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Abstract 

A new method for estimating human postures from multiple images using a Genetic 
Algorithm is proposed. In our algorithm, the posture parameters to be estimated are 
assigned to the genes of an individual in the population. For each individual, its fitness 
to the environment evaluates to what extent the human multiple images synthesized by 
deforming a 3D human model according to the values of the genes are registered to 
the real human multiple images. Natural selection based on the fitness chooses parents 
who generate children in the next generation, and for the new individuals, crossover 
and mutation are performed at random in the mating pool. After a certain number of 
repetitions for these processes, the estimated parameter values are obtained from the 
individual with the best fitness. Experiments using synthesized human multiple images 
show promising results for estimating 17 joint angle values for each degree of freedom of 
the joints and also the three translational and three rotational degrees of freedom of a 
human. 
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1 Introduction 

Recently, non-rigid and articulated objects including humans have been considered as 

important and challenging research targets in the computer vision community. Actually, 

toward the realization of a variety of monitoring systems and visual communication sys-

tems [1], it has become important to estimate human motion and posture by automatic 

and passive ways. 

Existing methods related to human posture estimation involve active methods and 

image analysis (passive) methods. In some active methods, small bulbs or color markers 

are attached to the human body and are tracked visually in the images acquired by 

a TV camera. Other methods use Polhemus magnetic sensors attached to the human 

body to detect the six pose parameters of the sensor positions [1]. These active methods 

are appropriate for real-time measurement of human motion, but their applications are 

strongly limited, because wearing these tools is unrealistic in human monitoring systems 

and encumbers the activities of the users in visual communication systems. 

In image analysis methods, human posture description from a still scene has been 

studied [2],[3], [4],[5). In this case, human images are segmented into parts, and each part 

is fitted by deformable models [2],[3]; unfortunately, this strategy requires range images, 

which are difficult to be acquired in many actual applications. Similarly, superquadrics 

have been fitted to 2D human doll images [4]; on a human, some reference points need to 

be given manually. Human body part models have been matched to a monocular human 

silhouette image[5]; the contour based matching used in the method is sensitive to image 

noise, and accurate parameter estimation for arbitrary postures is a difficult task for 

monocular image analysis. Additionally, human motion in a monocular image sequence 

has been analyzed in a model-based manner using constraints and knowledge on human 

movements [6],[7], [8],[9),[10), [11],[12], [13),[14],[15],[16]. Although these methods can 

deal with 3D human movements, since they require constraints and knowledge, they are 

not easily applied to arbitrary human postures. Moreover, in some of these methods, an 

image sequence over time is necessary for estimating a human posture at a time instant. 

In this paper, a new passive method for estimating a human posture at a time instant 

from mutiple images is proposed. The proposed method does not need any constraints 

and knowledge on human movements nor a sequence of images; instead, it uses a 3D 

human model of a person whose postures are to be estimated, where the joints of the 

3D human model can be rotated in the same manner as real human joints. Of course, 

humans can take a variety of postures, and the number of combinations of the joint angle 

values is infinite. Therefore, finding the set of joint angles of a person is a combinatorial 

optimization problem. In this paper, to solve this type of combinatorial optimization 

problem, a Genetic Algorithm [l 7],[18) is used. 

The Genetic Algorithm is a search algorithm based on Darwinian evolutionary pro-
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cesses: the mechanics of natural selection and natural genetics. From other search tech-

niques such as simulated annealing, the Genetic Algorithm is different in the sense that 

the Genetic Algorithm searches from a population of points, not a single point. That 

is, the Genetic Algorithm tries to find many peaks in a large (high-dimensional) search 

space in parallel; thus, the probability of finding a false peak can be reduced drastically 

compared with the other techniques. 

In the proposed method, a person is observed by multiple TV cameras so that human 

images from different viewing positions can be acquired. The parameters to be estimated 

are converted to bit strings and are assigned to the genes of an individual in the population, 

which has a certain number of individuals. The initial values of the genes of all individuals 

are given at random. The values of the genes of one individual are applied to the 3D human 

model, and the model is deformed according to the values. The deformed human model 

is observed by virtual multiple TV cameras whose geometries and camera parameters are 

the same as those of the real multiple cameras, and human images are synthesized. Then, 

the fitness which evaluates to what extent the real and synthesized human images are 

registered is calculated. After the fitness is obtained for all of the individuals, parents are 

selected at a probability in proportion to the fitness. In the mating pool, parents are mated 

to bear children (individuals in the next generation), where genetic operations (crossover 

and mutation) are performed. After this process is repeated for sufficient generations, the 

parameter estimations are obtained from the genes of the individual with the best fitness. 

In Section 2, posture parameters to be estimated in the upper half of the body are 

illustrated. In Section 3, details of the proposed method are explained. Section 4 de-

scribes the experimental conditions. In Section 5, the experimental results are shown, 

and discussions are presented. Finally, Section 6 concludes the paper. 

2 Parameters to be estimated 

A human is an example of an articulated object, and can change its posture, position 

and orientation over time. The posture of an articulated object is specified in terms of 

joint angle values for each degree of freedom of each rotational joint. The position and 

orientation of an articulated object are specified in general via three translational and 

three rotational degrees of freedom with respect to the reference point of the articulated 

object. In this paper, human posture estimation includes (1) estimating joint angle values 

for each degree of freedom of the joints, and (2) estimating the six pose parameters (three 

translational and three rotational degrees of freedom) of a human. 

This paper deals with the upper half of the human body. The rotational joints with 

their degrees of freedom in the upper half of the body and the six pose parameters are 

illustrated in Fig. 1. In this figure, C1 is the reference point located at the center of the 

torso, and C2, C3 and C4 are the joints of the shoulder, elbow and wrist of the left arm, 
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respectively; similarly C5 ~ C1 are defined for the right arm; ら isthe center of the head. 

In this paper, the hands are considered to be rigid. 

The notations for the joint angles are defined as follows. In Fig. 1, a 3D coordinate 

system is applied to the head, and the three rotation parameters about the three axes 

are defined: 01 (the head is moved in the vertical direction; e.g. nodding action), 02 (the 

head is moved in the left or right direction; shaking the head), and島 (thehead is tilted 

to the left or right side). The shoulder has the rotation 04 about the bone connecting C2 

and C3, and the two rotations 05 and 06 at C2. The elbow has the rotation 07 at C3. The 

wrist has the rotation 08 about the bone connecting C3 and C4, and the rotations 09 and 

010 at C4. The definitions of 01 ~ 010 are for the right arm, and similarly, 011 ~ 017 are 
defined for the left arm. Therefore, 17 rotation parameters are to be estimated in this 

paper. 

As described above, the six pose parameters of the human body need to be detected. 

Figure 1 shows the situation in which the reference point C1 is located at the origin of the 

world coordinate (X -Y -Z) system. The pose parameters include three translations 

along the X, Y and Z axes and three rotations a, (3 and I about each axis. 

3 Parameter estimation from multiple images using Genetic 

Algorithm 

Humans can take a variety of postures. As described in Section 2, there are 23 param-

eters (17 parameters for the joints of the upper half of the body and six pose parameters) 

to be estimated. Although each joint has a movable range and is not completely indepen-

dent of the movements of other joints, the number of combinations of the parameters is 

virtually infinite. That is, the problem to be solved is a combinatorial optimization prob-

lem. For such problems, the Genetic Algorithm [17),(18) is useful. This paper proposes a 

method exploiting the Genetic Algorithm for estimating the parameters. 

The concept of the proposed method using a Genetic Algorithm is illustrated in Fig. 

2. Since humans inherently have 3D structures and make 3D movements, a human is 

observed by multiple TV cameras Rぃ• ・・，応(N~2), as shown in Fig. 2. If the number 

of cameras N is large, the probability of occlusions can be lowered. As described below, 

the proposed method can avoid 3D reconstruction, for example, by stereo matching; it is 

usually a difficult and unstable task. The human multiple images synchronously acquired 

by the cameras are converted to silhouette images, which are binarized images in which 

candidate regions corresponding to the human and background are discriminated. The 

silhouette images are obtained by thresholding the intensity differences between the known 

background images and the images acquired by the cameras R1, • • • , RN・

In the proposed method, the 3D model of a human whose posture parameters are to 

be estimated is created in advance by the method described in Section 4. As shown in 
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Fig. 2, the genes Xぃ..・，ふ correspondto the parameters to be estimated. In this paper, 

each individual in the population has one chromosome and is asexual-haploid. The genes 

are 8-bit Gray coded integers. The initial values of the genes of each individual are given 

at random. The following processes are carried out for each individual. 

The values of the genes are applied to the 3D human model, and each joint is rotated 

according to the parameters. The deformed human model is observed by the virtual 

multiple TV cameras Vi, ・ ・・，松 inFig. 2, and the human multiple images are synthe-

sized; the synthesized images are binarized so that areas for the background and regions 

corresponding to the human are discriminated. The virtual cameras are placed so that 

the geometrical relationships between any two virtual cameras are the same as those be-

tween the two corresponding real cameras, and the virtual camera¼and the real camera 

Ri(i = 1, ・・・,N) have the same camera parameters such as the viewing angle, focal length 
and viewing direction. 

As shown in Fig. 2, the fitness of the individual to the environment is evaluated. 

In this case, the environment, in other words the target, corresponds to human multiple 

silhouette images from the real cameras. The fitness used in this paper evaluates how 

much the synthesized human images are registered to the target images. First, as shown 

in Fig. 3, the similarity fi(i = 1, • ・ ・, N) between the image from the virtual camera¼ 

and the image from the real camera Ri is calculated as follows. 

Ji= 
S(An B) 

S(AUB)' 
(1) 

where A and B denote the candidate region for the human in the image from Ri and the 

human region in the image from½, respectively; S(x) represents the area of region x (the 

number of pixels). In Eq. (1), Ji takes a value between O and 1, and if the regions A and 

B are registered completely, Ji = 1. 
The fitness F of all of the cameras is defined as the average of Ji as follows: 

N 

F = (I: fi)/N. 
i=l 

(2) 

The fitness F in Eq. (2) is calculated for all individuals in the population. Individuals 

with a higher fitness survive and reproduce (can be parents) at a higher rate, and vice 

versa. That is, natural selection is the process which chooses parents that can bear 

children in the next generation. The mechanism of natural selection is obtained from a 

biased roulette wheel [17] where each individual has a roulette slot sized in proportion to 

its fitness. Suppose that the population has P individuals with fitness凡(k= 1, .. ,,P). 
Then, the probability Pk for individual k to be selected is represented by 

恥
Pk= 

四f:1匹
(3) 
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According to the probability Pk in Eq. (3), P individuals to be parents are selected and 

are entered into the mating pool, as shown in Fig. 2. In the mating pool, two individuals 

(parents) are mated and reproduce two new individuals (children). During the mating 

process, two genetic operations: crossover and mutation are performed, as illustrated in 

Fig. 4. In crossover, a position q along the bit string of an individual pair is selected at _a 

probability of Pc (crossover rate), and the portions subsequent to q are swapped. In the 

example of Fig. 4, the portions a of Individual 1 and b of Individual 2 remain, while the 

portions a'and b'are exchanged. In mutataion, a bit is selected at a probability of Pm 

(mutation rate), and the value of the bit is changed from O to 1 (bit min Fig. 4) or from 

1 to O (m'in Fig. 4). 

In this way, P new individuals are born, and the same processes are repeated. After 

a certain number of generations (repetition of the processes), the individual with the 

best fitness in the population is chosen, and the values of the genes X1, ・・・，ふ of that 

individual become the estimated values of the parameters to be estimated. 

As explained above, the binarization employed to discriminate the human region and 

background is the only image processing in the proposed method. In addition, the fitness 

calculation in Eq. (2) is based on area information in images. Therefore, the proposed 

method is robust against image noise factors. Furthermore, it is obvious that the proposed 

method is useful not only for humans but also for articulated objects. 

4 Experimental conditions 

4.1 3D human model 

Prior to the genetic operations, it is necessary to create a 3D model of the human 

whose posture is to be estimated. Separate models for each human body part: the head, 

body, and arms are used to create the human model. As shown in Fig. 5, we use the 

Cyberware Color 3D digitizer, which rotates around an object, projects laser stripes, and 

acquires the 3D coordinates and color information of each point on the surfaces of the 

parts [1]. By using a utility software, the acquired 3D coordinate data set is transformed 

to a 3D wire frame model, which consists of triangular patches and approximates the 

curved surface of each part. As shown in Fig. 5, the 3D model of each part is articulated 

with another so that the joint movements illustrated in Fig. 1 can be generated. 

The wire frame model of the upper half of the human body used in the experiments 

(Section 5) is shown in Fig. 6(a), and the model mapped by color texture is shown in 

Fig. 6(b). The human wire frame model of Fig. 6 has approximately 5300 nodes, which 

could cause very slow computations. Therefore, the simple human model with 200 nodes 

in Fig. 7 is also used (Section 5). As described earlier, this paper does not deal with 

fingers, which have a much finer structure than other body parts. It is difficult to deal 
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with fingers together with the other body parts. 

4.2 Human multiple images 

In this paper, human multiple images synthesized using the models of Fig. 6 and Fig. 

7 are used for target images in order to facilitate the comparison between the real and 

estimated posture parameter values. Three cameras are used for the multiple cameras, 

and images are acquired under orthographic projection so that position error analysis is 

facilitated. The cameras are placed on the three axes of the 3D coordinate system. When 

the origin of the coordinate system is located at the reference point C1 of the human (Fig. 

1), the three cameras observe the human from the front, side and top, respectively. The 

image size is 256 x 256 pixels. The image length (256 pixels) corresponds to 173 cm; 

therefore, O. 68cm/pixels. For the computers, Silicon Graphics IRIS Workstations (Onyx 

Reality Engine 2, Crimson Reality Engine) are used. 

5 Experimental results and discussion 

5.1 Parameters of Genetic Algorithm 

The influence of the parameters of the Genetic Algorithm on the accuracy of posture 

estimation is studied, where the parameters are crossover rate Pc, mutation rate Pm, and 

the number of generations. In Sections 5.1 and 5.2, the 17 parameters 01 ~ 017 are to be 
estimated, while the six pose parameters in Fig. 1 are constant (X = Y = Z = O(cm), 

a= (3 = 1 = O(deg)). Two synthesized human images from the three directions are used 

for the experiments. The images are displayed in Fig. 8(a) and (b), and the values of 

島~017 for the human model in the two multiple images are listed in Table 1. 

First, how the crossover rate Pc and mutation rate Pm affect the accuracy of posture 

estimation is investigated for the target images in Fig. 8(a) and (b). To Pc and Pm, the 

values of 0.1, 0.01, 0.001, 0.0001 and 0.00001 are given; therefore, there are 25 combina-

tions. In the experiments, the population size P is 500, and the genetic operations are 

repeated until 500 generations. The obtained values of the fitness F in Eq. (2) for the 

two target multiple images are listed in Table 2, where the simple human model in Fig. 

7 is used to accelerate the computations. As can be seen from Table 2, for the multiple 

images (a), Pc= 0.01 and四=0.0001 give the best fitness F = 84.0%, and for the images 

(b), Pc = 0.01 and四=0.001 give the best fitness F = 83.9%. If the average of the 

fitnesses of (a) and (b) is taken, Pc= 0.01 and Pm = 0.0001 give the best fitness. 

Figure 9(a) and (b) show how much the real human region and the estimated human 

region are registered in the three images, where the white, green, red, and black areas are 

the registered areas, areas for the real human only, areas for the estimated human only, 

and other areas, respectively. As shown in Fig. 9, for (a), the right hand is occluded 
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behind the head in the image from the front, while for (b) the results look relatively good. 

The occlusion problem in (a) could happen, because the area of the ha.nd is relatively 

small compared with the entire area for the human, and the fitness F does not get worse 

even if the hand is occluded. As a matter of fact, although the fitness is lower (82.7%) 

than that for Pc = 0.01 and Pm = 0.0001, in the result for Pc = 0.01 and Pm = 0.00001 the 
right hand is not occluded. Further study is needed for dealing with occlusions. 

Results obtained using the precise human model in Fig. 6 are shown in Fig. 10, where 

Pc = 0.01 and Pm = 0.00001 for (a), and Pc = 0.01 and Pm = 0.0001 for (b). The fitness 
is increased to 87.9% for (a) and 90.1 % for (b). The estimated values of the 17 posture 

parameters are listed in Table 3. The accuracies of the estimations are quite good except 

for約， 08,09, 010, 015 and 016 for (a) and/or (b). A possible cause for 09, 010 and 016 is 

that the angles are for the hands, and the hands are smaller than the other body parts; 

therefore, these angles do not cause large changes in the fitness. The cause for 02, 08 and 

015 is considered that the angles are about the central axes of the head and arms, and the 

rotations for 02, 08 and 015 do not result in large changes in the head and arm images. 

The position errors at the eight joints 01 ~ 08 in Fig. 1 for the results of Fig. 10 are 

listed in Table 4, where the position error is defined as the Euclidean distance between 

the real and estimated positions in the world coordinate system. In Table 4, since the 

position of the torso is fixed (the six pose parameters are constant), the errors for 01, 02 

and 05 are zero. Most of the error values are smaller than 5 cm, which is less than 3% 

of the image length (256 pixels); even the maximum error is 9.6 cm, which is 5.5% of the 

image length. 

The relationships between the fitness values and the number of generations in Fig. 

10 are shown in Fig. 11, where the maximum, minimum and average fitness values are 

indicated. With respect to the maximum value, it increases sharply until approximately 

200 generations, but after that, the increase is very slow and is almost saturated by 500 

generations. 

5.2 Improvement 1n the accuracy of posture estimation 

As described in Section 5.1, the fitness is still not 100%. If the genetic operations are 

repeated further, the :fitness could be increased, but from the increasing rate between 200 

and 500 generations, the number of further repetitions could be extremely large. 

To reach the real peak efficiently, improvement of the estimation accuracy is studied 

using the steepest ascent method for which the initial values are the values of the genes 

of the individual with the best fitness at the 500th generation. Then, if 0 = (0ぃ・ ..'011),

the problem is to obtain the maximum of the fitness F(0). That is, 0 is updated by 

0『+1= 0;ri + 
8F(0) 

. p 
a0i 

(4) 
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where p is a step width. If 

IF(0m+1) -F(炉）1→0 (5) 

is satisfied, 0 is the final estimation. 

The fitness obtained from Eqs. (4) and (5) for Fig. 10 was improved by 0.7% (from 

87.9% to 88.6%) for (a), and there was no improvement for (b). On the other hand, in 

some cases where the fitness by the genetic operations is lower, larger improvement was 

obtained; for example, the fitness values of 86% for (a) and 84% for (b) (Pc= 0.0001, 

Pm = 0.001, with the precise model) were improved to 90% and 86%, respectively. The 

estimated values by the genetic operations for (a) and (b) in Fig. 10 are quite close to 

the real peaks (values) in the search space, but by the steepest ascent method the values 

do not approach the real peaks. Further study using other techniques is necessary for the 

improvement of the estimation. 

5.3 Estimation of the positional and orientational parameters 

In Sections 5.1 and 5.2, the six pose parameters X, Y, Z, a, /3, 1 are constant, but in this 

section the six pose parameters are also estimated. The real values for the 23 parameters 

are listed in Table 5. The genetic operations are repeated for 500 generations, where the 

parameters for the operations are Pc = 0.01, Pm = 0.0001 and the population size=500. 

The results are shown in Fig. 12, and the estimated parameters are listed in Table 5. 

Although the fitness is 79. 7%, the position parameters are estimated quite accurately 

(Fig. 12). However, the estimation for the right arm is very inaccurate. Since the 

dimension of the search space is higher than that in Sections 5.1 and 5.2, the population 

size may need to be larger for the estimation of the 23 parameters. 

6 Conclusions 

This paper has presented a method for estimating human postures from multiple im-

ages using a Genetic Algorithm. In our algorithm, the posture parameters to be estimated 

are assigned to the genes of an individual in the population. For each individual, its fit-

ness to the environment evaluates to what extent the human multiple images synthesized 

according to the values of the genes are registered to the real human multiple images. 

Natural selection based on the fitness chooses parents who generate children in the next 

generation, and for the new individuals, crossover and mutation are performed at random. 

After a certain number of repetitions for these processes, the estimated parameter values 

are obtained from the individual with the best fitness. 

Our method is a passive method, and can avoid 3D reconstruction from multiple im-

ages or an image sequence, which is generally a difficult task. The only image processing 

in our method is extracting human candidate regions in the multiple images by taking 
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the difference between the human images and known background images; therefore, our 

method is robust against image noise. Our method can be applied to articulated ob-

jects other than humans by replacing the 3D human models with the 3D models of the 

articulated objects. 

The main experimental results using synthesized multiple images for the upper half of 

the human body are as follows: 

1. The optimal values achieving the best fitness are found for the crossover rate and 

mutation rate. With the optimal values, the fitness values of approximately 90% 

are obtained from the genetic operations for 500 individuals after 500 generations. 

The 17 joint angles in the upper half of the body are estimated accurately, and the 

position errors are less than 6% of the image size. 

2. To improve the fitness efficiently, the steepest ascent method is applied to the esti-

mated parameters obtained from the Genetic Algorithm, and the fitness is improved 

by 2 or 3 %. To approach the value of 100% for the fitness, further study using other 

techniques may be necessary. 

3. The case where the six pose parameters as well as the 17 parameters (for the joints 

of the upper half of the human body) are to be estimated has been studied, and a 

promising result was obtained. 

In addition to the problems described above, the computation speed should be im-

proved, for example, by parallel processing implementation so that much more data can 

be collected. The improvement in the computation speed will be useful also for improv-

ing the accuracy of the posture estimation by exploiting multiple images from more than 

three cameras and by increasing the number of individuals in the population. This paper 

dealt with the upper half of the human body, because it has enough degrees of freedom 

for posture estimation, but as the next target, the whole human body should be treated. 

As described earlier, our method is robust against image noise, but the robustness should 

be confirmed by conducting experiments using real human images as the targets. 
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Figure 1: Para.meters to be estimated 
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(a) (b) 

Figure 6: 3D precise human model: (a) Wireframe model, (b) Mapped by color texutre 
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Figure 7: 3D simple human model 
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Figure 8: Target multiple images 
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(a) 

(b) 

Front Side Top 

Figure 9: Estimated results using the simple model for (a) and (b); Pc= 0.01, Pm= 0.0001, 

500 individuals, 500 generations. (The white, green, red and black areas are the registered 

areas, areas for the real human only, areas for the estimated human only and other areas, 
respectively.) 
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Figure 10: Estimated results using the precise model; Pc = 0.01, 500 generations, 500 
individuals, for (a) Pm= 0.00001, and for (b) Pm= 0.0001. 
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Figure 12: Estimation of the 23 parameters: (the simple model, Pc = 0.01, Pm = 0.0001, 
500 individuals, 500 generations.) 
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Table 1: Real values of 01 ~妬 (deg)
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Table 2: Fitness values (%) for (a) (upper in each box) and (b) (lower): (the simple 

model, 500 individuals, 500 generations). 

Mutation Crossover rate Pc 

rate Pm 0.1 0.01 0.001 0.0001 0.00001 

69.4 75.9 75.3 71.9 72.6 

0.1 65.2 66.0 70.7 68.6 68.l 

79.0 78.7 78.9 78.4 79.0 

0.01 76.3 77.8 77.0 76.6 77.4 

83.2 82.7 83.0 81.1 80.1 

0.001 83.5 83.9 83.6 79.8 81.6 

83.4 84.0 80.7 78.6 78.6 

0.0001 78.2 83.5 81.7 68.5 71.7 

81.6 82.7 80.1 79.1 72.l 

0.00001 77.8 82.5 73.7 74.9 68.0 

Table 3: Estimated values of 01 ~ 017 (deg): (the precise model, Pc = 0.01, 500 genera-

tions, 500 individuals, for (a) Pm= 0.00001, and for (b) Pm= 0.0001.) 

Target 01 02 03 04 0s 06 0; 0s 09 010 0n 012 013 014 015 016 011 
(a) 26 -23 5 -17 107 -72 45 -51 -29 56 -71 15 20 -18 -29 -36 25 

(b) 37 -22 15 -10 118 26 5 -30 5 4 35 -19 4 -5 -73 -29 -12 
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Table 4: Position errors: with the precise model, Pc= 0.01, 500 generations, 500 individ-

uals, for (a) Pm= 0.00001, and for (b) Pm= 0.0001. 

Joint Position error (cm) 

(a) (b) 

C1 0.0 0.0 

C2 0.0 0.0 

C3 1.5 3.3 

C4 4.4 2.1 

Cs 0.0 0.0 

c6 2.6 4.4 

C1 4.0 2.4 

Cs 9.6 4.1 

． 

Table 5: Real and estimated values for the 23 parameters: X, Y, Z (cm); o:,(3,1, 01 ~ 017 
(deg) 

X Y z 

゜
(3 'Y 01 02 03 04 05 06 07 0s 

Real 

values 25 25 25 20 20 20 -15 -50 -15 7 -6 -39 47 37 

Estimated 

values 22 27 24 13 8 13 4 34 -12 -41 34 -11 108 -31 

0g 。JO 011 012 013 014 015 016 011 

Real 

values -20 47 24 -98 8 -125 -31 2 ， 
Estimated 

values -117 11 11 -90 51 -122 34 -12 19 
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