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Abstract

The minimum torque-change model predicts and reproduces human multi-joint movement
data quite well. However, there are three criticisms of the current neural network models
for trajectory formation based on the minimum torque-change criterion: (1) their spatial
representation of time, (2) backpropagation is essential, and (3) they require too many
iterations. Accordingly, we propose a new neural network model for trajectory formation
based on the minimum torque-change criterion. Our neural network model basically uses
a forward dynamics model, an inverse dynamics model and a trajectory f;;rniation
mechanism which generates an approximate minimum torque-changé trajectéry. It does
not require spatial representation of time or backpropagation. -Furthérmore, there are less
iterations required to obtain an approximate optimal solution. Finally, our neural network
model can be broadly applied to the engineering field because it is a new method for
solving optimization problems with boundary conditions.
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1. Introduction

To control voluntary movements, one must solve the following three computational ill-
posed problems: (1) desired trajectory determination. (2) transformation of the task-space
coordinates of the desired trajectory to intrinsic body coordinates and (3) motor command

generation to achieve the desired trajectory. One way to solve these problems is to

introduce a smoothness performance index. Two experimentally confirmed objective

functions for voluntary movement were proposed. Flash and Hogan (1985) proposed a

mathematical model, the minimum-jerk model. They proposed that the trajectory
followed by the subject's arms tended to minimize the integral of the square of the jerk
(rate of change Qf acceleration) of the hand positioh in the Cartesian coordinates space,
integrated over thé entire movemenf. A unique trajectory which yields the best
performance is easily computed by applying the Euler-Lagrange equation because their

model is based solely on the kinematics of movement, independent of the dynamics of the

musculoskeletal system. Several hardware models which can compute minimum-jerk

trajectories have been proposed using recurrent neural networks (Jordan, 1989; Massone

and Bizzi, 1989; Hoff and Arbib, 1992).

Based on the idea that the objective function must be related to dynamics, Uno,

Kawato and Suzuki (1989) proposed a minimum torque-change model which accounts

for desired trajectory determination. The model is based on the theory that the trajectory
of the human arm is determined so as to minimize the time integral of the square of the

rate of torque change. Since the dynamics of the human arm or a robotic manipulator are

nonlinear, finding the unique trajectory based on the minimum torque-change model is a”

nonlinear optimization problem. This is a rather difficult optimization problem since the

smoothness criterion is represented in the motor command space on the one hand. On the

other hand, movement conditions such as target point locations, via-points and obstacles

. are represented in the task-oriented coordinates. Thus, the optimization problem is
computationally very intensive to be solved using the Euler-Lagrange equation. Hitherto,

two kinds of hardware models have been proposed. Kawato, Maeda, Uno and Suzuki



(1990) proposed the cascade neural network, which is a cascade structure of the forward
dynamics model (FDM), to generate a trajectory based on the minimum torque-change
model. Conversely, a neural network model for the minimum torque-change criterion
that uses the inverse dynamics model (IDM) was proposed by Nakamura, Uno, Suzuki
and Kawato (1990). There are three criticisms of these neural networks: (1) they use a
spatial repfesentation of time, (2) backpropagation is essential, (3) they require too many
iterations to obtain an optimal traje,ctory. In this paper, we propose a new model for
trajectory formation that uses both the FDM and IDM. This model solves the three short-
comings above, and can be implemented as a biologically plausible neural network. The
proposed network model can be used in a broad engineering field because it is a new

method for solving general optimization problems with boundary conditions.

2. A neural network for optimal arm trajectory formation
2.1 Minimum torque-change criterion
This section briefly explains the minimum torque-change model. Trajectory formation is
an ill-posed problem because there are an infinite number of possible trajectories that
move the hand from the start to the target point. Therefore, a unique trajectory can not be
determined. However, humans can move the arm between two targets, selecting one
trajectory among an infinite number of trajectories. Therefore, the brain should be able to
compute a unique solution by attaching an appropriate critetion to the ill-posed problem.

Flash and Hogan (1985) proposed the minimum-jerk model which is based 6n the
kinematics of movement, independent of the dynamics of the muscﬁloskeletal system.
Their proposed perfor;nance indzex is the following quadratic measure: .

c, =J.0tf {[%] + [%) }dt _ ' . | , 1)

Heré, (X,Y) are Cartesian coordinates of the hand, and ! is the movement time. Flash
and Hogan (1985) showed that the unique trajc;ctbry yielding the best performance agreed

with the experimental data on movement within the region just in front of the body.“' Their



analysis was based solely on the kinematics of movement, independent of the dynamics
of the musculoskeletal system, and was successful only when formulated in terms of

hand motion in the extracorporeal space.

_ Uno, Kawato and Suzuki (1989) proposed the following alternative quadratic measure _

of performance. The objective function of the model is related to arm dynamics:
i M gol )
Cr = f S|—|a 2)

0 =1\ dt
where 1/ is the torque generated by the j-th actuator of M actuators, and !s is the
movement time. The objective function is the sum of the square of the rate of change of

the torque, integrated over the entire movement. The minimum torque-change model can

predict and produce human arm trajectories quite well. The optimization problem is to

find the torque that minimizes the criterion C7. However, it is difficult to get an optimal

trajectory based on minimum torque-change because tovrque should be determined usirig

complex nonlinear dynamics. That is, a nonlinear optimization problem with boundary

conditions must be solved.

For movements between a pair of targets just in front of the body, predictions of both -

the models were close to the experimental data. However, the trajectories predicted by
the minimum torque-change model were quite different from the minimum-jerk model in
four behavioral situations. It was found that the minimum torque-change model predicted
the real data better than the minimum-jerk model (Uno et al., 1989). The four situations

were as follows: (1) discrete point-to-point movement: the starting point is an

outstretched arm to the side and the end point is in front of the body, (2) movements

between two points while resisting a spring, one end of which is attached to the hand

while the other is fixed, and (3) vertical movements affected by gravity. In these three

cases, the minimum-jerk model always predicts a straight path regardless of external

forces or gravity. On the other hand, the minimum torque-change model predicts a.

curved path and these predictions are close to the experimental data. Finally, the most

compelling evidence was examined: (4) a pair of via-point movements: with identical start -



and end points, but with dictated mirror-image via-points. Because the objective function
Cj of the minimum-jerk model does not vary under translation, rotation and rolling, the
minimum-jerk model predicts an identical path for rolling as well as identical speed
profiles for the two subcases. On the other hand, the minimum torque-change model
predicts two different trajectories. For the concave path, the speed profile has two peaks.
However, for the convex path, the speed profile has only one peak. These predictions
are close to the human data (Uno et al., 1989).

However, the two objective functions, Cy and Cr, are closely relatedbbecause the rate
of torque change is locally proportional to the jerk. If the arm dynamics are approximated

by a point mass system, the two performance indexes are identical .

2.2 A neural network for optimal arm trajectory formation
using forward and inverse models
In this section, a new neural network model for trajectory formation is proposed. A
performance index for the movement between two targets is defined as the sum of a
smoothness constraint energy multiplied by a regularization parameter A and three hard
constraints:
1. NM . _—
E = -AX Y(tl -1 )" +
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where T/ is the torque generated by the j-th actuator of M actuators at the time i. The
performance index is formulated here using discrete time i, and N shows the final time.
Let 9, é, and 6 denote the position, velocity, and acceleration of the joint angle
respectively; 6/, 0} and @/ represent the desired position, desired velocity, and desired -
acceleration of the j-th joint angle respectively. 64, 64 and 8} are the position, velocity
and acceleration of the j-th joint angle at the end time as predicted by the neural network
model. The first term of Equation (3) is simply a discrete version of the minimum

torque-change criterion (2). The second, third and fourth terms of Equation (3) are hard

constraints regarding the movement conditions, that is, desirable position, velocity and



acceleration at the end of the movement.

Here, the gradient descent of energy E (Equation (3)) is calculated as follows:

dt, 3
ds Br{
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where s represents a relaxation time that is independent of movement time. The torque 1/

that minimizes the performance index E can be searched according to Equation (4). The -

second, the third and the fourth terms of Equation (4) shbw that a timé-backward
calculation (error back-propagation) (Rumelhart et al., 1986) is needed to satisfy the
 desired conditions. In optimal control, this calculation is equivalent to solving the adjoip@
eq_u’ation of the Euler-Lagrange equation.’ However, if the terminal conditions are
satisfied, the time-backward calculation (error back-propagation) is not needed, because
the second, third, and fourth term all vanish. Thus, if the terminal-condition errors can
be made equal to 0, the trajectory can be generated by just smoothing the torque (the first
term of Equyati(_)n (4)). Assume, for simplicity, that a trajectory at some moment satisfies
the terminal conditions. In this case, the relaxation »rule of Equation (4), that is, the
gradient descent of energy E, is expressed as follows: |
dr!

T 7“('5{+1+T{—1‘2'C{) 7 &)

Equation (5) shows the operation used to smooth the torque. The trajectory (8, 6, 6)
generated using the new torque updated by Equation (5), does not usually satisfy the
desired béundary conditions. Thus, an incremental, compensatory trajectory is generated
to cancel the error in the terminal conditions. That is, A®© is genérated according to the
following method, and the trajectory © + A® is obtained, which satisfies the terminal
conditions. The trajectory A® is computed by addressing a linear optimization problerﬁ
instead of a nonlinear optimization problem. When generating A®, the control object
dynamics are approximated by a simple linear system. Furthermore, the trajectory. is

determined by solving the linear optimization that minimizes criterion Cg, whose terminal



conditions are the terminal condition errors induced by Equation (5). The trajectory
©+ A© then satisfies the terminal conditions. However, the torque t and trajectory
© + A® do not satisfy the original nonlinear arm dynamics (neither FDM or IDM). Here,
the FDM and IDM are defined as the following equations:

FDM: ©;,;, =F(©;,1;)

IDM : %, =1(©))

where ©; = (8;,67,0}", 8,67, 81,68, 8" t;=(c},e?, 1)
Accordingly, the torque that satisfies both terminal conditions and nonlinear arm
dynamics is obtained by using the IDM:

1,=1(0,+A6;) (6)
In this framework, the gradient descent of energy £ is easy to compute as it is simply
expressed by the torque smoothing term (Equation (5)) and error backpropagation and
spatial representation of time can be avoided.

The algorithm described above is shown in Figure 1. Stepl : The torque and joint
angle that satisfy the terminal condition and dynamics are calculated using the IDM,
where © + A® satisfies the terminal conditions. Step 2 : The torque is smoothed. Steb 3:
The joint angle trajectory is generated from the torque smoothed in Step 2 through FDM.
The trajectory does not satisfy the terminal conditions. The terminal-condition errors are
calculated. Step 4 : By finding a solution to the linear optimization problem, the
compensatory trajectory A@ which cancels the termiﬁal—condition errors is obtained.

The optimal trajectory based on minimum torque-change is obtained by repeating Step
1 to Step 4.

Any initial trajectory can be chosen as the starting point of the calculation. However,
if it is a good approximation to the minimum torque-change trajectory, faster convergence
is expected. Therefore, two kinds of reasonable initial trajectories are used; one is a
trajectory based on the minimum-jerk criterion (Flash et al., 1985). The other is 0.
When 0 is used as the initial trajectory, the IDM in the first iteration of the proposed

schema outputs the torque 0 over time. Therefore, the hand position computed by the



Step 3

FDM .
(Forward Dynamics Model) —
e +S(7)

Step 4 Step 2
Approximated minimum torque s o
( change for constraint error . Torque smoothmg} |
C A0 ) \ >0 )
6+46 Step 1 T

IDM

®1 (Inverse Dynamics Model) .

- S : smoothing operator

Figure 1 - ;
Neural network schema for arm trajectory formation using the forward
dynamics model and inverse dynamics model. Step 1 shows the IDM
whose input is a trajectory which satisfies the boundary conditions, and
output is a torque series which satisfies the nonlinear arm dynamics.
Torque is smoothed in Step 2. The terminal-condition -errors are
computed using the FDM (Step 3). In Step 4, the minimum torque-change
“trajectory for a linear approximated dynamics model of the arm is derived.
The output of Step 4 is the trajectory which satisfies the boundary
conditions of the original nonlinear optimization problem.

FDM in this itération remains the initial position during movement time. Then, in the box
" approximated minimum-torque-change for constraint error " in Figure 1, a trajectory is
computed by solving a linear optimization problem with exactly the same boundary
conditions as those of the nonlinear problem.

_ The smoothed torque is computed according to the next equation which is a discrete
version of Equation (5). _

s+ = Ti(s) + %As |
= ti(s) + Mty () + ti41(s) = 21(s)) » 0

where As is a time step of discrete time and assumed equal to 1.

In the following section, iteration of Equation (7) is used as an example of the smoothing

operation. The reason for this choice will be clarified in section 5. Let & be a iterative



computation index, the smoothed torque is represented as follows:

T (s.k+) = 1 (5.k) + Mt (s,k) + Tl (s.k) - 2] (s:k))

i (s+1) = T (s,n+1) (8)
where £ =1, 2, ~, n
Thus, as the number of iterative computations 7 increases, the torque becomes smoother.
If that number is quite large, the torque approaches 0 over time. Although the above
smoothing opération was used in the computer simulation, we note that a variety of

smoothing methods can be applied to the proposed algorithm. .

3. Computer simulation of discrete point-to-point movement
This section presents the results of applying the proposed method to 2-joint arm trajectory
formation. In this simulation, the following mathematical model of FDM and IDM was
used. It has already been demo‘nstrated that both the FDM and IDM can be achieved
using neural networks (Kawato et al., 1987; Kawato et al., 1990; Kawato, 1990; Jordan
et al., 1990). | |
Lt = U+ L+ 2MyL S, c0s0, + My(L)Mb,
+ (I, + MyL;S, cos8,)8,
- M,L,5,(26, + 6,)8,5in0, + bf, )
T, = (I, + MyL,S, cos8,)8,
+ M,LS,(8,)%sin8, + b,0, (10)
M;, L,-; S; and I; represent the mass, length, distance from the mass center to the joint,
and the rotary inertia of the link i around the joint, respectively. Here, the same physical
parameter values as those ih Uno's paper are used (Uno et al., 1989). b; and 7; represent
the coefficients of viscosity and the actuated torque of the joint i. Joints 1 and 2
correspond to the shoulder and the elbow. Joint 1 is located at the origin of the X-Y
coordinates.
Two kinds of an approximated dynamic model of the arm are used to calculate the

compensatory trajectory A@ in the computer simulation. The first model isa linear



approximated model along the previous iteration trajectory. Thus the approximated
dynamics is described by a linear differential equation with time-varying coefficients. In
thié case, the optimal trajectory is found by applying the Riccati equation (Bryson and
Ho, 1975). The second model is a simple point-mass model with time-iﬁvariant
parameters and no interaction between the joints. The minimum torque-change trejectery
for this model is equivalent to the minimum-jerk trajectory in the joint-angle-coordinate

space. The second model is a much poorer approximation than the first.

3.1 The numerical experiment using the linear approximated
model
In this sectien, optimality and convergence of the new method are examined using the

linear approXimated model. First, the anaiytical computation method of the cdmpensatory

trajectory based on minimum torque-change, is described using the linear approximated |

model. Equations (9) and (10) are generally represented by Equatlon (11).

cod g
E-B = f(8,,8,,6,,8,,7;,T,) (i=12) an

The linear approximated equation around the trajectory &() = (8,,8,.8,.8,.%,.,t,), which is

generated by the smoothed torque T + 8(v) = (%,, %), is described by Equation (12).
E—X(t) = AX©#) + B(t)U(t) : : 12)

X(1) = (&,(1) & (0 E(0) E;() M) M)

U() = (1, (1) ()"
0 0 1 0 0 0

0 0 0 1 0 0

() 9, (0) 9,(0) () 3(©) 3, (6)
09, 098, 096, 00, 9d1 I,

A0 3,(0) 35(8) ¥,©) 51) 3,(6) 3, (6)
9, 06, 99, 96, IOt I,
0. 0 0 0 0 0
, 0 0 0 0 0 0
" B(t):(o 0001 OJT
, , 000001

Here, let &, &; denote positions, &1, &.z denote velocities , and M1, M, represent torque



respectively. The subscript denotes joint number. The position 8;+¢;, the velocity §i+&i
and the torque %;+m;, (i = 1, 2) satisfy the boundary condition of discrete point-to-point
movement. |
Therefore, X(¢) satisfy the following boundary conditions.
£1(0)=0 &;(t;)=48, |
é1(0)=0 &1(‘f)=A61
€2(0)=0 &,(t,)=A6,
£2(0=0 &;(t/)=08,
M(0)=0 m,(s;)=AT,
M2(0)=0 My(¢5)=AT,y ‘ 13)
A8, A8, represent the position errors at the end point, A8;, A8, represent the velocity
errors at the end point, and At,, AT, are the torque errors at the end point. These terminal
cbhdition errors are induced by the shoothing operator S.
The minimum torque-change model is formulated as the following optimization

problem:

_Llyop . (10 )
J_Zj(v QU)dt —  Min Q-(O 1) (14)

The optimization problem of the linear system can be solved by applying the RiCéati
equation. As aresult, a éompensatory trajectory, which is an approximated minimum
torque-change trajectory, is generated. |
The simulation conditions were as follows: (1) Movement time: 0.75(sec) (2) Sample
time: 0.01(sec) (3) Trajectory: from T2 to T6 ( The x-y Cartesian coordinates of initial
_and target points are shown in Table lj. (4) The iteration number of smoothing
operations: n = 100. The convergence of the minimum torque-change criterion is shown
in Figure 2. The x-axis is the number of iterative calculétions, the y-axis is the criterion
function value (Equation (2)). Two initial values were used in this simulation. One was

a trajectory based on minimum-jerk (Flash and Hogan, 1985). The other was equal to 0.

The optimal value of this problem can be calculated using a Newton-like method, that is,

10



an iterative scheme to solve the two-point boundary-value problem (Uno et al., 1989). It
is assumed that a nearly optimal solution is obtained by the Newton-like method. The
criterion function value for the proposed neural network model converged near the
optimal value, and the converged value of the performancé index was obtained in less
than 10 iterations. The converged values for the two initial values were almost the same.
Thus, the proposed method can produce a trajectory close to the minimum t‘orqﬁe—change
trajectory for the original nonlinear arm dynamics in quite a small number of iterations
when the minimum torque-chénge sbluﬁon of the linear approximated model is used as

the compensatory trajectory

1.6 | | | | 1 H
ﬁ) —— initial state = minimum jerk trajectory
----- initial state =0 (no movement)

1.5 —
>
2
w 1.4+ : ‘ . -
=
L

q
1.3 e _

|result of Newton-like method |

1.2k | N | I +
0 5 10 15 20 25 30

" ITERATION

Figure 2

Convergence of the value of the minimum torque-change criterion when
the new proposed schema is applied to a T2 - T6 movement in front of the
body using a 2-joint arm. In this s1mulat10n, the linear approximated
model with time-variant parameters is used as a model to compute the
compensatory trajectory for satisfying the boundary conditions. Two:
kinds of initial trajectory are examined. One is the minimum-jerk
trajectory. The other corresponds to 0 (no movement). Both results are-
almost the same. Satisfactory solutions are obtained which approx:mates
the optimal solution computed using the Newton-like method. LR
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Table 1
X-Y coordinates of initial target and intermediate points.

X (cm) | Y (cm)

T1 - 0.92 30.36
T2 -24.33 30.89
T3 -19.94 47.11
T4 0.15 58.92

T5 21.09 49.33
T6 21.24 32.63
P1 0.15 58.93
P2 1.31 36.96

3.2 The numerical experiment using a point-maSs model
In this section, a simple point-mass model is used. This model is expressed as Equation
(15). Here, the minimum torque-change trajectory of a point-mass model (Equation (15))
is represented as the 5th order polynomial in time (Equation (16)), which is easily derived
using the Euler-Lagrange equation. Because, in this case, the change in torque is exactly
proportional to the jerk of the joint angle, Equation (16) is equivalent to the optimal
solution of the minimum-jerk criterion in the joint-angle-coordinate space.
m; = I | | (13
Ei(t) = ay + ait + apf® + ast® + ayt* + agt’ (16)
a =£,000 a =0, ay =0
a = {10<§j<tf) —~ &;(0)) - 48;(t) 4y + %Extf)-tﬁ} /t}
ay = {-15€;(tp) = £,0) + &) 47 - &2} [t}
as = {6500 - 00 - 36,0 1 + SEpe | [
where M;, &; ,& ; and 3 j represent the torque, position, velocity and the acceleration at the
J-th joint, respectively and [ is the inertia of the link. g; (i=0.,...,5) are parameters that are
determined by movement time and boundary conditions (position, velocity and |

acceleration at the start and end point). The boundary conditions are the same as

12



Equation (13); however, the boundary condition for acceleration is given instead ofv the
torque conditions. In this simulation, mathematical equations are used to obtain the
compensatory trajectory. However, it is known that a recurrent neural network can learn
approximate optimal trajectories (Massone et al., 1989; Jordan, 1989; Hoff et al., 1992).
Furthermore Hoff and Arbib (1992) have shown that the rigorous minimum-jerk
trajectory can be generated using a recurrent neural network.

The simulation conditions were as follows: (1) Movement time: 0.75(sec) (2) Sample
time: 0.01(sec) (3) Trajectory: five kinds of movement in front of the body (The start and
end points are shown in Table 1). The parameters used in this simulation’, o.nd the
number of iterations to. obtain a minimum fot the objective function, are shown'in Table
2. The trajectories of five movements, the speed profile of the T4-T1 movémen’t, and the
torque profile of the T4-T1 movement are shown in Figures 3, 4 and 5; ‘resliectively.
Each trajectory was obtained in less than 5 iterations. The value of the criterion function
attained at the first minimum point during the iterative computation is shown in Table 3.
Each objective function value of the trajectory was close to the optimal value calculated -
using the Newton-like method. The number of iteration to obtain the minimum objectivc
function value is almost same in the case using the .linear approximated model, and thc
objective function value calculated using the linear approximated model was closer to the
optimal value. However, the values calculated using the point-mass model and the linear
approximated model were not so different. Each trajectory generated by the proposed
method agreed with tlie han(i paths calculated using the Newton-like method. For
horizontal movement between two targets located approximately in front of the body, the
minimum torqué-change criterion predicts hand paths that are not completely straight, that
is, slightly convex. On the other hand, the hand paths based on the minimum-jerk model
are completely straight. Both models can also predict a single-peaked, bell-shaped speed
- profile of the hand. Accordingly, the hand paths generated by the proposed method were
slightly convex (Figure 3). This method also produced a singlé-peake'd‘,' beil-shaped
speed profile (Figure 4). The torque produced by the proposed method was smoother

13




than that of the minimum-jerk model (Figure 5).

Table 2
Computer simulation parameters and number of iterations required to calculate

a minimum for the objective function for each movement

movement A number of smoothing  number of iterations
T2-T6 0.3 30 5
T3-T6 0.3 60 1
T1-T3 0.3 30 2
T4-T1 0.3 30 3
T4-T6 0.3 30 1

A is the smoothing operator parameter. Number of smoothing shows the number of iterative

computations in the smoothing operation. Number of iterations shows the number of iterative

computations required to obtain a minimum for the objective function point in the proposed model for

trajectory formation.

Table 3
Value of the minimum torque-change criterion.

movement proposed method ~ Newton-like  minimum jerk
T2-T6 1.374 1.229 1.573
T3-T6 1.183 1.131 1.184
T1-T3 3.164x10"! 3.051x10"! 3.227x10"!
T4-T1 1.920x10°! 1.589x107! 2.968x10"!
T4-T6 7.515x10°! 7.156x107! 7.814x107!

14



0.8 | ] |
------ Newton-like method
0.6 |- ]
§
E o4l N | .
>.
----------------- 76 ]
0.2 |- : ]
0.0 o i - g
-0.4 -0.2 0.0 0.2 0.4
X (m)
Figure 3

Trajectory of discrete point-to- -point movements. Five kinds of trajectory
in front of the body using a 2-joint arm are shown. The origin of the X-Y

coordinates represents the location of joint 1 (shoulder). The trajectory
generated by the proposed method based on the minimum torque-change :

criterion, and that of the Newton-like method are compared Both

trajectories. are not stralght unhke mlmmum-Jerk traJectorles, but are;~

shghtly convex, - - e R
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] | | | [ | |
10 T4-T1 — new method ]
----------- Newton-like method
T jerk method .
w
E 0.8 -
- R
O | = y N, -
3 0.6 A\
.| )’ s 9
1] K )
> , ,
O a 4 — 'l' “‘ -~
0.2 — ""' . R =1
0.0 L1 | | | | | |
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7
TIME(s)
Figure 4

Speed profile of a T4 - T1 movement in front of the body. The speed
profiles using the proposed model, the Newton-like method which is an
optimal profile with respect to the minimum torque-change model, and the
minimum-jerk model, show a single-peaked, bell-shaped speed profile
which agrees with the speed profile observed in human arm movement.
The profile of the proposed method is most similar to that of the Newton-
like method. Thus, this method can generate a trajectory based on
minimum torque-change,.
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-
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TIME(s)

Figure §

Torque proflle of a T4 - T1 movement in front of the body. The torque
profiles of the proposed model, the Newton-like method which is an

optimal profile with respect to the minimum torque-change model, and the

minimum-jerk model are compared. Torque 1 and torque 2 represent:
shoulder and elbow torque respectively. The profiles of the proposedv

model and the Newton-like method are smoother than that of the
minimum-jerk model.

4. An Extension to via-point movement

4.1 A point-mass model for via-point movement

The proposed method is extended to generate a trajectory with via-points. In this case,
position constraints at the via-points are additional to the problem of discrete point-to-

point movement. The performance index of a via-point movement is defined as follows,
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instead of Equation (3). Trajectory formation using only one via-point is explained,
however, it is easy to extend this to a movement with several via-points.

188 . o, 1Mo M.
E = MY I -1_)" + = X(8,-04)" + = X(05-64)
2 kg 221 2 j=1

M. . 1M
+ -2-1_21(9; -84 + 5 El(ei,.a—efv 2, a7

where 6}, represents the desired position at a via-point of the j-th joint angle. 67
represents the position at Vtime (1 < V< N-1 ) of the j-th joint angle. There are two
differences between discrete point-to-point movement and via-point movement. First, the
movement time between the start and the via-point is not given, however, the movement
time is given for discreté point-to-point movement. Second, the velocity and acceleration
constraints at the time passing through the via-point are not given. Thus, conversely, if
the time passing through the via-point, the vélocity and the acceleration at the Via—point
can be determined, a trajectory with the via-point can be easily generated using the same
method for discrete point-to-point movements.

Here, the algorithm shown in Figure 1 is extended for via-point movements. The via-

M , ,
point time V for the compensatory trajectory is chosen so that Zl(eiia—% ) in Equation
J:

(17) is minimized after Step 3 (FDM) in Figure 1. The point-mass model is used as the
approximate dynamics model for generating the compensatory trajectory. The minimum
torque-change trajectory of the point-mass model is expressed as Equation (16). Thus,
the trajectory from the starting point to a via-point could be calculated if the movement
time, positidn, velocity and acceleration at the start and the via-point were to be given.

The torque-change criterion value from time O to ¢,,;, when passing through the via-poiht

is expressed as follows:

J = IZJ-(:M[%]Zdt ~  Min | (18)
where
EO0) = A8, &) = A8,
EO0) = A0, &) = A8,
&0 = a8, Eu,) = A8,
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A8y, A8, and A, represent the position, velocity and the acceleration errors for the

boundary conditions, respectively, at time 0. A6, A6, and A8, represent those errors -

at time V. However, the values of 46,,, and A8, are not specified yet at this point and
will be given below. A solution of Equation (18) is :given by Equation (19) similar to
Equation (16). | | o

E(t) = by + byt + byt® + byt® + byt + by’ )
1 2 3 4 5

where b; (i=0,...,5) could be determined if the above six constraints were to be given. '

Here, the torque-change criterion function of the point-mass model is expressed as

Equation (20). Since the values A8, and A8, are not given, Equation (20) is a function

of the velocity and acceleration at via-time.

»N\2
. . _ 2 bvia d&
J(A8,,,A8,,) = I JO [dt] dt

- 12J;"“(6b3 + 24b,t + 60b5t2)2dt | ‘, (20)
For Aév;a and A8, to minimize Equation(20), the following conditions are necessary:
e - @

Therefore, the veloc1ty and acceleration at via-time are obtained as follows:

- Ab,, = I (10Aem 1048, ~ 6A84t,, — AByr,,2) (23)
1

- AB,, = — (1088, - 1040, - 108801, - 28801,,%) - (24)

via 3 tw'a

That is, the via-point time can be chosen and the velocity and acceleration computed, so

as to minimize the torque-change criterion function for the approx1mate model

Furthermore, the algorithm described above can be applied to trajectory format1on w1th |
more than one via-point. Because the algorithm can determine the velocity and "

acceleration errors at the first via- pomt using only the error of the pos1t10n veloc1ty,'

acceleratlon at the start point, the veloc1ty and acceleration errors at the second v1a—p01nt

can be s1m11ar1y determined from errors at the first via-point. Equatlons 11ke (23) and '
(24) can be denved straightforwardly The reason of this straightforward extens1on to

multiple via-point cases is that only the objective function from the start point to the ﬁrSt |
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via-point is considered in Equation (20) and the latter half of the integral is not taken into

account,

- 4.2 Numerical experiments

The simﬁlation conditions were as follows: (1) Movement time: 1.0(sec) (2) Sample time:
0.01(sec) (3) Start point T3, End point TS5, and Via point Plb or P2 (The x-y Cartesian
coordinates of each point are shown in Table 1). The iteration number for smoothings,
the smoothing parameter , and the number of iterations needed to reach the first
minimum for the objective function, are shown in Table 4. The minimum-jerk trajectory
in the Cartesian coordinates was chosen as the initial trajectory. The trajectories of the
two movements, and the speed profiles of T3-P2-T5 are shown in Figures 6 and 7
respectively. Minimal values of the criterion function for the three schemes (proposed
method, Newton—like method, and minjmu_m-j‘erk model) are shown in Table 5. Each
trajectory was obtained in less than 5 iterations, and the minimum value of the criterion
function was élose to the optimal value obtained using the Newton-like method. The
hand paths generated using the proposed method were almost the same as the hand paths
of the Newton-like method (minimum torque-change model), and the minimum-jerk
model. These two models can predict a curved hand path with a single-peaked or double-
peaked speed profile, and this depends on the location of the via-point. In this case, the
two via-points P1 and P2 were located symmetrically with respect to the line co_nnecting
the common start and end points. The minimum-jerk model predicted identical speed
profiles for both cases; however, the minimufn torque-change model predicted two
different profiles: that for via-point P1 had only one peak; however, that for P2 had two
peaks (Uno et al., 1989). The speed profile for via-point P2 predicted by the proposedb
method had two peaks, as shown in Figure 7. These simulation res}ults show that the
proposed method for via-point movement can generate approximately a trajecfory passing
through via-points based on minimum torque-change criterion in only servervalb iterations.

We emphasize that the objective functions obtained by the proposed method are much
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smaller than those of the minimum-jerk model (Table 5). If one compares Table 3 and
Table 5, it is suggested that the new method is more efficient for complex movements

rather than simple movements.

: Table 4
Computer simulation parameters and number of iterations required to calculate
a minimum for the objective function for each movement

movement A number of smoothing  number of iterations
- T3-P1-T5 0.3 30 3
T3-P2-T5 0.3 30 _ v 3

A is the smoothing operator parameter. Number of smoothing shows the number of iterative
computations in the smoothing operation. Number of iterations shows the number of iterative

computations required to obtain a minimum for the objective function in the proposed model for

trajectory formation.

Table 5
Value of the minimum torque-change criterion.

movement proposed method  Newton-like minimum jerk
T3-P1-T5 __ 3.850x10! 3.168x101  6,709x10°!
T3-P2-T5  4.348x10°! 3.322x10°! 6.323x10°!
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Figure 6

Trajectory of via-point movement in front of the body (T3 - P1 - TS and
T3 - P2 -T5). The trajectories of the proposed method, and the Newton-
like method which are based on the minimum torque-change criterion are
compared to that of the minimum-jerk model. The three trajectories are

almost identical.
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Figure 7 ' ‘ ' ‘ ‘ ‘
Speed profile of a T3-P2-T5S movement. The speed profile based on the
minimum-jerk criterion has only one peak, and in a T3-P1-T5 movement it
also has only one peak. The speed profile based on the minimum torque-
change criterion has one peak in a T3-P1-T5 movement, however, in a
T3-P2-T5 movement, it has two peaks which correspond to the hand
trajectory observed in human arm movement. Thus, in a T3- P1-T5
movement, the speed profiles based on the two kinds of criteria are not so
different, but in a T3-P2-T5 they are quite different, as shown in this
figure, ,

5. Mathematical considerations of the proposed method for
nonlinear optimization problems | “
In this section, the proposed network is formulated as a general optimal alg(')rit'hrﬁ,déﬁfdf )

the theoretical framework for this method is described. The optimality and convergence "
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of the new method applied to a nonlinear optimization problem is discussed
mathematically in sections 5.1 and 5.2. The following discussion is for the scalar case
but it can be easily extended to multi-variable céses.

First, we define the following nonlinear optimization problem which minimizes the
criterion function J under boundary conditions:

[Nonlinear Optimization Problem: N]

J=] (—j—tu—)zdt - Min ‘ (25)
Subject to v

5‘(‘1—’: = f(x u) | (26)

2(0) = 0, x(ty) = x4 , @n

w(0) = 0, u(t;) =0, | ’ (28)

where x and » represent a state variable and a control variable, respectively. x4 and ¢,
represent a desired terminal value and an end time, respectively. It is assumed that the
‘nonlinear function fis differentiable with respectto x and u,

Let us first illustrate the iteration rule of the control variable by generalizing the neural
network model proposed in section 2 as follows. We define an inverse dynamics model
G, which is an inverse function of the fbrward dynamics model F.

l GX) = u,

where (x, x) = X = F(u)
The control variable at the j;I-]-th iteration, as shown in Figure 1, is outputted by IDM,
whose input is cbmputed by adding the trajectory generated by the smoothed torque at the
J-th iteration to the compensatory trajectory generated by an approximate linear dynamics |
model. Thus, the control variable at the j+/-th iteration is derived as follows:

w = G(F(w + Sw) + E) (29)
where uj‘ + S(u') is the smodthed torque, and E = (&, &) is the trajectqry which
compensates for the terminal-condition errors induced by #’ + S(«/) and is the solution
for the linear optimization problem, defined below. The following equation is obtained

using Taylor's expansion of function F in Equation (29) around /.
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oF (uf)

Wt = G(F(uf ) + =8 + o(Sw))) + E)

Taking Taylor's expansion of G around X/ = F(u’):
" 0.6 aF(u) - AG(X!)_
W' =+ = ( S@') + (S(“J))) TTx -
3G(xX7)

3G(X’)._
X X

=u + S@) +

o(S(u')) +
where a higher order term than the second order term ie 1gnored because the trajectory i
change between the j-th and the j+/-th iteration is usually qu1te small The fourth term in
~ above equation is expressed as —n'. W is obtained as the opt1ma1 solutlon to the
follow1ng linear problem. If $(u') is small, the followmg equatlon is der1ved because;-
o(S(u’)) becomes negligibly small. - |
| w = u o+ S(uj) -
However it is not aésunied thatb S’ )‘ is samll in the eomputer simulation and
mathematical consideration described below. Therefore, we define the 1terat10n rule of “
the control vanable as follows: "
Tt s W Sl - o I ey

3G(X’) (
X

where S@’) is S/) + oS’ )).

'Note that the two following trajectories satisfy exactly the same boundary condltlons

or (“ LGOI o(S))

[l

The linear optimization problem is defined to compute a trajectory which compensates
for boundary conditions.

[Linear Optlmlzann Problem: L}

J = I(((iin) dt - Min ' (31) 7
Subject to o |
7oy J o,
%‘ - af(;;c g+ af(;; n (32)
&(0) = 0, &) = Ax/(¢) 33)

. n0) = 0, WGy = S6)y) S D)
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Here, x/, u/ are the trajectory and the control variable at the j-th iteration, respectively.
Ax!(t;) shows the terminal-condition errors when the input &/ + S(u’) is fed to the
nonlinear dynamics equation'(26). Let (',x") be an isolated optimal solution that
minimizes the criterion function J, and let (n*/, &*/) be an isolated optimal solution that

minimizes the linear optimal problem L. Thus, &*/ is the compensatory trajectory.

5.1 Optimality of the converged ‘so_lution |
Ih ﬂlis section we will show that the convergence of the propbsed algorithm is equivalent
to thé optimality of the solution. First we discuss the necessary condition: if u’ is equal
to u* (& =u"), then 1’ becomes equal to §u*) (n"/ = §@’)), thus the .iteration
converges. That is, if the control yariable is equal to the optimal value, the iterative
algorithm Equation (30) converges. Conversely, quthen discuss the su‘ffi.cient,

cohditibn: if §(u’) is equal to n” (n' = $@')), then u/ becomes equal to u”* (u/ = u"). .
That is, if the control variable converges, the control variable u/ becomes the optim'alh
solution.

A linear dynamic equation around the optimal solution is represented by the following

equétion: '
c;_):‘ _ af(;'; e | af(;*; ) . 35)
where,
E(0) =0, &) = Axy
n0) = 0, nity) = S@")ey) (36)

It is evident that the above necessary condition is equivalent to the followinng‘ lemma 1; -
[Lemina 1] |

The optimal solution 0" for the linear optimization problem [L] at x/ = x" is equal o
Sw). | :
Proof

We use reductio ad absurdum. Assume that the optimal solution N for [L] is not equal to
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S@")(n" # S(u")). The following shows that this assumption contradicts the assumption *
that »" is the optimal solution for [N]. The following new control variable is constructed -
for [N].

d=u"+ é(g(u') - n') (lel<<1) ‘ 37

If € is small, & — »" is approximated by the solution to the linear equation (35) with the
input £(Su") - m"). Furthermore, the boundary conditions-for S(u") and M are exactly .
the same with that of [L]: according to Equation (36). Therefore, & satisfiés the
bgunda_ry conditions Equations-(27) and (28), x(0) = 0, x(t7) = x4, u(O)__ =0, _,anq :
u(ty) = 0, If the following inequality is shown, this proof is completed, as the inequality
contradicts the assumption that u” is the optimal solution for [N]

(S a< (% a

The next equation is obtained by ignoring the term &2,

: I( )d ___[[ {u +a(S(u )M )}]2dt

' du dS(u) d’n* S : :
i

Let I be an 1ntegral of the second term on the right-hand side of Equation (38). ¢ s sign -,

m

can be determined according to I's sign. That is,
if I>0 thene <0
if I<0 thene >0

Thus the required inequality can be derived.

Here, if I = 0, because S ) _ gdnt—'is not always equal to 0 over time (- 1" # 8(") ), 4

is‘also optimal to the first approximation. Therefore, 4~ does not become an isolated
extreme value in problem [N], because the first variation of the criterion function -
corresponds to 0 in this case. (Q.E.D)

The following lemma 2 is equivalent to the sufficient condition. -
[Lemma 2]
If §(u’) is equal N (4" = §(’)), then u’ becomes equal to u” (u/ = u*).

Proof
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We use reductio ad absurdum again. Let us assume that the control variable »’ is not the
optimal solution for [N] (u’ # u"), even when the iteration converges.
The following new control variable is constructed for [L].
A = Sw)) + e(u” - W) (39)
First, itr will be shown that 7 satisfies the boundary conditions of [L]. The next equation-

shows the dynamic equation at the optimal point.

d:: = f&x', u'y : : (40)

Equation (41) is the linear approximated equation of Equation (40) around x»’ where'

u ~u. o |
Jogi Joyd )
% = af(-;.; u )g + af(-;l; u ’)(u*__uj) , (41)

- Then, both ¥* and u’ satisfy the final conditions x(¢;) = x4 of the dynamic equation
(26), so &, that is, the difference between the trajectory generated by u” and that by u’, -
satisfies the condition &(¢;) = 0. Furthermore, 7 satisfies the boundary conditions of
Equation (33) because $(u/) satisfies the boundary conditions of Equation (33).
Moreover, fi satisfies the boundary conditions of Equation (34) according to the
following conditions:

W) =u"(t;) = w0 =ul(t;) =0

Equation (43) can be derived by using Equation (42) and ignoring the term e?.

@ = dSt’) + e[du -~ gu—i) T (42)
e d¢ e

di dS@') o 950) Cdul
(&)= (oS -5

Let I be an integral of the second term on the right-hand side of Equation (43). &'s sign
can be determined according to I's sign in the same manner as the previous proof.

if I>0 then€ <0

if I<Q then€ >0

Therefore, the required inequality is obtained:

c N2 .
ai Y aSwhHY .
j(—dt) dt <j£ yy ] dt
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This contradicts the basic assumption that n*/ = §(u/) is optimal for [L].

If1=0,
o _a
dt dr

is not always equal to O over time. Therefore, ™/ does not become an isolated extreme

value for [L]. (Q.E.D)

5.2 Convergence of the solution

This section discusses the monotone convergence of the criterion function. We ask

whether the proposed algorlthm decreases the criterion function for every 1terat1on (“

Jy < Jwy )y,

“The criterion function at the j+1-th iteration is calculated using Equation (30).
5 j S VY dSed ]
J@*y - Il = 2f (d“ B )j(ﬁ(“—) - -‘1’1}#

dt dt dt dt
- ;(M_) . ﬂ][ﬁ@ _ di’)d, @)
dt dt dt dt

Also, the smoothing operator S in sections 2, 3 and 4 is represented in continuous time as

follows:
-
P g ) -
uék+1)—- uék) + k—dT (k = 1,2,"',71 A< 1)

where 7 is the number of smoothings. For very large n, we assume that ' + Sw'y is

quite small. This is the most important condition for convergence. We note that this is

not a reasonable assumption when the optimal solutions to [N] and [L] are very différeht.

On the other hand when «’ has not converged yet, then -
S@)y-mi=0 (- Equation (30)) =

Furthermore §(u’) + v/ = o/ + §@') - (w - ) is not small since u/ — n’ is not small.

Since the first term of the right-hand side of Equatlon (44) becomes neghglbly small

compared to the second term, it can be 1gnored
N
iy _ gy = (@) 4 - ([BeD)
J(u ’) J(u') J'(dt)dt j( I

The following inequality holds because 1’ is optimal for [L]
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N2 ~ f N2
I(."“_JJ dt - j[——ds(uJ)J dt <0
dt

dt
Finally, the warranted inequality can be derived which shows the monotone convergence.
J@*hy < J@')

Because J () is lower bounded, it converges to the minimum value.

6. Discussion

A new neural network model for trajectory formation was developed which basically uses
a féfward dynamics model, an inverse dynamics modelvand an approximate mini‘mﬁm _
torque-change trajectory generation mechanism. This model can solve the three difficult
criticisms relating to the cascade, and other neural networks. These are, (1) they use a
spatial representation ‘of time, (2)_ backpropagation is essential, and (3) too many
iterations are required to obtain the optimal trajectory. However, this model does not use

a spatial representation of time. It does not require backpropagation in iterative

computation. - It needs only an approximate linear model and an IDM that is an inverse
function of the FDM to satisfy the boundary conditions. Furthermore, this model can
reach an optiﬁlal solution in a few iterations as shown in the computer simulation.

~ Accordingly, the new neural network model solves the three ‘critici,sms of the previous
models. 7

In the mathematical proof and computer simulation, a smoothing operator that needs
many iterative calculations was used. Such an iterative smoothing operator is not
necessary, however, and smoothing filters of one-shot type can be easily designed.

We emphasize that the entire model can be implemented using neural networks. The
model consists of five main parts; a FDM, an IDM, an approximated linear quel,_ a
srﬁoother and a via—poinfs seeker. As already méntioned, a FDM can be obtained using
Jordan's recurrent neural network (Jordan ét al., 1990). Kawato et al. (Kawato et al.,
1987; Kawato, 1990) have already reported that an IDM can be obtained by neural

network learning. The torque smoother and via-point seeker are simple enough to be_k
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implemented as neural networks. In the case of the point-mass model, the minimum
torque-change trajectory can be expressed as the minimﬁm—jerk trajectory in the joint
angle space. Hoff and Arbib (1992) have already pointed out that a minimﬁm-jerk
trajectory can be obtained using a recurrent neural network when the final veloci'ty’and
acceleration are equal to 0. It is easy to extend their model to general conditions, so that
the velocity and acceleration at the start and end points are not necessarily 0. These .
conditions are needed in via-point trajeétory formation. That is, the minimum-jerk

trajectory under the above conditions can be defined using the following dynainics:

%@ = AO® + BO, (45)

[0 1 0

A=| 0 0 1
| -60/D* -36/D* -9/D
[0 10

B=|0 0 1
|60/D* -24/D* 3/D

o= 6 6

0, = (ev év év)T

where v shows the end point and 8y, 8, and 8, define the given position, velocify ahd :
acceleration at the end point. D represents the remaining movement time. Accordihgly_,
when 8, = 0 and 6, = 0, the above equation corresponds to the dynamic equatio,n |
pr_bposed by Hoff and Arbib ('199‘2).. Thus, the point-mass model can be obtained using -
a recurrent network in the same manner as Hoff and Arbib. The detailed mode'l‘for, _
trajectory formation and its five main parts obtained using neural networks, areb showh in
Figure 8. | |

~The new method is a genefal method for nonlinear optimization problemS with
boundary conditions. It has several advantages in engineering applications. For
example, it does not require an inversion of matrices in iteration, it reaches an optimal
solution in a short timé, and the output after passing through the IDM always satisfies the
boundary conditions and dynamics equation. Therefore, it can be extended to many other

engineering problems.
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Neural network structure of arm trajectory formation. The five main
parts, that is, the Forward Dynamics Model, Inverse Dynamics Model,
Approximated Minimum Torque Change Model, Torque Smoother and
Via-points Time Search, can all be implemented as neural networks. In
this figure, the flow of the signals is illustrated in detail. The inputs of
the proposed neural network are positions, velocities and accelerations at
the start and the end times, movement time, and via-point positions. The
position, velocity and acceleration time courses that satisfy the boundary
conditions are fed into the Inverse Dynamics Model and it outputs the
torque. The smoothed torque is fed into the Forward Dynamics Model. 1t
outputs the time series of the velocity and acceleration, and then the
errors of the position, velocity and acceleration at the end point are
computed when compared with the desired values. The position and
velocity at the end point are calculated using integral operations from the
start time to the end time. The via-point positions and via-point passing
times are solved in the Via-points Time Search. All the boundary
condition errors are fed into Approximated Minimum Torque Change
Model. 1t outputs the compensatory trajectory. Finally, the position,
velocity and acceleration which satisfy the boundary conditions are
computed by adding the compensatory trajectory to the output trajectory
of the Forward Dynamics Model. AT shows the time step in computation.
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In the future, the potential applications of this proposed model to a minimum muscle-
‘tension-change model and a minimum motor-command-change model will be studied.
Efficiency of the proposed model will be checked when the IDM is not a perfect inverse
function of the FDM. Furthermore, it is expected that this trajectory formation model can
be used as pattern recognition network as a kind of duality exists between pattern- .

formation and recognition in this framework (Kawato, 1989).
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