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Abstract 
The minimum torque-change model predicts and reproduces human multi-joint movement 

data quite well. However, there are three・criticisms of the current neural network models 

for trajectory formation based on the minimum torque-change criterion: (1) their spatial 

representation of time, (2)・backpropagation is essential, and (3) they require too many 

iterations. Accordingly, we propose a new neural network model for trajectory formation 

based on the minimum torque-change criterion. Our neural network model basically uses 

a forward dynamics model, an・inverse dynamics model and a trajectory. formation 

mechanism which generates an approximate minimum torque-change trajectory. It does 

not require spatial representation of time or backpropagation. ・Furthermore, there are less 

iterations required to obtain an approximate optimal solution. Finally, our neural network 

model can be broadly applied to the engineering field because it is a new method for 

solving optimization problems with boundary conditions. 
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1. Introduction 

To control voluntary movements, one must solve the following three computational ill-

posed problems: (1) desired trajectory determination. (2) transformation of the task-space 

coordinates of the desired trajectory to intrinsic body coordinates and (3) motor command 

generation to achieve the desired trajectory. One way to solve these problems is to 

introduce a smoothness performance index. Two experimentally confirmed objective 

functions for voluntary movement were proposed. Flash and Hogan (1985) proposed a 

mathematical model, the minimum-jerk model. They proposed that the trajectory 

followed by the subject's arms tended to minimize the integral of the square of the jerk 

(rate of change of acceleration) of the hand position in the Cartesian coordinates space, 

integrated over the entire movement. A unique trajectory which yields the best 

performance is easily computed by applying the Euler-Lagrange equation because their 

model is based solely on the kinematics of movement, independent of the dynamics of the 

musculoskeletal system. Several hardware models which can compute minimum-jerk 

trajectories have been proposed using recurrent neural networks (Jordan, 1989; Massone 

and Bizzi, 1989; Hoff and Arbib, 1992). 

Based on the idea that the objective function must be related to dynamics, Uno, 

Kawato and Suzuki (1989) proposed a minimum torque-change model which accounts 

for desired trajectory determination. The model is based on the theory that the trajectory 

of the human arm is determined so as to minimize the time integral of the square of the 

rate of torque change. Since the dynamics of the human arm or a robotic manipulator are 

nonlinear; finding the unique trajectory based on the minimum torque-change model is a 

nonlinear optimization problem. This is a rather difficult optimization problem since the 

smoothness criterion is represented in the motor command space on the one hand. On the 

other hand, movement conditions such as target point locations, via-points and obstacles 

are represented in the task-oriented coordinates. Thus, the optimization problem is 

computationally very intensive to be solved using the Euler-Lagrange equation. Hitherto, 

two kinds of hardware models have been proposed. Kawato, Maeda, Uno and Suzuki 
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(1990) proposed the cascade neural network, which is a cascade structure of the forward 

dynamics model (FDM), to generate a trajectory based on the minimum torque-change 

model. Conversely, a neural network model for the minimum torque-change criterion 

that uses the inverse dynamics model (IDM) was proposed by Nakamura, Uno, Suzuki 

and Kawato (1990). There are three criticisms of these neural networks: (1) they use a 

spatial representation of time, (2) backpropagation is essential, (3) they require too many 

iterations to obtain an optimal trajectory. In this paper, we propose a new model for 

trajectory formation that uses both the FDM and IDM. This model solves the three short-

comings above, and can be implemented as a biologically plausible neural network. The 

proposed network model can be u.sed in a broad engineering field because it is a new 

method for solving general optimization problems with boundary conditions. 

2. A neural network for optimal arm trajectory formation 

2.1 Minimum torque-change criterion 

This section briefly explains the minimum torque-change model. Trajectory formation js 

an ill-posed problem because there are an infinite number of possible trajectories th~t 

move the hand from the start to the target point. Therefore, a unique trajectory can not be 

determined. However, humans can move the arm between two targets, selecting one 

trajectory among an infinite number of trajectories. Therefore, the brain should be able to 

compute a unique solution by attaching an appropriate criterion to the ill-posed problem. 

Flash and Hogan (1985) proposed the minimum-jerk model which is based on the 

kinematics of movement, independent of the dynamics of the musculoskeletal system. 

Their proposed performance index is the following quadratic measure: 

c, = l。:'{(翌）2 + (i)} . (l) 
Here, (X,Y) are Cartesian coordinates of the hand, andりisthe movement time. Flash 

and Hogan (1985) showed that the unique trajectory yielding the best performance agreed 

with the experimental data on movement within the region just in front of the body. Their 
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analysis was based solely on the kinematics of movement, independent of the dynamics 

of the musculoskeletal system, and was successful only when formulated in terms of 

hand motion in the extracorporeal space. 

Uno, Kawato and Suzuki (1989) proposed the following alternative quadratic measure 

of performance. The objective function of the model is related to arm dynamics: 

CT= i。1夏詈〕2 dt (2) 

whereがisthe torque generated by the j-th actuator of M actuators, andりisthe 

movement time. The objective function is the sum of the square of the rate of change of 

the torque, integrated over the entire movement. The minimum torque-change model can 

predict and produce human arm trajectories quite well. The optimization problem is to 

find the torque that minimizes the criterion Cy. However, it is difficult to get an optimal 

trajectory based on minimum torque-change because torque should be determined usirtg 

complex nonlinear dynamics. That is, a nonlinear optimization problem with bound的

conditions must be solved. 

For movements between a pair of targets just in front of the body, predictions of both 

the models were close to the experimental data. However, the trajectories predicted by 

the minimum torque-change model were quite different from the minimum-jerk model in 

four behavioral situations. It was found that the minimum torque-change model predicted 

the real data better than the minimum-jerk model (Uno et al., 1989). The four situations 

were as follows: (1) discrete point-to-point movement: the starting point is an 

outstretched arm to the side and the end point is in front of the body, (2) movements 

between two points while resisting a spring, one end of which is attached to the hand 

while the other is fixed, and (3) vertical movements affected by gravity. In these three 

cases, the minimum-jerk model always predicts a straight path regardless of external 

forces or gravity. On the other hand, the minimum torque-change model predicts a 

curved path and these predictions are close to the experimental data. Finally, the most 

compelling evidence was examined: (4) a pair of via-point movements: with identical start 
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and end points, but with dictated mirror-image via-points. Because the objective function 

C1 of the minimum-jerk model does not vary under translation, rotation and rolling, the 

minimum-jerk model predicts an identical path for rolling as well as identical speed 

profiles for the two subcases. On the other hand, the minimum torque-change model 

predicts two different trajectories. For the concave path, the speed profile has two peaks. 

However, for the convex path, the speed profile has only one peak. These predictions 

are close to the human data (Uno et al., 1989). 

However, the two objective functions, CJ and Cr, are closely related because the rate 

of torque change is locally proportional to the jerk. If the arm dynamics are approximated 

by a point mass system, the two performance indexes are identical . 

2.2 A
 

neural 

using forward 

network 

and 

for 

． 
inverse 

optimal 

models 

arm trajectory formation 

In this section, a new neural network model for trajectory formation is proposed. A
 

performance index for the movement between two targets is defined as the sum of a 

smoothness constraint energy multiplied by a regularization parameter入andthree hard 

． 
constrru.nts: 

l NM  . 
—入I, I,(tf -'tい）2 + 
2 i=l j=l 

E
 

＝ 
1 M 
-r(e~-et)2 + 
2 j=l 

＋
 

1 M 
-L(゜~-鈴）2
2 j=l 

1 M 
ー L(的ー。i)2
2 j=l 

(3) 

where t{ is the torque generated by the j-th actuator of M actuators at the time i. The 

performance index is formulated here using discrete time i, and N shows the final time. 

Let e, 
，
 

.o 
and e denote the position, velocity, and acceleration of the joint angle 

respectively; e~, 0~and 0~represent the desired position, desired velocity, and desired 

acceleration of the j-th joint angle respectively. et, ・et and恥arethe position, velocity 

and acceleration of the j-th joint angle at the end time as predicted by the neural network 

The first term of Equation (3) is simply a discrete version of the minimum 

torque-change criterion (2). The second, third and fourth terms of Equation (3) are hard 

model. 

constraints regarding the movement conditions, that is, desirable position, velocity and 
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acceleration at the end of the movement. 

Here, the gradient descent of energy E (Equation (3)) is calculated as follows: 
dが 祁

ds cl,:! 
M aek . 

＝入（加+,:いー2叶） + l(0~ 鳴）— - 一
N M aet 

k=l 和
+ l(0~ 鈴）．

k=l c),:! 

M "k 甜
+ l(的ー％）一~ (4) 

k=l d'tf 

where s represents a relaxation time that is independent of movement time. The torque叶

that minimizes the performance index E can be searched according to Equation (4). The 

second, the third and the fourth terms of Equation (4) show that a time-backward 

calculation (error back-propagation) (Rumelhart et al., 1986) is needed to satisfy the 

desired conditions. In optimal control, this calculation is equivalent to solving the adjoin~ 

equation of the Euler-Lagrange equation. However, if the terminal conditions are 

satisfied, the time-backward calculation (error back-propagation) is not needed, because 

the second, third, and fourth term all vanish. Thus, if the terminal-condition errors can 

be made equal to 0, the trajectory can be generated by just smoothing the torque (the first 

term of Equation (4)). Assume, for simplicity, that a trajectory at some moment satisfies 

the terminal conditions. In this case, the relaxation rule of Equation (4), that is, the 

gradient descent of energy E, is expressed as follows: 
dが

＝ 
ds 

A,(如＋叫ー2叶） (5) 

Equation (5) shows the operation used to smooth the torque. The trajectory (e, e, 的

generated using the new torque updated by Equation (5), does not usually satisfy the 

desired boundary conditions. Thus, an incremental, compensatory trajectory is generated 

to cancel the error in the terminal conditions. That is, △ E> is generated according to the 

following method, and the trajectory E> +△ E> is obtained, which satisfies the terminal 

conditions. The trajectory△ E> is computed by addressing a linear optimization problem 

instead of a nonlinear optimization problem. When generating△ E>, the control obje~t 

dynamics are approximated by a simple linear system. Furthermore, the trajectory is 

determined by solving the linear optimization that minimizes criterion Cr, whose terminal 

5
 



conditions are the terminal condition errors induced by Equation (5). The trajectory 

e + A0 then satisfies the terminal conditions. However, the torque -r and trajectory 

〇十△0 do not satisfy the original nonlinear arm dynamics (neither FDM or IDM). Here, 

the FDM and IDM are defined as the following equations: 

FDM : 0;+1 = F(0心）

IDM : t; = l(S;) 

where ei = (0~,07 , .. ・,0ダ，針，07, .. ·,0~, 針，針，・・・，呼）， 'ti=(吋，1:r.... ザ）

Accordingly, the torque that satisfies both terminal conditions and nonlinear arm 

dynamics is obtained by using the IDM: 

ti=/(0i十△0、J (6) 

In this framework, the gradient descent of energy E is easy to compute as it is simply 

expressed by the torque smoothing term (Equation (5)) and error backpropagation and 

spatial representation of time can be avoided. 

The algorithm described above is shown in Figure 1. 

calculated. 

Stepl : The torque and joint 

angle that satisfy the terminal condition and dynamics are calculated using the IDM, 

where 0+△ 0 satisfies the terminal conditions. Step 2 : The torque is smoothed. Step 3 : 

The joint angle trajectory is generated from the torque smoothed in Step 2 through FDM. 

The trajectory does not satisfy the terminal conditions. The terminal-condition errors are 

Step 4 : By finding a solution to the linear optimization problem, the 

compensatory trajectory△ e which cancels the terminal-condition errors is obtained. 

The optimal trajectory based on minimum torque-change is obtained by repeating Step 

1 to Step 4. 

Any initial trajectory can be chosen as the starting point of the calculation. However, 

if it is a good approximation to the minimum torque-change trajectory, faster convergence 

is expected. Therefore, two kinds of reasonable initial trajectories are used; one is a 

trajectory based on the minimum-jerk criterion (Flash et al., 1985). The other is 0. 

When O is used as the initial trajectory, the IDM in the first iteration of the proposed 

schema outputs the torque O over time. Therefore, the hand position computed by the 
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Step 3 
•一.,— 
FDM 
(Forward Dynamics Model} 

゜
HS(-r) 

Step 2 Step 4 

—•— Approximated minimum torque 
change for constraint error 

Torque smoothing 

~0 S(-r) 

0+80 Step 1 r
 IDM 

(Inverse Dynamics Model) 

S : smoothing operator 
Figure 1 
Neural network schema for arm trajectory formation using the forward 
dynamics model and inverse dynamics model. Step 1 shows the IDM 
whose input is a trajectory which satisfies the boundary conditions, and 
output is a torque series which satisfies the nonlinear arm dynamics. 
Torque is smoothed in Step 2. The terminal-condition errors are 
computed using the FDM (Step 3). In Step 4, the minimum torque-change 
trajectory for a linear approximated dynamics model of the arm is derived. 
The output of Step 4 is the trajectory which satisfies the boundary 
conditions of the original nonlinear optimization problem. 

FDM in this iteration remains the initial position during movement time. Then, in the box 

" approximated minimum-torque-change for constraint error " in Figure 1, a trajectory is 

computed by solving a linear optimization problem with exactly the same boundary 

conditions as those of the nonlinear problem. 

The smoothed torque is complltecl accordingtoth~nel(tequation whkh is a discrete 

version of Equation (5). 

如 +1)=叶(s)+詈心
＝叶(s)+入（土(s)+ tい(s)-2叶(s))' (7) 

where△ s is a time step of discrete time and assumed equal to 1. 

In the following section, iteration of Equation (7) is used as an example of the smoothing 

operation. The reason for this choice will be clarified in section 5. Let k be a iterative 
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computation index, the smoothed torque is represented as follows: 

叶(s,k+l)=叶(s,k)+入（叩(s,k)+'tい(s,k)-2吋(s,k))

叶(s+l)=叶(s,n+l)

where k = 1, 2, .... n 

(8) 

Thus, as the number of iterative computations n increases, the torque becomes smoother. 

If that number is quite large, the torque approaches O over time. Although the above 

smoothing operation was used in the computer simulation, we note that a variety of 

smoothing methods can be applied to the proposed algorithm. 

3. Computer simulation of discrete point-to-point movement 

This section presents the results of applying the proposed method to 2-joint arm trajectory 

formation. In this simulation, the following mathematical model of FDM and IDM was 

used. It has already been demonstrated that both the FDM and IDM can be achieved 

using neural networks (Kawato et al., 1987; Kawato et al., 1990; Kawato, 1990; Jordan 

et al., 1990). 

t1 = U1 + 12 + 2M凸名 COS釣+M2化）汎

+ (/2 + M2LiS2 cos02)02 

-M山ふ（颯＋釣）。2sin釣＋砥

t2 = U2 + M2LiS2 cos0湧1

+M占 S2(釘）2 sin釣+b企

(9) 

(10) 

M砂 i,Si and Ii represent the mass, length, distance from the mass center to the joint, 

and the rotary inertia of the link i around the joint, respectively. Here, the same physical 

parameter values as those in Uno's paper are used (Uno et al., 1989). bi and ti represent 

the coefficients of viscosity and the actuated torque of the joint i. Joints 1 and 2 

correspond to the shoulder and the elbow. Joint 1 is located at the origin of the X-Y 

coordinates. 

Two kinds of an approximated dynamic model of the arm are used to calculate the 

compensatory trajectory△ e in the computer simulation. The first model is a linear 
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approximated model along the previous iteration trajectory. Thus the approximated 

dynamics is described by a linear differential equation with time-varying coefficients. In 

this case, the optimal trajectory is found by applying the Riccati equation (Bryson and 

Ho, 1975). The second model is a simple point-mass model with time-invariant 

parameters and no interaction between the joints. The minimum torque-change trajectory 

for this model is equivalent to the minimum-jerk trajectory in the joint-angle-coordinate 

space. The second model is a much poorer approximation than the first. 

3.1 The numerical experiment using the linear approximated 

model 

In this section, optimality and convergence of the new method are examined using the 

linear approximated model. First, the analytical computation method of the compensatory 

trajectory based on minimum torque-change, is described using the linear approximated 

model. Equations (9) and (10) are generally represented by Equation (11). 
d・ 
孟゚ i= fi(0浪池，0虹 1ふ） (i=l,2) (11) 

The linear approximated equation around the trajectory 0(t) = (0⑲池，82.tふ）， whichis 

generated by the smoothed torque t + S(t) = (そいち）， isdescribed by Equation (12). 
d 盃X(t)= A(t)X(t) + B(t) U ( t ) ・ ( 1 2 )  

X(t) = (~1 (t)と2Ct)も1(t)~2 (t) Tl1 (t) Tl2 (t)l 

U(t) = (布(t)杞<ol
0 0 1 

0 0 0 ゜゚ー

゜

00 

a1i c0) a1i c0) a1i c0) a1i c0) a1i (0) a1i c0) 

a01 a02 a01 a02 ai-1 ai-2 

A(t) = I a12 (0) qん(0)a12 (0) ati (0) a12 (0) a12 (0) 

a01 a02 ae1 002 如 a-r2 

゜゚ ゜゜゚ ゜゜゚ ゜゜゚ ゜000010T 
B(t) = (0 0 0 0 0 1) 

Here, let S1, S2 denote positions, も，ら denotevelocities , and 111, 112 represent torque 
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respectively. The subscript denotes joint number. The position知も， thevelocity aけ品
and the torque年叫 (i= 1, 2) satisfy the boundary condition of discrete point-to-point 

movement. 

Therefore, X(t) satisfy the following boundary conditions. 

~l (0)=0~ 心）=A81 

も(0)=0も1<t1)=△釘

邸0)=0~約）＝△82 

ら(0)=0ら（り）＝砥

叩0)=0111 (り）＝△'t1

叱(0)=0花(tf)=△'t2 (13) 

砥，△82 represent the position errors at the end point, △ 81, △ 82 represent the velocity 

errors at the end point, and△和△t2 are the torque errors at the end point. These terminal 

condition errors are induced by the smoothing operator S. 

The minimum torque-change model is formulated as the following optimization 

problem: 

J 
1 

= -f (UTQU)dt → Min 
2 Q= じ゜~) (14) 

The optimization problem of the linear system can be solved by applying the Riccati 

equation. As a result, a compensatory trajectory, which is an approximated minimum 

torque-change trajectory, is generated. 

The simulation conditions were as follows: (1) Movement time: 0.75(sec) (2) Sample 

time: O.Ol(sec) (3) Trajectory: from T2 to T6 (The x-y Cartesian coordinates of initial 

and target points are shown in Table 1). (4) The iteration number of smoothing 

operations: n = 100. The convergence of the minimum torque-change criterion is shown 

in Figure 2. The x-axis is the number of iterative calculations, the y-axis is the criterion 

function value (Equation (2)). Two initial values were used in this simulation. One was 

a trajectory based on minimum-jerk (Flash and Hogan, 1985). The other was equal to 0. 

The optimal value of this problem can be calculated using a Newton-like method, that is, 
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an iterative scheme to solve the two-point boundary-value problem (Uno et al., 1989). It 

is assumed that a nearly optimal solution is obtained by the Newton-like method. The 

criterion function value for the proposed neural network model converged near the 

optimal value, and the converged value of the performance index was obtained in less 

than 10 iterations. The converged values for the two initial values were almost the same. 

Thus, the proposed method can produce a trajectory close to the minimum torque-change 

trajectory for the original nonlinear arm dynamics in quite a small number of iterations 

when the minimum torque-change solution of the linear approximated model is used as 

the compensatory trajectory 

1 .6 

1 .5 

A
0エ
山

Z
山

1 .4 

1 .3 

- initial state = minimum jerk trajectory 

-----initial state = 0 (no movement) 

I result of Newton-like method I 

----------・ 
1
0
 

2
 

．
 

ー

5
 

1 0 1 5 20 25 30 

ITERATION 
Figure 2 
Convergence of the value of the minimum torque-change criterion when 
the new proposed schema is applied to a T2 -T6 movement in front of the 
body using a 2~joint arm. In this simulation, . the linear approximated 
model with time-variant parameters is used as a model to compute the 
compensatory trajectory for satisfying the boundary conditions. 1.'wQ 
kinds of initial trajectory are examined. One is the minimum-jerk 
trajectory. The other corresponds to O (no movement). Both results ar,e 
almost the same. Satisfactory solutions are obtained which approximates 
the optimal solution computed using the Newton-like method. ・ ・ 
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Table 1 

X-Y coordinates of initial target and intermediate points. 

X(cm) Y(cm) 

Tl -0.92 30.36 

T2 -24.33 30.89 

T3 -19.94 47.11 

T4 0.15 58.92 

TS 21.09 49.33 

T6 21.24 32.63 

Pl 0.15 58.93 

P2 1.31 36.96 

3.2 The numerical experiment using a point-mass model 

In this section, a simple point-mass model is used. This model is expressed as Equation 

(15). Here, the minimum torque-change trajectory of a point-mass model (Equation (15)) 

is represented as the 5th order polynomial in time (Equation (16)), which is easily derived 

using the Euler-Lagrange equation. Because, in this case, the change in torque is exactly 

proportional to the jerk of the joint angle, Equation (16) is equivalent to the optimal 

solution of the minimum-jerk criterion in the joint-angle-coordinate space. 

Tlj = りも (15) 

も(t)= a。＋叩+a元+a3t3 + a4t4 + a記 (16)

a。＝も(0) a1 = 0, a2 = 0 

｛ a3 = 10(~/tハーも(0)) -4も(tf)・り +2ら(t1)・t/}fり
a4 = {-15(l;r(t1) -~/0)) +丸(tf)·tf ーも（ヶ）•ゲ }/tJ

a5 = { 6(砂）一も(0))-3も(tf)・ヶ ＋；も(tf州｝／り
where Tlj, も，とjandもrepresentthe torque, position, velocity and the acceleration at the 

j-th joint, respectively and I is the inertia of the link. ai (i=O, …，5) are parameters that_ are 

determined by movement time and boundary conditions (position, velocity and 

acceleration at the start and end point). The boundary conditions are the same as 
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Equation (13); however, the boundary condition for acceleration is given instead of the 

torque conditions. In this simulation, mathematical equations are used to obtain the 

compensatory trajectory. However, it is known that a recurrent neural network can learn 

approximate optimal trajectories (Massone et al., 1989; Jordan, 1989; Hoff et al., 1992). 

Furthermore Hoff and Arbib (1992) have shown that the rigorous minimum-jerk 

trajectory can be generated using a recurrent neural network. 

The simulation conditions were as follows: (1) Movement time: 0.75(sec) (2) Sample 

time: 0.01 (sec) (3) Trajectory: five kinds of movement in front of the body (The start and 

end points are shown in Table 1). The parameters used in this simulation, and the 

number of iterations to obtain a minimum for the objective function, are shown in Table 

2. The trajectories of five movements, the speed profile of the T4-Tl movement, and the 

torque profile of the T4-Tl movement are shown in Figures 3, 4 and 5, respectively. 

Each trajectory was obtained in less than 5 iterations. The value of the criterion function 

attained at the first minimum point during the iterative computation is shown in Table 3. 

Each objective function value of the trajectory was close to .the optimal value calculated 

using the Newton-like method. The number of iteration to obtain the minimum objective 

function value is almost same in the case using the linear approximated model, and the 

objective function value calculated using the linear approximated model was closer to the 

optimal value. However, the values calculated using the point-mass model and the linear 

approximated model were not so different. Each trajectory generated by the proposed 

method agreed with the hand paths calculated using the Newton-like method. For 

horizontal movement between two targets located approximately in front of the body, the 

minimum torque-change criterion predicts hand paths that are not completely straight, that 

is, slightly convex. On the other hand, the hand paths based on the minimum-jerk model 

are completely straight. Both models can also predict a single-peaked, bell-shaped speed 

profile of the hand. According! y, the hand paths generated by the proposed method were 

slightly convex (Figure 3). This method also produced a single-peaked, bell-shaped 

speed profile (Figure 4). The torque produced by the proposed method was smoother 
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than that of the minimum-jerk model (Figure 5). 

Table 2 

Computer simulation parameters and number of iterations required to calculate 

a minimum for the objective function for each movement 

movement 入 number of smoothing number of iterations 

T2-T6 0.3 30 5 

T3-T6 0.3 60 1 

Tl-T3 0.3 30 2 

T4-Tl 0.3 30 3 

T4-T6 0.3 30 1 

入isthe smoothing operator parameter. Number of smoothing shows the number of iterative 

computations in the smoothing operation. Number of iterations shows the number of iterative 

computations required to obtain a minimum for the objective function point in the proposed model for 

trajectory formation. 

Table 3 

Value of the minimum torque-change criterion. 

movement EroEosed method Newton-like m1．m．mum」．erk 

T2-T6 1.374 1.229 1.573 

T3-T6 1.183 1.131 1.184 

Tl-T3 3.164x10―1 3.0Slxl0-1 3.227x10―1 

T4-Tl 1.920x10ー1 1.589x10―1 2.968x10―1 

T4-T6 7.515x10―1 7.156x10―1 7.814x10-1 
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Trajectory of discrete point-to-point movements. Five kinds of trajectory 
in front of the body using a 2-joint arm are shown. The origin of the X-Y 
coordinates represents the location of joint 1 (shoulder). The trajectory 
generated by the proposed method based on the minimum torque-change : 
criterion, and that of the Newton-like method are compared. Both 
trajectories are not straight, unlike minimum-jerk trajectories, but -are 
slightly -convex. -- ------
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Figure 4 
Speed profile of a T4 -Tl movement in front of the body. The speed 
profiles using the proposed model, the Newton-like method which is an 
optimal profile with respect to the minimum torque-change model, and the 
minimum-jerk model, show a single-peaked, bell-shaped speed profile 
which agrees with the speed profile observed in human arm movement. 
The profile of the proposed method is most similar to that of the Newton-
like method. Thus, this method can generate a trajectory based on 
minimum torque-change. 
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Figure 5 
Torque profile of a T4 -Tl movement in front of the body. The torque 
profiles of the proposed model, the Newton-like method which is . an 
optimal profile with respect to the minimum torque-change model, and the 
minimum-jerk model are compared. Torque 1 and torque 2 represent 
shoulder and elbow torque respectively. The profiles of the proposed 
model and the Newton-like method are smoother than that of・the 
minimum-jerk model. 

4. An Extension to via-point movement 

4.1 A point-mass model for via-point movement 

The proposed method is extended to generate a trajectory with via-points. In this case, 

position constraints at the via-points are additional to the problem of discrete point-to-

point movement. The performance index of a via-point movement is defined~s follows, 
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instead of Equation (3). Trajectory formation using only one via-point is explained, 

however, it is easy to extend this to a movement with several via-points. 
I NM  . IM IM 
＿入LL(叶ーてい）2 十一 L(0~-et)2 十一 L(0~鳴）2
2 町 =1 2 j=l 2 j=l 

I M 1 M 
十一 L(0~-a訳＋ー L(0如ー糾）2' 

2 j=l 2 j=l 

E
 

＝ 

(17) 

where 8如representsthe desired position at a via-point of the j-th joint angle. 糾

represents the position at V time (1 VI ＞
 

VI 
N -1) of the j-th joint angle. There are two 

differences between discrete point-to-point movement and via-point movement. First, the 

movement time between the start and the via-point is not given, however, the movement 

time is given for discrete point-to-point movement. Second, the velocity and acceleration 

constraints at the time passing through the via-point are not given. Thus, conversely, if 

the time passing through the via-point, the velocity and the acceleration at the via-point 

can be detennined, a trajectory with the via-point can be easily generated using the same 

method for discrete point-to-pomt movements. 

Here, the algorithm shown in Figure 1 is extended for via-point movements. The via-
• M . 

point time V for the compensatory trajectory 1s chosen so that L(8如一糾） in Equation 
j=l 

(17) is minimized after Step 3 (FDM) in Figure 1. The point-mass model is used as the 

approximate dynamics model for generating the compensatory trajectory. The minimum 

torque-change trajectory of the point-mass model is expressed as Equation (16). Thus, 

the trajectory from the starting point to a via-point could be calculated if the movement 

time, position, velocity and acceleration at the start and the via-point were to be given. 

The torque-change criterion value from time O to tvia when passing through the via-point 

is expressed as follows: 

叶。~·(1JmJ
 

＝ → Min (18) 

where 

~(O) 

細）

恥(0)

＝ 

＝ 

＝ 

0
 

0
 

0
 

〇

.
0
"
0

△

A
-
A
-

~(tvia) 

~(tvia) 

~(tvia) 

＝ △0 via 

＝ △0 via 

＝ △0 via 
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△0。,△0。and△0。representthe position, velocity and the acceleration errors for the 

boundary conditions, respectively, at time 0. A0 . via, △ evia and A0via represent those errors 

at time V. However, the values of△ evia and△ evia are not specified yet at this point and 

will be given below. A solution of Equation (18) is given by Equation 09) similar to 

Equation (16). 

~(t) = b。+b1t + b元+b記+b4け+b炉 (19) 

where bi (i=O, …，5) could be determined if the above six constraints were to be gfven. 

Here, the torque-change criterion function of the point'-mass model is expressed as 

Equation (20). Since the values△ 0via and△ evia are not given, Equation (20) is a function 

of the velocity and acceleration at via-time. 

叶。:~[1)¥, 
, 2 

叶。:・..(6妬+24b4t + 60ザ） dt 

J(△ evia• △ a via) ＝ 

＝ (20) 

For△: ~d • a via to minimize Equation(20), the following conditions are necessary: 

a△0 via 
aJ .. 

a△0 via 

＝ 

゜
(21) 

＝ 

゜
(22) 

Therefore, the velocity and acceleration at via-time are obtained as follows: 
1 

△ evia =―(10△ 0via -10A0。-6A0。tvia-Aり。tvia2) 
4t. v,a 
1 

=、
3t 

2 (10△ evia -10△0。
via 

△ a. 
Via -10△0。fvia-2碕。lvia2) 

(23) 

(24) 

That is, the via-point time can be chosen and the velocity and acceleration computed, so 

as to minimize the torque-change criterion fun~tion for the approximate model. 

Furthermore, the algorithm described above can be applied to trajectory formation with 

more than one via-point. Because the algorithm can determine the velocity and 

acceleration errors at the first via-point using only the error of the position, velocity, 

acceleration at the start point, the velocity and acceleration errors at the second via-point 

can be similarly determined from errors at the first via-point. Equations like (23) and 

(24) can be derived straightforwardly. The reason of this straightforward extension to 

multiple via-point cases is that only the objective function from the start point to the fi;st 
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via-point is considered in Equation (20) and the latter half of the integral is not taken into 

account. 

4.2 Numerical experiments 

The simulation conditions were as follows: (1) Movement time: 1.0(sec) (2) Sample time: 

O.Ol(sec) (3) Start point T3, End point TS, and Via point Pl or P2 (The x-y Cartesian 

coordinates of each point are shown in Table 1). The iteration number for smoothings, 

the smoothing parameter入， andthe number of iterations needed to reach the first 

minimum for the objective function, are shown in Table 4. The minimum-jerk trajectory 

in the Cartesian coordinates was chosen as the initial trajectory. The trajectories of the 

two movements, and the speed profiles of T3-P2-T5 are shown in Figures 6 and 7 

respectively. Minimal values of the criterion function for the three schemes (proposed 

method, Newton-like method, and minimum-jerk model) are shown in Table 5. Each 

trajectory was obtained in less than 5 iterations, and the minimum value of the criterion 

function was close to the optimal value obtained using the Newton-like method. The 

hand paths generated using the proposed method were almost the same as the hand paths 

of the Newton-like method (minimum torque-change model), and the minimum-jerk 

model. These two models can predict a curved hand path with a single-peaked or double-

peaked speed profile, and this depends on the location of the via-point. In this case, the 

two via-points Pl and P2 were located symmetrically with respect to the line connecting 

the common start and end points. The minimum-jerk model predicted identical speed 

profiles for both cases; however, the minimum torque-change model predicted two 

different profiles: that for via-point Pl had only one peak; however, that for P2 had two 

peaks (Uno et al., 1989). The speed profile for via-point P2 predicted by the proposed 

method had two peaks, as shown in Figure 7. These simulation results show that the 

proposed method for via-point movement can generate approximately a trajectory passing 

through via-points based on minimum torque-change criterion in only several iterations. 

We emphasize that the objective functions obtained by the proposed method are much 
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smaller than those of the minimum-jerk model (Table 5). If one compares Table 3 and 

Table 5, it is suggested that the new method is more efficient for complex movements 

rather than simple movements. 

Table 4 

Computer simulation parameters and number of iterations required to calculate 

a minimum for the objective function for each movement 

movement 

T3-Pl-T5 

T3-P2-T5 

入
石
＿
い

number of smoothing number of iterations 

30 3 

30 3 

入isthe smoothing operator parameter. Number of smoothing shows the number of iterative 

computations in the smoothing operation. Number of iterations shows the number of iterative 

computations required to obtain a minimum for the objective function in the proposed model for 

trajectory formation. 

Table 5 

Value of the minimum torque-change criterion. 

movement proposed method 

T3-Pl-T5 3.850x10―1 

T3-P2-T5 4.348x10ー1

Newton-like 

3.168x10ー1

3.322x10―1 

minimum jerk 

6.709x10―1 

6.323x10-1 
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Figure 6 
Trajectory of via-point movement in front of the body (T3·Pl• TS and 
T3 • P2 -TS). The trajectories of the proposed method, and the Newton-
like method which are based on the minimum torque-change criterion are 
compared to that of the minimum-jerk model. The three trajectories are 
almost identical. 
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Figure 7 
Speed profile of a T3-P2-T5 movement. The speed profile based on the 
minimum-jerk criterion has only one peak, and in a T3-Pl-T5 movement it 
also has only one peak. The speed profile based on the minimum torque-
change criterion has one peak in a T3-Pl-T5 movement, however~in a 
T3-P2-T5 movement, it has two peaks which correspond to the. hand 
trajectory・observed in human arm movement. Thus, in a T3-Pl-T5 
movement, the speed profUes based on the two kinds of criteria are not so 
different, but in a T3-P2-T5 they are quite different, as shown in this 
figu,re. 

5. Mathematical considerations of the proposed method・・for 

nonlinear optimization problems 

In this section, the proposed network is formulated as・a general optimal algorithm, and 

the theoretical framework for this method is described. The optimality and convergence' 

↓ ・,'・"  . 
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of the new method applied to a nonlinear optimization problem is discussed 

mathematically in sections 5.1 and 5.2. The following discussion is for the scalar case 

but it can be easily extended to multi-variable cases. 

First, we define the following nonlinear .optimization problem which minimizes the 

criterion function J under boundary conditions: 

[Nonlinear Optimization Problem: N] 

J=仁）2 dt → Min 
dt 

Subject to 
dx 

＝ 
dt 

f(x, u) , 

x(O) = 0 ,x(t1) = xdf, 

u(O) = 0 , u(t 1) = 0 , 

(25) 

(26) 

(27) 

(28) 

where x and u represent a state variable and a control variable, respectively. xdf and t1 

represent a desired tenninal value and an end time, respectively. It is assumed that the 

nonlinear function/is differentiable with respect to x and u. 

Let us frrst illustrate the iteration rule of the control variable by generalizing the neural 

network model proposed in section 2 as follows. We define an inverse dynamics model 

G, which is an inverse function of the forward dynamics model F. 

G(X) = u, 

where (x, x) = X = F(u) 

The control variable at the j+ I-th iteration, as shown in Figure 1, is outputted by IDM, 

whose input is computed by adding the trajectory generated by the smoothed torque at the 

j-th iteration to the compensatory trajectory generated by an approximate linear dynamics 

model. Thus, the control variable at the j+ J-th iteration is derived as follows: 

ui+1 = a(F(ui + S(uり）＋司 (29) 

where ui + S(uりisthe smoothed torque, and 8 = (も~) is the trajectory which 

compensates for the terminal-condition errors induced by u1 + S(u1) and is the solution 

for the linear optimization problem, defined below. The following equation is obtained 

using Taylor's expansion of function F in Equation (29) around u八
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uj+I = G(F(uj) + aFa~j) S(uj) + o(S(uり）＋り

Taking Taylor's expansion of G around xi = F(uり：

Uj+I =が＋虹~2(初(uj)
ax au 

S(uj) + o(S(uり））十四.2:::
ax 

・aG(Xり= uj + S(u1) + o(S(uり）＋ aG(Xり
己

ax ax 

where a higher order term than the second order term is ignored because the trajectory 

change between the j-th and the j+ 1-th iteration is usually quite small. Tlle fourt~term in 

above equation is expressed as -11i. rt1 is obtained as the optimal solution to the 

following linear problem. If S(uりissmall, the following equation is derived because 

o(S(uり）becomes negligibly small. 

ui+i = ui + S(ui) -11i 

However, it is not assumed that S(uりissamll in the computer simulation and 

mathematical consideration described below. Therefore, we define the iteration rule of 

the control variable as follows: 

u 
j+l 

＝ ui + S(ui) -Tlj 

～ 
where S(uりisS(uり＋ 如 (Xり

ax 
o(S(uり）

(30) 

Note that the two following trajectories satisfy exactly the same boundary conditions. 

aF(uり
au 

ーニ

S(ui) + o(S(uり）

The linear optimization problem is defined to compute a trajectory which compensates 

for boundary conditions. 

[Linear Optimization Problem: L] 
2 

111 = I(翌） dt → Min 

Subject to 
d~ 訂(x八が） 訂(x八記）

＝ ~+ 
dt 

;(O) = 0, 

11(0) = o, 

ax au 

気 ）＝ 凶U1)

11<t1) = S(ui)(ヶ）

11 

25 

(31) 

(32) 

(33) 

(34) 



Here, x八uiare the trajectory and the control variable at the j-th iteration, respectively. 

位⑯） shows the terminal-condition errors when the input uj + S(uりisfed to the 

nonlinear dynamics equation (26). 
＊＊  

Let (u , x・) be an isolated optimal solution that 

minimizes the criterion function J, and let (11•j. f j) be an isolated optimal solution that 

minimizes the linear optimal problem L. Thus, ~•j is the compensatory trajectory. 

5.1 Optimality of the converged solution 

In this section we will show that the convergence of the proposed algorithm is equivalent . 

to the optimality of the solution. First we discuss the necessary condition: if ui is equal 

to u 
＊ (uj = u*), then Tl•j becomes equal to s記） (Tl*i = S(uj)), thus the iteration 

converges. That is, if the control variable is equal to the optimal value, the iterative 

algorithm Equation (30) converges. Conversely, we. then discuss the suffici,ent 

condition: if S(uりisequal toや(*j'  11 = S(uり）， thenul becomes equal to u (ul = uり．`

That is, if the control variable converges, the control variable ui becomes the optimal 

solution. 

A linear dynamic equation around the optimal solution is represented by the following 

equation: 
d~ 訂(x•, uり c)J(x•, uり

~+ ＝ 
dt 

where, 

;(0) = 0, 

11(0) = o, 

ax au 

~(t1) =硲

,i(t1) = S(u*)<ヶ）

11 (35) 

(36) 

It is evident that the above necessary condition is equivalent to the following lemma 1. 

[Lemma 1] 

The optimal solution 11• for the linear optimization problem [L] at xj = x• is equal't~ 

S(u 

Proof 

We use reductio ad absurdum. Assume that the optimal solution 11 * for [L] is not equal to 
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翫）(11* ,,,. S(u*)). The following shows that this assumption contradicts the assumption 

that u* is the optimal solution for [N]. The following new control variable is constructed 

for [N]. 

u = u• + e(S(u*) -ri*) (lel<<t) (37) 

If e is small, ft -u• is approximated by the solution to the linear equation (35) with the 

input e(S(u*) -11*). Furthermore, the boundary conditions for軍） and ..'Tl・are exactly 

the same with that of [L]: according to Equation (36). Therefore, ft satisfies the 

b<;mndary conditions Equations (27) and (28), x(O) = .o, x(t 1) = x df, u(O) = 0, .and 

u(t 1) = O. If the following inequality is shown, this proof is completed, as the inequality 

contradicts the assumption that u• is the optimal solution for [N] 

I(翌）2dt < I(号）2 dt ,, ．．ャ

''•" ．． 

The next equation is obtained by ignoring the term e汽

ド）2 dt = I[午+e翫）一11* dt 
2 

dt dt ()}  ] 

日戸）2dt + 2ef虻（三五}t
dt dt dt dt 

(38) 

Let I be an integral of the second term on the right-hand side of Equation (38) .. e's sign . 

can be determined according to f s sign. That is, 

if / > 0 then e < 0 

if / < 0 then e > 0 

Thus the required inequality can be derived. 

dS(u ) d'll 
Here, if/= 0, because dt ―詞isnot always equal to O over time (・: 11*'#-S(uり）， a

is also optimal to the first approximation. Therefore, i/ does not become an isolated 

extreme value in problem [N], because the first variation of the criterion function 

corresponds to O in this case. (Q.E.D) 

The following lemma 2 is equivalent to the sufficient condition. 

[Lemma 2] 

If S(uりisequal炉（炉=scuり）， thenuj becomes equal to u* (uj = u*). 

Proof 
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We use reductio ad absurdurn again. Let us assume that the control variable uj is not the 

optimal solution for [N] (ui'# 
＊ 

u), even when the iteration converges. 

The following new control variable is constructed for [L]. 

ft = S(ui) + e(u* —叫 (39) 

First, it will be shown that ft satisfies the boundary conditions of [L]. The next equation 

shows the dynamic equation at the optimal point. 

dx ＊＊  ー=f(x , u) 
dt 

(40) 

Equation (41) is the linear approximated equation of Equation (40) aroundがwhere

u* -ui. 

d~ 訂(xi,uり訂(xi,ui) * . 
- =~+ (u -u1 
dt ax du 

） (41) 

Then, both u• and ui satisfy the final conditions x(t 1) = xdf of the dynamic equation 

(26), so~, that is, the difference between the trajectory generated by u• and that by ui, 

satisfies the condition~(t 1) = O. Furthermore, 11 satisfies the boundary conditions of 

Equation (33) because S(uりsatisfiesthe boundary conditions of Equation (33). 

Moreover, fi satisfies the boundary conditions of Equation (34) according to the 

following conditions: 

u*{O) =か(tf) = ui (0) = ui (t f) = 0 

Equation (43) can be derived by using Equation (42) and ignoring the term e互

9竺い信—詈〕 (42) 

位）2 dt三I(デ〕2 dt + 2ef dS~ が）冒—詈ヤ (43) 

Let/ be an integral of the second term on the right-hand side of Equation (43). e's sign 

can be determined according to I's sign in the same manner as the previous proof. 

if />0 

if/ <0 

then e < 0 

then e > 0 

Therefore, the required inequality is obtained: 

位）, dt <tst }, 
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This contradicts the basic assumption that T¥ 1 = S(uりisoptimal for [L]. 

If I= 0, 
du dui 

dt dt 

is not always equal to O over time. Therefore, T¥ 1 does not become an isolated extreme 

value for [L]. (Q.E.D) 

5.2 Convergenc~of the solution 

This section discusses the~onotone convergence of the criterion function. We・ask 

whether the proposed algorithm decreases the criterion function for every iteration ( 

J(uj+l)~J(ui)). 

The criterion function at the j+ 1-th iteration is calculated using Equation (30). 

J(ui") -J(ui, ~2J(号＋・¥,)(デ予

-I(竺さ）（竺門）dt (44) 

Also, the smoothing operator S in sections 2, 3 and 4 is represented in continuous time as 

follows: 
d如

u:k+l) = u:k) +入百料 (k = 1,2, ... ,n 入<1) 

where n is the number of smoothings. For very large n, we assume that ui + S(uりis

quite small. This is the most important condition for convergence. We note that this is 

not a reasonable assumption when the optimal solutions to [N] and [L] are very different. 

On the other hand when ui has not converged yet, then 

s<u75-=--nj =1-o c・.-Equation no))― 

Furthermore S(u1) + 111 =が+S(ui) -(ui —叫 is not small since ui -111 is not small. 

Since the first term of the right-hand side of Equation (44) becomes negligibly small 

compared to the second term, it can be ignored. 

J(ui+I) -J(uり=f (詈）2 dt -I(守）2 dt 

The following inequality holds because 111 is optimal for [L] 
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I(詈）2 dt -I(竺）¥i ::;; 0 

Finally, the warranted inequality can be derived which shows the monotone convergence. 

J(ui+l) ::;; J(uり

Because J(u) is lower bounded, it converges to the minimum value. 

6. Discussion 

A new neural network model for trajectory formation was developed which basically uses 

a forward dynamics model, an inverse dynamics model and an approximate minimum 

torque-change trajectory generation mechanism. This model can solve the three difficult 

criticisms relating to the cascade, and other neural networks. These are, (1) they use a 

spatial representation of time, (2) backpropagation is essential, and (3) too many 

iterations are required to obtain the optimal trajectory. However, this model does not use 

a spatial representation of time. It does not require backpropagation in iterative 

computation.・It needs only an approximate linear model and an IDM that is an inverse 

function of the FDM to satisfy the boundary conditions. Furthermore, this model can 

reach an optimal solution in a few iterations as shown in the computer simulation. 

Accordingly, the new neural network model solves the three criticisms of the previous 

models. 

In the mathematical proof and computer simulation, a smoothing operator that needs 

many iterative calculations was used. Such an iterative smoothing operator is not 

necessary, however, and smoothing filters of one-shot type can be easily designed. 

We emphasize that the entire model can be implemented using neural networks. The 

model consists of five main parts; a FDM, an IDM, an approximated linear model, a 

smoother and a via-points seeker. As already mentioned, a FDM can be obtained using 

Jordan's recurrent neural network (Jordan et al., 1990). Kawata et al. (Kawata et al., 

1987; Kawato, 1990) have already reparted that an IDM can be abtained by neural 

network learning. The torque smoather and via-paint seeker are simple enaugh ta be 
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implemented as neural networks. In the case of the point-mass model, the minimum 

torque-change trajectory can be expressed as the minimum-jerk trajectory in the joint 

angle space. Hoff and Arbib (1992) have already pointed out that a minimum-jerk 

trajectory can be obtained using a recurrent neural network when the final velocity and 

acceleration are equal to 0. It is easy to extend their model to general conditions, so that 

the velocity and acceleration at the start and end points are not necessarily 0. These 

conditions are needed in via-point trajectory formation. That is, the minimum-jerk 

trajectory under the above conditions can be defined using the following dynamics: 
d 
盃0= A0 + B0v (45) 

゜
1 

゜A= 

゜゜
1 

-60/ D3 -36/ D2 -9/ D 

゜
1 

゜B = 

゜゜
1 

60/D3 -24/D2 3/D 

〇=(e a of 

釘＝（恥釘
恥..） T 

where v shows the end point and糾， 8vand釘definethe given position, velocity and 

acceleration at the end point. D represents the remaining movement time. Accordingly, 

when糾=O and 8v = O, the above equation corresponds to the dynamic equation 

proposed by Hoff and Arbib (1992). Thus, the point-mass model can be obtained using 

a recurrent network in the same manner as Hoff and Arbib. The detailed model・for 

trajectory fom皿ionand its five main parts obtained using neural networks, are shown in 

Figure 8. 

The new method is a general method for nonlinear optimization problems with 

boundary conditions. It has several advantages in engineering applications. For 

example, it does not require an inversion of matrices in iteration, it reaches an optimal 

solution in a short time, and the output after passing through the IDM always satisfies the 

boundary conditions and dynamics equation. Therefore, it can be extended to many other 

engineering problems. 
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Neural network structure of arm trajectory formation. The five main 
parts, that is, the Forward Dynamics Model, Inverse Dynamics Model, 
Approximated Minimum Torque Change Model, Torque Smoother and 
Via-points Time Search, can all be implemented as neural networks. In 
this figure, the flow of the signals is illustrated in detail. The inputs of 
the proposed neural network are positions, velocities and accelerations at 
the start and the end times, movement time, and via-point positions. The 
position, velocity and acceleration time courses that satisfy the boundary 
conditions are fed into the Inverse Dynamics Model and it outputs the 
torque. The smoothed-torque is fed into the Forward Dynamics Model. It 
outputs the time series of the velocity and acceleration, and then the 
errors of the position, velocity and acceleration at the end point are 
computed when compared with the desired values. The position and 
velocity at the end point are calculated using integral operations from the 
start time to the end time. The via-point positions and via-point passing 
times are solved in the Via-points Time Search. All the boundary 
condition errors are fed into Approximated・Minimum Torque Change 
Model. It outputs the compensatory trajectory. Finally, the position, 
velocity and acceleration which satisfy the boundary conditions are 
computed by adding the compensatory trajectory to the output trajectory 
of the Forward Dynamics Model. ~T shows the time step in computation. 
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In the future, the potential applications of this proposed model to a minimum muscle-

tension-change model and a minimum motor-command-change model will be studied. 

Efficiency of the proposed model will be checked when the IDM is not a perfect inverse 

function of the FDM. Furthermore, it is expected that this trajectory formation model can 

be used as pattern recognition network as a kind of duality exists between pattern 

formation and recognition in this framework (Kawato, 1989). 
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