum 

parameters and dynamic cepstrum parameters which incorporates the spectro-
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temporal masking effect in cepstral representation. A 16th-order LPC cepstrum 

was extracted using linear predictive coding. The dynamic cepstrum enhances 

spectral dynamics and gives better speech recognition performance than dose the 

conventional LPC cepstrum parameter.[Aikawa, K. et. al., 1992]. 

In the DFT frontend, spectra were obtained from 1024-point FFTs every 10 

ms. Then, a 512-channel D百 powerspectrum was transf armed into 64-channel 

Bark scale coefficients. The speech spectrum was obtained every 10 ms as the 

logarithmic power of the fiiter outputs. The three filters(AQF, FQF, D百） cover 

the frequency range from 1.5 to 18.5 Barks with 64 channels. The speech spectrum 

was obtained as the logarithmic power of the filter outputs. 

Two types of LPC-based spectral parameters, cepstrum(CEP16) and dynamic 

cepstrum(DyCEP16), were compared with the filter-based parameters. 

4.2 Speaker-independent word recognition experiments 

using multi-template DTW 

Multi-template DTW Word recognition experiments were conducted using the 

masking model parameters from preliminary experiments. The experiments were 

repeated 10 times rotating the test speaker. In each experiment, 9 speakers' 

utterances served as the template, while the utterances of the other speaker served 

as the test speech. Fig. 6 shows the experimental results. 

Fig.6 

In the figure, each bar represents the average recognition rate of 10 

experiments. By introducing the spectro-temporal masking model, the recognition 

rate of AQF, FQF, DFT were improved. The adaptive Q cochlear filter with the 

masking model gives the best performance, improving the average recognition rate 

to 98.3% from 96.9%, on average. A statistical x2 test demonstrated that the 

improvement in the recognition performance by introducing the spectra-temporal 
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masking model is statistica且ysignificant. These experiments demonstrated that the 

adaptive Q cochlear filter with the spectra-temporal model gives feature parameters 

that are less affected on speaker variations than those of traditional feature 

parameters. Although the parameter sizes are not the same, the cochlear-filter-

based spectra exhibit better performance than do the LPC-based spectra. 

4.3 Speaker independent phoneme recognition experiments ¥ 
using continuous HMM. 

Speaker-independent phoneme recognition experiments using continuous 

HMM were performed to examine the effectiveness of the masking model. A tied-

output-probability, 3-state model were used for the HMMs. The number of 

Gaussian mixtures was 8. The masking model was tested in 5-vowel, 8-consonant, 

and 23-phoneme recognition. The phoneme HMMs were trained on a Japa~ese 

database of 216 phonetica且ybalanced word with nine of ten speakers. For testing, 

one speaker's utterances, which were not used in training, were recognized. 

Experiments were repeated 10 times rotating the testing speaker. Fig. 7 shows the 

results of 5-vowel recognition experiments. 

Fig.7 

The introduction of the masking model to AQF, FQF, and DFT improved the 

recognition rate, with the AQF giving the best performance. Fig. 8 shows the 

results of 8-consonant phoneme recognition experiments. 

Fig.8 

L
l
_＼

d
 

The introduction of the masking model to AQF, FQF, and D百 alsoimproved the 

recognition rate, and the improvements being greater than those of 5-vowel 

recognition. This implies that the masking model enhance the dynamics of the 

consonant features. Among frontends, the AQF again gives the best performance. 
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Fig. 9 shows the results of 23-phoneme recognition experiments . Fig. 9(a) shows 

the results with male speakers, and Fig. 9(b) shows the results with female speakers. 

Fig.9 

Regardless of the speakers gender, the introduction of the masking model to 

AQF, FQF, and D百 improvedthe recognition rate. Among the frontends, the AQF 

g1ves the best performanc~. Table 1 compares the performance improvement 

among AQF, FQF, D百 by血roducingthe masking model 

Table 1 

In 5-vowel recognition, the difference was not significant.In 6-consonant and 

23-phoneme recognition, the improvement of the AQF and FQF were significantly 

greater than that of the DFT. This shows that the characteristics of the cochlear 

filter are more suitable for the masking model to give speaker-independent speech 

feature parameters. These experiments have shown that cochlear filters with the 

masking model give better feature representations in speaker-independent phoneme 

recognition than traditional LPC-based representations. 

4. Conclusion 

In this study, a cochlear filter frontend that incorporates the forward masking 

characteristics was proposed and its effectiveness evaluated in a speaker-

independent speech recognition system. The masking model can enhance essential 

phonetic features by eliminating the speaker-dependent spectral tilt that reflects 

individual source variation. It can also enhance the spectral dynamics that convey 

phonological information in speech signals. The speaker-independent speech 

recognition experiments showed that the incorporation of the forward masking 

model improves the recognition performance and that the adaptive Q cochlear filter 

incorporating the forward masking model gives the best recognition performance. 
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In conclusion, the adaptive Q cochlear ftlter incorporating the forward masking is 

very effective in extracting speaker-independent spectral representations and 

improves the recognition performance of a speaker independent-speech recognition 

system. 
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Figure Captions: 
Fig.1 

Fig.2 

Fig.3 

Fig.4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Table 1 

(a) Block diagram of an adaptive Q cochlear filter model. 

(b) Adaptive Q circuit of the i-th channel. 

Spectro-tempor al masking model. 

Spectrum enhancement by the masking 

different spectrum movement speeds. 

movement toward a lower frequency, 

movement toward a higher frequency. 

model for two 

(a) spectrum 

(b) spectrum 

Spectrum enhancement by the masking model. (a)Adaptive 

Q cochlear filter output. (b) Masking model output. 
(c)Masking pattern.(Utterance: "iyoiyo" by a male 
speaker) 

Effect of the masking parameters on word recognition. 

Multi-speaker word recognition results for male speakers. 

Each bar represents the aver age recognition rate of 9 
speakers. 

Multi-speaker word recognition results for female 
speakers. Each bar represents the average recognition rate 
of 9 speakers. 

Performance comparison of various front-ends in multi-

speaker word recognition. Each bar represents the 

average recognition rate for 10 experiments. In each 
experiment, the average recognition rate of 9 speakers is 

obtained. 

Word recognition results in a noisy environment. Each 
point represents the aver age recognition rate of 4 
speakers. 

List of words corrected by a masking model. 
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Fig.1 Block diagram of the adaptive Q cochlear Filter bank. 
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Fig.4 Schematic illustration of tthe masking model characteristics. 
In Fig.4(a), spectral peak moves toward a lower frequency with 
steady spectral tilt, and in Fig.4(b), speacral peak moves toward a 
higher frequency with different moving speed. For detail, See text. 
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(a) Original Spectrum(AOF) 

Fig. 5 Spectrogram of AQF(a), Masking model output(b) 
and masking pattern(c). 
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Fig. 6 Speaker independent word recognition using 
DTW multi-templete recognizers. Each bar represent 
average word recognition rate of ten speakers. 
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Fig. 7 The results of 5-vowel recognition experiments 
using continuos HMM recognizer. Each bar represent 
average word recognition rate of ten speakers. 
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Fig. 8 Results of 6-consonant recognition 
experiments using continuous HMM recognizer。

Each bar represent average recognition rate of ten 
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Fig.9 Results of 23-phoneme recognition experiments. 
bar represent average recognition rate of ten speakers. 
9(a) :Average recognition rate of 10 Male speakers. Fig. 
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5-Vowel 111111柑ii!llili!ilillll・ベ △. 
AQF 95.79 94.50 "1.29 

FQF 
．． 

94.93 94.05 0.88 

OFT 94.30 93.38 0.92 
6-Consonant 

AQF 74.54 64.04 "10.50 

FQF 72.93 59.38 "13.55 

OFT 72.14 64.74 7.40 
23-CV Phoenme 

AQF 83.35 76.86 6.49 

FOF 79.58 72.73 6.85 I 

OFT 77.97 74.99 2.98 

△ = Masking -Original 

Table 1 Performance improvement comparison among 
AQF,FQF,D百 byintroducing the masking model. 
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