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Abstract 

This report introduces an indirect approach to hand gesture recognition for 

applications combining hand gestures and natural language. In order to build an 
intuitive 3D GUI, we plan to use natural language. We believe that hand gestures are 

an important non verbal method for augmenting verbal communication, we intend to 

integrate a hand gesture interpretation module with a 3DGUI to resolve the inherent 

difficulties and ambiguities of processing natural language. This report describes a 

study on natural hand gestures useful for manipulating, modelling and translating 

3-D virtual objects. From experimental analysis we divided these gestures in two 

categories. One category refers to gestures used to interact with virtual objects di-

rectly in a single mode (e.g., grabbing), while the other category usually combines 

information from other modes, such as natural language and can be useful for mul-

timodal interface. Usually several getures associate with a single operative concept. 

Direct, template-based, approaches provide robust gesture recognition for a small set 

of gestures, but are not intuitive to use because gestures usually differ from person to 

person even for a single concept. Therefore we employed an indirect approach based 

a neural networks implementation that determines the position of a focal point gen-

eralized from experimental results. The focal point can be defined as the point on the 

hand where the attention of a person viewing the gesture is focused. We found that 

observation of this point gives sufficient information for interpreting some gesture's 

intententions. 

疇

I. Introduction 

Interfaces between human and machine evolved from 2D Graphic user inter-

faces (GUI) and are about to enter the Multimedia age. Icons, windows, menus and so 

on, are 2D GUI elements which are now commonly used with most computers. How-

ever, 2D GUI such as X-Windows, Microsoft Windows and Macintosh GUI require 

the use of a pointing device, such as a mouse, to provide inputs to the computer. 

Recently, the evolution of hardware technology gives us the opportunity to 

add one more visual dimension to human-machine interactions. With the help of a 

3D graphical environment, these interactions can get closer to human-human com-

munications. An application such as the Virtual Space Teleco:nferencing system, [5] 

developed in ATR-CSRL, uses 3D GUI in order to build a virtual workspace shared 

by several users in different locations and provide realistic sensations. However, the 

． 
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technology hasn't reached its maturity yet, therefore we still expect a lot of interesting 

research on the subject. 

GUI's can obviously benefit from hand gesture interpretation as a next-

generation kind of input devices to handle 3D information. Originally, S. Sidney Felds 

built a Glove-Talk system using neural networks and a Dataglove [4] to translate sign 

language gestures. Most recently, non-intrusive techniques are also being developed to 

recognize hand gestures using video cameras [3], and combined with Hidden Markov 

Models [17][10]. Baudel and Beaudel-Lafon integrated a hand gesture interpretation 

system for computer-aided presentations. The system could recognize 16 gestures and 

allowed the user to navigate within a Hypercard based presentation. vVith the Vir-

tual Space Teleconferencing System, users can manipulate objects thanks to a simple 

grab-release gesture recognition module. 

On the other hand, speech recognition has been a major theme of research. 

Though there is still much to expect in robustness and flexibility, the Virtual Space 

Teleconferancing System developed at ATR already includes a speech recognition 

module. Efforts are made to use speech recognition to interactively generate, ma-

nipulate and Modify 3-D Shapes (The What-you-say-is-what-you-see (WYSIWYS) 

framework [12]). The system is expected to employ deformable superquadrics [8] 

to build a framework for interactive indexing of knowledge-level descriptions [11] of 

human intentions to a symbol-level representation. However, due to the ambiguity 

of operation concepts, users could combine hand gestures naturally with speech to 

clarify verbal descriptions. Therefore we tried to understand the relationship between 

hand gestures and natural language for our system. The system is aimed to be robust 

enough to be used by any kind of users, especially those who don't know anything 

about virtual reality, CAD applications and neural networks. 

II. Hand gestures and natural language in 3D GUI 

Usually, speech and hand gestures are treated independently. A few researchers 

tried to combine speech and hand gestures for a more convivial interface. For instance, 

David Weimer and S. K. Ganapathy combined speech and gestures in a system to 

create a synthetic visual environment [15] where one could modify 3D mathematical 

shapes. This CAD application implemented the same capabilities as the wand of 

Vickers and Clark [13] [2] but used the index finger tip like a stylus for locating 

point of the interest. Thumb abduction or voice commands initiated the pick. The 

gesturing part was reduced to a small set of hand gestures while speech was used 
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to invoke system commands. Since they could be easily recognized, special thumb 

gestures were used. 

Our approach is different. Most of the interfaces using hand gestures need a 

special set of hand gestures. Therefore, one has to learn these particular predefined 

gestures before using the system. We believe it is possible to go one step further 

toward a more intuitive interaction with the machine. By studying hand gestures, we 

should be able to understand them better. We will then be able to build a system 

that understands the intention of the gesture instead of just matching hand shapes 

to predefined templates. 

We plan to integrate this hand gesture interpretation module with ATR's Vir-

tual Space Teleconferencing System. People could then model objects with 3D shape 

ontologies and implicit functions such as superquadrics to obtain inmediate visual 

feedback. The system should be able to translate intentions, given by verbal instruc-

tions, of the user accurately into a graphical transformation on objects. Because of 

the ambiguity of natural language, we want to use a hand gesture recognition system 

to complement verbal commands and help the user communicate with the computer. 

III. Understanding hand gestures 

A. An experiment to clarify the relationship between hand gestures and natural Zan-

guage 

We used Thingworld [9], an experimental software that implements su-

perquadrics, to see which commands were the most useful to model objects. These 

commands are the most basic commands for a CAD application using implicit func-

tions. We tried to find out what kind of gestures was naturally associated with these 

commands. 

The experiment was performed in three parts. In each part, we presented 

several scenes to the subject. The first part dealt with transformations: eleven 3D 

graphical scenes, each scene corresponded to one specific transformation, were shown 

using WorldToolKit [16], a library of C functions with which one can build virtual 

environments where graphical objects simulate real world properties and behavior: • 

-Scene 1 was Vertical stretching 

-Scene 2" Horizontal stretching 
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-Scene 3" Local elongation 

Scene 4"  Horizontal squeezing 

-Scene 5" Local shrinking 

Scene 6 11 Vertical squeezing 

-Scene 7" TTJisting 

Scene 8 11 Bending 

-Scene 9" Pinching 

-Scene 10" Extruding 

Scene 11" Flattening 

The second part dealt with motion: translation and rotation. We tried to find 

out what gesture would be done to move objects in a 3D environment. 

The third part dealt with the deictic gestures. Using both speech and hand 

gestures, the user was asked to select a particular object among several presented 

with WorldToolkit. 

We had 11 subjects for our experiment, 5 were female and 6 were male. They 

came from various countries such as Marocco, France, Japan, Canada and The United 

States. The aim of the experiment is not to do a survey of all the possible hand ges-

tures associated with the formely mentioned transformations but it gives us interesting 

sample data. The data we collected was interesting enough for our purpose and there 

are a full range of possible analysis that can be done. 

B. Analys岱

Robustness has to be one of the main attributes of our recognition system. This 

implies limitation. Therefore we had to focus on some particular transformations. 

However, even with these restrictions, the experiment showed us that a system that 

recognizes natural gestures should deal with many different hand gestures. 

After analysis of the data (the experiment was stored on video tapes), we 

found that it was possible to distinguish two categories in the hand gestures done by 

the subjects. The first category was those gestures in which the subject behaved as 

if the object really existed and operations could be performed on it as if it was made 

of clay. The second category consisted of those gestures in which the subject behaved 

as if the object could be directed to perform some operation being guided by hand 

motion. 

We coined the term clay paraふgmto explain the behavior in the first category. 
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Figure 1: Experiment to clarify the relationship between hand gestures and verbal 
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Figure 2: Illustration of the clay paradigm gestures. 

Given this definition, we classified the gestures in two categories; the gestures using 

the clay paradigm, and those which correspond more to a command. 

Using the clay paradigm gestures, the subject considered that he could actually 

touch the virtual object in order to deform and modify it. Since it was displayed in 2D 

on a screen, the subjects had to mime a physical interaction with the object (figure 2). 

The second type of gestures, command gestures, corresponded more to a com-

mand given to the computer, we called them the command gestures. For these, the 

shape of the object did not really influence the gesture. Actually, these hand gestures 

would have been the same for a simple geometric figure such as a cube or a cylin-

der. The virtual state of the object is considered when doing the gesture. Figure 3 

illustrates the difference between the two categories. 

The difference between these gestures is like the difference between making 

your own cooking and order something at a restaurant, the result (a full stomach) is 

in both case the same. 
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Figure 3: Difference between Clay paradigm gestures and Command gestures. 
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Figure 4: Classification of the gestures for each scenes. 

For each transformation we collected the data and then separated them clas-

sified them in these two types (See figure 4). It appears that for some scenes, partic-

ularly those concerning a transformation of the whole object, only command gestures 

were done. Though figure 5 shows that clay paradigm gestures are preferred, sub-

jects tend to modify a virtual object as if it was maleable, most of the time, when 

clay paradigm gestures were used, command gestures could have also been used (see 

figure 4). 

As we saw, clay paradigm gestures suppose physical contact with the object. 

To accurately transform the object according to the hand gesture, the user would 

need to have some kind of feedback, whether visual or even better, physical. The 

response on the object should also be done according to the clay paradigm. Besides, 

the system should simulate physical properties, have a collision detection system, have 

precise devices, and also have a accurate graphical model of the hand. Since this is 

not between the aim of this research, we focused our work on command gestures. An 

interesting point about command gestures is that, with these gestures, the important 
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thing is to recognize the meaning of the gesture more than its shape. So, with a 

system that can recognize the intention which lies behind the gesture, we should be 

able to deal with natural command gestures. Any user would be able to use the 

system in a very intuitive way without having to learn a special set of hand gestures. 

IV. An indirect approach for hand gesture recognition 

A. The focal point 

The hand gesture recognition systems developed until now are bounded by 

the shape of the hand. That is, they are template-based and work at a low level of 

description. What we found out during our experiment is that, even for a simple task 

as rotation, subjects used very different gestures in the sense that the movement of 

the arm and the shape of the hand could be very different. Still, for all of these, an ex-

ternal observer could understand what transformation the hand gesture corresponded 

to. The gestures actually had the same meaning, they described the same concept. 

Therefore, template-based hand gesture recognition is not appropriate for recognizing 

natural gestures even if an infinite number of template is available to recognize all 

possible gestures. This is why we needed to recognize the command gestures at a、

higher level of abstraction. In this paper we propose to adopt an indirect approach 

for hand gesture recognition in order to sidestep the template-based approach and 

go directly to the concept described. This approach will be indirect because we are 

less interested in how the fingers are bent or how the arm moved in the space than 

in knowing the information brought by the gesture. Therefore the system won't tell 

us if the hand has a fist shape or if one of the fingers is raised but instead will tell 

the computer how the gesture is used to give its information. 

As we observed the command gestures, we came to the conclusion that we 

could abstract the information contained in each gesture to the observation of a single 

point. For instance, though the gestures used to rotate were quite different, there was 

a common point that could be abstracted from all of these; some part of the hand was 

rotating or describing a revolution (see figure 6 and figure 7). From this part we could 

abstract the most meaningful point whose trajectory and changes of orientation give 

information for the whole gesture; This point contains all the necessary information 

of the hand shape: We called it the focal point. 

Intuitively, our attention, during the gesture is focused on a certain part of 

the hand, depending statically on the shape of the hand. That is where we located 
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Figure 8: The attention is focused at the center of gravity of the handler. 

the focal point. 

The shape of the hand might be used to indicate a position as it is the case 

for deictic gestures, where the attention is focused on a finger's tip, or the hand 

might be used to represent the object, or the subject might imagine handlers on the 

object to grab, in this case, the attention is focused on the center of gravity of the 

imaginary handler (see figure 8) and the hand gesture means that you are ready to 
move something. So the attention is not systematically focused on the index finger 

tip nor on the palm, it varies according to the hand shape. 

These hand shapes depend on how we usually use our hands. As an example, 

when the thumb tip and the index finger tip touch each other, the hand gesture that 

is done when you are holding something very thin between your fingers, like a rope, 

the attention is focused on the supposed contact point, where the object is supposed 

to be (see figure 9), this hand gesture means that you want to express the concept 

"pull" what else can you do with a rope? push it? . Actually, to clarify this point we 

should do some more experiments (see recommendations). 

In some cases, though, if only one hand is used, the thumb and the other part 

of the hand can play different role as it is the case for one of the enlargement gestures. 

In this case two parts of a hand would play the same role as two hands, thus, with 

the same method, two focal points would have been necessary. We could integrate 

the enlargement information in the system. Mourouvapin et al. have worked on this 
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Figure 9: An illustration of the focal point. 
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particular gesture using neural networks [7], so we shall not work on these gestures. 

We insist on the fact that finding the focal point is only one of the possible 

indirect approaches for hand gesture recognition, this method is valid for several 

concepts but not for all. In this paper, we just want to demonstrate that such a 

method is tractable. 

B. Using neural networks 

Neural networks have already been commonly used for recognition. S. Sid-

ney Felds used several neural networks for his Glove Talk system, one to detect the 

beginning of a gesture, it had as output 1 or 0, one to recognize the hand shape 

for root word, it could recognize 66 different hand shapes, and networks for ending1 

rate and stress. The neural networks were used as Classifiers, so they were trained 

to determine in which class a gesture could be (if it means one of the 66 possible 

words for instance). Mourouvapin et al. used recurrent neural networks because of 

their ability to handle time, but they used them in order to calculate the enlargement 

corresponding to the gesture. Actually neural networks can be used for calculation 

and this is how we want to use them. 

Since we want to calculate the position of a particular point of the hand, it is 

possible to calculate only the relative position to the position of the wrist. Due to 

physical reasons (the wrist joint limit), this position is bounded by what we called 

the bounding box (see figure 10 11) which surrounds the wrist and has faces that 

are perpendicular to the forearm, such a system is not chaotic so the network has a 

chance to converge. 

Then if we train the network properly, with different hand shape i and the 

corresponding position Pi, neural network has the ability to find a function f so that: 

for all i, f(handshape[il) = Pi; 

The problem is then to find the correct function f since we are also interested 

in the intermediate values of f. There is no explicit function that could give the 

position of the focal point. It is not always located on the finger tip for instance, it 

may even not be on the hand at all. It depends on knowledge such as when raised 

alone, the index finger indicates a position, or the fact that we use different hand shape 

to grab or to push, where we might use all our fingers. We need to use a system that 

could learn this knowledge. Neural networks provide this learning ability. Thus we 

propose to use them in our system, to calculate the position and orientation of the 

focal point. 

18 



Figure 10: front view of a joint limit. 

Figure 11: Side view of a joint limit. 
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The main difference between this approach and the template-based approach 

is that we don't need to define a value for all the position of the fingers or for all the 

positions of the wrist that we want to recognize. We give only some particular points 

of a function, enough to obtain a good approximation. This is the reason why we 

needed to teach the networks some basic knowledge, but we didn't want to recognize 

only the points we defined but the global function. 

V. Building the system 

A. The Cyberglove 

In order to give hand shape information to the computer, we used a Cyber-

Glove developed by Virtual Technologies [14], this instrument has 18 sensors added to 

a Polhemus Fastrak to measure with relative accuracy the movements of the fingers 

and the hand. 

The Fastrak and the Cyberglove are connected separately to the computer 

(see figure 12) so you can handle information corning from these different sources 

independently. When the user is wearing the glove, the Polhemus Fastrak is located 

on the forearm and so its position doesn't change with the hand shape. In this paper, 

we will consider that this position corresponds to the position of the sensor. Figure 13 

shows the position of the 18 sensors on the palm and fingers. 

We used the CyberGlove with SunMicrosytems RPC (Remote Procedure Call-

ing)[l]. RPO enables us to use the data of a CyberGlove connected to another ma-

chine. On the machine where the CyberGlove is connected, a server could be run in 

a continuous loop. Then if we need the data, we just have to run a client program 

that asks for data to the server (see the programs at the end of the paper). 

This program takes the information given by the glove and then convert them 

into angle information according to the calibration file. The data format sent by the 

server is the following: 

angles (in order): 

finger O : 

thumb MPJ (joint where the thumb meets the palm) 

thumb IJ (outer thumb joint) 

20 
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finger 1 

index MPJ (joint >t"here the index meets the palm) 

index PIJ (joint second from the finger tip) 

finger 2 : 

middle MPJ 

middle PIJ 

finger 3 

ring MPJ 

ring PIJ 

finger 4: 

pinkie MPJ 

pinkie PIJ 

space: 

thumb abduction (angle between thumb and index finger) 

middle-index abd'n (angle between ring and middle fingers) 

ring-middle abduction (angle between ring and middle fingers) 

pinkie-ring abduction (angle between pinkie and ring finger) 

l-lrist: 

l-lrist pitch 

l-lrist yat-l 

You may notice that there are only 16 angles for 18 sensors. It is because 

the server we used doesn't handle neither the the thumb rotation (angle of thumb 

rotating across palm) nor the palm arch (causes pinkie to rotate across palm). For 

more accuracy, it may be useful to include this information in our system and so to 

rewrite the server program for the Cyberglove. 

To get the absolute position of the wrist, we use the Pohlemus Fastrak attached 

to the CyberGlove. The system has two components: 

-A source, which emits electromagnetic fields. In the configuration we used, 
the source was attached to a wooden table in front of the user. 

-A sensor, which responds to the source's electromagntic fields according to 

its position to the source. The sensor feeds the Control Unit with six analog signals, 

which describe the sensor's coordinates (x,y,z) and orientation (azimuth (屯）， elevation

23 
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Figure 14: Euler angles for the Fastrak 

(0) and roll (<I>): Euler angles). (see figure 14) 

In our system, we didn't use RFC for the Fastrak but instead, since World-

ToolKit could handle this sensor, we preferred to use the built-in programs (see the 

code at the end of the paper). 

B. neural networks 

1. Aspirin/MIGRAINES 

To build neural networks, we used Aspirin/MIGRAINES developed by the 

MITRE Corporation [6]. This software is aimed to help building many kinds of 

neural networks. It provides two parts: 
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-The Aspirin Language (files named xxx.aspirin) is a declarative language used 

to specify neural networks architecture. With this software, the user can describe his 

neural network at a very high level, compilers provided with the language handles the 

lower level part by generating a code, which can be linked into a more application-

specific system. 

-You can use the MIGRAINES interface to simulate the behavior of the net-

work or to generate files that are readable by such a software as GnuPlot or Math 

Lab. You can also use directly the executable file generated by the compilers. This 

way you can train the network, check its output, compare the ouput to the target 

file, modify the learning rate and the error boundaries (see codes at the end of the 

paper). 

2. The training data 

We needed data to train the Network so we defined 92 different gestures (see 

in Annex), that constitute a set of points on the function we want to recognize; they 

are mostly hand gestures that correspond to the different joint limits but we defined 

these gestures by trying to guess what would be the behavior of the Network given 

this data. 

For instance, to lower the influence of the thumb in the recognition process, 

since the information given by raising the thumb could be contained in the orientation 

of the focal point, we reproduced gestures twice, with the thumb raised and bent, both 

having the same output. For the training, this should be taken into account and thus, 

should lower the influence of the thumb abduction for the output. 

Also we tried to define the gestures according to the joint limit, hoping that 

the network will interpolate correctly between two end position of a joint. Since we 

had to define manually the position of the focal point for each training gesture, for 

instance, for gesture n.1 we calculated that the position of the focal point is x=3, 

y=18 and z=O; we added the target output to the recorded data coming from the 

sensor. Now the calculations of these different positions have been done, to build 

more training data, it is easy to write a small program that could record the data of 

hand gestures and combine it with the data corresponding to the predefined positions 

of the focal point. For instance, we could ask several persons to do several times 

gesture n.1, then the program could associate each with 3 18 0. 

Figure 15 shows the axis and the angles we used to calculate the relative 

position of the focal point to the wrist. Figure 16 gives an example of the data we 

arranged. 
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Figure 15: Axis and Angles used for the position of the focal point. 
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I* Case 1 *I 
82 107 95 113 88 114 96 62 65 73 13 -16 17 1 0 0 -67 0 

3 18 0 0 0 0 

I* Case 2 *I 
103 109 107 107 86 109 100 107 79 74 22 -18 12 8 0 0 -70 9 

1 9 3 0 0 0 

I* Case 3 *I 
96 102 101 124 86 122 93 109 72 81 18 -27 1 -2 0 0 -66 12 

1 15 0 0 0 0 

I* Case 4 *I 
107 93 103 114 86 108 100 98 81 74 17 -20 10 0 0 0 -67 6 

1 11 5 90 0 0 

I* Case 5 *I 
105 106 103 120 84 109 99 88 88 74 16 -22 8 -1 0 0 -68 8 

3 0 18 90 0 0 

I* Case 6 *I 
107 96 108 116 86 116 100 113 85 74 18 -22 9 0 0 0 -68 5 

1 -1 9 90 0 0 

I* Case 7 *I 
107 113 102 116 82 106 98 78 85 74 18 -17 10 6 0 0 -67 13 

1 0 15 90 0 0 

I* Case 8 */ 
103 107 102 107 85 114 100 108 87 67 17 -17 9 8 0 0 -67 10 

1 -4 11 180 0 0 

I* Case 9 *I 
99 105 101 109 82 106 99 106 80 75 25 -20 8 2 0 0 -67 10 

3 12 11 -45 0 0 

Figure 16: Sample data with the angles given by the Cyberglove server and the 

relative position to the wrist. 
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Figure 17: Architecture of the neural networks. 

However, the data have to fit the required format of the nodes'input. We 

distributed the values between -1 and 1. The values should not be too close from 

each other. We decided to normalize the values but there are other ways to handle 

it. Some gestures may have been reproduced several times according to the weight 

we wanted to give them in the recognition process. 

For our system, we used simple 3 layer neural networks (Perceptrons) and use 

the backpropagation algorithm. We used one single node for each coordinate because 

of the continuity of the output. Due to the low number of training data, and for easier 

convergence and training we decided to divide the problem. So we built four different 

networks, one for each coordinate, and one for each angle. They are smaller than a 

single big network with 3 outputs so the number of weights is not too large compared 

to the number of training data. Figure 17 shows what architecture we finally decided 

to have. 

3. Some convenient representations to deal with neural networks 

The training stage is mostly hacking and you just have to learn from experi-

ence. No theory will tell you how many nodes the hidden layer should have or what 

learning rate will give you the best result. To visualize how we should modify the 

different parameters, this is how we considered neural networks (this is just an image 

to help people understand how the neural network behave, even if actually the theory 

for the perceptron is quite simple). 

We represented a neural network as an array in the space. Its coordinates 

changed as its different weights changed. The amount of the change is related to the 

learning rate. We supposed that there were different points of convergence in the 

space, depending on the architecture and on the training data, each with a particular 

area of attraction. If the Network couldn't converge, there was none, if it was hard 

to make it converge, the areas of attraction were very small. The neural network was 

attracted by all of them. Once it got close enough to one of these point, we decreased 

the learning rate so that this point should have come quickly to its stable position. 
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The problem is that this point may not be the right one. In that case, whether 

you increase the learning rate in order to make the neural network "jump out" of an 

area of attraction or you start again your training from an earlier configuration of the 

Network, changing the learning rate. If none of these convergence points are good 

enough, you should change the number of nodes in the hidden layer. 

To see if the function realized by the network is correct, you can either record 

other hand gestures as test gestures and then compare the outputs with the expected 

results, MIGRAINES can then show you the error of the network, or you can test 

the network directly with the glove by using the different program we wrote, this way 

is less convenient but has the advantage that you can actually see how the network 

behaves (for the hand gesture data and for the behavior between two gestures). You 

can see the evolution of the output according to the hand shape. 

Training is the most painful step in neural networks because it takes a long 

time and because you still have to check if the Network is converging to the right 

point. By the way, time is crucial factor, the more time you spend to train networks 

or on the training data, the better your results can be. 

Once you think the function found behave is appropriate enough for your 

purpose, you may need to correct it a little, translate, recenter, scale… 

C. Architecture of the system 

1. Using RPC for a distributed environment 

An RPG system is the collection of software necessary to support remote pro-

cedure call programming and the necessary run-time services. An RPG system is a 

logical subset of a distributed computing environment (definition taken from [1]) 

We used RPC (Remote Procedure Calling) developed by Sun Microsystems 

because it allows us to use a distributed environment. With RPC, a client can ex-

ecute procedures on other networked computers so it is possible to have access to 

more resources throughout a network. In the case of ATR's Virtual Teleconferencing 

system, resources are divided between several workstations, some are dedicated to 

a particular task. We used a distributed environment so that the procedures called 

should not take away all the power of a single machine. 

Distributed environments allows also flexibility, since we can have clients run-

ning on any machine (a server and a client can even exist on the same machine), 

data can be shared by several programs without any change for the server. These 
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clients can use the data however they want. This is indeed a major tool in the UNIX 

programming environment. 

RPO makes the client/server model more powerful and easier to program than 

low level socket interface. When combined with the ONO RPCGEN protocol, com-

piler, clients transparently make remote calls trough a local procedure call interface. 

2. An overview of the network protocols 

RPO works over TCP /IP protocol network. For such a network, the program 

and supporting network services have to follow these steps: 

1. -Determine the sending and the receiving programs, which could be distributed 

among several machines, 

2. -cut the data stream into datagrams, 

3. -send the datagrams to the receiving program and 

4. -reassemble the datagrams into a data stream. 

To locate a machine, the network services use the internet address. Each desti-

nation on a network has a unique Internet address. It is a 32-bit number represented 

as four 8-bits seperate numbers, covering 0-255. For instance the internet address of 

the client machine is 133.186.25.133 but the file /etc/hosts maps the internet number 

with a common name, in this case the name is ciris23. For Ethernet networks, an 

address resolution protocol (ARP) located outside Internet protocols translates the 

Internet address into a Ethernet address. 

Datagrams are the unit of data sent or received. Because TCP /IP is a con-

nectionless technology, you don't send a data stream directly but instead you have 

to break the stream into datagrams encapsulated in, or surrounded by, headers and 

trailers, forming packets. The size of the datagram is typically 576 bytes for Ethernet. 

To correlate TCP /IP with the OSI model (which came after), we could say 

that the Internet protocols span the data-link, network, transport, and process layers 

of the OSI models. RPO comes on top of the layer 4 (Transport), in the layer 5 

(Session). 

For our system we had to choose between TCP and UDP transport protocol. 

TCP transport protocol takes responsability for making sure the commands arrive at 
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destination. Also if the message is too large, TCP will split it into several datagrams, 

then will reassemble the message at the other end. TCP is a reliable transport so 

when a reply message is received from the server, it means that the procedure was 

executed only once. 

Th~s we shall use TCP transport if: 

1. Reliability is paramount, 

2. problems arise when remote procedures are executed more than once and 

3. the size of the reply or the request exceed the size of one UDP packet (usually 

Skbytes). 

On the other hand, UDP (user datagram protocol) is an unreliable protocol, 

though, as TCP, it does include datagram checksums, it doesn't retransmit datagrams 

when an error occured and sends only a single datagram, so if your message is larger 

than the datagram's size UDP won't make any attempt to fragment the message or 

to reassemble it at the other end. Since it is not reliable, when you receive a reply 

from the server, you cannot be sure the procedure has been executed only once. 

Thus we shall use UDP if: 

1. Remote procedures can be executed more than once without any problems, 

2. server request messages and client reply messages can each fit completely within 

one UDP packet, and 

3. the server handles multiple clients. TCP servers require to keep the connections 

open, with the number of connections limited by operating system. The same 

holds true for a client communicating with multiple servers simultaneously. 

But since we are going to build a server for each neural networks, and since 

the remote procedures can be executed as often as we like and since we shall work 

within a local network, so reliability is not such a problem, we shall use the UDP 

transport for our system. 

Above the session layer is the representation layer. Actually, data sent by 

the computer should be machine-independent. That is why ONC RPC uses a single-

canonical represention format as data representaion known as External Data Repre-

sentation (XDR). RPC provides interfaces that converts usual type formats into XDR 

format, from these you can build your own data format and convert it into XDR. 
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The user Application lies then on top of the OSI model, in the layer 7 (appli-

cation) (See figure 18). See the complete architecture on figure 19. 

Currently, servers are physically running on the same machine, but on different 

processes, with RPC it doesn't change anything and it is even easier to use than the 

Interprocess communication (IPC) Tools provided by UNIX. 

We may notice that the servers that send the position and orientation of the 

focal point are also clients of the server that sends data from the Cyberglove. 

D. Trajectory analysis 

1. Preamble 

Once you have the position of the focal point, its trajectory may give you 

the information you need. So we must build a module in our system that could 

analyze the motion of the focal point and transform it into information concerning 

the transformation. 

We assume here that the speech recognition system has been already imple-

mented. It should be clear that our system is intended to work in association with 

natural language. One of the advantages of combining both is that you have some 

information about when the gesture starts, also you already know what kind of trans-

formation the user wants to have. 

For our purpose we basically need to recognize translation and rotation. They 

are basic gestures that can compose more complex gestures. Therefore, with trans-

lation, by combining data from both hands, you can also recognize the command 

gestures for stretching or squeezing. With rotation you can control an object's orien-

tation and you could even recognize a twisting gesture. 

2. Translation, stretching, squeezing 

However we have to take into account the fact that, even in real life, the 

precision of the gestures is very low so we cannot completely rely on the data we 

receive. we have to !imitate ourselves in direction and amplitude. 

For translation, stretching, and squeezing, we limitate ourselves to the three 

axis X, Y, Z. So for the transformations, the system considers the motion: 

32 



OSI Layers 

7. Application 

6. Presentation 

5. Session 

4. Transport 

3. Network 

1-2. Data-link/Physical 

TCP 

datagrams 

User 
Application 

XDR 

RPC 

or 

IP 

Hardware 
Interface 

UDP 

prnto~o~fn~ に：仇悶ncto~

/ Network 
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-dor百ard,

-backward, 

-left百ard,

-rightt.ard, 

-upward and 

-downward 

Therefore the system will recognize which of these six directions the hand ges-

ture is indicating and tell us what amplitude should be applied for the transformation 

on the object. Actually, given the amplitude of the movement, the amplitude of the 

transformation might be chosen according to the following. 

1. The linear relation: the amplitude of the transformation and the gesture linearly 

correlated. This is the most common way to transforn the object. Still with 

this relation, we have to handle the problem of continuous enlargement. 

2. Logarithmic relation: the amplitude of the transformation follows an exponen-

tial law. 

3. Speed dependence: the speed of the motion gives the amplitude of the motion 

i.e. the faster you move the greater is the transformation. This relation starts 

from the assumption that, when you want to make a small transformation, you 

tend to move slower. 

For the moment we just implemented the first relation. Future works on the 

subject should also deal with other relations. The algorithm is actually quite simple: 

Let⑦, y, z be the coordinates for a hand position叫，祐， Zrand切，Yz,zz 

for the right and left hands respectively 

At time t, calculate the variation of the three coordinates: dx, dy, dz 

(respectively d(叫一切），d(祐一 Yz),d(zr―町））．
Calculate the maximum of the variations, then choose a direction for the 

translation. 

If the transformation has already begun, 
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check if the direction is the 

same as before. 

if it is, 

else, 

the amplitude is a function of 

d研 +d炉十 dz2

increase a counter and 

do not apply any effect, 

if the counter reaches a certain level, 

end the transformation. 

Do it until several variations are null or very small. 

3. Rotation 

We will also limit the axis of rotation to one of the three X-Y-Z axis. However, 

to determine the amplitude of the rotation and the axis around which the transfor-

mation, we shall use a more complex algorithm. We shall first construct a medium 

plane which is the closest to the points of the trajectories: 

Let M,。...Mn be the points of the trajectory described by the focal point. 

（むo,Yo, zo) ... (叫，Yn,叫 theircoordinates. First we shall calculate the axis around 

which the rotation occurs. To do that, we shall calculate the closest plane to the last 

points Mn-p, Mn-p+l, ... Mn, we assume that these p points are not on the same line. 

Let Pp be a plane in the space. Its general equation is: 

apx + bPy + c;,z十心 =0,Vx,y,zE況

Let dip be the distance between Mi and P., 炉

dip= 
la己＋加Ii・十％劣十 dpl

V叶＋炉+c2 

Pp is the closest plane to Mn-p, ... Mn if (ap, bp, cp, む） minimize th following 

function F defined by: 
n 

:F(ap, 似Cp,も）＝区 d[p,む
i=n-p 

so (ap, bp, c;,, dp) must verify the following equations: 
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d:F 
(Pl bp, Cp, 心） =0 a 

da 

dデ
瓦 (av,如，Cp,心） =0 

d:F 
ー (av,bv, cv, 心） =0 
de 

dF 
亙(ap,如，Cp,dp)=O

The resolution of these equations should give (ap, bp, cp, dp) and so it is possible 

to define the plane Pp, 

ap, 如，cp,dp are also the coordinates of the normal vector of the plane. Given 

this vector, we can choose the axis of the rotation. Then we should calculate the 

angular increasing during the motion. 

Let Mn_2, ... Mn be three consecutive points of the trajectory which are not 

on same straight line. 

Let ln-1andln-2 be the middle points of Mn-2Mn-1 and Mn-1Mn, To calculate 

the position of the center of the circle that passes by these three points, we calculate 

the plane defined by these points. On this plane, 

Let O be the center of the circle, we have: 

Oln-1•Mn-2Mn-1 = 0 

は .Mn-1Mn= 0 

These equations define the position of O in the plane, so we can calculate the 

angle increasing by: 

t 
OMn-2 OMn-1 

a = arc an + arctan 
Mn-2Mn-1 Mn-1Mn 
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This should be done only if O is at a certain range from Mn, if it is too close, 
it means that it may be an imprecision in the trajectory. 

If Mn_2, ... Mn are on the same straight line, we should still increase the angle 
of a small arbitrary amount, because of the possible imprecision of the trajectory. 

VI. Experimental results 

A. Detection of the focal point and its trajectory 

To show how the focal point behave in a 3-D space, we built an application, 

using World Toolkit (a library of virtual rea且tyfunctions), that displays both the 

position of the wrist and the focal point (green sphere and red pyramid). Because of 

the behavior of neural networks, we had to filter the trajectory to avoid noise caused 

by singular points. The filter we programmed is the following. Let Pnn be the relative 

position given by the output of the neural networks. Let PJinal and PJor be the final 

and former position of the focal point. The filter calculates PJinal so that 

1 
PJinal -PJormer = 

force 
* (Pnn -PJormer) 

Where force is the force of the filter. This way, singular points have less influence 

on the position of the focal point, the counterpart is that the motion gets slower. 

Figures 20 21 22 show focal point trajectories with different filter forces. 

In order to illustrate how the system works, let's consider a typical deictic 

gesture, when only the index finger is raised. The system recognizes this hand shape 

and moves the focal point to the finger's tip; We taught the system that, during this 

deictic gesture, this was where the attention was focused on. To show how the system 

can follow the focal point during this gesture, figure 23 shows an example of writing 

using this recognition system. 

The system can recognize the trajectory of the focal point for many different 

gestures. For instance figure 24, 25 and 26 shows the trajectory of the focal point for 

various gestures that described the same concept, rotation. 
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Figure 21: Trajectory with filtering force = 0.3. 
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Figure 22: Trajectory with filtering force = 0. 7. 
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Figure 23: ¥1/riting with the finger tip. 
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Figure 24: Trajectory and one gesture for a concept; rotation. 
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F'igure 25: Trajectory and another gesture for the same concept; rotation. 
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Figure 26: Trajectory and another nre a,g皿nfor the same concept; rotation. 
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Figure 2 7: Trajectory analyzer: The virtual dog 

B. Trajectory Analyzer: the virtual dog. 

We b1ult a system that can analyze trajectories describing a translation. The 

application has the shape of a virtual dog that can detect the meaning of natural hand 

gestures ("go there" or "seat down" for instance). The system hasn't been combined 

yet with speech recognitioni, to distinguish between different meaning, the system has 

a, sequence of offsets to detect motion and transitions (see figure 27). Though the 

Fastrak is used only locally on the machine where WorldToolKit is running, the rest 

of the system works with RPC. 
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C. Advantages and Limitations 

1. The advantages 

1. The advantage for such a method is that you don't depend as much on the shape 

of the hand as before. The problem of recognizing the gestures associated to 

a concept like rotating becomes tracktable because the shape of the hand has 

only an indirect influence on the recognition of the gesture. 

2. Because, as we saw, the position of the focal point depends only statically on 

the shape of the hand. You don't have to deal with time in the neural networks, 

so you don't have to use recurrent networks, which are difficult to train, or to 

integrate sequences in the gesture, which makes your networks become huge. 

3. Since the neural networks are very small, the necessary calculation time for the 

output is very small too. So it is possible to make them work in real time. 

4. Associated with Speech recognition, the system should allow the user to com-

municate with the machine a quite natural way. And also, since the system was 

built to work in a distributed environment, you can combine it with a classic 

sign recognition to have a full range of possibilities. , 

2. Limitations 

1. The main limitation of such a method is that you need to have a Trajectory 

analyzer. For rotation, you can use the algorithm described above, which is 

rather mathematical, or you can use Bezier curves to reconstruct the trajectory. 

2. neural networks don't make coffee. It means that you can't expect very precise 
results from the neural networks. You have to spend more time in the training 

stage and have a lot more of training data. 

VII. Conclusion and Recommendations 

The method we described in this paper introduces another approach for hand 

gesture recognition, it should be used as a complement to speech recognition as we 

use gestures as a complement for human-to-human communication. Considering the 

neural network part, using a bigger set of training hand gestures (the number of 
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weights in the Network should not be much bigger than the number of training data) 

should easily converge and enable us to use only one Network for the position of the 

focal point and increase the reliability. However, to increase precision, it might be 

necessary to use several output nodes for a single coordinate. 

Because the one of our goals is to make it natural and intuitive for people 

to represent their mental images in 3D, this approach could take into consideration 

common sense knowledge of how we perceive things. To go further into a more 

intuitive human-to-human way of communication with help of computers, the first 

step is to understand how humans communicate with each other. 

The application we built to recognize gestures using an indirect approach has 

a direct effect on a better understanding of human-to-human communication. This 

should be a subject of future research. We believe that perception is an essential part 

in Communication. Actually, the example of the focal point could be generalized 

into a general problem. How do we perceive people, doing gestures, talking, having 

different postures? With current technology available to us, for instance a gaze recog-

nition system, we could hold an experiment and track the subject's gaze in order to 

understand better how he sees things as he talks and how it relates to listener. 
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IX. Appendix 1 

Here is the listing of the file focalX.aspirin. This file is written in aspirin 

language. It describes a three layer Neural Network with 21 nodes at the hidden 

layer used to detect X coordinates. PdpNode3 is a sigmoidal node that has an output 

range of (-1,1). The name of the blackboxes for X, Y, Z, A, are all focal, so the name 

given by the Compiler will be the same. But since they are working seperately, it 

doesn't have any effect. 

If you want to change the name of the Black boxes, don't forget to change the 

name in the Recognitionxxxx files. 

to execute Aspirin, type in the directory where Aspirin is, 

bpmake focalX 

then to train it : focalX -1 -d yourdatafile.df -a xxx -f xxx etc… 

Once Finished, save your Network.Finished file as RecognitionX 

/*file focalX.aspirin*/ 

#define N_INPUTS 16 

#define N_OUTPUTS 1 

#define N_HIDDEN 21 

DefineBlackBox focal 

｛ 

OutputLayer-> Output 

InputSize-> N_INPUTS 

Components-> 

｛ 

PdpNode3 Output [N_OUTPUTS] 

｛ 

InputsFrom-> Hidden_Layer 

｝ 

PdpNode Hidden_Layer [N_HIDDEN] 

｛ 

InputsFrom-> $INPUTS 

｝ 
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｝
 ｝

 

here is the same for focalY, focalZ, focalA : 

/*file focalY.aspirin*/ 

#define N_INPUTS 16 

#define N_OUTPUTS 1 

#define N_HIDDEN 25 

DefineBlackBox focal 

｛ 

OutputLayer-> Output 

Input Size-> 凡 INPUTS

Components-> 

｛ 

PdpNode3 Output [凡OUTPUTS]

｛ 

InputsFrorn-> Hidden_Layer 

｝ 

PdpNode Hidden_Layer [N_HIDDEN] 

｛ 

InputsFrorn-> $INPUTS 

｝ 

｝ 

｝ 

/*file focalZ.aspirin*/ 

#define N_INPUTS 16 

#define N_DUTPUTS 1 

#define N_HIDDEN 23 

DefineBlackBox focal 

｛ 

OutputLayer-> Output 

InputSize-> N_INPUTS 
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Components-> 

｛ 

PdpNode3 Output [凡OUTPUTS]

｛ 

InputsFrom-> Hidden_Layer 

｝ 

PdpNode Hidden_Layer [N_HIDDEN] 

｛ 

InputsFrom→ $INPUTS 
｝

｝

 
｝
 

/*file focalA.aspirin*/ 

#define N_INPUTS 16 

#define N_OUTPUTS 2 

#define N_HIDDEN 33 

DefineBlackBox focal 

｛ 

DutputLayer-> Output 

InputSize-> N_INPUTS 

Components-> 

｛ 

PdpNode3 Output [N_OUTPUTS] 

｛ 

InputsFrom-> Hidden_Layer 

｝ 

PdpNode Hidden_Layer [N_HIDDEN] 

｛ 

InputsFrom-> $INPUTS 

｝

｝

 
｝
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X. Appendix 2 

Here is the file focal_serverX. c this is the server for the X coordinate 

#include 11focal_handX.h11 

#include 11cyber_glove.h11 

#include <stdio.h> 

#include <stdlib.h> 

#include <strings.h> 

#include <math.h> 

#include <sys/time.h> 

#define Dprintf 

#define DEBUG 

void *malloc () ; 

/*declaration of some functions *I 

static void foc_svc_run(); 

static int foc_svc(register struct svc_req *rqstp, register SVCXPRT *transp); 

extern void netr..ork_initialize(char *filename, int verbose); 

!************************************************************** 
returns the output of the network 

***************************************************************! 
float foc_give_x(void) 

｛ 

I* float *input, *input2, output, *output2; *I 

float fake[] = {1}; 

float input[SIZE_INPUT]; 

float input2[SIZE_INPUT]; 

float *output2; 

float output= O; 

printf("fonction appellee¥n"); 
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｝ 

printf("reseau initialise¥n"); 

give_data(input); /*get the ouput of the cyber_server*/ 

input_filter(input, input2); /*apply a filter to these in order to send them 

into the NN *I 

netlilork_initialize(NETWDRK_NAMEX, O); 

focal_set_input(input2); /*the inputs of the network are set to input2*/ 

focal_propagate_forward(); /*You have to call this function to have a 

change in the output*/ 

output2 = focal_ge丸 output();/*takes the output*/ 

output= output_unfilterX(output2); /*transform it into centimeters*/ 

fflush(stderr); 

fflush(stdout); 

Dprintf("donnee calculee 1/.f¥n", output); 

return(output); 

void main(argc,argv) 

int argc; 

char *argv; 

｛ 

inti; 

int cnt; 

double st, lt, get_systime(); 

register SVCXPRT *transp; 

int proc_ term(); 

float focal_x; 

printf("sortie du neurone¥n"); 

I* Syntax using TCP *I 
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/* if ((transp = svctcp_create(RPC_ANYSDCK,0,0)) == NULL) { 

* fprintf (stderr, "Error : svctcp_create¥n"); 

* exit(-1); 

* } 
＊／ 

I* Syntax using UDP *I 

if ((transp = svcudp_create(RPC_ANYSDCK)) == NULL) { 

fprintf(stderr, "Error : svcudp_create¥n"); 

exit(-1); 

｝ 

pmap_unset(FOCX_PROG_NUM, FOCX_PROG_VER); 

I* Using TCP *I 

• 

/* if (!svc_register(transp, 

* FOCX_PROG_NUM, FOCX_PROG_VER, foc_svc, IPPROTO_TCP)) { 

* fprintf(stderr, "Error : svc_register¥n"); 

* exit(-1); 

* } 
＊／ 

I* Using UDP *I 

if (!svc_register(transp, 

FDCX_PRDG_NUM, FDCX_PROG_VER, foc_svc, IPPRDTO_UDP)) { 

fprintf (stderr, "Error : svc_register¥n"); 

exit(-1); 

｝ 

printf("entree du neurone¥n"); 

foc_svc_run(); 

fprintf(stderr, "Error : cg_svc_run returned!¥n"); 

｝
 

I* Runs the server client program (waits for a request)*/ 

void foc_svc_run() 

｛ 
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｝ 

fd_set readfds; 

int . dtbsz = getdtablesize () ; 

extern int errno; 

while(1) { 

readfds = svc_fdset; 
switch(select(dtbsz, &:readfds, NULL, NULL, NULL)) { 

case -1: 

if (errno == EINTR) continue; 
perror(11select11); 

return; 

case 0: 

break; 

default: 

svc_getreqset(&:readfds); 

｝ 

｝ 

I* Function called at a call *I 

int foc_svc(register struct svc_req *rqstp, register SVCXPRT *transp) 

｛ 

float focal_x; 

printf("entree du serveur¥n"); 

switch(rqstp->rq_proc) 

｛ 

case NULLPROC: 

if (svc_sendreply(transp, xdr_void, 0) == 0) { 

fprintf (stderr, "Error: rcp_service¥n11); 

return(1); 

｛ 

｝ 

return; 

I* procedure called (specified by the client) *I 

case FOCX_PROG: 

if (!svc_getargs(transp, xdr_void, 0)) 

fprintf(stderr, "Error: svc_getargs¥n11); 
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return; 

｝
 

focal_x = foc_give_x(); /*takes the output of the NN*/ 

Dprintf("donnee envoyee 1/.f¥n", focal_x); 

/*sends the data back to the clien (arguments must be passed by address *I 

if (!svc_sendreply(transp, xdr_float, &focal_x)) 

｛
 fprintf (stderr, "Error : svc_sendreply¥n11); 

return; 

｝
 

return(O); 

default: 

svcerr_noproc(transp); 

return; 

｝ 

｝
 

double get_systime() 

｛ 

struct timeval 

struct timezone 

Timeval; 

Timezone; 

if (gettimeofday(&Timeval, &Timezone)== -1) { 

fprintf(stderr, "System call error'gettimeofday'! !¥n"); 

exit(-1); 

｝ 

return((double) ((long)Timeval. tv _sec + 

(long) Timeval. tv _usec / (double) 1000000. 0)) ; 

｝
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XI. Appendix 3 

focal_handX. h file 

/*defines the host of the cyber server*/ 

#define HOST "ciris23" 

I* defines the name of the file of the Neural NetTi1ork *I 

#define NETWDRK_NAMEX "RecognitionX" 

/*defines the size of the input and output*/ 

#define SIZE_INPUT 16 

#define SIZE_OUTPUT 1 

#define SIZE_OUTPUTA 2 

/ *important*/ 

/*These are the codes to 

#define FOCX_PROG_NUM 

#define FOCX_PROG_VER 

#define FDCX_PRDG 

call the procedure and the program on a server" 

Ox40000400 

1 

1 

int repere; 

float unfiltered[SIZE_OUTPUT]; 

/*Useful filter functions *I 

I* filter the input in order to put them into the Neural Net *I 

extern int input_filter(float input[SIZE_INPUT], float input2[SIZE_INPUT]); 

I* the output of the Neural Net *I 

I* for X *I 

extern float output_unfilterX(float *output); 

I* Useful Network functions *I 

extern void network_initialize(char *filename, int verbose); 
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extern void network_load(char *filename); 

/* Useful Network X functions *I 

extern int focal_init_neti:.ork(); 

extern void focal_propagate_for匹ard();

extern float *focal_get_output (); 

extern void focal_set_target_output(float *fake); 

extern void focal_set_backprop_counter(int x); 

extern void focal_set_input(float *input); 

I* Useful Cyber_glove functions *I 

extern int give_data(float donnees[SIZE_INPUT]); 

嶋
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XII. Appendix 4 

cyber _gi ve_data. c file gets the data from the cyber _server 

#include "cyber_glove.h" 

#include "focal_handX.h" 

#include "focal_handY.h" 

#include "focal_handZ.h" 

#include "focal_handA.h" 

#include <stdio.h> 

char *xdr _cyber(), *xdr _cyber_angle (); 

/*this function calls the cyber_Server so acts as a client*/ 

int give_data(float donnees[SIZE_INPUT]) 

｛ 

int cyber_data[24]; 

int stat, cnt; 

char hname[10]; 

static struct CYBERSTR cy_str; 

sprintf(hname, HOST); 

I* UDP Protocol is used between the cyber glove and the client *I 

initrpcudp(hname, CG_PROG_NUM, CG_PROG_VER); 

if ((stat= callrpc(hname, CG_PROG_NUM, CG_PROG_VER, CG_PROG_PR2, 

xdr_void, 0, xdr_cyber_angle, &cy_str)) != 0) 

｛ 

fprintf(stderr, "Not Responce¾s Machine¥n", hname); 

｝ 

donnees [1] = cy _str. j oint_angle [OJ [1] ; 

donnees [2] = cy _str. j oint_angle [1] [OJ ; 

donnees[3] = cy_str.joint_angle[1] [1]; 
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donnees[4] = 

donnees[5] = 

donnees[6] = 

donnees[7] = 

donnees [8] = 

donnees[9] = 

donnees[10] = 

donnees[11] = 

donnees[12] = 

donnees[13] = 

donnees[15] = 

donnees[16] = 

exi trpcudp (); 

return(1); 

｝ 

cy_str.joint_angle[2] [OJ; 

cy _str. j oint_angle [2] [1] ; 

cy _ str. j oint_angle [3] [OJ ; 

cy _str. j oint_angle [3] [1] ; 

cy_str.joint_angle[4] [OJ; 

cy_str.joint_angle[4] [1]; 

cy_str.joint_space[O]; 

cy _str. joint_space [1]; 

cy _ str. j oint_space [2] ; 

cy_str.joint_space[3]; 

cy_str.'lilrist_angle[O]; 

cy_str.1ilrist_angle[1]; 

/*defines our own RPC functions*/ 

static struct sockaddr_in server_addr_udp; 

static struct timeval calludp_tirneout; 

static CLIENT *client; 

initrpcudp(host, pgnum, vernum) 

char *host; 

｛ 

int , pgnum, vernum; 

struct hostent *hp; 

int socket= RPC_ANYSOCK; 

i士 ((hp=gethostbyname(host)) == NULL) { 

fprintf(stderr, "Error: Can't get 1/,s hostaddress¥n", host); 

exit(-1); 

｝ 

bcopy(hp->h_addr, (caddr_t)&server_addr_udp.sin_addr, hp->h_length); 

server_addr_udp.sin_family = AF_INET; 

server_addr_udp.sin_port = O; 

calludp_timeout.tv_sec = 3; 

calludp_timeout.tv_usec = O; 
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if ((client= clntudp_create(&server_addr_udp, pgnum, vernum, 

calludp_timeout, &socket))== NULL) { 

perror(11clntudp_create'1); 

return(-1); 

｝ 

return(1); 

｝ 

（ callrpcudp pcnum, inproc, in, outproc, out) 

int pcnum; 

char *in, *out; 

xdrproc_t inproc, outproc; 

｛ 

enum clnt_stat clnt_stat; 

clnt_freeres(client, outproc, out); 

clnt_stat = clnt_call(client, pcnum, 

inproc, in, outproc, out, calludp_timeout); 

return((int) clnt_stat); 

｝ 

exi trpcudp () 

｛ 

clnt_destroy(client); 

return(1); 

｝ 
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XIII. Appendix 5 

de:filtre.c treats the data coming in and out of the NN 

#include "focal_hand.h" 

#include <stdio.h> 

#include <math.h> 

.. 

#define RAD2DEG 180/3.14159 

int input_filter(float input[SIZE_INPUT], float filtered[SIZE_INPUT]) 

｛ 

filtered[O] = -(input[0]-240)/134; 

filtered[!]= -(input[i]-182)/94; 

filtered[2] = -(input[2]-214)/115; 

filtered[3] = -(input[3]-259)/95; 

filtered[4] = -(input[4]-207)/160; 

filtered[5] = -(input[5]-250)/185; 

filtered[6] = -(input[6]-206)/144; 

filtered[7] = -(input[7]-223)/167; 

filtered[8] = -(input[a]-233)/186; 

filtered[9] = -(input[9]-213)/142; 

filtered[10] = -(input[i0]-84)/123; 

filtered[11] = -(input[ii]-72)/146; 

filtered[12] = 0.5; 

filtered[13] = -(input[13]-29)/85; 

filtered[14] = -(input[14]+20)/130; 

filtered[15] = -(input[15]-7)/81; 

return(1); 

｝
 

float sq (a) 

float a; 

｛ 

return(a*a); 
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｝
 

I* Unfilter the output of Xso that it matches the coordinates *I 

float output_unfilterX(output) 

float *output; 

｛ 

float unfiltered[SIZE_OUTPUT]; 

unfiltered [OJ = (float) (11*output [OJ +5); 

printf(11donnee filtree 1/.f¥n11, unfiltered[O]); 

return(unfiltered[O]); 

｝
 

I* Unfilter the output of Y so that it matches the coordinates *I 

float output_unfilterY(output) 

float *output; 

｛ 

float unfiltered[SIZE_OUTPUT]; 

unfiltered[O] = (float)(10.5*output[0]+7.5); 

printf ("y filtree 1/.f¥n", unfiltered[O]); 

return(unfiltered[O]); 

｝
 

float foncZ(float a) 

｛ 

return(a*a*a); 

｝ 

I* Unfilter the output of Z so that it matches the coordinates *I 

float output_unfilterZ(output) 

float *output; 

｛ 

float unfiltered [SIZE_OUTPUT] ; 
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unfiltered[O] = (float)(15*output[0]+3); 

/*You can use another fonction to unfilter the output of the Netr.ork *I 

I* unfiltered[O] = fonc((15*output[0]-7)/10); 

＊／ 

printf("z filtre Xf¥n", unfiltered[O]); 

return(unfiltered[O]); 

｝
 

I* Unfilter the output of A so that it matches the coordinates 

The given value, does not return a value, eveェythingis passed as an argument*/ 

int output_unfilterA(float *output, float unfiltered[SIZE_OUTPUTA]) 

｛ 

unfiltered[O] = (float)(135*output[0]+45); 

unfiltered[1] = (float)(67.5*output[1]+22.5); 

printf("first angle 1/.f¥n11, unfiltered[O]); 

return(1); 

｝
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XIV. Appendix 6 

:file focal_serverA. c (angles) differs from focal_serverX. c since everything 

is passed as an argument so no manipulation of pointers 

#include "focal_handA.h" 

#include "cyber_glove.h" 

#include <stdio.h> 

#include <stdlib.h> 

#include <strings.h> 

#include <math.h> 

#include <sys/time.h> 

#define Dprintf printf 

extern bool_t xdr_angles(); 

static void foc_svc_run(); 

static int foc_svc(register struct svc_req *rqstp, register SVCXPRT *transp); 

int foc_give_a(float output[SIZE_OUTPUT]) I* output is an argument *I 

｛ 

float fake[] = {1}; 

float input[SIZE_INPUT]; 

float input2[SIZE_INPUT]; 

float *output2; 

network_initialize(NETWORK_NAMEA, O); 

give_data(input); 

input_filter(input, input2); 

focal_set_input(input2); 

focal_propagate_forward(); 
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output2 = focal_get_output (); 

output_unfilterA(output2, output); /*passes output as an argument*/ 

Dprintf(11sortie du neurone¥n11); 

printf ("sortie angles 1/.f 1/.f¥n11, output [OJ, output [1]); 

fflush(stderr); 

fflush(stdout); 

#if 0 

if (input) free((char *)input); 

if (input2) free ((char *) input2); 

if (output) free((char *)output); 

if (output2) free((char *)output2); 

#endif 

return(i); 

｝ 

void main(argc,argv) 

int argc; 

char*argv; 

｛ 

int i; 

int cnt; 

double st, lt, get_systime(); 

register SVCXPRT *transp; 

int proc_term(); 

I* Syntax using TCP *I 

I* if ((transp = svctcp_create(RPC_ANYSOCK,0,0)) 

* fprintf(stderr, "Error: svctcp_create¥n11); 

* exit(-1); 

* } 
＊／ 
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I* Syntax using UDP *I 

if ((transp = svcudp_create(RPC_ANYSOCK)) == NULL) { 

fprintf (stderr, "Error : svcudp_create¥n"); 

exit(-1); 

｝ 

pmap_unset(FOCA_PROG_NUM, FDCA_PROG_VER); 

I* Using TCP *I 

I* if (!svc_register(transp, 

* FDCAPRDG直暉， FDCA_PRDG_VER,foc_svc, IPPRDTD_TCP)) { 

* fprintf(stderr, "Error : svc_register¥n"); 

* exit(-1); 

* } 
＊／ 

I* Using UDP *I 
if (! svc_register(transp, 

FDCA_PROG_NUM, FDCA_PROG_VER, foc_svc, IPPR□TO_UDP)) { 

fprintf(stderr, "Error: svc_register¥n11); 

exit(-1); 

｝ 

foc_svc_run(); 

fprintf (stderr, "Error : cg_svc_run returned! ¥n"); 

｝
 

void foc_svc_run() 

｛ 

fd_set readfds; 

int dtbsz = getdtablesize () ; 

extern int errno; 

while(1) { 

readfds = svc_fdset; 

switch(select(dtbsz, &readfds, NULL, NULL, NULL)) { 

case -1: 

69 



if (errno == EINTR) continue; 

perror("select"); 

return; 

case 0: 

break; 

default: 

svc_getreqset(&readfds); 

｝ 
喩

｝
 ｝

 

foc_svc(rqstp, transp) 

register struct svc_req *rqstp; 

register SVCXPRT *transp; 

｛ 

float focal_a[SIZE_OUTPUTA]; 

switch(rqstp->rq_proc) 

｛ 

case NULLPR□C: 
i:f (svc_sendreply(transp, xdr_void, 0) == 0) { 

:f print:f(stderr, "Error: rcp_service¥n"); 

return(i); 

｝ 

return; 

case FDCA_PRDG: 

i:f (!svc_getargs(transp, xdr_void, 0)) 

｛ 

:f print:f (stderr, "Error : svc_getargs¥n"); 

return; 

｝ 

if (!foc_give_a(focal_a)) 

｛

｝

 

・鴫，

fprintf(stderr, "Error : could not get output of Network"); 

/*everything is an argument, no use of malloc *I 

print士("envoiangles'l.f'l.f¥n", focal_a[O], focal_a[1]); 

¥* xdr_angles is a type defined in 
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if (!svc_sendreply(transp, xdr_angles, focal_a)) 

｛
 fprintf (stderr, "Error : svc_sendreply¥n"); 

return; 

｝
 return(O); 

default: 

svcerr_noproc(transp); 

return; 

｝ 

｝
 

double get_systime () 

｛ 

struct timeval 

struct timezone 

Timeval; 

Timezone・ ， 

if (gettimeofday(&Timeval, &Timezone)== -1) { 

fprintf(stderr, "System call error'gettimeofday'! !¥n"); 

exit(-1); 

｝ 

return((double) ((long)Timeval. tv _sec + 

(long)Timeval.tv_usec / (double)1000000.0)); 

｝
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XV. Appendix 7 

this program defines different filters for external data representations 

#include "cyber_glove.h" 

#define SIZE_OUTPUTA 2 贔

xdr_cyber(xdrsp, cdat) 

XDR *xdrsp; 

int cdat []; 

｛ 

return(xdr_vector(xdrsp, cdat, 24, sizeof(int), xdr_int)); 

｝ 

xdr_cyber_angle(xdrsp, cs) 

XDR *xdrsp; 

struct CYBERSTR *cs; 

｛ 

return(xdr_vector(xdrsp, cs->joint_angle, 10, sizeof(int), xdr_int) && 

xdr_vector(xdrsp, cs->joint_space, 4, sizeof(int), xdr_int) && 

xdr_vector(xdrsp, cs->wrist_angle, 2, sizeof(int), xdr_int)); 

｝ 

xdr_calib_data(xdrsp, dat) 

XOR *xdrsp; 

int dat []; 

｛ 

return(xdr_vector(xdrsp, dat, 34, sizeof(int), xdr_int)); 

｝ 

/*this is the filter we used for the angles *I 

bool_t xdr_angles(XDR *xdrsp, float angles[SIZE_OUTPUTA]) 

｛ 
囀~

return(xdr_vector(xdrsp, angles, SIZE_OUTPUTA, sizeof(float), xdr_float)); 

｝
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XVI. Appendix 8 

The client side 

#include "focal_hand.h" 

#include "cyber_glove.h" 

9
鳴

extern bool_t xdr_angles(); 

#if 0 

extern float foc_give_x(void); 

#endif 

CLIENT *clntx, *clnty, *clntz, *clnta; 

I* Syntax Using TCP *I 

#ifdef TCP 

¥*creates the clients *I 

int ini t_focal_clnt () 

｛ 

clntx = clnt_create(HDST_SERVERX, FOCX_PRDG直 UM,FOCX_PROG_VER, 11tcp11); 

clnty = clnt_create(HDST_SERVERY, FDCY_PRDG_NUM, FOCY_PRDG_VER, 11tcp11); 

clntz = clnt_create(HOST_SERVERZ, FDCZ_PROG直UM,FDCZ_PROG_VER, 11tcp11); 

clnta = clnt_create(HOST_SERVERA, FDCA_PRDG直 UM,FOCA_PRDG_VER, 11tcp11); 

return(1); 

｝ 

.. 
int destroy _focal_clnt () 

｛ 

clnt_destroy(clntx); 

clnt_destroy(clnty); 

clnt_destroy(clntz); 

clnt_destroy(clnta); 
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return(1); 

｝ 

/*gets the coordinates from the servers *I 

float focal_getx(void) 

｛ 

float focal_x; 

enum clnt_stat stat; 

static struct timeval TIMEOUT= {25, O}; 

#if 1 

printf("Encore DAijoobu¥n"); 

if (stat= clnt_call(clntx, FOCX_PRDG, xdr_void, 0, xdr_float, &focal_x, TIMEOUT: 

!=O) 

｛ 

fprintf(stderr, "Not ResponceX on'l.s Machine¥n" ,HOST_SERVERX); 

｝ 

else 

｛ 

printf("reseau DK, pos = 1/.f¥n", focal_x); 

｝ 

#endif 

#if 0 

focal_x = foc_give_x(); 

#endif 

return(focal_x); 

｝
 

float focal_gety (void) 

｛ 

float focal_y; 

enurn clnt_stat stat; 

static struct tirneval TIMEOUT= {25, O}; 

printf("Encore DAijoobu¥n"); 

if (stat= clnt_call(clnty, FOCY_PROG, xdr_void, 0, xdr_float, &:focal_y, TIMEOUT: 

!=O) 
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｛

｝

 
fprintf(stderr, "Not ResponceY on 1/.s Machine¥n",HOST_SERVERY); 

else 

｛ 

printf("reseau DK, pas= 1/.f¥n", focal_y); 

｝ 

return(focal_y); 

~ 

｝
 

float focal_getz (void) 

｛ 

float focal_z; 

enum clnt_stat stat; 

static struct timeval TIMEOUT = {25, O}; 

printf("Encore DAijoobu¥n"); 

if (stat= clnt_call(clntz, FDCZ_PROG, xdr_void, 0, xdr_float, &focal_z, TIMEOUT: 

!=O) 

｛ 

fprintf(stderr, "Not ResponceZ on 1/.s Machine¥n",HOST_SERVERZ); 

｝ 

else 

｛ 

printf("reseau OK, pos = 1/.f¥n", focal_z); 

｝ 

return(focal_z); 

｝ 

int focal_geta(float focal_a[SIZE_OUTPUTA]) 

｛ 

enum clnt_stat stat; 

static struct timeval TIMEOUT= {25, O}; 鳴鼻

printf("Encore DAijoobu¥n"); 

i:f (stat = clnt_call(clnta, FDCA_PROG, xdr _ void, 0, xdr_angles, :focal_a, TIMEOUT: 

! =O) 

｛ 
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fprintf(stderr, "Not ResponceA on 1/.s Machine¥n",HOST_SERVERA); 

｝ 

else 

｛ 

printf("reseau OK, pos = 1/.f¥n", focal_a[O]); 

｝ 

return(i); 

｝ 

#endif 

/*Syntax using UDP*/ 

#ifdef UDP 

float focal_getx(void) 

｛ 

｝ 

int stat; 

float focal_x; 

initrpcudp(HOST_SERVERX, FOCX_PROG_NUM, FOCX_PROG_VER); 

if ((stat= callrpc(HDST_SERVERX, FOCX_PROG_NUM, FOCX_PROG_VER, 

FOCX_PROG, xdr_void, 0, xdr_float, &focal_x))!=O) 

｛ 

fprintf(stderr, "Not Responce on Y.s Machine¥n",H□ST_SERVER); 
｝ 

return(focal_x); 

float focal_gety(void) 

｛ 

int stat; 

float focal_y; 

initrpcudp(HOST_SERVERY, FOCY_PRDG_NUM, FDCY_PROG_VER); 

if ((stat= callrpc(HDST_SERVERY. FDCY_PRDG_NUM, FOCY_PROG_VER, 

FDCY_PRDG, xdr_void, 0, xdr_float, &focal_y))!=O) 

｛ 

fprintf(stderr, "Not Responce on Y.s Machine¥n",HOST_SERVER); 
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｝ 

return(focal_y); 

｝ 

float focal_getz(void) 

｛ 

int stat; 

float focal_z; 

響
'
~

ヽ

initrpcudp(HDST_SERVERZ, FDCZ_PROG_NUM, FOCZ_PROG_VER); 

if ((stat= callrpc(HOST_SERVERZ, FOCZ_PROG_NUM, FDCZ_PROG_VER, 

FDCZ_PROG, xdr_void, 0, xdr_float, &focal_z)) !=O) 

｛ 

fprintf(stderr, "Not Responce on 1/.s Machine¥n",HDST_SERVER); 

｝ 

return(focal_z); 

｝ 

int focal_geta(float focal_a[SIZE_OUTPUTA]) 

｛ 

int stat; 

float focal_a [] ; 

initrpcudp(HOST_SERVERA, FOCA_PROG_NUM, FOCA_PROG_VER); 

if ((stat= callrpc(HOST_SERVERA, FOCA_PROG_NUM, FOCA_PRDG_VER, 

FDCX_PROG, xdr_void, 0, xdr_angles, focal_a))!=O) 

｛ 

fprintf(stderr, "Not Responce on'/,s Machine¥n",HDST_SERVER); 

｝ 

return(focal_a); 

｝ 

#endif 囀
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XVII. ANNEX 

Hand Shapes used for training data 
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