
ATRテクニカルレポート表紙

〔非公開〕

TR-C-0136

Automated Generation of

Communication Software from

S e r v i c e S p e c i f i c a t i o n s

田倉昭

Akira TAKURA

1 9 9 6 3 . 7

ATR通信システム研究所

Automated Generation of Communication

Software from Service Specifications

Akira Takura

March 7, 1996

ATR Communication Systems Research Laboratories

Acknowledgments

I am extremely grateful to Associate Prof. Etsuya Shibayama for his valuable comments on
this thesis. I am also very grateful to Associate Prof. Masako Horai for her valuable comments.
I wish to express my sincere gratitude to Prof. Kojiro Kobayashi, Prof. Masataka Sassa and
Associate Prof. Motoshi Saeki for their willingness to referee this Ph. D. thesis and for their
valuable comments.

I thank Dr. Kohei Rabara, Dr. Nobuyoshi Terashima and Dr. Tadashi Ohta for their
encouragements concerning this work while I have been at ATR. In particular, Dr. Ohta offered
many valuable comments and helpful discussion on the work. I am also greatly indebted to my
colleagues at ATR Communication Systems Research Laboratories, especially Keizo Kawata,
Kenji Shibata, Mitsuhiro Nakamura, Yoshihiro Ueda, Takaf¥lmi Sera, Yoshiki Kondo, Tsuneki
Haizuka, Kazumasa Takami and Yasuro Kawarasaki who collaborated with me in making the
communication software generation system that is referred to in this thesis. I also thank them
for their helpful discussions.

I would also like to thank the many people who helped me at NTT, especially Dr. Haruhisa
Ichikawa, Dr. Yutaka Hirakawa, who introduced me to STR, and Atsushi Kanai, and Dr. Keiji
Okada at NTT Advanced Technology.

..

11

Contents

1 Introduction

1.1 Automated Generation of Communication Software

1.2 Requisites for a Specification Language

1.3 Specification Completion
1.4 Protocol Synthesis

1.5 Refinement from Protocols to Software Specifications

1.6 Stepwise Refinement for Functional Models .

1.7 Completing Protocols .

1.8 Overview of the Thesis

2 Preliminaries

2.1 Network Architectures

2.2 Service and Protocol Specifications

2.3 STR

3 Specification Completion of Communication Services

3.1 Problem

3.2 Services and Requirements

3.3 Detection and Elimination of Specification Errors

3.4 Detection and Correction of Rule Errors

3.5 Detection of Insufficient Rules

3.6 Supplementing Insufficient Rules .

3.7 Generating New Rules

3.7.1 Domain Model

3.7.2 Reasoning with Domain Model

3.7.3 Example

3.8 Effectiveness and Limits

1
1
5
7
9
1
2
1
2
1
3
1
4
1
7
1
7
1
8
1
9
2
1
2
1
2
2
2
2
2
3
2
4
2
5
2
8
2
8
3
1
3
2
3
6

4 Protocol Synthesis for a Layered Architecture

Communication Protocols -

4.1 Graph Representation of Service Specifications .

4.2 Problem

4.3 Definitions

4.4 Protocol Synthesis Algorithm

4.5 Example . . .

4.6 Complexity of Communication Time

- Synthesizing Sequential

37

37

38

41

50

51

57

lll

5 Protocol Synthesis for a Layered Architecture -Synthesizing Parallel Com-
munication Protocols - 59
5.1 P r・ re 1mmanes 59

5.2 Protocol Synthesis Algorithm 59

5.2.1 Local State 60

5.2.2 Message 60

5.2.3 Algorithm Outline 61

5.3 Graph Analysis 62

5.3.1 Graph Resolution 62

5.3.2 Graph Synthesis 63

5.4 Distributed Algorithm Generation 66

5.4.1 State G enerat1on 66

5.4.2 Synthesis Tree Modification 66

5.4.3 Message Generation 67
5.4.4 Process Behavior Generation 67

5.5 Evaluation 68

6 Software Specification Generation from Protocol Specifications 69

6.1 Detailed Specification Language STR/D。.. 69
6.1.1 Position Designation . 69
6.1.2 Task D ・es1gnat10n 70

6.2 Example 72

7 Application to PBX Software Generation 73
7.1 Results of Specification Description . 73
7.2 Evaluation of Description Results 75
7.3 S f o tware Architecture 76

7.3.1 Processes . 76
7.3.2 Logical Interface 78

7.4 Implementation Results 79

8 Software Generation for Functional Model 81
8.1 Stepwise Refinement 81
8.2 Application 82

8.2.1 U . mversal Personal Telecommumcat10n 82
8.2.2 STR Description of UPT 83

8.2.3 STR/D Description • 85
8.2.4 Stepwise Refinement of UPT 85

9 Completing Protocols 89

9.1 Protocol Model 89

9.1.1 Protocol and Service Specifications 89
9.1.2 Beh ・av1ors m Protocols 90

9.2 Definition and Nature of Exceptional Behaviors 92

9.2.1 Definition of Exceptional Behaviors 92

9.2.2 Nature of Exceptional Behaviors 93

9.3 Completing Algorithm 93

9.3.1 Definition of Completion 93

lV

9.3.2 Completing Method
9.4 Application

9.4.1 Premise
9.4.2 Completing Process .

10 Conclusion

V

94

99

99

99

105

"'

Vl

Chapter 1

Introduction

1.1 Automated Generation of Communication Software

Automated software generation is a promising and efficient way of developing reliable software.
This research aims at automating communication software generation from formally described
requirement specifications.

In communication systems services are added frequently. For this reason, the ability to
develop communication software efficiently and reliably is desired, even though communication
software is large and complex.

All users have been provided with the same communication services up to now. From
now on, however, users expect to be provided with individual services. Today, communication
networks are evolving toward open networks where the users themselves develop services.

This situation requires a technique enabling users who do not have detailed knowledge about
communication networks or communication software, to develop new communication services.
The proposed method of automating software generation is characterized as follows.

• To generate software by describing specifications that can be grasped by communication
service users.

• To allow the addition of new services even without knowing the details of existing software.

• To generate error-free, reliable software.

To achieve our purpose we present a communication software generation method that derives
satisfactory service specifications from initial requirements described by users, and generates
software that satisfies the service specifications. We focus on the part of communication software
that directly participates in providing users with services. In other words, the target of our
automatic generation is software that needs to be newly developed to handle service additions.
We do not consider operating systems nor maintenance and administration software.

The proposed method of automating communication software generation is illustrated in
Fig. 1. 1. Service designers describe requirement specifications by a specification language
called STR (State Transition Rule) [1]. The described requirements may be incomplete and may
sometimes have contradictions. The requirement specifications are transformed into "complete"
specifications that satisfy the requisites for communication services. Service designers may
interact throughout the transformation. This transformation is called specification completion.

ー

Initial requirements
described with STR

Specification completion
(Chapter 3)

Protocol completion
(Chapter 9)

Protocol synthesis

(Chapters 4, 5)

Stepwise refinement
(Chapter 8)

I : ・・・・・・・・・・・・・・・・・・・・・・・・=・

Refinement
(Chapter 6)

Software specification
for functional model

Communication system

(Chapter 7)

Figure 1.1: Flow of Software Generation.

2

The usual development style for communication software is adopted to add a new service
to existing services. Consequently, it is crucial to detect and resolve all conflicts among these
services [2]. Specification verification methods [3][4][5] have already been proposed for specifi-
cations described by STR; specification verification is out of the scope of this thesis.

The obtained service specifications are synthesized to produce protocol specifications. In
this synthesis a layered architecture model is adopted as the protocol architecture. The OSI
reference model [6] is typical of the layered architecture model. Communication services are
provided to users through switching systems and telephone terminals. The synthesized proto-
cols only describe the rules of message exchanges between protocol entities; they do not include
the control specifications driving such communication equipment: Then, the protocol specifi-
cations are transformed into software specifications furnished with the control specifications of
the communication equipment. After the obtained software specifications are coded and then
installed on the communication system specified by the layered architecture model, the system
can provide users with communication services.

A functional model [7] has been standardized as an architecture for providing communication
services. It is a distributed architecture in which each function constitutes a protocol entity.
Software specifications conforming to the architecture are obtained by stepwise refinement.

The above software generation methods are oriented for users who are non-experts in com-
munication systems or communication software. A field, however, does exist for experts to
generate software by implementing given protocol specifications. Message sequence charts [8]
are proposed for describing these protocol specifications; such charts describe specifications
that can automatically be synthesized to produce protocol specifications [9].

However, synthesized protocols may include exceptional behaviors which do not correspond
to any of the requirement specifications. This in turn may cause protocol errors such as deadlock
states. The resolution of such protocol errors from exceptional behaviors is called protocol
completion.

This paper proposes methods to automate these subjects. There is no system to automate
all of them consistently. In other words, this is the first research on generating communica-
tion software from service specifications, which can be described without detailed knowledge,
through protocol synthesis, after which the generated software is actually used for implementing
communication services. There are two types of specification description methods. The internal
behavior of a communication system is usually described in the form of specifications to produce
communication software. In protocol synthesis methods, service specifications are described by
regarding a communication system as a black box. These methods have not been applied to
transform service specifications into executable communication software. On the other hand,
in this research, incomplete service specifications are transformed into implementable specifi-
cations as communication services, and finally to communication software.

The proposed methods are incorporated into the software generation system in Fig. 1.2,

and characterized as follows.

1. Service specifications are described as a set of state transition rules for terminals observ-
able from outside of a communication system.

2. Errors in each rule and insufficient rules are detected, and corrected or complemented.

3. The method can be combined with validation and verification methods for specifications.

4. Protocol specifications are synthesized from service specifications.

3

Automated Communication Software Generation System

n
 ゚

•I
t

P
r
t

.
n
o

escupp

D
S

n

STR

ニ？

Communication
System

Non-expert

nc
゜
i

t

d

a

ilegnrm

芯幽

Expert

Figure 1.2: Communication software generation system.

5. Detailed specifications are described as knowledge.

The following effects are expected from communication software generation with the above
features.

1. Communication software can be obtained starting from incomplete service specifications.
This implies that communication service specifications can be obtained from ambiguous
and fragmentary requirement specifications which are imagined by the users themselves.

2. Communication software reflects the user's intention. Therefore, the behavior of the
generated software corresponds to the user's intention.

3. Specification errors can be detected.

4. Communication service specifications are described by non-experts. Non-experts are de-
fined as people who do not have knowledge of the communication software architecture,
protocols and control methods of communication systems.

5. Experts scarcely participate in automated software generation from users'requirement
specifications.

6. The size of the specifications is small. This implies that services are expected to be
developed in a short time.

Concerning the method for making feature 1 come true, its details and limits are clarified
in Chapter 3. Feature 2 is achieved by itself because the specifications that are validated by
users are automatically transformed into communication software. Feature 3 is achieved both

4

by verifying a requirement specification and by detecting and resolving conflicts between the
requirement specification and existing specifications. We note that the detection and resolution

of interference between specifications are out of the scope of this thesis. The proposed method
is shown to have features 4, 5 and 6 by the results of experiments in Chapter 7.

Specification languages are indispensable for automating the generation of communication
software. For this purpose, a specification language called STR is used in this thesis. The

reason for using STR is described in Section 1.2, which also gives an informal description of
STR. Sections 1.3 to 1. 7 below describe problems to be solved and related works. Section 1.8

gives an overview of this thesis.

1.2 Requisites for a Specification Language

A specification language is necessary for describing requirements and automating software gen-
eration. We clarify requisites for a specification language that achieves these purposes.

• Service specifications independent of implementation.

Service specifications should not include specifications of the architecture nor functions
provided by the target system. When one uses a communication service, any behav-
ior performed in the environment surrounding the communication system turns into a
specification of the communication service.

• New service addition without detailed knowledge of existing specifications.

New communication services are usually added to existing services. Therefore, it is de-
sirable to be able to describe specifications of new services without knowing existing

services.

• Automatic detection of conflicts.

Contradictions are sometimes included in specifications and there may be conflicts be-
tween new specifications and existing specifications. These undesirable phenomena can
be detected in the specification description phase.

• Stepwise refinement from specifications to programs.

Specifications are gradually refined into software.

Many specification languages including SDL [10] and LOTOS [11] have been proposed for

specifying communication software or protocols [12][13][14]. SDL is the most commonly used
language for the formal specification of telecommunication system behaviors. Much of the

recent work in this field has centered on LOTOS. These languages can be used to describe
implementation independent specifications at an appropriate level of abstraction. They incor-
porate an explicit notion of execution order or synchronization among processes. This implies

that the composition of specifications needs them to be adjusted. On the other hand, in some
rule-based languages specifications are simply composed by the logical conjunction of rules. In
other words, specifications can be augmented simply by adding new rules.

Rule-based specification languages L.O [15], FRORL [16] and STR [1] were proposed in the

field of communication service specification. Cameron et al. [15] used rule-based language L.O
to implement a real-life protocol. Tsai et al. [16] used frame-and-rule oriented requirement

5

dial-tone(A), idle(B), m-cfv(B,C), idle(C)
dial(A,B):

ring-back(A,C), ringing(C,A),
ping-ring(B,A), m-cfv(B,C).

Figure 1.3: An example STR rule.

R1) idle(A) offhook(A): dial-tone(A).
R2) dial-tone(A),idle(B) dial(A,B): ring-back(A,B),ringing(B,A).
R3) dial-tone(A) wrong-dial(A): busy(A).
R4) dial-tone(A),not[idle(B)] dial(A,B): busy(A).
R5) ring-back(A,B),ringing(B,A) offhook(B): path(A,B),path(B,A).
R6) path(A,B),path(B,A) onhook(A): idle(A),busy(B).
R7) busy(A) onhook(A): idle(A).
RS) dial-tone(A) onhook(A): idle(A).
R9) ring-back(A,B),ringing(B,A) onhook(A): idle(A),idle(B).

Figure 1.4: STR description of pots.

specification language FRORL. Hirakawa and Takenaka [1] proposed STR as a specification
language for communication services. In the methods of L.O and FRORL, specifications are
incrementally refined to obtain protocol specifications; however, they cannot synthesize proto-
col specifications from service specifications. A major difference between STR and these two
languages is that STR supports conflict detection and protocol synthesis as proposed in this
thesis.

Communication service specifications can be described by specifying terminal behaviors
which can be recognized from outside the communication system(s). With STR, we can describe
specifications without detailed knowledge of the target system or implementation dependent
factors. This means that STR is one of such languages able to satisfy the above requisites. In
this thesis STR is adopted as a specification language.

We give an informal explanation of STR; a precise definition is given in Section 2.3. Fig-
ure 1.3 shows an example of an STR rule. The "ring-back(A, C)" represents that terminal A
has the relation "ring-back" to terminal C. The "dial(A, B)" is an event at terminal A. This
rule shows that if a user on dial-tone receiving terminal A dials terminal B, which implements
the call forwarding service to terminal C ("m-cfv(B, C)"), and terminal C is idle, then the call
to terminal B is forwarded to terminal C and the states of terminals A, B and C are changed
to the ring-back tone receiving state (A), ping-ring receiving state (B), and ringing state (C),
respectively.

We next describe an example of a service specification (Fig. 1.4). This service specifies a
basic telephone service between two telephones, called the plain old telephone service (pots).

The prefix of each rule is the name of the rule. We briefly explain the specification.

Rl When a telephone is picked up, its state changes from the idle state to the dial-tone
receiving state.

6

R2 When a user makes a call to an idle telephone, the state of the calling telephone changes to
the ring-back receiving state and the state of the called telephone changes to the ringing
state.

R3 If a user dials a wrong number, the state changes to the busy tone receiving state.

R4 If a called telephone is being used (i.e., not idle), the call cannot make a connection and
the state changes to the busy tone receiving state.

R5 If the called party answers the phone, the call _changes to the talking state.

R6 If one of the talking parties hangs up, the state of its telephone changes to idle and the
other telephone changes to the busy tone receiving state.

R7 If a telephone in the busy tone receiving state is hung up, the state returns to the idle
state.

RS If a user hangs up before dialing, the telephone returns to the idle state.

R9 If the calling party hangs up while the called telephone is ringing, the states of both
terminals change to the idle state.

Each rule describes a terminal behavior that is observable from outside a communication
system. In this thesis we use STR as a service specification description language; however, the
results are not inherent to STR. The results can be widely applied for specification languages
described by production rules.

1.3 Specification Completion

Errors at an early stage of software development cost more to debug than those at a later
stage [17]. Requirements acquisition is the most upstream development process. Nevertheless,
the system support for requirements acquisition is delayed compared with other development
phases'.

Users do not always have precise requirements. It is therefore inevitable that user require-
ments contain ambiguities, insufficiencies and even contradictions [18]. Considering this, it is
indispensable to support a specification completion method that derives service specifications
from such problem requirements. One of the objectives of this research is to obtain consistent
and complete specifications from such problem requirements.

A lot of different research on specification languages start on the premise that user require-
ments are defined definitely as computer-processable formal specifications. In other words,
research on formal languages has been focusing on automation, to design software satisfying
user requirements. Specification verification is one of the support items being studied. Specifi-
cations have to be verified that they satisfy constraints arising from the target system.

Research concerning automation techniques starting from formal languages has been called
design engineering. On the other hand, requirements engineering starts on the premise that it
is difficult to elicit specifications from users. Requirements engineering consists of requirements
acquisition from users and specification validation. Acquired specifications are validated by
users.

7

Requirements engineering
: ~...

：
Des面 er-・

. j ,-----..-,

―- . . . 1gmeenng

Formal
specification

Design

を

Verification

Target
system

．
．．．ふ.....................................．

，．．．

Figure 1.5: Requirements engineering and design engineering.

Figure 1.5 illustrates the relation between requirements engineering and design engineer-
ing from [19][20]. They are characterized as follows. Requirement specifications obtained by
requirements engineering describe behaviors of target software systems in their surrounding
environments. System specifications resulting from design engineering describe functions and
the architecture of the target system.

It is crucial to eliminate errors in the requirements acquisition phase to reduce software
development costs. Requirements acquisition is therefore divided into two phases: elicitation
and formalization. In the elicitation phase user requirements are clarified and represented as
specifications. Requirements elicitation is a brain-work session of requirements acquisition. It
is almost impossible to automate requirements elicitation. Support for requirements acquisition
differs greatly when formal languages are used and when they are not.

Requirements Apprentice [18] and the software design support system based on FRORL
are assumed to separate end-users and requirements analysts who describe requirements by a
formal language. In our approach, our aim is to enable users or non-specialists of communi-
cation systems to describe their own services. Therefore, we intend to present a requirements
acquisition method assuming that requirement specifications are to be described by users rather
than requirements analysts.

Requirement specifications sometimes contain ambiguities and errors, and sometimes rules
are missing. One of our objectives is to establish a support method obtaining well-formed
communication service specifications from requirement specifications. This support consists

of two phases. One phase is to detect rule errors and missing rules. The other phase is to
modify and supplement specifications for transforming original specifications into satisfiable

specifications.

Domain knowledge plays a key role in supplementing service specifications. However, us-

ing domain knowledge in specification completion poses problems: how to use what kind of
knowledge, and how to express and how to acquire new knowledge. Domain knowledge usually
includes common knowledge about the environment surrounding a software system, knowledge

8

on specifications described in the past, and knowledge on analysis and design methods [19].
In this thesis an abstraction of existing communication services is used as domain knowledge.

We do not have to use the same knowledge on analysis and design methods as that used in
ASPIS [21], because the domain knowledge here is used only for the purpose of supplementing
insufficient specifications. We assume that the domain knowledge is supplied by experts of com-

munication services. For our purpose domain knowledge should be well supplied. Therefore,
the method used in BLIP [22] to augment domain knowledge starting from sloppy modeling
cannot be used. These works can be characterized as application-independent. Application-
independent environments for specifying arbitrary software systems, however, are still years

away.
WATSON [23] operates in finite-state reactive systems: those whose most important behav-

ior requirement is the association of particular sequences of input stimuli with corresponding
sequences of output responses. A communication system is one of such examples. The domain
knowledge used in WATSON includes knowledge about telephone hardware, network proto-
cols, expected end user etiquette, exception handling, time-outs, and preferred styles of control

skeleton design.
In this research domain knowledge is used for supplementing rules lacking in the users'initial

requirements. The main difference between the approach of WATSON and ours has to do with
the abstraction level of domain knowledge. In our approach knowledge on communication
services is abstracted in the domain knowledge rather than terminal behaviors. Therefore, new
services can be supported when specifications are described.

1.4 Protocol Synthesis

A communication service provides information exchange between multiple users. For smooth
exchange rules are needed to govern the interactions between communication entities. Such
rules are called protocols. In communication software a protocol determines the outline of a
control flow. Then, protocol synthesis from a service specification is performed as one step of
the automatic software generation.

Protocol architectures have to be defined when synthesizing protocol specifications. There
are standardized protocol architectures such as the OSI reference model, signaling system No.
7, etc. In most of them the communication functions are layered. Each layer consists of a
collection of protocol entities (or protocol processes) that are distributed over different locations.
Figure 1.6 illustrates a layered protocol architecture model. Protocol entities in the same layer
are called peer entities or communicating entities. The peer entities of layer N provide the
communication services called N-services to layer N + 1 users. The services provided by layer

N are accessed by user entities through a layer interface called service access points. Likewise,
user entities of layer N access the communication services, called (N-1) services, provided by
the layer below through another layer interface. The entities of layer N use these services for
exchanging messages. The rules that govern the exchange of these messages among the entities

are collectively called an N-protocol.

We show related works on protocol synthesis assuming a layered architecture model. Probert

and Saleh [24], and Ichikawa and Takami [25] have surveyed protocol synthesis methods. Two
kinds of protocol synthesis methods are known for initial specifications. One type starts protocol
synthesis from partially-defined protocol specifications and the other type starts from complete

service specifications.

，

(N+ 1)-~ntity r・・・・・・・・・・・(N+ 1)-Entity

(N) Servi~〗一刀不）Service access point

(N)-Entity (N)-Entity Layer (N)
N) Protocol

(N-1)-Entity (N-1)-Entity Layer (N-1)

(1)-Entity (1)-Entity Layer (1)

Physical medium

Figure 1.6: Layered protocol architecture.

10

The former methods are classified into three types. Merlin and Bochmann [26] proposed the
submodule construction method. In this method, if a system is to consist of n submodules and
the system as well as (n-1) submodules are specified, then the method determines the speci-
fications of the additional nth submodule. A lot of research [27] [28] [29] [30] [31] has been done
to synthesize error-free protocol specifications starting from erroneous and incomplete protocol
specifications represented by Finite State Machines (FSM). Other approaches [9] [32] synthesize
error-free protocol specifications from multiple partial protocol specifications described by mes-
sage sequence charts. These three kinds of methods basically synthesize protocols by inserting
missing p_rimitives such as message send and receive or coordinating communications.

The latter methods are classified into two types concerning specification description. Bochmann
and Gotzhein [33] [34] describe service specifications by a LOTOS-based language. Chu and Liu
[35], Saleh and Probert [36], and Kakuda et al. [37] adopt FSM-based description. These meth-
ods synthesize protocols by inserting appropriate interactions among processes to provide given
service specifications.

The protocol synthesis methods described in this thesis use FSM-based description for
service specifications. Concerning protocol synthesis methods from service specifications, we
clarify the major difference between the described methods and methods proposed in literature.
Note that conventional methods describe the execution order of events at service access points
that are previously defined. In our methods, on the other hand, service specifications are
described with the rule-based and FSM-based language STR. With this description method
two features are used to express the wide-range of communication services. A service access
point is expressed by a variable representing a terminal. If there is a partial state satisfying a
rule application condition of a rule, the rule is applied to the partial state in the whole system
state. Because of the features, it is not necessary for the number of terminals participating
to be bound as long as the number of terminals appearing in the rule application condition is
finite. This implies that we can describe a communication service that permits an indefinite
number of participants such as a conference service with unlimited participants.

Furthermore, in telecommunication systems many events can occur asynchronously at dif-
ferent service access points. In this case, our methods synthesize protocols implementing dis-
tributed algorithms [38] that satisfy given service specifications. In other words, when an event
occurs at an SAP, its protocol entity has to communicate with other processes by necessity to
know their states. No such protocol synthesis has been previously proposed in literature for a
layered architecture model.

When a user operation at a terminal, called an event, occurs, a synthesized protocol deter-
mines an appropriate rule by exchanging messages among protocol entities. A condition of a
rule application is represented as a rooted labeled directed graph. The state of the communi-
cation system itself is represented as a directed graph. Consequently, a rule is determined by
investigating if its application condition graph is included in the communication system graph
at that time.

We propose two examination methods. One method examines rule application conditions
sequentially and the other one examines them in parallel. We can synthesize protocol specifi-
cations that perform these two methods.

The synthesized protocol implements a distributed algorithm to find a subgraph isomorphic
to a rule application condition graph in the whole graph. Such a subgraph isomorphism problem
is one of the NP-complete problems [39]. In an ordinary communication service, the scope to
be searched is usually not large. Therefore, the synthesized protocol works in a practical time.
Actually, there is no problem in practical use [40].

11

1.5 Refinement from Protocols to Software Specifica-

tions

The above protocol synthesis methods suit the layered architecture model. This kind of pro-
tocol synthesis is available for software generation when there is no constraint on functional
distribution like with PBX systems. We show that protocol synthesis based on a layered archi-
tecture is useful for generating PBX software by implementing several communication services
on a PBX.

Protocol specifications describe message exchange rules between protocol entities. They
do not involve detailed specifications such as control specifications for actual communication
systems. The synthesized protocol specification needs to be refined in order to generate exe-
cutable software on a communication system. This refinement has been performed manually
[15][16][41]; and it has needed detailed knowledge about communication systems and commu-
nication software.

In this research we aim at generating communication software without using such detailed
knowledge. Therefore, we define a detailed specification language STR/D (Detailed Specifi-
cation Language for STR) [42] so that detailed specifications can be described as knowledge
independent of service specifications. This means that detailed specifications are described
as knowledge beforehand. Note that if such predescribed knowledge is insufficient in refining
protocol specifications, then an expert on communication systems helps by adding detailed
knowledge. A new method [43] is proposed to generate such knowledge.

The communication software generation method described above has been shown to be
feasible in an application to develop actual PBX software. Several typical communication
services have been implemented by the automatically generated software.

Communication systems such as PBX systems have different control interfaces depending
on their vendors or machine types. While generating different software for each communication
system, we defined a logical interface common to the PBX systems and generated communi-
cation software conforming to the interface. We provided interface conversion programs to fill
the gap between the PBX dependent control interfaces and the logical interface.

There is an interface called CTRON (Central and Communication The Realtime Operating
System Nucleus) for running the same application program on heterogeneous communication
systems rather than for automating software generation. If such an interface were installed on
a PBX, we might be able to adopt the interface as the logical interface.

In this research we defined a logical interface that can be used to define meanings of state
primitives on communication systems. Using this interface we have implemented several com-
munication services on two PBX systems. We show an implemented software architecture and
the defined logical interface, and also show results giving the efficiency of generated software.

1.6 Stepwise Refinement for Functional Models

There is another protocol architecture called the functional model [7]. Universal Personal
Telecommunication [44] has been standardized to be provided using the functional model in
Fig. 1.7. In the functional model functions are not layered but distributed. These functions
are distributed in functional entities.

Conventional protocol synthesis methods including the above described protocol synthesis
methods are based on the layered architecture model in Fig. 1.6. In this thesis we propose a

12

rl
(Originating)

r3
(Terminating)

Figure 1.7: Functional model for UPT service set 1 provision.

software generation method that is adapted for an architecture with layering and functional dis-
tribution. The method is a semi-automatic refinement method, however, a new more automated
method [45] has been proposed for this refinement problem.

1.7 Completing Protocols

Protocol synthesis is a powerful technique to automate communication software generation. In
this approach a layered architecture model is adopted as the protocol architecture. The OSI
reference model [6] is typical of this layered architecture model. Service specifications are defined
as distributed functions provided by a communication system to its users. A communication
system can be viewed as a service provider which offers some specified communication services
to service users who access the system through geographically distributed service access points.
Protocol synthesis is a very promising way of developing a reliable protocol. However, protocol
synthesis cannot be applied to the case where the protocol itself is specified even in the context of
the layered architecture model. In other words, protocol synthesis is likely to produce protocols
that are different from those that the protocol designer wishes. This problem is solved by
describing protocols themselves as service specifications, or requirement specifications.

Message sequence charts [8] are standardized to specify protocols. For the above purpose,
the service specifications are defined as sets of partial specifications of protocol specifications
described by message sequence charts. Service specifications described by message sequence
charts can be synthesized to protocol specifications [9], where a protocol is represented by a
set of communicating finite state machines with FIFO (First-In-First-Out) channels [46][47].
This protocol synthesis method guarantees the following three properties: requirement speci-
fications are feasible, required behaviors are included in a synthesized protocol, and there are
no nondeterministic behaviors. A synthesized protocol may include exceptional behaviors not
corresponding to any behaviors in the given service specifications. Even if the service specifica-
tions themselves are verified, these exceptional behaviors may involve protocol errors, such as
deadlock states or unspecified reception. Unspecified reception means that there is no action

13

to receive specific messages being transmitted.

We show a method to transform a synthesized protocol into a protocol that returns to a
normal state when it falls into an exceptional behavior. Protocol completion refers to the case
where a synthesized protocol has been transformed into an error-free one. We can obtain an
error-free protocol from error-free service specifications by synthesizing and then completing

the synthesized protocol.

Zafiropulo et al. [27] proposed a protocol completion method from given protocol specifi-
cations by letting send and receive events correspond to one another. Kakuda [48] proposed a
method to add rollback sequences to checkpoints. These methods do not explicitly use the con-
cept of service specifications, or requirement specifications. Consequently, protocol completion
finishes when a protocol is transformed so that every possible behavior reaches the final state
with empty channels in due course.

In this thesis, we clarify the scope within which a protocol can be completed without
modifying service specifications, and propose a protocol completion method that modifies the
smallest number of service specifications. If the tactics to tackle exceptional behaviors are
given by rules, the method automatically completes protocols. We show the effectiveness of the
method by synthesizing the X.227 protocol from its partial specifications. Since in our method
service specifications are explicitly used, protocol completion can also be applied to resolve
undesirable feature interactions [2] appearing as exceptional behaviors.

1.8 Overview of the Thesis

We give an overview of this thesis.

In Chapter 2 we give preliminary definitions. We introduce the layered architecture and
the functional model as network architectures that are used when synthesizing protocols from
service specifications. Service and protocol specifications are defined on the network architec-
tures. Then we introduce a rule-based specification description language STR. In STR services
are specified as state transition rules of terminals connected to a cornrnunication system. A
rule specifies state transitions of associated terminals when a user operates a terminal.

In Chapter 3 we discuss a specification completion method[49] [50] [51] concerning cornmu-
nication service specifications described by rules. First we define a service formally and show
errors that may be contained in specifications. Reachability analysis is used for detecting such
errors. Hypothesis-based reasoning is used for interpolating incomplete specifications. In this
interpolation we try to supplement specifications with rules in existing service specifications at

first.
If this supplement fails, a communication service model is used for presenting supplementary

specifications. The communication service model is obtained as an abstraction of communi-
cation services. These communication services have a feature that the number of terminals
concerned with one service changes dynamically during operation of the service. Note that
there is a problem with how to express a service on the communication service model. In this
thesis we represent a service by compositions of fundamental service elements.

Chapter 4 shows a protocol synthesis method [52] suited for a layered architecture. Protocol
synthesis is defined as a labeled directed graph rewriting problem. An STR rule describes a
graph rewriting rule. The state of the communication system itself is represented as a directed
graph. Rule application is achieved by searching and replacing a subgraph isomorphic to a
graph representing rule application condition. The subgraph isomorphism problem is one of

14

the NP-complete problems. However, since a number of terminals do not participate in one
communication service simultaneously, combinatorial explosion of the graph searching time
does not become a problem in practical use.

A rule is represented as a pair of labeled directed graphs. The state of all terminals in a
communication system is also represented as a labeled directed graph. In this graph represen-
tation, a communication service specification describes a set of rules to find the appropriate
graph representing the condition part of a rule; its resultant is substituted for an isomorphic
subgraph in a graph representing the communication system.

In the layered architecture model a protocol entity is assigned to each terminal. Each pro-
tocol entity possesses the state of its assigned terminal. When an event occurs at a terminal,
its protocol entity initiates communications to determine a rule to be applied. In this chap-
ter we show a protocol synthesis method that generates a protocol entity specification that
communicates sequentially among protocol entities.

A graph representing an application condition usually becomes a complex graph with
branches. We show a protocol synthesis method [53] that produces a protocol entity speci-
fication that communicates in parallel among protocol entities in Chapter 5.

Protocol specifications synthesized in Chapters 4 and 5 are insufficient for implementing
communication services on an actual communication system. Protocol synthesis is one step
for communication software generation. Synthesized protocol specifications are refined with
detailed knowledge about communication software. In Chapter 6 we define a detailed specifica-
tion description language STR/D [42], and show an example for implementing several services
on a PBX.

Chapter 7 shows a result of implementing services on PBX systems [40][54]. The result im-
plies that the proposed software generation method is effective for real-life service development.
We can generate communication software independent of target systems by providing logical
interfaces for controlling PBXs.

In Chapter 8 we show a communication software generation method [55] [56] conforming
to a functional model. In the functional model multiple protocol entities are placed at one
service access point. We call a protocol entity in the functional model a functional entity. First
a service specification is transformed into a set of service specifications of functional entities.
From the obtained service specifications we can synthesize protocol specifications of functional
entities. This means that a protocol synthesis problem of a functional model is transformed
into that of a layered architecture model.

In Chapter 9 we introduce a protocol completion method of protocol specifications synthe-
sized from message sequence charts. This method is available for developing protocol software
when a protocol specification is given beforehand. A synthesized protocol may include behav-
iors that do not correspond to any of the requirement specifications. Such behaviors are called
exceptional behaviors. They do not appear until the protocol is synthesized. Since exceptional
behaviors can not be verified in the specification description phase, the protocol may fall into
an abnormal state such as a deadlock state. We show a protocol modification method that
prevents a protocol from falling into an abnormal state [30].

Finally we conclude this thesis in Chapter 10.

15

16

Chapter 2

Preliminaries

We introduce the fundamental concepts in this thesis and the specification description language
STR. A user is provided with a communication service through a network. The automatic

generation of communication software differs depending on what kind of network architecture
is used to provide a communication service.

Generated communication software from service specifications has to conform to a target

network architecture. To begin with we introduce the type of network architecture. The
communication soft~are obeys a protocol defined on the network. The most popular and widely
accepted protocol architecture is a layered architecture including the OSI reference model. Our

layered architecture is based on two concepts of layering and abstraction. A protocol layer
provides the upper protocol layer with services by using services provided by the lower layer.

However, telecommunication services such as Universal Personal Telecommunication (UPT)
and Intelligent Network (IN) services are standardized to provide services on the functional
model. These two types of architectures are adopted as protocol architectures for protocol
synthesis.

Next, we define service and protocol specifications. Communication software obeys a pro-
tocol when communicating among protocol entities to provide services. Service and protocol
specifications have the relation of requirement and implementation specifications.

Finally, we give a precise definition of STR. The network architecture is a part of the specifi-

cations that show how to implement a communication service. This means that service specifi-

cations have to be independent of specifications concerning the architecture. Consequently, we
describe service specifications independent of architectures and protocols. In this thesis service
specifications are described as terminal behaviors observable from outside a communication

system. Using this description method, service specifications can be described by non-experts
who do not have detailed kno、vledgeof communication systems and communication software.

STR is one of the specification languages.

2.1 Network Architectures

We introduce the layered architecture and the functional model. The layered architecture model

is illustrated in Fig. 2.1.

In the layered architecture model, a user is provided with services through a service access

point (SAP). A protocol entity is assigned to one SAP. A request from a user is received

by a protocol entity through a service access point. Upon receiving a request, a protocol

entity communicates with other protocol entities to provide the user with a service. Terminals

17

88

Communication medium

Figure 2.1: Architecture model for layered protocol design.

including telephones should have SAPs in telecommunication services. Communication among
protocol entities is assumed to be error-free through a reliable communication medium.

The functional model is a standardized network architecture for providing telecommunica-
tion services. In the layered architecture model functions are abstracted by layering. On the
other hand, functions are collected into functional entities distributed in a network. Figure
2.2 shows the functional model. In Fig. 2.2 a terminal is connected to CCAF physically. If
a service is recognized as UPT, the control of the service is transferred to CCF. Furthermore,
some of the stimuli at terminals are received at SRF and SRF responds to them. In comparison
with the layered architecture model, the functional model is characterized by the relationship
between SAPs and protocol entities as follows:

• Multiple protocol entities correspond to one SAP.

• There are protocol entities that are not assigned to any SAP.

There is a point of view that one SAP corresponds logically to one functional entity. We
aim at describing specifications without any knowledge of network architecture; however, we
cannot discriminate SAPs corresponding to functional entities.

2.2 Service and Protocol Specifications

A communication system provides communication services for service users who access the
system through service access points SAPl, • • •, SAPn. In this modeling service specifications
and protocol specifications are defined as follows [57]:

• The service specification describes what services the protocol entities of the lower protocol
layer provide for their users in the upper protocol layer. The services provided by the
lower protocol layer are based on a set of service primitives which describes the operations
at service access points through which the services are provided.

18

Figure 2.2: Functional model.

• The protocol specification describes the interactions among the protocol entities of the
lower protocol layer. The interactions are defined in terms of the services provided to the
upper protocol layer, and the services available from the communication medium.

In a telecommunication system, users are provided services through terminals, which can
be considered SAPs. Within the communication system, protocol entities cooperate to provide

services by exchanging messages between entities. This communication between entities is

provided by the communication medium. In this architecture, each entity corresponds to just
one SAP for a user in the upper layer. This architecture model is an abstraction of the OSI

reference model.
On the other hand, IN services are assumed to be provided on the IN CS-1 functional model

in Fig. 2.2. In this architecture, there are some entities, e.g., SCF, that do not correspond to

any SAP. Since this functional model is an internal architecture, the service designer does not

have to take account of the functional model to describe service specifications. This means that

service specifications do not and should not have any information about the internal functional

model.

2.3 STR

A service specification has to prescribe requirements to be satisfied by a communication service,

and should not prescribe other specifications. In communication services, state transitions of

terminals for a stimulus satisfy this condition. In STR, state transitions of terminals associated

19

with a service are described as rules. We give a minimum definition of STR necessary for this

thesis.
A service is defined as a set of STR rules. An STR rule consists of three elements: "initial

state", "event" and "next state," and has the form:

initial state event: next state.

The "initial state" and the "next state" represent global states of terminals. A global state
is represented by a set of local states. A local state is represented by a set of state primitives.
A state primitive may have two arguments to express terminal variables. The first argument
represents the terminal variable having the state primitive. If the second argument is specified,
the terminal designated by the first argument holds a relation of the primitive to the terminal
specified by the second argument. Therefore, the local state of a terminal is defined as the set
of state primitives whose first argument designates the terminal. A state primitive represents
a terminal state which is recognizable from outside a communication system.

The "event" may also have two arguments to express terminals. It represents a logical input
to the terminal designated by the first argument. If the second argument is described in an
event, this argument represents a terminal identifier given by the event.

A rule may be applied to a set of terminals tぃ・ ・ ・, tn if its event has occurred at one of the
terminals; these terminals have the primitives specified by the initial state of the rule. If there
are two rules, r1, r2, whose state primitives in the initial state are included in the local states
of terminals t1, ・ ・ ・, tn, and the initial state of r1 is included in r2, then r2 is applied. This
inclusion relation is not of a total order. Thus, there still exists the possibility that multiple
rules may be applied. When multiple rules can be applied, we may select a rule arbitrarily.

In summary, we characterize STR as follows.

• In STR service specifications are represented by terminal behaviors which are observ-
able from the outside. Therefore, we can describe service specifications without detailed
knowledge of the communication system inside.

• Since STR is a rule-based language, new services can be added by adding new STR rules,
and existing services can be modified by changing the appropriate rules.

• If we define state primitives so that they are independent of specific terminals and net-
works, we can define communication services independent of terminals.

20

Chapter 3

Specification Completion of
Communication Services

3.1 Problem

Requirement specifications may include errors, ambiguities or be incomplete. It is essential for
efficient software development that these problems be removed in the specification acquisition
stage. Currently, however, this stage in software development is the least supported among
all stages. We show a method of transforming such problem specifications into meaningful
specifications as communication services.

In this thesis specification completion is defined as the ability to derive formal communica-
tion service specifications from requirement specifications. Of course, requirement specifications
are not always sufficient specifications. They may have ambiguities, missing parts or sometimes
even be contradictory specifications.

Specification completion of STR descriptions has been considered for detecting insufficient
and ambiguous rule descriptions as well as missing rules, and also for solving these errors.
Figure 3.1 shows specification completion in STR.

The proposed method uses rules contained in existing services and a communication service
model as domain knowledge. This knowledge is assumed to have been provided upon the design
of new services. Future work will seek to acquire sufficient service models and to extend them.

To confirm that the completed services satisfy their requirements, service designers must
validate the completed service specifications. Animated simulation [58] can be used for this

Requirement specification

• Ambiguous:
incorrect rules

• Fragmentary:
lack of rules

Specification
completion

Se1vice specification

• Co1Tect rules

• Sufficient rules

Figure 3.1: Specification completion.

21

validation.
In communication software development, new services are developed to be added to existing

services. In this development style the validity of all service specifications, including existing
services, is verified by conflict detection and elimination [3]. Hereafter, it is assumed that
specification completion does not need to provide a process for handling errors resulting from
the combining of a new service with existing services.

3.2 S . erv1ces and Requirements

We define a service in STR. Let S be a set of STR rules. If there is a set of terminals T that
satisfies the following three conditions, S is called a service.

Let a be a global state of T such that every terminal in T is in its initial state, i.e., idle.
Let (3 be a global state of T that is reachable from a by using rules in S. If a set of rules
satisfies the following three conditions, S is guaranteed to be syntactically correct.

1. a is reachable from (3 •

2. There is exactly one applicable rule r at (3 .

3. For every rule r there is a global state (3 that is reachable from a and where r can be
applied.

The first condition guarantees no deadlock state, no livelock. The second condition guar-
antees no nondeterministic state. The third condition guarantees no unnecessary rules. Note
that S is not always meaningful as a service. The validation that S is a meaningful service is
left to a service designer.

3.3 Detection and Elimination of Specification Errors

Errors in requirement specifications are classified into three types: description errors in rules,
contradictions among rules and insufficiency of rules. Our purpose is to obtain service spec-
ifications from such problem requirements. We show a method that detects these errors and
eliminates them. The procedure is illustrated in Fig. 3.2.

Step 1 Detect the errors in each rule and then correct them by consulting a service designer.

Step 2 Detect missing rules. This is done by reachability analysis from an initial state back
to the initial state. If a deadlock state is detected, it is determined that some rules are
missing.

Step 3 Ask a service designer to input an additional requirement to designate a state to be
reached from the detected deadlock state.

Step 4 Supplement rules by utilizing rules used in existing services. This supplementation
uses hypothesis-based reasoning.

Step 5 When an insufficient specification is not supplied with existing rules, generate new
rules by using a domain model, that is, an abstraction of communication services.

22

Rule error detection
and correction

Deadlock detection

↓
Supplementing requirements

1
Supplementing specifications
with existing service rules

Supplementing specifications
by generating new rules

Validation

Figure 3.2: Specification completion.

Step 6 Examine if all rules are being used. If unused rules exist, ask a service designer if the

unused rules are being used for additional requirements. If the answer is affirmative, go
to Step 2; else discard the unused rules.

Step 7 Validate if the completed specifications have been accepted. Animated simulation of
specifications is used in this validation. If the specifications have not been accepted, try
specification completion again.

Details of steps 2 to 5 are explained in the succeeding sections.

3.4 Detection and Correction of Rule Errors

Rule description errors are classified into two types. One is the case that there are missing
primitives or wrong primitives in a rule. The other is the case that a rule itself is correct, but

it contradicts with other rules. These errors are detected as nondeterministic variables, free
variables or nondeterministic rules [59]. vVe define these errors as follows.

23

Nondeterministic variables A rule in which there are multiple possible next states when
the rule is applied.

Free variables A rule with a variable that cannot be trodden from its event variable repre-
senting a terminal where an event occurs.

Nondeterministic rules Two rules with the same initial state and event, but with different
next states.

We exemplify these errors. First, we show an erroneous rule with nondeterministic variables.
This rule has symmetrical variables B and C for A. When the rule is applied to an actual state

"path(a,b) ,path(b,a),path(a,c),path(c,a)"
for terminals a, b and c, there are two possible next states:

"path(a,b),path(b,a),hold(a,c),hold(c,a)" and
"path(a,c),path(c,a),hold(a,b),hold(b,a)".

They are nondetermm1st1c behaviors.

path(A,B),path(B,A),path(A,C),path(C,A)
fl.ash(A):
path(A,B),path(B,A),hold(A,C),hold(C,A)

Next, we show a rule error of free variables. In this rule C of "idle(C)" in the initial state is
not identified with the initial state "path(A,B),path(B,A),idle(C)" and the event "flash(A)".

path(A,B),path(B,A),idle(C)
flash(A):
hold(A,B),hold(B,A),ring-back(A,C),ringing(C,A)

Finally, nondeterministic rules are shown. The first rule specifies that dialed terminal B is
directly connected from A in the hot-line service. The next rule specifies that dialed terminal
Bis called.

dial-tone(A),idle(B) dial(A,B): path(A,B),path(B,A)
dial-tone(A),idle(B) dial(A,B): ring-back(A,B),ringing(B,A)

These errors are automatically detected; however, correcting them is left to interaction with
a service designer.

There is another kind of errors in which a description is correct as a rule but the rule is
not suited to a service element. Errors of this type are detected and corrected at the point of
verifying whether requirement specifications satisfy service conditions.

3.5 Detection of Insufficient Rules

We show a method of detecting missing rules as a service specification. If missing rules exist,
deadlock states will appear when the requirement rules are simulated starting from the initial
states. Detection of these deadlock states is done by a state enumeration method of conflict
detection [3].

When deadlock states are detected by simulation, the specification completion system lets a
user input additional requirements specifying states to be reached from the detected deadlock

24

Deadlock states Remaining rules

・・・・・・・・・・・・・・・・S 1 ...
0

0

Additional
requirements

0 Initial state

● 『~adlock state detected
reachability analysis

-I .. I mtia states of remamm O rules 。

Figure 3.3: Reachability analysis for detecting missing rules.

states. Figure 3.3 shows such a situation. Deadlock states Tl and T2 are detected and then
additional requirements are input so that S1 and S2 can be reached from states Tl and T2,
respectively. Target states S1 and S2 are specified by the user or selected from the current
states of remaining rules that have not yet been used.

When enumerating reachable states within requirement specifications, the number of usable
terminals is always determined before starting the enumeration. Therefore, there is a limit:
there are undetectable deadlock states that appear only when more terminals, than the prede-
termined number of terminals, are permitted. However, the necessary number of terminals can
be calculated under some constraints [60] [叫

3.6 Supplementing Insufficient Rules

If an additional requirement specifies that state B is to be reached from state A, the requirement
specification is supplemented with a set of rules R1, ・ ・ ・, Ri that enable the transition from a
state X (っ A)to a state Y (っ B).Figure 3.4 illustrates the hypothesis-based reasoning when
deadlock state A is detected and a new requirement that B is to be reached from A is added.
The hypothesis to be added to A has the next two constraints.

• Hypothesis X-A is empty, or a state X-A can be reached from a part of the initial state
in Fig. 3.4, say I, independent of the transitions from the remaining part of the initial

state, say J, to A.

This implies that X-A is reachable from I without affecting reachability from J to state
X-A. Owing to this constraint, deadlock at A is resolved.

• X-A and Y-B are consistent with A and B, respectively.

When A (B) involves state primitive p, ,p cannot be hypothesized to X-A (Y-B).

25

？
Additional requirement: A . ..-B

〇・・・・・・・・・・・・・・・・・・・・・・→①

Hypotheses

Rl, ... ,Ri

Initial • X (~A). • Y (コB) ► Initial

Figure 3.4: Hypothesis-based reasoning.

We show an example subjected to reachability analysis with hypothesis-based reasoning in
order to make up for missing rules. Let us consider the next requirement.

A: dial-tone(a)
B: path(a,b)

Backward hypothesis-based reasoning is used to detect the necessary rules to make state B
reachable from state A. States A and B are augmented by the hypothesis to state X and Y,
respectively, so that state Y is reachable from state X.

X: dial-tone(a),idle(b),m-cfv(c,b), ,(idle(c))
Y: path(a,b),path(b,a),m-cfv(c,b), ,(idle(c))

",(idle(c))" in states X and Y is a constraint for the states, but not a part of them. Figure 3.5
illustrates the hypothesis-based reasoning for this example.

Assume that state 1 surrounded by a bold square is the original target state, and state
2 "ring-back(a,b),ringing(b,A)" is inferred by applying rule pots-5 after adding hypothesis
"path(b,a)" to state 1. Then, state 1 results in state 4. Furthermore, state 3 is inferred
by applying rule cfv-10 after adding hypothesis "m-cfv(c,b), ,(idle(c))" to state 2. Then, state
4 results in state 6. Consistency is examined when a hypothesis is added to a state.

In this example we assume that X-A="idle(b),m-cfv(c,b),,(idle(c))" is reachable indepen-
dent of "dial-tone(a)". Then rules pots-5 and cfv-10 are the achieved rules. ¥Ve note that we
cannot obtain supplementary rules without hypothesis-based reasoning because "path(a,b)" is
a part of a state of two terminals.

26

？

Requirement: dial-tone(a)→ ~path(a,b)

1 4 6

path(a,b) l→ j(path(a,b)] ．噸~ path(a,b) I
path(b,a) path(b,a)

m-cfv(c,b),

offuook(b) ＼ ..., (idle(c))

"pots-5"
5

2

ring-back(a,b), J I ring-back(a,b),
ringing(b,a) → ringing(b,a)

m-cfv(c,b),
-,(idle(c))

pots-5) ring-back(A,B),ringing(B,A)
offuook(B):

path(A,B),path(B,A).

cfv-10) dial-tone(A), idle(C), m-cfv(B,C), --.(idle(B))
dial(A,B):

ring-back(A,C), ringing(C,A), m-cfv(B,C), --i(idle(B)).

3

dial(a,c)
11cfv-l011

dial-tone(a),
idle(b),
m-cfv(c,b),
---,(idle(c))

Figure 3.5: Example of hypothesis-based reasoning.

27

亨
Transform service states to model states

Infer a sequence of attribute operations

Transform model states to service states

こ

Figure 3.6: Model-based reasoning.

3.7 Generating New Rules

3. 7.1 Domain Model

There is a case where existing rules are not sufficient to supplement missing rules. In this
case we have to generate new rules. A domain model that is an abstraction of communication
services is used to generate new rules.

Such a domain model consists of domain knowledge and a domain dictionary. The domain
knowledge represents a communication service model expressing abstract communication ser-
vices. This communication service model consists of attributes and attribute operations. The
attributes characterize the communication services. The attribute operations have functions
to examine and change the values of attributes. The domain dictionary provides functions for
transformation between service specifications in STR and communication service models in the
domain model.

New rule generation with the domain model involves the following three steps. An outline
is illustrated in Fig. 3.6.

Step 1 Transform a detected deadlock state and a target state designated to be reached from
it into states of a communication service model by using the domain dictionary.

Step 2 Perform inference on the communication service model to obtain a sequence of attribute
operations that change the model state transformed from the deadlock state to the model
state transformed from the target state.

Step 3 Transform the acquired attribute operations into a set of STR rules by using the domain
dictionary.

We define attributes and attribute operations. First, we introduce a call element to de-
fine a communication service model for any services with primitive attributes and attribute
operations. There are two types of call elements that show unary and binary relations among
terminals. The former is called type 1 call element and the latter type 2 call element. A state

28

Service state Model state

pl(a), p2(a,b), p3(b,a) Type 1 call elements: [[a], vall, val2]
[[b], nil, nil]

Type 2 call elements: [[a,b], val3, val4]
[[b,a], val5, va16]

Domain dictionary

pl(A), p2(A,B)
p3(A,B)

,. ~{ [[A], vall, val2], [[A,B], val3, val4] }
,. .. { [[A,B], val5, val6] }

Figure 3. 7: Transformation between service and model states.

of n terminals in the domain model is represented as a set of n type 1 call elements for all
terminals and n x (n -1) type 2 call elements for all combinations among n terminals. Each
type of call element is defined as a set of attributes. An attribute may have a value called
an attribute value. The number of terminals that participate in a communication service is
indefinite in general. A state in the domain model with a combination of call elements makes
it possible to represent any communication service in a communication service model.

We call a state represented by STR a "service state", and a state of a communication
service model a "model state". A model state is defined as a set of call elements, and each call
element is defined as a set of attribute values. Every call element has identifiers called address
attributes. There are two address attributes for the originating address and the terminating
address. A type 1 call element has only an originating address. A type 2 call element, on the
other hand, has both types of addresses. The originating address represents a terminal that a
call element belongs to. A type 2 call element is identified by its originating and terminating
addresses. When a certain service state is given, the set of call elements that defines the
corresponding model state is automatically determined. An element of the domain dictionary
defines a relation between a set of state primitives and a set of attributes of one or plural call
elements. The transformation between service and model states is composed by the relations

defined in the domain dictionary.
Figure 3. 7 shows a transformation example.

Service state

"pl(a),p2(a,b),p3(b,a)"

corresponds to model state

Type 1 call elements : {

Type 2 call elements : {

9

9

9

9

.

.

.

.

.

-
．

．

 a

a,b,

lalbb

↓

,
 .

.

vall,
nil,

val3,
val5,

}

｀
_rJ

9

9

・
←
』
．
←
•
←
.言

叫
疇

29

This correspondence is obtained by the next relations.

pl(A),p2(A,B) ← + { [[A], vall, val2], [[A,B], val3, val4]},
p3(A,B) ← { [[A,B], val5, val6]}

A model state can be changed to another model state by modifying values of its attributes.
This modification is performed by a sequence of attribute operations. There are two types of
attribute operations; primary attribute operations and subordinate attribute operations. The
difference between both types of operations is that the former have a property to determine the
arguments of an event. A primary attribute operation consists of an application condition part,
operation condition part, operation part and event argument part. A subordinate attribute
operation consists of an application condition part, operation condition part and operation
part

The application condition part screens applicable attribute operations for model states. An
application condition is composed by a call element identifier and an attribute condition. The
attribute condition is a logical formula with conjunction, disjunction and negation of value tests
($IF).

A call element identifier is used for screening call elements examined by the succeeding
attribute condition.

Syntax: $CE(call element type, address 1, address 2)

A call element identifier has three arguments:the call element type, the first address attribute
and the second address attribute. The call element type is either a type 1 call element, a type
2 call element or unspecified "-". The first address attribute always represents the originating
address. The second address attribute is always unspecified for a type 1 call element and is a
terminating address for a type 2 call element. "-" is used for specifying an arbitrary originating
or terminating address. Note that we can use oa to represent the originating address of a
screened call element in a context, and ta the terminating address.

An attribute condition is used for screening call elements that have already been screened by
a call element identifier. We can specify concrete attributes and attribute values in an attribute
condition.

Syntax: $IF(attribute name, attribute value)
$IF(attribute name, -)
$IF(attribute name)
$IF(attribute name, variable)

$IF(attribute name, attribute value): tests if the value of the attribute designated by "at-
tribute name" is equal to "attribute value".

$IF(attribute name,-): tests if the attribute with "attribute name" is undefined.
$IF(attribute name): tests if the attribute has a value.
$IF(attribute name, variable): tests if the value of the attribute designated by "attribute

name" is equal to the value of an attribute with the same "variable".
An operation condition is used for screening call elements from the selected ones by the

application condition. The selected call elements are applied by the operations at the operation
part. An operation condition is a logical formula with conjunction and negation of call element
identifiers and attribute conditions.

Operations at the operation part are applied to call elements that are finally screened by
the operation condition.

30

Syntax: $VALUE(attribute name, attribute value)
$VALUE(attribute name,-)
$VALUE(attribute name)

$VALUE(attribute name, attribute value): changes the attribute value of the attribute
designated by "attribute name" to "attribute value".

$VALUE(attribute name, -): changes the value of the attribute designated by "attribute

name" to "undefined" .
$VALUE(attribute name): An initial value is set up for the attribute designated by "at-

tribute name".
The event argument specifies a call element representing arguments of an event. The syntax

is the same as that of the application condition except that no disjunctive formula can be

described.

3. 7.2 Reasoning with Domain Model

Rule generation method
We show a method of generating new STR rules when both the start and target states are

given. The generated rules link from the start state to the target state. The next procedure

generates missing rules.

Step 1 Augment the start state so that the set of call elements for the start state includes the
set of call elements for the target state. Hereafter, the augmented start state is simply
called the start state.

Step 2 Transform the start and target states into the sets of call elements according to the
domain dictionary. The set of attribute values in the call elements of the start state is
called the start model state, and that of the target state is called the target model state.

Step 3 Search for sequences of attribute operations with satisfiable application conditions from
the start model state to a state・including the target state. Here the inclusion between
the two model states is defined as inclusion between their call elements. In this search we
use the distance between two model states defined later.

Step 4 Transform the searched attribute operation sequences into sets of STR rules with the
domain dictionary.

Distance
We define the distance between two model states. Let s and t be two model states. The

number of attributes with different values in the common call elements of s and t is defined
as the distance betweens and t, and is denoted by d(s,t). Figure 3.8 shows two model states

between which the distance is two.

Model reasoning
We show a procedure to search for attribute operation sequences from a start model state

to a target model state. An obtained sequence is a sequence of primary attribute operations
and subordinate ones. In what order an attribute operation is chosen is as follows. First, an

attribute operation is chosen so that the distance between the operation applied model state and
the target model state becomes short. This selection is called immediate reasoning. If there is
no such attribute operation, another attribute operation is chosen such that the distance does

31

s: (‘
［ [a], valO, val2] t:

［ [a], vall, val2]
［ [b], nil, nil] ［ [b], nil, nil]
［ [c], val8, nil] [[a,b], va13, va14]
[[a,b], val3, va14] d(s,t)=2 [[b,a], val5, val6]
[[b,a], val5, val?]

ノ
[[a,c], nil, val9]
[[b,c], nil, nil]
[[c,a], va19, nil]

＼
[[c,b], nil, nil]

ノ

Figure 3.8: Distance between model states.

not change before and after an application of the operation. This selection is called detour
reasoning. If there is no such attribute operation, the third choice is to choose an attribute
operation such that the distance becomes long after an application of the operation. This is
called devious reasoning. Figure 3.9 illustrates these three types of reasoning.

3.7.3 Example

We show an example to infer a service specification from a fragmentary requirement specifi-
cation. Let us consider a requirement specification for a new service that will combine a call
forwarding service and a call waiting service. Although a terminating call is forwarded like in
an ordinary call forwarding service, functions belonging to a terminal are not transferred in
this service. When a call waiting subscriber (B) sets up to transfer an incoming call to C, the
incoming call to B is forwarded to C. If the call forwarding terminal is talking with someone
else (D), however, the call to be forwarded is terminated to C as a call waiting service. If a
user of terminal C flashes the terminal, the call between C and Dis put on hold and C begins
to talk with A.

Let the following requirement specification be given.
Start state: dial-tone(A),idle(B),m-cw(B),m-trans(B,C),path(C,D),path(D,C),
Target state: idle(B),m-cw(B),m-trans(B,C),

m-cw-transed(C),path(A,C),path(C,A),hold(C,D),hold(D,C).
Let the communication service model be an abstraction of a call waiting service, an ordinary

call forwarding service and a function transfer service. We provide the next attributes for type 1

and type 2 call elements. For simplicity, we omit all other attributes necessary for representing
actual communication services.

Type 1: [orig], handset,
Type 2: [orig, term], path,

tone,
ring,

Each attribute can have the following values.

Type 1 call element:

cw, ftrans, ftransed]
trans]

orig represents the originating address that the call element belongs to.

handset represents the state of a handset.

32

Immediate reasonig Detour reasoning Devious reasoning

こ こ こ

占 ↓ ↓
G)-

cb
6 cb 占

d(s,t)>d(s l ,t)>d(s2,t) d(s 1,t)=d(s3,t) d(s 1,t)<d(s4,t)

s: start model state
t: target model state

Figure 3.9: Various reasoning on a communication service model.

33

tone represents the tone state. It takes one of the following values: "in", "dial-tone" or "off".
"in" represents the tone from a receiver, "dial-tone" is the dial-tone from a telephone and

"off" means the no-tone state.

cw represents a registration state of the call waiting service.

ftrans represents the capability of transferring functions.

ftransed represents the transfered state of functions.

Type 2 call element:

orig and term represent the originating and terminating addresses of type 2 call elements.

path represents the talking state with the terminal designated by the terminating address.

ring represents the tone state from the terminal designated by the terminating address.

trans represents the state of function transfer. "on" represents the state that functions are
transferred and "off" represents the state that functions are not transferred.

The following attribute operations are registered in the domain dictionary. The attribute
operations with a label prefixed with PRIM are primary operations and that with the label
SUBl is a subordinate operation.

PRIM1:
Apply_Condition:

$CE(1,ad2,-):$IF(ftrans,on),$CE(2,ad2,ad3):$IF(trans,on);

Operation:
$CE(1,ad3,-):$IF(cw,off),$VALUE(cw,on),$VALUE(ftransed,on);

Event_Condition:

$CE(1,ad1,-):$IF(tone,dial-tone),$CE(2,ad2,ad3):$IF(trans,on),$CE(2,ad1,ad3);

SUB1:

Apply_Condition:
$CE(1,ad1,-):$IF(tone,dial-tone),$CE(2,ad2,ad3):$IF(trans,on);

Operation:
$CE(1,ad1,-):$VALUE(tone,off);

$CE(2,ad1,ad3):$VALUE(ring,cw-rbt);

$CE(2,ad3,ad1):$VALUE(ring,cw-rgt);

PRIM2:

Apply_Condition:

$CE(2,ad1,ad3):$IF(ring,cw-rbt),$CE(2,ad3,ad1):$IF(ring,cw-rgt),

$CE(2,ad3,ad4):$IF(path,conn),$CE(2,ad4,ad3):$IF(path,conn);

Operation:

$CE(2,ad1,ad3):$IF(ring,cw-rbt),$VALUE(path,conn),$VALUE(ring,off);

$CE(2,ad3,ad1):$IF(ring,cw-rgt),$VALUE(path,conn),$VALUE(ring,off);

$CE(2,ad3,ad4):$IF(path,conn),$VALUE(path,hold);

$CE(2,ad4,ad3):$IF(path,conn),$VALUE(path,hold);

34

Event_Condition:
$CE(2,ad3,ad4):$IF(path,conn),
$CE(2,ad4,ad3):$IF(path,conn),
$CE(1, ad3);

The following correspondences are elements of the domam dictionary.
Service state Model state
dial-tone(Tl) [[Tl] ,off,dial-tone, ー，ー，ー］
m-cw(Tl) [[Tl], ー，—， on,-,-]
m-trans(Tl,T2) [[Tl,T2], ー，—，on]
path(Tl,T2) [[Tl],off, —,—, -], [[Tl,T2],conn,-,-]
cw-ringing(Tl,T2) [[Tl],off,off, —,—, -], [[Tl,T2],-,cw-rgt,-]
cw-ring-back(Tl,T2) [[Tl],off,off,-,-,-], [[Tl,T2],-,cw-rbt,-]
hold(Tl,T2) [[Tl],off,-, —, -], [[Tl,T2],hold,-,-]
idle(Tl) [[Tl],on,off,-,off,-]
m-cw-transed(Tl) [[Tl], ー，—，on,-,on]

Event Attribute operation
PRIMl,SUBl dial
PRIM2 fl.ash

We show a reasoning result on the service model defined above. The underlined values show
modified attribute values.

Start state: dial-tone(A),idle(B),m-cw(B),m-trans(B,C),path(C,D),path(D,C)

{ [[A] ,off,dial-tone,off,off,off] ,[[A,B] ,disc,off,off] ,[[A,C], disc,off,off], [[A,D],disc,off,off],
[[B] ,on,off,on,on,off] ,[[B,A] ,disc,off,off] ,[[B,C] ,disc, off,on], [[B,D] ,disc,off,off],
[[C] ,off,off,off,off,off] ,[[C,A] ,disc,off,off] ,[[C,B],disc, off,off], [[C,D] ,conn,off,off],
[[D] ,off,off,off,off,off] ,[[D,A] ,disc,off,off] ,[[D,B], disc,off,off], [[D,C] ,conn,off,off]}

Half-finished state:
{ [[A] ,off,dial-tone,off,off,off], [[A,B] ,disc,off,off], [[A,C], disc,off,off], [[A,D] ,disc,off,off],

[[B] ,on,off,on,on,off], [[B,A] ,disc,off,off], [[B,C] ,disc, off,on], [[B,D] ,disc,off,off],
[[C] ,off,off,Q旦，off,皿],[[C,A] ,disc, off,off], [[C,B] ,disc,off,off], [[C,D] ,conn,off,off],
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D, C] ,conn,off,off]}

Intermediate state: idle(B),m-cw-transed(C),m-cw(B),m-trans(B,C),
path(C,D),path(D,C),cw-ring-back(A,C),cw-ringing(C,A)

{ [[A],off, 遮 off,off,off],[[A,B] ,disc,off,off], [[A,C], disc,cw-rbt,off], [[A,D] ,disc,off,off],
[[B],on,off,011,on,off],[[B,A],disc,off,off],[[B,C],disc, off,on],[[B,D],disc,off,off],
[[C] ,off,off,on,off,on], [[C,A] ,disc,cw-rgt, off], [[C,B] ,disc,off,off], [[C,D] ,conn,off,off],
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D,C] ,conn,off,off]}

Target state: idle(B),m-cw-transed(C),m-cw(B),m-trans(B,C),
path(A,C),path(C,A),hold(C,D),hold(D,C)

{ [[A],off,off,off,off,off],[[A,B],disc,off,off],[[A,C], 匹皿叫，off],[[A,D] ,disc,off,off],
[[B],on,off,on,on,off] ,[[B,A] ,disc,off,off] ,[[B,C],disc, off,on], [[B,D] ,disc,off,off],
[[C] ,off,off,on,off, 叫，[[C,A]幽皿叫，off],[[C,B] ,disc,off,off], [[C,D], hold,off,off],
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D, C] ,hold,off,off]}

The following STR rules r1 and r2 are generated.
dial-tone(A), idle(B), m-cw(B), m-trans(B,C), path(C,D), path(D,C)

35

dial(A,B):
idle(B), rn-cw-transed(C), rn-cw(B), rn-trans(B,C), cw-ring-back(A,C), cw-ringing(C,A),

path(C,D), path(D,C).

cw-ring-back(A,C), cw-ringing(C,A), rn-cw-transed(C), path(C,D), path(D,C)

flash(C):
path(A,C), path(C,A), hold(C,D), hold(D,C), rn-cw-transed(C)

In the above example the domain dictionary is completely defined concerning the given re-
quirement specification. However, there are cases in which transformations between service
states and model states cannot be performed completely. In such cases, the transformations
are assisted by a service designer.

3.8 Effectiveness and Limits

Here, we clarify the effectiveness and the limits of the proposed specification completion method,
and describe future work. We have presented a requirements acquisition method from an in-
complete requirement specification. Requirement specifications are described by a set of rules,
and the acquired specification agrees with the requirements of the service designer. Most pub-
lished works start with the premise that the requirements analysts are different from the users
of the software systems. However, our method allows users to describe their own requirements
with STR. The proposed method has the ability to correct wrong rules and to supplement rules
for acquiring complete service specifications. If new rules need to be generated, the require-
ment specifications are converted to a communications service model that is an abstraction
of the communications services. The proposed method has a limit, however. If a completely
new requirement specification, i.e., a specification beyond a provided service model, is given, it
becomes impossible to generate rules to supplement the incomplete requirement specifications.
Future work includes providing a generic domain dictionary and generic domain knowledge.

36

Chapter 4

Protocol Synthesis for a Layered
Architecture -Synthesizing Sequential
Communication Protocols

4.1 Graph Representation of Service Specifications

We use the graph representation of an STR rule to generate a communication protocol from
service specifications described by STR. An STR rule can be represented by two graphs. The
initial graph corresponds to the initial state and an event; the next graph corresponds to the
next state. Both the initial graph and the next graph are called rule graphs. Figure 4.1 shows

the graph representation of the rule described in Fig. 1.3.

A rule graph consists of a set of vertices and directed edges. Each vertex has its own name
and some vertices have labels. A vertex is denoted by a circle. The name of the vertex is
written in its circle, and the labels of the vertex are written near the circle. Each edge has
labels that are written near it. An initial graph has a label that shows an event. A vertex

designated by the first argument of this label is called an event vertex.

A vertex that has a label or an edge incident to it is called labeled. Other vertices are called
unlabeled. For each vertex in an initial graph, there must be a path from the event vertex.

The global state for all of the terminals in a communication system is called a system state;
the graph denoting the system state is called a system graph. An STR rule states that the
system graph's subgraph that is isomorphic to the initial graph of the rule should be replaced
by the next graph of the rule. Figure 4.2 illustrates how an STR rule is applied. If there are

．．
rmgmg

R二R三otransition

C - -
dial-tone idle idle

ring-back

R三互
ping

Figure 4.1: Graph representation of an STR rule.

37

Event: u

゜
゜3-—ーヤ0----0

a

Initial system state

I
Global state
transition

゜

u
rl I .--.0----0

a C

r2

STR rules

゜
゜a

---—て）0---
a ゜Next system state

Initial state Next state

Figure 4.2: Application of STR rules.

multiple subgraphs isomorphic to the initial graph, an arbitrary maximal subgraph is selected.

4.2 Problem

Let g = (V, E, v0) be a rooted labeled directed graph that has a set of vertices V, a set of
directed edges E and a root vertex v0. For each vertex of the rooted directed graph, there is a
path from v0 to the vertex. The set of vertices of g is denoted by V (g). The set of edges of g

is denoted by E(g). The root of g is denoted by root(g). A labeled directed graph g is denoted
by g = (V, E) with a set of vertices Vanda set of edges E.

Definition 1 (Subgraph isomorphism)

Let g = (V, E) be a labeled directed graph and g1 = (孔E1,v~) be a rooted labeled directed
graph. The graph g contains a subgraph g'= (V', E1, v0) isomorphic to g1 if and only if there

exist subsets V'C V and E'C E such that v゚ EV',IV'I = l½I, IE'I = IE1I, and there is a

38

one-to-one mapping f : Vi —• V'that satisfies the following conditions.

f(vf)=v゚
(x, y) E E1 ==> (f(x), f(y)) EE'
(J(x), f(y)) EE'=⇒ (x, y) E E1

a(x) C a(f(x))

fJ((x, y)) C (J((f (x), J(y)))

where a is a function to get a set of labels attached on a vertex and (3 is a function to get a set

of labels attached on an edge.

If g has a subgraph isomorphic to g1, then we write g1こg.

Definition 2 (Spanning path)

For a rooted labeled directed graph g, a spanning path sp(g) is defined as a path that satisfies

the following conditions.

1. The ve仕icesof sp(g) make up the set of labeled vertices in g.

2. The root of sp(g) is root(g).

3. If (u, v) is an edge of sp(g), then there are paths in g from root(g) to u and from root(g)

to v such that every vertex of the paths except v appears before u in sp(g).

The problem to be solved is formally defined as follows.

Definition 3 (Problem)

Let R = {凡…，rn}be a set of STR rules. Let G = {g1, …，珈}be a set of initial graphs of R.
Let G'= {g~, …, g~} be a set of next graphs of R. Let g = (V, E) be a system graph.

Find a pair of graphs (sg(v0,g),gi) such that sg(v0,g) is isomorphic to gi E G, and there

is no graph isomorphic to gk E G such that gi is isomorphic to a subgraph of 9k. Then change
sg(v0, g) to be isomorphic to g~E G'.

The following lemma is satisfied for subgraph isomorphism. We use this lemma to construct

a distributed algorithm.

Lemma

Let g = (V, E) be a labeled directed graph and g1 = (V1, Eぃ v~) be a rooted labeled directed

graph. Let p be a spanning path of g1 with the set of edges {(u1, 四）， ・・・， (Um-1, Um)} where U1

= v~, and Vi = {u1, ・・・,Um, Um+l, ・・・，叫}.The graph g contains a subgraph g'= (V', E', v0)

isomorphic to 91 if and only if IV'I = I Vi I, IE'I = I E1 I, and there is a mapping f : V1ー→ V'
that satisfies the following conditions.

For any labeled vertices ui, Uj in Vi and unlabeled vertices uk, Uz in Vi,
f(u~) = v0,
Ui =/= Uj⇒ !(附） =I= f(uj),

!(附） =I=!(叫，
Uk =/= Uz⇒ !(匹） =I= f(uz),
(uゎ附） E E1⇔ (f(ui), J(ui)) E E',

a(ui) C a(f(ui))

/J((uゎ'l1、j))(こ /3((!(附），f(uサ））
j]((ui, Uk)) C (J((f(ui), f(uk)))

39

This lemma implies that we can determine the applicability of a rule by traversing along its
spanning path.

Next we give the definition of numbering that enables an optimization of communication
for querying if a set of initial graphs are included in a system graph. This numbering defines a
spanning path in each initial graph.

Let g(r1), ・・・， g(rm) be initial graphs with event e. For a set of vertices V defined by
V(g(r1))U・ ・ •UV(g(rm)) and a natural number n, let f: Vー→{l,• • •,n}u{入} be a numbering
function that satisfies the following six conditions:

1. If v(EV) is a labeled vertex, then f(v)E{l,・ • ・,n}; otherwise f(v)=入

2. f(root(g(r1)))=・ ・ ・=f(root(g(rm)))=l, where root(g(ri)) represents the root of g(ri).

3. For any two vertices u,v(EV(g(ri))), u=f.v implies f(u)=f.f(v).

4. For any two vertices uEV(g(ri)), vEV(g(rj)), let V1, V2 be two sets of vertices on
path(root(g(ri)), u) and path(root(g(rj)), v), where path(root(g(rk)), w) is a directed path
from root(g(rり） tow in g(rk)-Then, J(u)=f(v) implies that f(V1)=f(V2).

5. Let u,vEV(g(ri)), w,xEV(g(rj)), uvEE(g(ri)) and wxEE(g(rj)). If J(u)= f(v) and J(v)=f(x),
then (3(uv)~(3(wx) or (3(wx)~(3(uv), where (3(yz) represents the label of an edge yz.

6. If J(u)=f.f(v) and xis a vertex different from u and v, condition 3 above does not hold
for an arbitrary function g such that g(u)=g(v) and g(x)=f(x).

Figure 4.3 shows an example of numbering to vertices in initial graphs rl, ・ ・ ・, r4.

rl: r2:

g

r3:

b

f

a

B
 r4:

f
 ~7

Figure 4.3: An example of numbering to vertices

The following properties hold for the above numbering.

40

Property 1 Assume that an initial graph r is a subgraph of a system graph G. It can be

decided that r is a subgraph of G by traversing vertices in the order of numbers assigned by the

above numbering function.

Property 2 Let R be a set of initial graphs with the same event, and r1 and r2 be elements of

R. Then, there is a numbering such that the set of numbers to the vertices of r1 is a subset of

numbers to the vertices of r2.

4.3 Definitions

Protocol synthesis involves generating a distributed algorithm to find an isomorphic subgraph

in a system graph. Each protocol entity holds a local state of a terminal. Protocol synthesis

is defined to derive protocol entity specifications with local states from communication service
specifications described as global state transition rules.

When a protocol entity receives an input from a terminal or some other protocol entity, it
determines a rule to be applied or sends another protocol entity a request to inquire about a
surrounding global state determining an applicable rule. This communication for state inquiry
is performed sequentially. Finally, a rule is determined. The rule is informed about the protocol

entities that have had inquires about their states. Then each protocol entity is made to change
its state according to the rule.

A spanning path is determined for each rule. The communication for state inquiry goes
along a spanning path. If there are isomorphic subgraphs in multiple initial graphs, paths
are determined at the same time regardless of whether a system graph contains a subgraph

isomorphic to the subgraphs. This optimizes the communication. For this purpose, we utilize
the spanning path of a tree generated by overlapping spanning trees of the initial graphs of an
event. This spanning path is called a provisional communication path.

A synthesized protocol communicates along provisional communication paths. We give
the following definitions. Note that sometimes a vertex and a process are used for the same

meanmg.
Let C(e) denote a set of initial graphs with an event e.

Rule inclusion graph Let s be a connected subgraph that has an event vertex and is isomor-

phic to subgraphs of more than one element in C(e). Let D(s) denote the set of elements

of C(e) that haves as their subgraphs. An ordered pair< s, D(s) > is a Yertex of the rule
inclusion graph of C(e) if a graph s'generated from s by adding an edge is a subgraph

of an element of C(e), and D(s) =I-D(s'). An ordered pair< r, D(r) > is also a vertex of

the rule inclusion graph of C(e) if r EC(e). There is an edge from< s, D(s) > to < t,

D(t) > iff (1) s亡 t,and (2) there is no other element < u, D(u) > such thats亡 uand

u亡t.

Rule inclusion graphs are used for determining in what order the inquiring rules should be

applied. If there is an edge from < s, D(s) > to < t, D(t) > in a rule inclusion graph, then

graphs is examined before graph t regardless of whether they are included in a system graph.

Figure 4.4 gives initial graph examples. Figure 4.5 shows the rule inclusion graph for the set

of initial graphs in Fig. 4.4. Rule graph rl is the maximum subgraph common to rule graphs

r2 and r3, and the maximum subgraph of rule graph r4 is rule graph r2. Consequently, there

are four vertices < rl, { rl, r2, r3, r4 } >, < r2, { r2, r4 } >, < r3, { r3 } >, and < r4, { r4
} > in this rule inclusion graph.

41

+ B
rl) C}三

D

r2)

r3)

r4)

u

E

u: event

Figure 4.4: Examples of initial graphs.

<rl, {rl ,r2,r3,r4}

<r3,{r3 }>

<r4,{r4 }>

Figure 4.5: Example of a rule inclusion graph.

42

Rule covering tree Let gr= (vr, er, v0) be the initial graph of a ruler. Let tr= (wr, fr, v0)
be the spanning tree of gr. A rule covering tree Cr is defined as follows:

The set of vertices of Cr is Vr, and root(cr) = v0.

Edges from the same vertex are arranged clockwise in lexicographic order of edge labels.
The set of edges of Cr is the union of er and the edges satisfying the following two
conditions:

1. If a leaf vertex of tr has a label, there exists an edge whose initial vertex is the leaf
vertex of tr.

2. An edge ab of Cr has a label of an ordered pair. The first element of the label is the
label of a in Vr, and the second element is the label of ab in er.

A rule covering tree is uniquely d~termined for a spanning tree of an initial rule graph. A
rule covering tree must satisfy the following two conditions to define a rule overlapping tree.
Let s be the spanning tree of the initial graph for rule r, and t a rule covering tree generated
from s.

(l) sis an unlabeled subgraph of the initial graph for ruler.
(2) Let u be a vertex of s. Assume g亡hfor the two vertices g and h in the rule inclusion

graph that has a vertex whose first element is r. If u is a vertex of h, and u is not a vertex of
g, then an edge from one of the vertices in g to u is included.

Figure 4.6 shows rule covering trees for the initial graphs in Fig. 4.4.

Rule overlapping tree A rule overlapping tree for C(e) is generated by overlapping graphs
in C(e). The tree satisfies the following conditions.

1. All the roots of the initial graphs in C(e) are overlapped.

2. For each element gin C(e), there is a subgraph isomorphic tog.

3. If vertices u and v in rule covering trees s and t, respectively, are overlapped, then
every vertex u'between root(s) and u is overlapped by the vertex v'int satisfying the
conditions that its depth is the same as that of u'and v'is a vertex between root(t) and
v (Fig. 4.7).

4. If edges e and f are overlapped, then the labels of e and f are the same or those of
one are included in the other.

5. The overlapping is performed in lexicographic order of the labels of edges with the
same initial vertex.

A rule overlapping tree is used for examining at the same time whether the common sub-
graphs in multiple rule graphs are included in a system graph.

．．
Prov1s10nal commumcation path The provisional communication path for C(e) is defined

as a path whose vertices are vertices in the rule overlapping tree of C(e) such that:

1. The initial vertex is the event vertex.

2. Let g and h be two graphs constituting the first elements of two vertices in the rule
inclusion graph for C(e). If g亡 h,u is a vertex in both g and h; if v is not a vertex of g
but a vertex of h, then u appears before v.

43

<{A,u},{a}> <{B },¢>
rl) 〇 1--Q I:

<{B },{b}>.

<{A,u},{a}> r✓<{B},{c}>
r2) 0 鳳

r3) 〇<{A,u},{a}>=-

<{B},{b}~

<{C}, ゎ＞

<{D},'P >

<{F}, わ＞

<{C}, か＞

r4) 〇<{A,u},{a}>に
<{B},{c}> <{D},{e}> <{E},¢>

ベ0 le

Figure 4.6: Examples of rule covering trees.

root(.s)

overlapped overlapped

root(り

Figure 4. 7: Overlapping of vertices.

44

3. Leth be a graph corresponding to a vertex in the rule overlapping graph for C(e). For
any graph g corresponding to a vertex in the rule inclusion graph for C(e) such that gこ

h, u and v are assumed to be vertices in h, but noting. In h, if u is a vertex in the path
from the event vertex to v, or there is a vertex w in the path from the event vertex to u
such that w is in the path from the event vertex to v and w is not a vertex in g, then u

appears before v.

4. A unique label is attached to each edge.

We note that the vertex sequence of the provisional communication path for C(e) includes
the sequence of a spanning path for each element of C(e) as a subsequence. This implies that
a state inquiry along a provisional communication path may determine a rule to be applied.

Inquiry message An inquiry message is a unique message for each edge between adjacent
vertices in a provisional communication path. In the synthesized protocol, an inquiry
message has the following information in addition to its message name.

Actual communication path An actual communication path is a provisional commu-
nication path whose vertices are actual process identifiers to be inquired. Each process
decides which process to send an inquiry message by using this information.

Temporary decided rule The rule with the highest priority among the rules satisfying
their rule application conditions, i.e., their initial graphs are included in the system graph.

Rule candidates The remaining rules to be checked for applicability. When a pro-
cess receives an inquiry message it screens rule candidates included in a received inqui巧
message by checking its local state.

Connection information Process information necessary for connection tests.

Visited processes A sequence of visited processes after an event occurred.

Temporary process sequence The process sequence for the current temporary decided

rule.

Branches A branch consists of a process identifier and an inquiry message. When a
process receives an inquiry message, the process compares its state with a subgraph of
the rule overlapping tree corresponding to the inquiry message, in order to obtain a new
inquiry message and branches (i.e., actual communication paths). This subgraph is the
intersection of the rule overlapping tree and rule covering trees corresponding to rules
contained in the rule candidates of the inquiry message. If plural actual communication
paths to be inquired are obtained, the remaining actual communication paths except
arbitrary ones are stored as elements of inquiry messages in branches. Process identifiers
are determined as the processes to which the obtained inquiry messages are to be sent.

A provisional communication path shows inquiry messages used for examining whether rule
graphs are included in a system graph, and their communication paths. An inquiry message
usually implies multiple rules to be checked as to whether they are included in a system graph.

Figure 4.8 shows the rule overlapping tree for the initial graphs in Fig. 4.4 and its provisional

commumcat1on path.

Response message A message denoting whether to apply a rule or nothing at all. When a rule
is indicated, it contains information on which process the received message corresponds

to.

45

Rule overlapping tree

<{C}, rfi>
③ 量

① <{A,u},{a}>仁 (2

<{E}, わ＞ ..

Provisional communication path

①』止ぺ②ユ旦-⑤ユ立-@ユ~ユ旦→⑥

Figure 4.8: Example of a rule overlapping tree.

Figures 4.9 and 4.10 show actual communication paths when the graphs are included in a
system graph. The dotted arrows represent communications between processes and the inquiry
messages attached to them.

In the example of Fig. 4.9, inquiry messages are communicated along a provisional com-
munication path. Process A sends B a message ml(rl, r2, r3, r4) that implies rules rl, r2, r3
and r4 are rule candidates. When B receives it, B determines that rule rl is included in the
system graph, and rules r2, r3, and r4 are to be checked for their applicability. Then B sends
Ca message m2(r2, r3, r4). When C receives this message, C sends m3(r2, r3, r4) to D which
is included in the received message as an actual communication path. In the end E receives
a message m4(r3, r4) and determines that rule r4 is included in the system graph. Since r4
is not included in any other initial graph, E determines that rule r4 is to be applied. Then E
sends processes A, B, C, and D a response message indicating that each process will change its
state according to rule r4. E also changes its state.

In the example of Fig. 4.10, inquiry message are communicated along a provisional commu-
nication path but some intermediate processes are skipped. When B receives a message ml(rl,
r2, r3, r4), B determines that rule r1 is a temporary determined rule, rules r2 and r4 are not
included in the system graph, and rule r3 is to be checked as to its applicability. In the end F
determines rule r3 is the rule to be applied.

Figure 4.11 shows the rule overlapping tree and its provisional communication path for the
non-tree initial graphs in Fig. 4.3. Figure 4.12 illustrates provisional communication paths and
inquiry messages for the rules in Fig. 4.3.

State transition segment One or two state transition segments are generated for each la-
beled vertex in the initial graph of a rule.

• When a vertex is the last vertex in a provisional communication path, a state tran-

46

D
m4(r3,r4) E
···············►、

Figure 4.9: Example of communications along a provisional communication path.

E

Figure 4.10: Example of communications skipping intermediate processes.

Rule overlapping tree

<{A, u}, {a}>
2

<{B}, {j}>

<{A, u}, {f}> 3 f {C}, {d,g,h}>
(5

<{D}, か＞

<{B}, {c}>

Provisional communication path

＞

＞ヽ.l

低”ヽc

｛

⑥
|
ド
＇

①ユ止べ②ユ主--~ユ吐-Gr皿L.@

Figure 4.11: Example of a rule overlapping tree for complicated rules.

47

C

rl: 三三三二二ニミ
．．．竺-~!!...... _ b●●●●竺:.D.→．．．．．．．．．．．．．．．．．．竺.~!?.................... _

r2三
ml(r2) m2(r2) m3(r2)

····················• ・・・・・・・・・・・・・・・・・・・・-・・・・・・・・・・・・・・・・・・・・・ 鳴~

r3:

三ml(r3) m2(r3) m3(r3)
··················••• ・・・・・・・・・・・・・・・・・・・ ー► ・・・・・・・・・・・・・・・・・・・・・-

r4:

f

ml(r4) m3(r4) m5(r4)
···················•• ...。··•·► ・・ 嘩····•·►

Figure 4.12: Communications for identifying rules in Fig. 4.3.

48

〇:state

亡ヱ：receive

に=:): send

Figure 4.13: State transition segments.

sition segment is generated such that it receives a predetermined inquiry message
in the provisional communication path; it sends a response message and changes to
the next state determined by a rule.

• When a vertex is not the last vertex in a provisional communication path, two sepa-
rate state transition segments are generated. One segment receives a predetermined
inquiry message in the provisional communication path, sends another inquiry mes-
sage along the provisional communication path, and then changes to the next state.
The other segment receives a response message that includes a determined rule and
changes to the next state.

Connection test A connection test is used to identify graphs that include plural vertices in
a provisional communication path. Let i and j be two vertices in a provisional communi-
cation path, and i is nearer to the event vertex than j. The connection test examines if
the edges from i excluding the edge in the provisional communication path are connected
to vertices j or vertices connected by edges from j.

Figure 4.13 shows state transition segments of vertex B obtained from messages in the
provisional communication path. Connection tests are omitted in this figure.

49

ー a

2

c

3) ① a

b

d

b

4

Figure 4.14: Two graphs requiring a connection test for identification.

① a

ペ〇

Figure 4.15: Subgraphs identifiable with local states.

Figure 4.14 shows two initial graphs that need a connection test to distinguish them. The
provisional communication path in these two initial graphs is the path 1,2,3. Figure 4.15 shows
subgraphs that can be identified by processes 1 and 3. The two initial graphs in Fig. 4.14 are
distinguished when process 3 receives a message that edge bis connected to process 4.

4.4 Protocol Synthesis Algorithm

The protocol synthesis algorithm consists of the following six steps.
(1) Classification of rule graphs
Classify rules into sets of rules for the same event. Let C(e) be the set of a rule graph with

an event e. For each rule graph set we initially apply steps 2 to 5; finally, step 6 is applied.
(2) Generation of rule inclusion graph
Generate a rule inclusion graph for each rule graph set.
(3) Generation of rule overlapping tree
Generate a rule overlapping tree.
(4) Determination of provisional communication path and inquiry messages
Determine a provisional communication path and inquiry messages from the rule overlapping

tree.

(5) G enerat10n of state transition segments
Generate state transition segments for each vertex of a rule covering tree corresponding to

each rule r. The initial state of a state transition segment is the first element of the label
attached to an edge incident from the vertex in the rule covering tree.

(6) Synthesis of process specification

50

Synthesize a state transition segment from the initial state until no new state is generated.
Assume a new state s is generated. Collect all state transition segments whose initial state is
included in s as a subgraph. The collected state transition segments are synthesized as follows.

• If two kinds of state transition segments correspond to the final vertex of an initial graph
in the provisional communication path, a middle vertex is included, and their received
messages are the same, the following synthesis occurs.

The next states of these state transition segments are changed to the same states as their
initial states. In the synthesized process specification, the rule candidates of the inquiry
message to be sent are the intersection of the rule candidates of the received inquiry
message and the set of rules whose state transition segments are synthesized. Other
information is obtained as described in the above preliminaries.

-When the resulting rule candidate set is not empty, the synthesized process sends the
obtained inquiry message to the nearest process in the provisional communication
path following the rules contained in the inquiry message.

-When the resulting rule candidate set is empty and the branches in the received
message are empty, two possible conditions exist: if the temporary decided rule is
contained in the received inquiry message, the rule should be applied; if the tem-
porary decided rule is not contained, a special response message is sent to all the
visited processes.

-When the resulting rule candidate set is empty but the branches in the received
message are not empty, the process sends an inquiry message to find a more superior
rule than the temporary decided rule.

• If the above does not occur, the following happens.

The collected state transition segments are synthesized as they are. Each state transition
segment is synthesized as described above. Figure 4.16 illustrates how collected state
transition segments are synthesized into a process specification.

In the synthesized protocol specification, the rule candidates are screened as communication
progresses, and then a rule to be applied is determined. Once a rule is determined to be applied
at a process, the process sends response messages indicating the determined rule to the visited
processes. There are two types of response messages: a message indicating a rule and no rule
to be applied. A process that receives a response message changes to the state designated by
the state transition segment. corresponding to the determined rule. A process that receives a
no rule message returns to the state prior to receiving the inquiry message.

4.5 Example

We explain an example of process specification generation. Figure 4.17 expresses a service
specification. In this service we need two terminals: "data sender terminal" and "data receiver
terminal". The data sender terminal starts data transmission by an event "start" when both
the sender and the receiver which is specified by "start" are in the state "idle". The sender
can always stop sending data by an event "stop". The receiver can always request the sender
to pause sending data by an event "pause" and to resume the sending of data by an event

51

三
l

／ ロif tつ"u tift:>~1 コ",,

三':9,

．↓

Figure 4.16: Synthesis of state transition segments.

52

r1) idle(A),idle(B) start(A,B):
sending(A,B),receiving(B,A).

r2) sending(A,B),receiving(B,A) stop(A):
idle(A),idle(B).

r3) receiving(A,B),sending(B,A) pause(A):
r-wait(A,B),s-wait(B,A).

r4) r-wait(A,B),s-wait(B,A) resurne(A):
receiving(A,B),sending(B,A).

Figure 4.17: STR description for data sendi1;1g protocol.

pause(B)

Figure 4.18: Global state transition diagram for data sending protocol with pause function.

"resume". Figure 4.18 shows a global state transition diagram for this data sending protocol
with pause function.

We show the graph representation for the service specification in Fig. 4.17.

In this example each rule makes a rule overlapping tree. Using this graph representation
and the rule overlapping trees, we can get state transition segments which are parts of the
objective protocol entity specification. Figure 4.20 shows state transition segments for the STR
rules in Fig. 4.17. The messages used in inter-process communication are generated from the
provisional communication paths.

Figure 4.21 shows a protocol entity specification synthesized from state transition segments
in Fig. 4.20. In Fig. 4.21 the messages "ml", "m2", "m3", and "m4" represent request
messages, and the messages "rl", "r2", "r3", and "r4" represent response messages. In this
specification "norule" send and receive are omitted. "Norule" is a special response message to
indicate that there is no rule to be applied. In the generated protocol entity specification, when
the protocol entity receives an unexpected request message, the protocol entity is assumed to
send the message "norule" to the sender of the request message.

53

’

rl) 0
idle

start sendin

①→① ~ 土℃
idle

rece1vmg

r2)

stop

① ~0 rece1vmg idle
①幽

pause
r3) ① r-wait

sending
B → 0コ．仁①

s-wmt

r esum e ・ ・ へ r-wait
r4)~ コで）→ A

rece1vmg
B

s-wait
。コ仁。

sending

Figure 4.19: Graph representations of STR descriptions for data sending protocol.

54

sts(idle, start) sts(sending, stop) sts(receiving, pause) sts(r-wait, resume)

> S三stop(A)'>-pause(A) -

一 -

I > resume(A) start(A,B)

ニエ
~idle(A)I ~ m2(1らl~ -

>I m3(r3) >I m4(r4)

sts(idle, rl)

茎
sts(receiving, r3) sts(r-wait, r4)

こ
I I 戸r1 -< r2 ＜ ＜ r4

sts(idle, m 1 (r 1)) sts(receiving, m2(r2)) sts(sending, m3(r3)) 亨sts(sヽwait,m4(r4))

idle(A) __,) 安 e1vmg(A,H) 三
ml(rl) m2(r2) m3(r3) / m4(r4)

こ三
r2 r3

"
r4

I

こ r-wait(A,B) 三

Figure 4.20: State transition segments for data communication protocol.

55

start(A,B) rl ml(rl)

rl

Figure 4.21: Protocol entity specification for data communication protocol.

56

4.6 Complexity of Communication Tirne

The subgraph isomorphism problem is one of NP-complete problems. We give the number of
subgraphs in a graph. Let D be the maximum degree of vertices in a system graph G, d be the
maximum degree of vertices in an initial graph g, and l be the depth of g. The spanning path
of g is used to search for g in G. The number of graphs isomorphic to gin Gare limited to the
following:

D凡(D凡）d ... (D凡）dl-1 = (D凡）£!.=.U.!.

It follows that theoretically there will be a combinatorial explosion when searching for an
initial graph to be applied in a system graph. However, in an ordinary communication service,
the scope to be searched is usually not large. Therefore, the synthesized protocol usually works
within a practical time. This will be shown by an experiment in Chapter 7.

57

58

Chapter 5

Protocol Synthesis for a Layered
Architecture -Synthesizing Parallel
Communication Protocols -

5.1
. . .

Prehm1nar1es

Before describing a distributed algorithm for communication services written in STR, we give
some definitions of graphs.

(1) spt(g): A spanning tree of g. If g is a rooted graph then the root of spt(g) is the same as
root(g).
(2) st(v, t): A subtree of a tree t. The root of st(v, t) is v.
(3) sg(v, g): A subgraph induced from a subtree st(v, spt(g)).
(4) N(v): A neighborhood of v. N(v) is a subgraph of g such that the set of vertices of N(v)
is constructed from v and all adjacent vertices of v, and the set of edges of N(v) is constructed
from all edges incident to v.
(5) r(v) = {wl(v,w) E E(spt(g))}.
r (v) shows all children of v in spt (g).

Communication time complexity
The communication time complexity is the maximum possible number of time units from start
to completion of the algorithm, assuming that the inter-message delay and the propagation
delay of an edge between processes are at most one time unit of some global clock. This as-
sumption is used only for the purpose of evaluating the performance of algorithms (62].

5.2 Protocol Synthesis Algorithm

The following lemma is satisfied for subgraph isomorphism. We use this lemma to construct a
distributed algorithm.

Lemma
Let g = (V, E, v0) and g1 = (½, E1, v~) be two rooted graphs. Let SG be a set of subgraphs of

59

g and SG1 be a set of subgraphs of g1 as follows.

SG = {N(v0)} U {sg(v,g)lv E f(v0)},

SG1 = {N(vf)}u{sg(v,g1)lvE買vf)}, ISGI = ISG叶

If and only if the following conditions are satisfied, then g1 is isomorphic to g.
(1) For each sgi E SG, there exists an isomorphic graph sg1i E SG1・

(2) Let H be a set of isomorphic mappings in (1) such that 一 oowmg expression 1s satisfied. H={h北： V(sgi) V(sgli)}, then the f 11 ・

Vv EV, ¥/hi, hi EH, hi(v) =柘(v)

5.2.1 Local State

A local state has a set of adjacent process identifiers and a set of primitives representing
the relationships between the adjacent processes. A local state also has a set of primitives
representing a corresponding terminal state.

Let g be a graph representing a global state; then a local state in the global state is a
neighborhood of a vertex of g. A local state scan be represented by a state identifier (sid) and
a set of pids of adjacent processes.

s = (sid, P), P = {pid。,pid1, ... pidk}

where pid。showsthe self identifier.

5.2.2 Message

We use the following three kinds of messages for inter-process communications.

(1) Request message
A request message is used to ask for a global state around a neighborhood process. A
request message consists of a message identifier (mid). The mid of a request message req
implies a set of subgraphs of the initial graphs to be checked. The set of subgraphs is
denoted by G(req).

(2) Response message
A response message is used for responding to a request message and consists of a mid and
a set of pids. A response message res implies a set of graphs G(res) and a set of pids as

follows.

G(res) = {g1, …保},P(res) = {P1, …凡},pi= {pidiO, pidil, ... pidit}

where 9i is a subgraph of the initial graph. The Pi gives an isomorphic mapping hi
between 9i and a system graph as follows.

h凸） = pidij, Vj E V(gi)

(3) Order message
An order message is used for notifying of a local state transition according to an STR
rule and consists of a mid. The mid of an order message ord implies a:o. STR rule and a
vertex in the rule graph.

60

process

｛

STATE state; MESSAGE message;

for (;;) {

receive(message);
state= bpb(state, message);

｝

｝

Figure 5.1: Distributed algorithm.

5.2.3 Algorithm Outline

A process behavior after receiving a message m at state s is called a basic process behavior and
is denoted by bpb(s, m). The distributed algorithm is constructed from a set of basic process
behaviors as shown in Fig. 5.1.

The inter-process communications are done as follows.

bpb(s, ev): When a process receives an event ev at state s, this determines a set of graphs
G(s, ev) whose elements may be isomorphic to subgraphs of a system graph. For each adjacent
process whose pid is recorded in s, a set of graphs G(pid, s, ev) is determined. Consequently,
the process sends a message req to the adjacent process and the message implies G(pid, s, ev).

A response message res from the adjacent process implies a set of graphs G(res) c G(pid, s, ev).
After all response messages are received, a set of graphs G'(s, ev) c G(s, ev) is determined by
analyzing the messages. Then, the process chooses a graph g in G'(s, ev) and sends order mes-
sages to the related processes to achieve a global state transition according to the STR rule
whose initial graph is isomorphic to g.

bpb(s', req): When a process receives the message req at state s', this determines a set of
graphs G(s', req) whose elements may be isomorphic to subgraphs of a system graph. For each
adjacent process, a set of graphs G(pid, s', req) is determined. Consequently, the process sends
a message req1 to the adjacent process and the message implies G(pid, s', req).

A response message res'from the adjacent process implies a set of graphs G(res') c
G (pid, s', req). After all response messages are received, a set of graphs G'(s', req) c G (s', req)
is determined by analyzing the messages. Then, the process returns a response message res,
which implies G'(s', req).

bpb(s, ord): When a process receives an order message ord, it changes its state according to the
STR rule implied by ord.

A basic process behavior bpb(s, m) is constructed from four elements as follows.

(1) Send request messages. (2) Receive response messages.

(3) Determine a set of subgraphs. (4) Send a response message.

Figure 5.2 illustrates how an STR rule is determined by inter-process communications.

61

G

.-・・・ :、． ，
;ヽ.... .: ．．

．ャ•
凡．．．

.. •:::: ・・・
G(s, ev) /、/G(pid,s, ev)

凡．．．

ev ―o
/f req

•

．．．．．．

・・ク:f.:--)
・ダ・・・
．ャ・

G(s', r_e9)'G(pid, s', req)

• ..-/

0 ..
req

， て。
res res ’

choose

:-・・・・・・G(res)
':'

G'(s, ev)

↓
rule

←―可 r・・・・
G'(s', req)

G(res')

ord

・・・・・・・ ．．．．．．．．．．．．

··•······ ,.

Figure 5.2: Inter-process communications.

5.3 Graph Analysis

In the distributed algorithm, a process searches for a set of subgraphs of rule graphs. To define
this set of subgraphs, we analyze rule graphs.

5.3.1 Graph Resolution

A resolution tree is constructed by dividing the initial graph of an STR rule as follows.

Resolution tree
Let g and spt(g) be an initial graph and a spanning tree of g. Then g is split into its subgraphs

as follows.

g = N(vo) U sg(v1,g) U ... sg(vm,9)

where v0 is the root of g and vi, …, Vm are children of v0. Each sg(vi,g) is a subgraph of gin-
duced from st(vi,spt(g)). Each subgraph sg(vi,9) is also split into its subgraphs. A resolution
tree of g called rt(g) is constructed from g and spt(g). There are three kinds of nodes in rt(g):

an event node, edge nodes, and neighborhood nodes as follows.

{1) Event node
An event node consists of the event of a rule and has one child. The event node is the root of

a resolution tree, and the child of the event node is a neighborhood node corresponding to the

root of g.

(2) Edge node
An edge node edv corresponds to an edge of spt(g) and is constructed from two kinds of elements

邸 follows.

edv = (LABEL(edv), sg(edv))

62

LABEL(edv) is a set of labels attached to the edge. sg(edv) is an induced subgraph sg(v',g)
when v'is the terminal vertex of the edge in g. The children of the edge node are neighborhood
nodes.

(3) Neighborhood node
A neighborhood node nv corresponds to a vertex v of g and is constructed from three kinds of
elements as follows. The children of the neighborhood node are edge nodes.

nv = (N(nv), sg(nv), F(nv))

where N(nv)=(V0, E。)is a neighborhood of v(N(v)), sg(nv)=(V, E) is an induced subgraph of
g(sg(v,g)), and F(nv) is a set of mappings on Vas follows.

Mappings on a set of vertices

F(nv) = {f(nv), f(ed附），…J(edvk)}
f(ed防）： V-→ (¼u {入｝）
f(ed叫(v)= V (if V E 1/4),

入 (otherwise)

where edvi is a child node of nv. The graph sg(edvi) = (¼, Ei) contained in edvi is a subgraph
of sg(v, g).

Let R be a set of STR rules and G be a set of initial graphs of R. For each graph g E G, we
construct a resolution tree rt(g). The set of resolution trees for the graphs in G is denoted by
RT(G). The spanning trees used for generating resolution trees of RT(G) satisfy the following
condition.

咋，9iE G, (gi亡 9j⇒ spt(gi)亡 spt(gi))

5.3.2 Graph Synthesis

A synthesis tree SYT(G) is constructed by synthesizing the resolution trees in RT(G) into one
tree.

Synthesis Tree

A synthesis tree consists of four kinds of nodes as follows.

(1) Root node
A root node has no internal structure. The children of a root node are event nodes.

(2) Event node
An event node ev consists of two elements. One is an event denoted by event(ev) and the other
is a set of graphs denoted by G(ev). The children of an event node are neighborhood nodes.

ev = (event(ev), G(ev))

(3) Edge node
An edge node edv consists of two elements. One is a set of labels LABEL(edv) and the other
is a set of graphs denoted by G(edv). The children of an edge node are neighborhood nodes.

edv = (LABEL(edv), G(edv))

63

(4) Neighborhood node
A neighborhood node nv consists of two elements. One is a neighborhood N(nv) and the other
is a set of graphs denoted by G(nv). For each graph in G(nv), a set of mappings is attached.
These mappings are similar to the nodes in a resolution tree. The structure of nv is described
as follows.

nv

G(nv)

SGi(nv)

(N(nv), G(nv))

{SG1(nv), …SGk(nv)}

(sgi(nv), 凡(nv))

For each rooted graph sgi(nv) = (½, Ei), the neighborhood of the root is isomorphic to the
neighborhood N(nv) = (½0, EiD)-

For each child node of nv, there is a corresponding mapping in凡(nv).

~(nv) = {fi(nv), fi(ed附），…fi(ed叫｝

where edvi is a child node of nv.
In the set of graphs G(edvj), there is a graph S9ii = (烏恥） isomorphic to a subgraph of

部 (nv).The fi(ed叫 isa mapping as follows.

fi(ed巧）：¾-(均 u{入｝）
fi(ed巧）（叫＝附 (ifthere is a corresponding vertex in怜），

入 (otherwise)

The graph sgij is determined by sgi(nv) and edvj, so it is denoted by sg(sgi(nv), edvj)-Figure
5.3 illustrates a synthesis tree.

Synthesis Tree Construction

Let G be a set of initial graphs of STR rules, and Gk = {g1, …gk} be a subset of G. Then,
synthesis tree SYT(G) is constructed recursively as follows.

(I) SYT(G1)
Synthesis tree SYT(G1) is constructed by creating a root and an edge that connects the root
with rt(g1),

(II) SYT(Gk+1)
SYT(Gい） is constructed from SYT(Gk) and rt(gk+I) as follows, where Gk+I = Gk U {9k+i}-

Let ev, nv, edv be an event node, a neighborhood node, and an edge node of SYT(G砂 Let
evk+I, nvk+I, edvk+I be an event node, a neighborhood node, and an edge node of rt(gk+1),

(1) Event node synthesis
Compare events in evk+I and ev.

If ev and evk+I have the same event, then add 9k+I to G(ev), and for each nvk+1 E r(evk+i)
and nv E r(ev), synthesize st(nvk+1, rt(gk+1)) with st(nv, SYT(Gり） as described below in (2).

If any event node in EVENT(G砂doesnot have the same event as evk+I has, then add
rt(gk+I) to root(Gサ

64

nvl

．．．

•••• ヽ・・・・

．．．．

••••••
• ••• ．．．．

nv

N(nv)
N(nvl)

ev

event(edv)

sgl(edv)
sg2(edv)

j

•••••
`

．．．
 ．．
 ．．．
 ．．．． ．
． ．
．． ．．
 ．．．
 ．．．
 ．．．． ．
． ．．
． ．．
 ．．．
 ．．．
 ．．
 ．．．
 ．．．

.
.
.
 1

•.. ．

sgl(nv)

fl(nv)
fl(edvl)
fl(edv2)

~
sg2(nv)

j2(nv)
j2(edvl)
j2(edv2)

edvl

LABEL(edvl)

sgl(edvl)
sg2(edvl)

sgl(nvl)

N(nv2)

）

2

＞
 n

‘、,`l

•••••••••••••• g

s

LABEL(edv2)

sgl(edv2)
sg2(edv2)

！
nv3

N(nv3)

sgl(nv3)

sg2(nv3)

Figure 5.3: Synthesis tree.

65

(2) Neighborhood node synthesis
Compare neighborhoods in nvk+l and nv.

If N(nv) is identical to N(nvk+1), then synthesize nvk+I with nv as described below in (2-1).

If any node in r(ev) does not have N(nvk+i), then add st(nvk+I, rt(gk+1)) to ev.

(2-1) G (nv) synthesis
Let sg(nv) be an element of G(nv). Compare sg(nvk+I) and sg(nv).

If sg(nv) is isomorphic to sg(nvk+1), then st(nvk+I, rt(gい）） is already included in st(nv, SYT(Gk
Therefore, st(nv, SYT(Gり） is not modified.

If any graph in G(nv) is not isomorphic to sg(nvk+1), then add sg(nvk+i) to G(nv).

For each edvk+I E f(nvk+1), there is a node edv E f(nv) such that LABEL(edv)
LABEL(edvk+I) because N(nv) is identical to N(nvk+I)-Then synthesize st(edvk+I, rt(gk+l))
with st(edv, SYT(Gり） as described below in (3).

(3) Edge node synthesis
Let sg(edv) be an element of G(edv). Compare sg(edvk+i) and sg(edv).

If sg(edv) is isomorphic to sg(edvk+1), then st(edvk+I, rt(gk+1)) is already included in
st(edv, SYT(Gり）• Therefore, st(edv, SYT(Gり） is not modified.

If any graph in G(edv) is not isomorphic to sg(edvk+I), then add sg(edvk+1) to G(edv).
For each nvk+l E f(edvk+i) and nv E f(edv), synthesize subgraphs as described in (2).

5.4 Distributed Algorithm Generation

To generate a distributed algorithm, we first generate a set of local states and messages. We
then generate a set of basic process behaviors.

In this paper, we assume that the number of labels a process may have is restricted; accord-
ingly there is a maximum number of labels (maxlabel).

5.4.1 State Generation

Let s, r, v be a local state, an STR rule, and a vertex of the rule graph of r. Let N(r, v) and
N'(r, v) be a neighborhood of v in the initial graph and the next graph of r.

If N(r, v)亡 s,then let s'be a local state that is generated from s by changing N(r, v) to
N'(r, v). If the number of labels of s'does not exceed maxlabel, then the STR rule may be
applied to s. The next state is denoted by next(s, r, v).

The set of local states S is generated recursively as follows.

(I) s。={N(r,v)lr E R,v E V(r)}
(I I) Si+I =Siu {next(s, r, v)ls E Si, r ER, v E V(r)}

where V(r) is a set of vertices in the rule graphs of r. S becomes a finite set.

5.4.2 Synthesis Tree Modification

Let node and S (node) be an event or edge node of SYT (G) and a set of neighborhoods in the
node in f(node). Let s be a local state in S, and let S(node, s) and NV(node, s) be a subset

66

of S(node) and a subset of f(node) as follows.

S(node, s)

NV(node,s)

{ state E S (node) I state亡 s}

{nv E r(node)I N(nv) E S(node, s)}

(1) If S(node) contains s, there is a node nv(s) E f(node) that satisfies N(nv(s)) = s.
If S(node) does not contains, then create a new neighborhood node nv(s) as a child of the

node as follows.
N(nv(s)) = s, G(nv(s)) = </>

(2) For each node nv in NV(node, s), add G(nv) to G(nv(s)) in order. Then synthesize a
subtree st(nv, SYT(G)) to st(nv(s), SYT(G)) as described earlier (G(nv) synthesis).

5.4.3 Message Generation

For each vertex of a rule graph, an order message is generated. A set of request messages and
response messages are generated from synthesis tree SYT(G).

For each edge node edv, a request message req(edv) is generated. The req(edv) implies a
set of graphs G(edv).

For each neighborhood node nv, create a set of subsets GSET(nv) as follows.

GSET(nv) = {GilGi c G(nv), (Vgi, 島EGi, ,(gi亡島））｝

For each element Gi E GSET(nv), a response message res(nv, Gi) is generated.

5.4.4
．．

Process Behavior Generation

Let node be an event or edge node in SYT(G) that corresponds to message m. Let nv be the
child of the node whose neighborhood is identical to states. A basic process behavior bpb(s, m)
is generated as follows.

(1) Send request messages
Let edvi be a child node of nv. A request message to the adjacent process req(edvi) is generated
from edvi. The destination of req(edvi) is the process connected with the labels of edvi.

{2) Receive response messages
A set ofresponse messages for req(edvi) is generated from the child nodes of edvi. Let res(edvi)
be a response message for req(edvi)-Then the following is satisfied.

G(res(edvi)) E LJ GSET(nvi)
nVj打 (edv;)

(3) Determine a set of isomorphic subgraphs
(3-1) Response message id comparison
For each edvi E r (nv) and for each sgi = (½ ゎ島） E G(nv), confirm whether the implied set
of graphs G(res(edvi)) contains a subgraph sg(sgi(nv), edvi) = (½i, Eji)-Then create a set of
graphs G1 as follows.

G1 = {sgi E G(nv)JVed功 Er(nv), sg(sgi(nv), edvi) E G(res(edvi))}

67

(3-2) Pid comparison
Let和 bea set of pids in res(edvi) that corresponds to sg(sgj(nv), edvi)-Pji gives a mapping
hii : YJiー→ PI DS where PI DS is the set of process identifiers in a system.

The node nv contains a mapping 方 (ed防）：½ 一→ V}i• We define the mapping hii as follows.

励：½ 一➔ (PIDSU{入｝）
hji(v) = hji・fi(edvi)(v) (if方(edvi)(v)ヂ入），

入 (otherwise)

For each sgi E G1, for each v E½, and for each edvi, edvk E f(nv), confirm whether hii(v) is
identical to Ii五(v).Then create a set of graphs G2 as follows.

G2 = {sgi E G収VE½ゎ¥/edvi,edvkE r(nv), hii(v) = Ii五(v)}

(4) Send a response message
We can define the mapping hf : ½ 一PIDSas follows. For each vertex v E½= V(sgj),
there is a mapping hJi and hJi(v) =I-入.Then hi(v) is defined as'½i(v), which is a pid in PIDS.

Create a response message res(nv) as follows.

G(res(nv)) = G2, P(res(nv)) = {P1, P2, …凡｝，
pi= {朽(v)Iv E乃， sgiE G叶

5.5 Evaluation

Let d be the depth of SYT(G). It takes at most d time units to send request messages. It
also takes at most d time units to send response messages. It takes one time unit to send order
messages. Therefore, the communication time complexity of the distributed algorithm becomes
2d+1.

The depth of SYT(G) is identical to the depth of the deepest resolution tree in RT(G).
Therefore, the communication time complexity does not depend on the number of STR rules;
it only depends on the STR rule that has the largest number of processes.

The computation complexity of each process is determined by the efficiency of the re-
sponse message id comparison and the pid comparison. The former efficiency is proportional
to lf(nv)IIG(nv)l2, and the latter efficiency is proportional to lf(nv)ll½IIG(nv)I-

Let n be the number of STR rules. lf(nv)I and l½I are considered constants for n. When
estimating the number of graphs in a neighborhood node IG(nv)I proportional to log(n), the
computation complexity becomes O((log(n))り．

68

Chapter 6

Software Specification Generation
from Protocol Specifications

In the previous two chapters we showed protocol synthesis algorithms. In this chapter, we
define a detailed specification description language STR/D (Detailed Specification Language
for STR).

6.1 Detailed Specification Language STR/D

STR/D describes supplementary specifications to implement service specifications described
with STR. An STR/D specification consists of a set of STR/D rules. An STR/D rule describes
tasks to be executed on the state transitions of terminals by STR rules. Each STR/D rule has
the syntax:

position-designation {task-designation}

This rule specifies that "task-designation" is executed at positions where the condition
"position-designation" is satisfied on a state transition of a protocol entity.

6.1.1 Position Designation

A synthesized protocol entity specification consists of local states, inputs and other elements.
To designate positions in a protocol entity specification we use local states and message inputs.
The local states and message inputs depend on the state primitives and events of STR rules.
This implies that we can describe STR/D rules by knowing state primitives and inputs that are
being used or are to be used in STR rules. If we describe STR/D rules with state primitives
and events but without depending on individual protocol entity specifications, the STR/D rules
turn out to define meanings of these STR elements. If new state primitives and events are used
for describing a service, it is necessary to define new STR/D rules to specify them as a matter

of course.
Positions are designated by states, inputs and their combinations.

State designation
Local states in a protocol entity are described by a set of state primitives~so we use state

primitives for designating local states. States are specified by initial, terminal, state, next-state,
primitive and next-primitive.

69

initial A rule for the initial position designates initial tasks to begin services. Position 1 in Fig.
6.1 is designated by initial.

terminal A rule for the terminal position designates final tasks before returning to the initial
state. Position 6 in Fig. 6.1 is designated by terminal.

state State designates the positions just after inputs at the specified state. Positions 2, 3 and
4 in Fig. 6.1 are designated by state.

next-state Next-state designates the position just before the specified state. Position 5 in Fig.
6.1 is designated by next-state.

primitive Primitive designates the positions just after inputs at the states that have spec-
ified state primitives. Positions 2, 3 and 4 in Fig. 6.1 are designated by primitive.
The difference between state and primitive is whether a state is completely specified or
partially-specified.

next-primitive Next-primitive designates the positions just before the states that have specified
state primitives. Position 5 in Fig. 6.1 is designated by next-primitive.

Among these state designations, state and primitive can be combined with next-state and
next-primitive. Such a combination designates the position 5 in Fig. 6.1.
Input designation

Inputs designate the positions just after receiving the designated message. There are four
types of inputs: event, request, respond and norule. Every position after receiving a message of
the specified type is designated if only an input type is specified. As for event we can specify
individual event names. Input designation can be combined with state designations. Positions
2, 3 and 4 in Fig. 6.1 are designated by input.
State transition designation

State transition paths are designated by describing the difference in primitives in the current
and the next states. The syntax is as follows.

transition (<state transition expression>)

The state transition expression in this rule is described as the following syntax (1) or (2).

(1) + (a set of state primitives)
(2) -(a set of state primitives)

Syntax (1) describes the state primitives not included in the current states but in the next
states, and syntax (2) describes the state primitives not included in the next states but in the
current states. Position 5 in Fig. 6.1 is designated by transition.

6.1.2 Task D ・es1gnation

Tasks described in "task-designation" conform to C statements. These tasks are separated
by semicolons if multiple tasks are specified in a single task-designation. We can describe a
conditional statement in a task-designation. This statement will be used to change the next
state according to the status of a task. A conditional statement is written by the following
syntax.

70

Figure 6.1: Task insertion.

71

primitive(dial-tone(A)) {tone_on(DLTONE);}

stateJnput((dial-tone(A)) & (event dial(A,B))) {tone_on(RBTONE);}
transition(-(idle(A)) +(ringing(A,B))) { tone_on(RGTONE);}

Figure 6.2: Example of STR/D rules.

‘
、
_
/
、
~
‘
、
~

1

2

3

r

r

r

(

(

(

unless(< C expression >) { < C statements >}

< state designation>;

This statement describes a specification when a condition is not satisfied. If the C expression

is not satisfied, the C statements in this statement are executed and the protocol entity changes
its state to the designated state.

6.2 Example

Figure 6.2 shows an example of an STR/D description corresponding to Fig. 1.3. Rule r1

indicates that tone_on(DLTONE) is executed just before entering a state having the prim-
itive "dial-tone(A)". Rule r2 indicates that tone_on(RBTONE) is executed when the event

dial(A,B) occurs at a state that contains the primitive dial-tone(A). Rule r3 indicates that
tone_on(RGTONE) is executed on a .transition where the primitive "idle(A)" is deleted and the
primitive "ringing(A,B)" is added at the next state.

The following example gives the STR/D rules for implementing pots in Fig. 1.4 on a PBX.

A, B, C, U;

start {Initialize O ; }
term {Stop();}
transition (-(dial-tone(A)) +(ring-back(A,B)))

{ Stop_dial(); Tone_off (DT); R_path(B); Tone_on(RBT); }

-(ring-back(A,B)) +(path(A,B))) { Tone_off(RBT); Connected(B);
-(path(A,B)) +(idle(A))) { F_path(B); Disconnect(B); }

-(idle(A)) +(ringing(A,B))) { Tone_on(RNG); }

-(ringing(A,B)) +(path(A,B))) { Tone_off(RNG);
-(path(A,B)) +(busy(A)))

{ Disconnected(B); Tone_on(BT); }
-(busy(A)) +(idle(A))) { Tone_off(BT); }

-(ring-back(A,B)) +(idle(A))) { F_path(B); Tone_off(RBT);

-(ringing(A,B)) +(idle(A))) { Tone_off(RNG); }

-(dial-tone(A)) +(busy(A)))

{ Stop_dial () ; Tone_off (DT); Tone_on (BT) ; }
-(idle(A)) +(dial-tone(A))) { Tone_on(DT); Start_dial(NML);

-(busy(A)) +(idle(A))) { Tone_off(SBT); }

-(dial-tone(A)) +(idle(A))) { Stop_dial();

var

transition
transition

transition

transition
transition

transition

transition

transition

transition

transition

transition

transition

(
（
（
（
‘
,
‘

(

（

（

(

(
（
‘
,
‘

Connect(B);

Tone_off(DT);

｝

｝

｝

｝

｝

We note that every rule is described by state transition designations in this example.

72

Chapter 7

Application to PBX Software
Generation

This chapter shows results of an automated software generation method applied to PBX sys-
tems. First we show the results of a specification description task to implement seven typi-
cal services on a PBX, and then clarify the effectiveness of the proposed software generation
method. We then describe results obtained by implementing one of these services on two kinds
of PBX systems and again evaluate the proposed method. Software is obtained as follows.
First, protocol specifications are synthesized from service specifications using the algorithm in
Chapter 4 and then the protocol specifications are transformed into software specifications by
the refinement method in Chapter 6.

7 .1 Results of Specification Description

Communication software is usually developed incrementally to provide new services. Services
such as POTS, CCBS, CW, CFV, TWC, UPT and TCS have been implemented according to
this development style. These services are defined as follows.

POTS The Plain Old Telephone Service (POTS) involves an ordinary call between two sta-
tions.

CCBS A customer subscribing to the Completion of Call to Busy Subscriber (CCBS) service
can, after reaching a busy station, hang up first, and then dial the activation code to
activate CCBS. When the busy station goes on-hook and the calling station is on-hook,
the calling station is rung. Upon an answer, the call is automatically completed to the
station previously busy.

CW The Call Waiting (CW) service informs a busy station user that another call is waiting.
The busy station may answer the new call by one of two methods. One is with a flash,
placing the original call on hold and answering the new call. The other is for the busy
station user to go on-hook, in which case the station user is rung and connected to the
new call upon an answer.

CFV The Call Forwarding Variable (CFV) service allows a station to redirect calls intended for
that station (base station) to another station (remote station). A subscriber can activate
the service in two ways. The first way is as follows: The subscriber goes off-hook, receives

73

a dial tone, and dials the service prefix followed by a 2-digit CFV activation code or dials
the 2-digit CFV activation code at the end of the dialing signal. A recall dial tone is then
heard by the subscriber. At this time, the Directory Number of the remote station is
dialed and the system attempts to complete the call in the normal manner. If the remote
station answers, CFV is activated. The second way to activate the CFV service can be
used if the remote station does not answer the call or is busy. The subscriber merely
repeats the same procedure as described in the previous text within 2 minutes of hanging
up from the first attempt. On this second activation the system applies a confirmation
tone following a delay of at least 1 second of a dial tone to the base station, rather than
attempting to complete the call to the remote station. A receipt of confirmation tone tells
the subscriber that CFV has been activated. If the timed interval has elapsed, a second
request for service activation is processed as an initial request.

If the subscriber has the call forwarding feature activated and receives a call, a ring
reminder is applied to the base station (when idle), to indicate that the call has been
received and forwarded. The subscriber cannot answer calls at the base station while
CFV is active, but can originate calls.

To deactivate call forwarding, the subscriber goes off-hook, receives a dial tone, and dials
a deactivation code; a confirmation tone is then returned to the customer. Dial tone
returns after the confirmation tone.

TWC Three-Way Calling (TWC) is a custom calling feature that allows a customer to add a
third party to an existing conversation without operator assistance. The party initiating
TWC may put one party on hold in private while dialing or talking to another party
and can later include the party on hold. The added party may be dropped from the
connection with a flash from the initiating party.

UPT Universal Personal Telecommunication (UPT) enables access to telecommunication ser-
vices while allowing personal mobility. It enables each UPT User to participate in a
user-defined set of subscribed services and to initiate and receive calls on the basis of a
personal, network-transparent UPT Number across multiple networks at any terminal,
fixed or mobile, irrespective of geographic location, limited only by terminal and network
capabilities and restrictions imposed by the network operator.

TCS Terminating Call Screening (TCS) screens incoming calls against a screening list consist-
ing of time and originating terminal directory numbers. In this experiment, the screened
call activates either POTS, message transfer or call transfer.

Seven services S1, ・ ・ •, S7 are defined as a combination of these services.

S1 POTS itself.

S2 A specification consisting of S1 and CBS.

S3 A specification consisting of S2 and CW.

S4 A specification consisting of S3 and CFV.

S5 A specification consisting of S4 and TWC.

S6 A specification consisting of S5 and UPT.

74

Table 7.1: Number of rules and primitives in library software

Service STR rules STR/D rules Library

S1 23 14 10
S2 46 (+23) 16 (+2) 10 (+o)

83 80 (+34) 20 (+4) 12 (+2)

S4 129 (+49) 26 (+6) 12 (+o)

S5 207 (+78) 26 (+o) 12 (+o)

86 348 (+141) 72 (+46) 16 (+4)

87 379 (+31) 76 (+4) 16 (+o)

Table 7.2: Ratio of added rules and primitives in library software

Added service STR rule STR/D rule Library
CCBS (81→ 82) 50 13

゜cw (82→ 83) 43 20 17
CFV (S3→ S4) 38 23

゜TWC (S4→ S5) 38

゜゜UPT (S5→ 86) 41 64 25
TCS (86→ 87) 8 5

゜I Average 36 29 7

87 A specification consisting of 86 and TC8.

Table 7.1 shows the results of the experiment. Each figure shows the number of rules
or primitives in the library software, and each figure in parentheses shows the number of
supplementary parts compared with that of the previous service.

The library software was developed manually, and is of a small size. In fact, the total
size of the library software is about two thousand lines in the C language. The library soft-
ware was developed by using primitive software provided by a platform beforehand. Table 7.2
lists the percentages of added parts in Table 7.1. Table 7.3 represents optimization ratios in
communications among processes.

7.2 Evaluation of Description Results

Table 7.2 shows that the average ratios of added STR rules, STR/D rules and library software
are 36%, 21 % and 7%, respectively. A more detailed knowledge of communications software
and systems is necessary to do development in the order of library software, STR/D rules and
STR rules. Supplementary library software is expected to be unnecessary or very small in size
after services have been developed to a certain extent.

Furthermore, the following semi-automated addition will be expected as far as STR/D rules
are concerned. STR/D rules can possibly be generated semi-automatically by defining the
semantics of primitives in STR rules with a conceptual model of communication services.

75

Table 7.3: Ratio of the number of times and time in communications

Service Times(%) Time(%)

S1 57 57

S2 53 49

S3 56 51

S4 43 37

85 42 34

S6 36 28

S7 33 25
Average 46 40

The proposed method can be applied to cases where non-experts are developing communi-
cation services. In this case the software development described above will make it possible to
implement the services on a communications system. Consequently, almost all of the parts can
be automatically or semi-automatically generated by the non-experts in software development.
These facts imply that the proposed automated software generation method can be applied to
communication service development by non-experts.

We evaluated the effectiveness of the method in an application. A PBX of a large size with
3,600 lines maximum was used in this experiment. About 30% of the software was dedicated
to service control in the PBX.

Next we evaluated the optimization method described in this thesis. Table 7.3 shows ratios
of optimization in communications for an application of appropriate rules in the algorithm
of Chapter 4 compared with a naive algorithm. The optimization ratios become big in large
services. In the supposed development style of communications software by non-experts, it
is assumed that services have already been equipped to a certain extent. It therefore follows
that communications is expected to be below 33% and 25% in the number of times and time,
respectively.

7.3 Software Architecture

We show a software architecture for controlling communication services using a generated pro-
gram. This architecture is developed on two PBX systems. It aims to minimize the target
hardware dependent parts and to maximize the customizability of the application interface
used by STR and STR/D rules. This software architecture can be easily applied to a dis-
tributed system consisting of multiple nodes.

7.3.1 Processes

There are five kinds of processes: STRP, INP, OUTP, SMP and TIMER as shown in Fig. 7.1.
In the following, we explain these processes and their roles.

STRP processes are automatically generated from the STR and STR/D rules. An STRP
process is created when a call is originated or terminated at a terminal in the idle state.

76

HI

Subscribers'data STRP management data

API
Basic
primitive
layer

OS

Application ...
pnm11Ive
l~yer

ロ
三

Figure 7.1: System architecture.

77

INP converts inputs from a terminal to events which are specified in STR rules. INP has
converting and buffering functions for inputs from terminals through the OS (Operating
System), and also has a function for creating STRP processes. An event may be made
from a sequence of inputs and sometimes multiple events are made from one input from
a terminal. Since all inputs from terminals go through the INP, the INP can provide a
function for mutual exclusion of rule application with the semaphore.

OUTP converts outputs from STRP to PBX control primitives which can control a PBX
hardware unit directly. OUTP has converting and buffering functions for outputs to the
OS.

SMP records events and communications between processes for logging.

TIMER is used as a timer.

INP and OUTP have two layers, the basic primitive layer for customizability of the appli-
cation interface and the application primitive layer for the logical interface of STRP processes.

7.3.2 Logical Interface

There are two layers of PBX control prilllitives: basic primitive and application primitive lay-
ers. They are implemented within INP and OUTP. The interface between OS and INP, or
OUTP is called the hardware interface (HI). The interface between basic primitives and ap-
plication primitives is called the basic primitive interface (BPI), and the interface between
application primitives and STRPs is called the application primitives interface (API). Applica-
tion primitives are made from basic pri皿tives.BPI is independent of any specific hardware.
Consequently, we can customize API by using BPI without hardware knowledge. The major
difference between API and BPI is terminal identification. In BPI a terminal is expressed by
a physical address, while in API a terminal is identified by a logical number, i.e., a telephone
number.
Basic primitive interface

The basic primitive interface is established in order to add interfaces to new events and new
tasks without using hardware control primitives. Events and tasks may increase in number
when new services are developed by using new events or new state primitives.

• Each input from a hardware or a timer basically corresponds to one event. A sequence of
dials is valid only if it identifies a terminal. In STR an event is defined as a logical input
from a terminal rather than an actual input. In other words an event is set to the largest
input sequence which does not have to be divided when a new service is added.

• Primitives for controlling a hardware unit are set so that one primitive is used for one
objective. When we use these primitives, it is not necessary to designate a means for
achieving the objective. For example, it is not necessary to designate a speech path or
a conference trunk to connect terminals. This enables one to connect terminals without
knowing the other party's situation.

Application primitive interface
API is the interface for events and tasks used in STR and STR/D. Basically we do not

designate hardware resources unless we need them for services, such as resource reservation.

78

Table 7.4: Execution time.

Execution time C dynamic steps

STRP /MMP I 1.1 I 1.2

Table 7.5: Number of states and transitions.

STRP I MMP I STRP*
Number of states

Number of transitions
12-63

6

2

9

＿

ll-41

Application primitives are made from basic primitives. We have described such things as pots,
three way calling service, call forwarding service, call waiting service, call completion service
for a busy subscriber, and Universal Personal Telecommunication, with the current API which
does not designate hardware resources. Each STRP is assigned to a terminal by INP for an
origination and by communication primitive "send" for receiving a terminating call.

7.4 Implementation Results

We show the execution time for an individual service dependent part in the developed PBX.
We compare STRP and MMP which is an optimized program.

A simplified POTS is used to compare the execution times of STRP and MMP. STRP
and MMP have the same architecture. Each terminal is controlled by a process, and each
process communicates with other processes to know its state. MMP is a dedicated program to
implement pots. Table 7.4 shows the result. "Execution time" represents the consumed time
of tlie processes, and "C dynamic steps" shows the steps of the C source program. According
to the result the automatically generated program STRP runs in comparable time with MMP.

The execution time depends on the transition times and message size from call origination
to call termination. Table 7.5 shows the size of state transitions. STRP is obtained from 15
STR rules and 16 STR/D rules. STRP communicates two times, i.e., to examine the state of
the other STRP and to know the rule to be applied. On the other hand, MMP does not need
to know the state of the other MMP via communication after the first communication, because
MMP does not change its local state on account of a call from a third party. Therefore, MMP
communicates less times using less messages than STRP. STRP, unlike MMP, sends a message
which has its local state, i.e., STRP communicates with MMP for synchronization. Further
work is needed for optimization. STRP* is a manually optimized STRP.

79

80

Chapter 8

Software Generation for Functional
Model

The protocol synthesis methods in Chapters 4 and 5 produce a protocol assuming a layered
architecture model. There is another protocol architecture called the functional model [7]. Uni-
versal Personal Telecommunication [44] has been standardized in order to be provided using the
functional model in Fig. 1.7. In the functional model functions are not layered but distributed.
These functions are distributed in functional entities. The software generation method in this
chapter can be applied to this functional model.

8.1 Stepwise Refinement

We show a method of generating software conforming to any functional model from STR and
STR/D rules. First we obtain the "service specifications" of each functional entity from STR
rules which specify terminal behaviors, and STR/D rules. Then we synthesize finite state ma-
chine based functional entity specifications from the obtained service specifications of functional
entities. In this method, we use intermediate languages STR(L) and STR/D(L). They have
the same syntax as STR and STR/D, but they specify the local specifications of one functional
entity.

Specification generation of functional entities consists of the following three steps:

Step 1 Event assignments to functional entities:

The events described in STR rules are manually assigned to functional entities where they
truly occur.

Step 2 STR(L) and STR/D(L) rule generation from the original STR and STR/D rules, and
event assignments:

First we compare conditions described by the initial-state, event and next-state in an STR
rule and position-designations in STR/D rules. If the conditions of the STR rule match
those of the STR/D rules, we combine these rules to obtain new global state transition
rules. The obtained global state transition rules consist of four elements: the revised
initial-state, event, task-designation, and the revised next-state.

Next we divide each obtained global state transition rule into local state transition rules
for each functional entity used in executing the tasks in the task-designation; however,

81

the states of the generated local state transition rules specify global states originated in
the STR and STR/D rules. In this division, communication actions are divided into two
types: send action and receive action. The event assigned to one of the functional entities
in Step 1 is specified in the assigned functional entity.

Finally, we can generate STR(L) and STR/D(L) rules from the obtained local state
transition rules. In this generation, the send action generates a new STR/D(L) rule for
the appropriate entity, and the receive action generates the event of a new STR(L) rule
for the appropriate entity.

Step 3 Functional entity specification generation:

From the generated STR(L) and STR/D(L) rules for each entity, an FSM based entity
specification is generated by using the same method in the synthesis of process specifica-
tion in the protocol synthesis method in Chapter 4.

The above functional entity specification generation can be applied when primitive send
and receive actions can be extracted from the tasks to be executed in functional entities.

8.2 Application

8.2.1 U . n1versal Personal Telecommun1cation

UPT (Universal Personal Telecommunication) [44] permits access to telecommunication services
with personal mobility. Each UPT user has a unique UPT number. When a UPT user initiates
or receives a call, the access is verified by a check of the UPT number and authentication code.
If the authentication is verified, the user can proceed to procedure identification.

UPT services are implemented on the functional model shown in Fig. 1. 7. In Fig. 1. 7 the
Functional Entities (FEs) have the following meanings:

FEl Originating CCAF
FE2 Originating CCF; associated with SSF
FE3 Transit CCF
FE4 Terminating CCF
FE5 Terminating CCAF
FE6SCF
FE7 SDF(l) (SDF in the local network)
FE8SRF
FE9 SDF(h) (SDF in the home network)
where the terms are as follows:
SSF Service Switching Function
SRF Specialized Resource Function
CCF Call Control Function
CCAF Call Control Agent Function
SCF Service Control Function
SDF Service Data Function
This functional model cannot be modeled by the layered architecture described in Fig. 2.1;

however, each functional entity can be modeled by the layered architecture. The functional
model cannot be observed from outside a communications system. Therefore, we synthesize

82

the process specification incrementally. First, the "service specifications" of each functional
entity are obtained from STR rules, which specify terminal behaviors, and from STR/D rules.
Process specifications are then generated from the obtained service specifications of functional

entities.
The following is an outline of the steps required for a UPT user to access a UPT service

and undergo identification and authentication:

1. Access code input by UPT user

2. Recognition of access code, suspension of call processing in CCF, connection of SRF
(Establish Temporary Connection)

3. Prompt and response for user identification (input UPT number)

4. Prompt and response for user authentication (input authentication code)

5. UPT user's service provider provides authentication check and sends result

6. Decision:

• if successful, proceed to procedure identification

• if unsuccessful and more attempts allowed, advise user of failure and restart at 3

• if unsuccessful and no more attempts allowed, advise and release call.

Figure 8.1 shows the information fl.ow for the procedure of "access, identification and authen-
tication". There are two other information flows involved in the above actions: "authentication
rejection and retry" and "maximum retries reached".

8.2.2 STR Description of UPT

Figure 8.2 shows the STR description for the information flows of access, identification and
authentication; retry; and, maximum retries reached. This description introduces new vari-
ables to denote UPT users. The variables declared by "Terminal" denote terminals as before;
variables declared by "User" are used for UPT users. In Fig. 8.2, the UPT user gets access
through terminal "A", "U" denotes the user's UPT number, and "V" denotes the other users'
UPT numbers.

STR rules rl, r2, r3 express the information flow in Fig. 8.1. Rule r4 expresses the
sequence of authentication retries performed because of a wrong authentication code. Rule r5
expresses the sequence when the retry limit is exceeded.

The following gives the meaning of each of the state primitives and events in Fig. 8.2:

State primitives
dial-tone(A) represents a state where a UPT service initiation request can be received.
ident(A) represents a state where a UPT number can be received.
auth(A,U) represents a state where the authentication code for UPT number "U" at

terminal "A" can be received.
success(A) represents the authentication succeeded state.
fail(A) represents the authentication failed state resulting from the authentication retry

limit being exceeded.
mJ.imit(A) holds when the authentication retry through terminal "A" exceeds the limit.

83

rb

req.

reg. ind. Initial DP

Request Report
鴫，"I'
BCSMEvent
Ejtablish1 Te咽porary

onnectlon

req. ind.

resp. conり

唱Prompt & Couect
User Information

"Provide Your Identit " —.......................... + ... ・+・................. …・・r .. ・・・ ……... Y.

"Provide -:,our authentication code"

ご：：ロニニ：ロニこ．＇］云凪五~五贔応三五：,::: ニロニ：1:::::1:: 二：二：二：：』：
Collected User
'nformation

＇ Que!)'_

Query Result

Figure 8.1: Access, identification and authentication.

84

Terminal A;
User U, V;
rl) dial-tone(A)

uptreq(A): ident(A).
r2) ident(A)

idnumber(A,U): auth(A,U).
r3) auth(A,U)

acode(A,U): success(A,U).
r4) auth(A,U)

acode(A,V): ident(A).
r5) auth(A,U), mJimit(A)

acode(A,V): fail(A).

Figure 8.2: STR description of authentication in UPT.

Events
uptreq(A) represents the UPT service initiation request.
idnumber(A,U) represents an event for which a UPT identification number is received.

"U" denotes the received UPT user's identification number.
acode(A,U) represents reception of the authentication code for user "U" at terminal "A".

8.2.3 STR/D Description

Figure 8.3 shows the supplementary specification needed to implement the STR rules in Fig.
8.1 on the functional model in Fig. 1.7. In addition to the declaration of the STR description,
the functional entities defined in Fig. 1. 7 are declared by "Entity". Tasks described in the
"task-designation" are provided as routines.

If there are two or more entities described as parameters of a task, then the task includes
communications between the described entities. Tasks are carried out in the described order
when more than one task is described in a single "task-designation". Therefore, the original
order of communications is preserved.

8.2.4 Stepwise Refinement of UPT

We apply the stepwise refinement method to generate functional entity specifications from the
specifications in Fig. 8.1 and Fig. 8.3.

Step 1 The events described in the rules in Fig. 8.1 are manually assigned to functional entities
as follows:

uptreq(A)
idnumber(A, U)
acode(A,C)

CCAF
SRF
SRF

Step 2 We now generate new STR(L) and STR/D(L) rules according to the assignment ob-
tained in Step 1. "sl(A)", "s2(A)" are newly generated state primitives. The following
rules are the STR and STR/D rules for the entity SCF. Note that each generated STR
rule specifies a local state transition of one functional entity.

85

Terminal A;
User U;
Entity CCAF, SSF/CCF, SCF, SRF;

transition(-(dial-tone(A)) +(ident(A)))
{ UptReq(CCAF, SSF /CCF);
InitialDP(SSF /CCF, SCF);
ReqReport(SCF, SSF /CCF);
TempConnect(SCF, SSF /SCF);
SetupReqlnd(SSF /CCF, SRF);
SetupRespConf(SRF, SCF);
AssistReq(SRF, SCF);
PromptCollect(SCF, SRF, "Provide your

identity"); }
input(event number(A, U))
{ CollectedUserlnf(SRF, SCF);
PromptCollect(SCF, SRF, "Provide your

authentication code"); }
transition(-(auth(A, U)) +(success(A)))
{ CollectedUserlnf(SRF, SCF); }
transition(-(auth(A, U)) +(ident(A)))
{ PromptCollect("Wrong authentication,

please retry.
Provide your authentication code"); }

transition(-(auth(A, U)) +(fail(A)))
{ PromptCollect("Retry limit exceeded.

Your line is now blocked.
Please hang up."); }

Figure 8.3: STR/D rules for authentication.

86

dial-tone(A) InitialDP(A): sl(A).
sl(A) AssistReq(A): s2(A).
s2(A) CollectedUserlnf(A): ident(A).

transition(-(dial-tone(A)) +(sl(A)))
{ send(SSF /CCF,ReqReport);
send(SSF /CCF,TempConnect); }

transition(-(sl(A)) +(s2(A)))
{ send(SRF,PromptCollect,

"Provide your identity"); }
transition(-(s2(A)) +(ident(A)))
{ send(SRF,PromptCollect,

"Provide your authentication code"); }

Step 3 Finally, we generate entity specifications from these generated STR(L) and STR/D(L)
rules.

87

88

Chapter 9

Completing Protocols

The formal design of protocols produces reliable protocols through the automatic detection of
protocol errors. In this chapter we present an error-free protocol synthesis method by complet-
ing protocols synthesized from service specifications described by message sequence charts.

9.1 Protocol Model

9.1.1 Protocol and Service Specifications

Protocol specifications are descriptions utilizing concurrent processes made up of sets of pro-
cesses that can communicate. Sets of processes that define protocol specifications are called
objects. A process is represented by a limited state transition machine with one initial state
(and also with a final state) [47]. Each process has receive channels that can receive messages
from other processes in FIFO (First-In-First-Out) order. A channel from process p to process q
is expressed as chpq・The unit of action executed by a process is called an event, and a process
produces state transitions by executing events.

There are four types of events: send events, receive events, output events, and input events.
Send events are represented by the form -q(m). When process p executes -q(m), message
mis attached to the end of channel chpq・Receive events are represented by the form +p(m).
When process q executes +p(m), message m at the beginning of channel chpq is removed. An
output event -(m) signifies that the process executed by this event is outputting message m to
the outside, and input event +(m) means that the process executed by this event is inputting
message m from the outside.

For nondeterministic branches to be excluded from process specifications and for programs
to be automatically generated from process specifications, transitions from send events and
output events are not included in branches deriving from multiple transitions obtained from
the same state [9].

Service specifications representing requirements with respect to objects are expressed using
message sequences. A message sequence is the set of event sequences for each process.

Definition 4 (Service specification) Service specifications with respect to objects consist of
sets of message sequences that are written in the following syntax:

object obj { Pi = seqi I i = 1, ・ ・ ・, N },
obj: object name

Pi: process name

89

object ms {p = +(req) -q(l) + q(2) -(ack),
q = +p(l) -(called)+ (ok) -p(2)}

Figure 9.1: Example of a message sequence.

req

ー

2
 ack

Figure 9.2: Message sequence chart of Fig. 9.1.

seqi: event sequence
In addition to the four types of events already defined, there are also quasi-events that

represent subobject calls. Subobjects are defined as message sequences in which the object name
has been replaced by a subobject name.

In all event sequences, events to the left are executed before events to the right. With
respect to subobject call events, events in the same process that called a subobject are executed
from left to right; then after the events in the subobject have finished being executed, the event
切nmediatelyfollowing the subobject call event is executed next. At the time a subobject is called
and the subobject has finished being executed, the channel over which the process was received
must be completely empty.

A diagram representing a message sequence is called a message sequence chart. Figure 9.1 is
an example of a message sequence representing the service specification for an object ms made
up of two processes p and q. The corresponding message sequence chart is shown in Fig. 9.2.

The conditions under which service specifications are converted to a protocol are as follows.
Cl: The order in which events are executed in the service specifications is preserved.
C2: No event not already in the service specifications is added.

Protocols can be synthesized out of sets of message sequences that satisfy these conditions
[9]. Figure 9.4 shows a protocol synthesized from service specifications based on the message
sequences shown in Figs. 9.1 and 9.3. State O is the initial and also the final state of each

process.

9.1.2 Beh ・av1ors 1n Protocols

After defining the executability of events, we next define behaviors that can occur in protocols.
Let process p be in state s. When event f is allocated to produce a transition from state s to

90

object ms {p = +q(3) -(called)+ (ok) -q(4),
q = +(req) -p(3) + p(4) -(ack)}

Figure 9.3: Another message sequence for object ms.

process p process q

Figure 9.4: Example protocol synthesized from message sequence charts.

state t, the following conditions must be defined in order for event f to be executable. If these
conditions are met, process p produces a transition to state t after event f is executed.

• When f is -(m), it is executable without conditions.

• When f is -q(m), it is executable without conditions, and message m is added to the
end of chpq・

• When f is +(m), it is executable if message m is input from the outside.

• When f is +q(m), it is executable if message mis present at the beginning of chqpi after
the event is executed, message mis removed from the beginning of chqp•

Assume a protocol P. When a given sequence of messages is input to P, the behavior
occurring in P will be defined. Regarding all processes included in P, event execution begins
from an initial state, and behaviors are defined in terms of the event sequence sets derived for
each process.

Definition 5 (Behavior) A behavior b with respect to a protocol P is defined as a set of
process event sequences satisfying the conditions:

(1) A process event sequence is described as:

Pi = seqi, where Pi is a process name in P and seqi is an event sequence of process Pi・If Pi =

seqi and Pi = seqi are two process event sequences in b, then Pi =I= Pi.
(2) Let all the processes in P be in their initial states. Then, there is a sequence s of input

messages from the outside such that all the events in b can be executable in P according to the
above definition of event execution. Once a process returns to its final state, the process can
never execute any event in b with respect to s.

91

b = {p = +(req) -q(l),
q = +p(l) -(called) }

Figure 9.5: Example of a partial behavior.

In the event there are two behaviors b1 and b2 and every process event sequence of b1 is a
prefix of the same process event sequence of b2, then b1 is called a partial behavior of b2. In
Fig. 9.5, the event sequence set b is a behavior of the object ms in Fig. 9.4 and is a partial
behavior of the message sequence in Fig. 9.1.

When all processes have reached their final states after executing all event sequences be-
longing to a behavior, and all channels are empty when the final states are reached, then that
behavior is said to be completed.

9.2 Definition and Nature of Exceptional Behaviors

9.2.1 Definition of Exceptional Behaviors

In protocols made up of service specifications with multiple message sequences, it is possible
for behaviors to occur that do not correspond to the message sequences configuring the service
specifications of required specifications; in other words, non-required behaviors.

Let behavior b consist of two elements: event sequence s1 of process p1 and event sequence
砂 ofprocess p2. When a send event included in s1 and a receive event included in s2 make up
a communication between process p1 and process p2, then s1 and s2 are defined as being linked.
This linked relationship is transitive.

Definition 6 (Exceptional behavior) With respect to service specifications R, when behav-
ior b of a protocol satisfying R meets the following two conditions, then b is said to be an
邸 ceptionalbehavior:

l Behavior b is not a partial behavior of any service specification.

2 Regarding event sequences that are elements of behavior b, the following apply:

(a) A subset c of b exists such that the elements of c are mutually linked, and c is not a
partial behavior of any service specification that is included in R.

(b) No process in b can execute an event with respect to any arbitrary input from the
outside.

Condition 2(a) excludes behaviors from exceptional behaviors that occur when two message
sequences with no mutual influence are executed at the same time. The following behavior
example illustrates the only exceptional behavior that could occur in the protocol illustrated in
Fig. 9.4. The exceptional behavior exhibits the property of 2(b). Process p waits for message
2 from process q, and process q waits for message 4 from process p after executing every event
described in ex. This is a deadlock state. Consequently, these two processes cannot execute
any events anymoreヽ;vithrespect to any arbitrary input from the outside.

ex= {p = +(req) -q(l),
q = +(req) -p(3)}

92

9.2.2 Nature of Exceptional Behaviors

Exceptional behaviors occur when a protocol initiates an action in line with a message sequence,
and an event is executed that does not belong to the message sequence. The event causing this
exceptional behavior is called a causative event.

Definition 7 (Causative event) Let the set of service specifications be represented by R, and
assume that event sequence set c is an exceptional behavior in a protocol synthesized from R. Let
d be a partial behavior of c. Then an event f in c is said to be a causative event of exceptional
behavior c if the following conditions are satisfied:

1. There is a service specification in R that contains d as its partial behavior.

2. The behavior derived by executing all events in d and f is not a partial behavior of any
service specification in R.

Let c be an exceptional behavior of protocol P synthesized from service specifications R, and
let partial behavior d of c be a partial behavior of r(ER). Considering that c is the exceptional
behavior derived by executing event f after executing all events contained in d, f is one of the
following:

• An input event configuring a branch.

• A receive event configuring a branch.

• If e is considered to be an event deriving from an initial state and not configuring a branch
with another event, then e is an input event, an output event, or a send event.

Other events besides those discussed above must derive from a state other than an initial
state and cannot configure a branch. This clarifies that they cannot be causative events of
exceptional behaviors.

9.3 Completing Algorithm

We define how to complete protocols, including exceptional behaviors, and then show the
algorithm.

9.3.1 Definition of Completion

Definition 8 (Detection of exceptional behavior) When there is an event f that may be
executed only in exceptional behavior b at process p, if f has been executed at p, it is defined
that p detected exceptional behavior b.

Definition 9 (Protocol completion) Let b be an exceptional behavior that may happen in
protocol P. Exceptional behavior b is called completed if one of the processes in P detects that
b is an exceptional behavior and P is modified so that all the processes go back to their final
states with empty channels. If every exceptional behavior in P is completed, then protocol P is
called completed.

93

We note that every process associated with an exceptional behavior can detect the excep-
tional behavior if one of the processes detects it. This is achieved by exchanging messages
between the process that detected the exceptional behavior and other processes.

The matter of what to do after an exceptional behavior is completed depends on the situa-
tion, including designer's intention. There are several cases. For example, every process returns
to its initial state, returns to its specific state and then proceeds to a succeeding procedure,
or proceeds to an error procedure. Therefore we introduce a function to specify a state where
a process goes to when an exceptional behavior is completed in the process. In the following
method, state plays this role.

9.3.2 Completing Method

We clarify a range that is influenced by event addition to complete a protocol.

Definition 10 (Scope influenced by modification) Let R = {r1, ・ ・ ・, 圧}be a set of ser-
vice specifications and e = {p1 = b1, ・ ・ ・,Pn = bn} be an exceptional behavior that may happen
in the protocol synthesized from R. Let scope(bk) be the set of service specifications such that a
behavior of process p in r1(ER) contains bk as a pa廿ialbehavior.

scope(bk) represents service specifications that are influenced by modifying behavior bk in Pk・
For any pair of加 =bk(E e) and r1(E scope(bk)), there is p。=bv(E s) such that r1 ff. scope(b。)．
If there are multiple p。=bv, we determine one of them by selecting the smallest suffix v. We
denote (k, l〉asa suffix determined by suffixes k and l. In the following, however, (k, l〉isnot
necessarily the smallest suffix. We have only to determine one suffix.

Since there is an assumption that every receive channel is empty when a subobject is called,
we have only to complete every object and subobject. We do not have to take account of the
interaction among an object and subobjects. The initial state of a subobject is defined as the
state where no event has yet been executed; the final state of a subobject is defined as the state
where every process has been executed and is finished, i.e., there is no transition leaving the
state.

A reachability analysis can detect exceptional behaviors as possible behaviors in a protocol
that does not correspond to any service specifications [65]. Completing a protocol requires
completing every latent exceptional behavior in the protocol. We note that both service speci-
fications and exceptional behaviors may be modified upon completing exceptional behaviors.

Input

Service specifications R = { r1, ・ ・ ・, r1}
A synthesized protocol specification P = {P1, ・ ・ ・,Pn}
Exceptional behaviors E = { e1, ・・・,em}
state(ei, p): A state to be reached at process p after completing exceptional behavior eか

Output

A completed protocol specification P'= {p~, • ・ ・, p~}.

94

w

Function

new(p): Returns a new state that is different from any other state.

Procedure

(k) (k) Assume that exceptional behaviors e1, • • •, ek have been completed. Let R(k) = {r
(k) { (k)'

1 , ・ ・ ・, r1 }
r. = PI = aj,I'...'Pn = a; 翌}be the service specifications; E(k) = { eik), • • •, e岱}be the

exceptional behaviors; p(k) = {Pik), • • •, p炉}be the protocol specification, at that time. We
(k) (k) (k) (k) (k) .

now complete ek+I. Let ek+l = {P1 = c1 , ・・ ・,Pn= en }. Events of a message sequence ek+1 m
the protocol p(k) are executed according to the definition without input from the outside. Let

stp; be the state of process Pi (i = 1, ・ ・ ・, n), and contij be contents of the channel from process
Pi to Pi (i = 1, ・ ・ ・, n, j = 1, ・ ・ ・, n, i # j) when the execution has finished. We use new(p) if a

(k) new state 1s needed in process p on the way to the completion of e When e (k) •
k+l• k+I 1s completed,

we change the reached state to state(e凰，p).

Case 1 Neither stp; is the final state of process Pi (i = 1, ・ ・ ・, n), and there is at least one
nonempty channel for each process.

Append receive events to each process Pi to receive every remaining message in each channel.

Case 2 Every stp; is the final state of process Pi (i = 1, ・ ・ ・, n) and every contij(l ::; i ::;
n, l ::; j ::; n, i # j) is empty.

Assume that

becomes

(k)
ek+l'
rY¥j = 1, • • • ,l)

e~ 罰={p1 = Clk)(i)'・ ・ ・,Pn = c~k)(i)}
(k)(i) (k)(i) (k)(i)
乃 ={P1 = aj,1 , ・ ・ ・, Pn = aj,n }

when p1 = c
(k) (k)
1 , ・ ・ ・, Pi = ci have been completed. We modify service specifications in

(k)(i)
scope(ci初） and the exceptional behavior ek+1 so that they give different event sequences

in process Pi+l. Let 9i, ゎ加 (i= 1, ・ ・ ・, n; j = l, • • •, #(scope(c~ 翌））） be new messages, where

#(scope(ci唸i))))is the number of elements of (scope(c~~ り））） • For each ruEscope(c~~?))), we
choose a service specification r v E scope(c仕）(i)). Note that two event sequences of process (i+l,u〉

(k)(i)
P(i+l,u〉inek+l and r u are different. Then we modify them as follows.

95

process Pi+ 1 process P<i+ l,u>

、̀'‘、

ヽ

ノ

μ

ー＋

＞

i

u

，

ル

ー
り

け

ー

(

＜

+

ぃ
ご
汀
喜

．

•• ＞ a

••• 火
（＋パ矛①

i

l

V

+

、l'

り（

,

i

ー

U

但

L

u

ー
＋

a

＋．ー
i
h

（

＞

ャ

“

ー＋

i

＜

p

如

m
:

，

o
a

・

・

十

二

ぃ・
（

i

に

メ
．．

＜

ヽ
~
ー

te

i

p

 、̀＇’

（
＋

勾
i

+

＼

（

凡

肉

]

t

a

a

s

Figure 9.6: Separation of en exceptional behavior from a service specification.

Tu= { Pl -
(k){i)

Pi+l = au,i+_l + P〈i+l,u〉(9i+I,u),''',
(k)(i)

P(i+l,u) = au.ii+l.u) -Pi+1(9i+1,u), ・ ・ ・,

Pn

r。={ P1

Pi+I (k)(i) ・・

P〈i+l,u}= av,(i+l.u) -Pi+l (hi+1,u)・ ・ ・,

(k)(i) Pn
ek+l = { P1

(k)
Pi+l = ci+l + P(i+l,u〉(hi+1,u),・ ・ ・,

(k)
P(i+l,u) = C?+l,u〉-Pi+1(hi+1,u), ・ ・ ・,

k)
- ----------------_p_n__= en_} __ ---- --- --------

We reflect the modification to the protocol as shown in Fig. 9.6. Then process Pi+I detects

the exceptional behavior at state state(e『ぶ，p(i+l)).

Case 3 Other exceptional behaviors.
Every state of process Pi(i=l,・ ・ •,n) is classified into one of the following four cases, and

there is at least one process classified into (b) or (c).

(a) stp; is the final state, and contij = 0 (i=/-j,j = 1,・ • •,n).

(b) stp; is the final state, and there is at least one channel chPiPi such that contijヂ0.

(c) stp; is not the final state, and contij = 0 (i=/-j, j = 1, • • •, n).

(d) stp; is not the final state, and there is a channel ch加 isuch that contij =/-0.

If a process classified into (b) or (c) detects an exceptional behavior, the processes classified

into (a) can be completed as in Case 2. In other words, the processes classified into (a) receive
a message from a process classified into (b) or (c), and detect the exceptional behavior. The

•

96

procedure in Case 1 can be applied to the processes classified into (d). Consequently, we have

only to modify processes classified into (b) or (c) to detect exceptional behaviors and go to the

specified states with empty contij・

Let Pi+I be a process classified into (b) or (c). Assume that

(k)
ek+l'
ヂ(j= 1, ・ ・ ・, l)

becomes

e『罰={P1= Cik)(i), ・ ・ ・, Pn = c~k)(i)}
(k)(i) (k)(i) (k)(i)
乃 ={p1= ai,1 , ・ ・ ・,Pn = ai,n }

(k) (k)
when p1 = c1 , ・・・,Pi= ci has been completed. Let 9ii (i = 1, ・ ・ ・, n; j = l, ・・・， #(scope(c昌~l(i))))
be new messages. Then we modify service specifications and the exceptional behavior as follows.

• When Pi is classified into (b):

・ ・ ・ e an event sequence to receive all messages remaining Let d叫＝叫(h1)+ Pi/h1)) b

in the channels of Pi• We modify e『2ii)as follows.

忍誓＝｛ ... Pl = C1
(k)(i) ，
(k)(i)'

Pi+l = C叶 1 di+l,"',
Pn = c~k)(i)}

For each Tj E scope(c~ 叡）， welet pred(P{i+l,j〉)be the event sequence of process P{i+l,i〉

when Tj is executed and the event sequence of process Pi+l has become cり~(i), and

succ(p〈i+l,j〉)be the remaining event sequence of process P{i+l,i}・Then we modify乃
(k)(i)

as follows.

r?)(i) = { P1 = at?i), ・・・，
k)(i)

Pi+l = Ci+l + P〈i+l,j〉(9i+1,i),・ ・ ・
P(i+l,i〉=pred(p〈i+l,j〉)-Pi+I (9i+I,j) succ(p〈i+l,j〉)，...'

(k)(i)
J,n } Pn = a-

We reflect the modification to the protocol as shown in Fig. 9. 7.

• When Pi is classified into (c):

For each乃 Escope(c~ 翌）， wemodify as follows.

叫罰={ P1 = elk)(i)'...'
(k)(i)

Pi+l = ci+l + P(i+l,j〉(9i+l,j),・・・，

P(i+l,i〉= pred(P(i+l,i)) -Pi+1 (9i+l,j) succ(P(i+l,i)), ・ ・・，

r・
(k)(i)
3 = { Pl

Pn = c?~)~:/
= aj,1 '・・・，

Pi+l

P(i+l,j〉

Pn

= pred(Pi+1) + P(i+l,i〉(9i+1,j)succ(pred(Pi+1)), ・・・，

= pred(p〈i+l,j〉)-Pi+1(9i+1,j) succ(P(i+l,j)), ・ ・ ・,
(k)(i)

= aj,n }

97

process Pi+ I process P <i+ Ij>

①'刈らも↓＇がら

J

.

J

l

l

l

+

＋

+

i

i

く

く

潔

Uc

却

＋

c

e

i

u

ゥ

r

p

s

Figure 9.7: Separation of an exceptional behavior classified into (b) from a service specification.

process Pi+ 1 process P<i+lJ>

•

Figure 9.8: Separation of an exceptional behavior classified into (c) from a service specification.

98

We reflect the modification to the protocol as shown in Fig. 9.8.
The above procedure completes a synthesized protocol P from the service specifications R

when a set of exceptional behaviors E is given. Exceptional behaviors classified into Case 1

can be completed without modifying any service specifications. Completing other exceptional
behaviors need modification of service specifications. Exceptional behaviors classified into Case
3(a) are not handled in conventional protocol completion methods without using service spec-

ifications explicitly.

9.4 Application

We apply the protocol completion algorithm to X.227 [66]. First we briefly explain X.227. X.227
is one of a set of Recommendations produced to facilitate the interconnection of information
processing systems and specifies the protocol for the association-service-element for application―

association control: the Association Control Service Element (ACSE). The ACSE provides
services for establishing and releasing application-associations. The protocol is governed by the
use of the presentation-service (X.216) and the session-service (X.215), however, we take account
of only X.227 and omit some abnormal procedures. Consequently, the service specifications and
the resultant synthesized protocol in this example do not exactly coincide with Recommendation
X.227.

9.4.1 Premise

The protocol completion algorithm is supposed to be applied under the situation:

1. A designer describes message sequences as service specifications.

2. The designer then synthesizes a protocol from the specifications. This synthesis can
be automated [9]. If the protocol includes an exceptional behavior, then the designer
completes the protocol by applying the algorithm.

Therefore, the above-mentioned situation cannot be applied in the case of an already com-
pleted protocol. Then, assuming the following protocol design steps, we show that the objective
protocol specification is obtained by simulating protocol completion.

1. We extract primary sequences of X.227 given as a standard and assume that they consti-
tute the service specifications.

2. We obtain the protocol specification of X.227 by completing the protocol synthesized from
the service specifications.

9.4.2 Completing Process

Preliminary

We assume the next two subobjects as service specifications. Figure 9.9 illustrates the subob-

jects.

1. Subobject 1: A sequence from the initial state to the associated state. Let the service

specifications be R1 = { r}, Ti, rふ吋｝．

99

pl Initial p2
, state一
(STAO)

AARQ

ssociated
state•

(STA5)

r 1
1

pl Initial p2 —state
A-ASCreq I (STAO)

A-ASCcnf-
Initial
state —

(STAO)
1

r3

Associated
pl state p2
T(STA5)

A-RLSreq

Initial pl —state
p2

(STAO)
AR

A-ASCcnf+
L—

Associated
state...:.,..

(STAS)

r I
2

p 1 Initial p2 —state — (STAO)

A-ACSind !Ji.AR
~

A-ASCrsp-

(1) Subobject 1

Initial
state _

(STAO)
r 1
4

Associated
pl state p2

(STAS)

A-RLSind .
, ..

A-RLSrsp+

. . Initial - ----- ---- -•--lmt-1-al —1---- -—-—----- -- ------1——----- ----- ----- ---------上state _
state - (STAO)
(STAO)

r2 r2
l 2

Associated
pl state p2

Associated
pl state p2

，
A-RLSreq T (STAS)

momooc n1諏

(STAS)
RLRQ 1~-RLSreq

A-RLScnf-
Associated

＇ state — Associated
町・・,n

state
(STA5) (STAS)

r 2
3 (2) Subobject 2 ri

Figure 9.9: Service specifications of X.227.

100

．

RLRE+
A-RLScnf+

STAO: Initial state STA5: Associate state

Figure 9.10: Synthesized protocol from service specifications in Fig. 9.9.

2. Subobject 2: A sequence from the initial state to the associated state. Let the service
specifications be R2 = { d, r~, r5, rl}.

We can synthesize the protocol in Fig. 9.10 from the service specifications. In this figure
we use an abbreviated notation to represent events. A message over a bar abbreviates a receive
event or an input event. If the message has the prefix "A-", then the message is an abbreviation
of the input event of it, and other messages over bars are abbreviations of receive events of
them. A message under a bar abbreviates a send event or an output event. If the message
has the prefix "A-", then the message is an abbreviation of the output event of it, and other
messages under bars are abbreviations of send events.

Completing the protocol

(1) Subobject 1

STEPl: Detection of exceptional behaviors

The protocol includes an exceptional behavior that occurs when A-ASCreq is inputted to
processes pl and p2 at the same time. Then AARQ is received neither by pl nor by p2

as shown in Fig. 9.11. Let these states be st~1 and st~2.

STEP2: Classification of exceptional behaviors

101

I

Since neither st~1 nor stふisthe final state, and there are non-empty channels at both pl
and p2, the exceptional behavior is classified into Case 3(a) in the previous section.

STEP3: Completion (Fig. 9.11)

• Addition of a receive event for coping with unspecified reception

Add receive events of AARQ to states stょandst贔．
• Decision of additional sequences and states to be reached

This process is a designer-dependent matter, and there are various procedures. In
this example, each process informs its upper layer and processes exchange ABRT
with others. Finally each process goes back to its initial state.

(2) Subobject 2

STEPl: Detection of exceptional behaviors

The protocol includes an exceptional behavior that occurs when A-RLSreq is inputted to
processes pl and p2 at the same time. Then RLRQ is received neither by pl nor by p2
as shown in Fig. 9.11. Let these states be st;1 and st贔

STEP2: Classification of exceptional behaviors

Since neither s佑norst贔isthe final state, and there cire non-empty channels at both pl
and p2, the exceptional behavior is classified into Case 3(a) in the previous section.

STEP3: Completion (Fig. 9.11)

• Addition of a receive event for coping with unspecified reception.

Add receive events of RLRQ to states s砧andst贔
• Decision of additional sequences and states to be reached.

This process is also a designer-dependent matter, like in the case of subobject 1.

_ __ H~r_~,_e1t_s:h 2_I"_QQ~§s_hiform_1,j_1;~up12_er J~ye:i-_9-nd proc_~s-~p_l_~end~E_2_]lL!{E_-t--_. Fip.ally
process pl goes back to STA3 and process p2 goes back to STA4.

The above steps produce complete service specifications that contain additional completed
sequences and the original service specifications. It follows that we can get a completed protocol
as illustrated in Fig. 9.12 that contains three new states STA6, STA7 and STAS. We note that
STAS is not defined in X.227. This state is created because ABRT can be received at any
state except STAO in the original X.227, however, we omitted such abnormal procedures in this
example.

102

．

．

pl
軋』鴫

I

A-ASCreq

p2 p 1 Associated p2 ー一 state =
A-ASCreq A-RLSreq I (STAS) IA-RLSreq

2

2

p

t

s
 ．

．．

pl p2 p 1 Associated p2
state -

A-RLSreq I (STAS) [1: 翌：Sreq

RLRQ
RLRQ/

STA3 STA4

(1) Subobject 1 (2) Subobject 2

Figure 9.11: Exceptional behaviors in X.227 and their completion.

103

RLRE+

RLRE+ forp2
A-RLScnf+

Figure 9.12: X.227 protocol obtained by the completion method.

t,

104

Chapter 10

Conclusion

We conclude this thesis by summarizing the obtain(:)d results. In this thesis we investigated the
following three subjects.

1. Transformation from initial incomplete requirements into complete service specifications.

2. Automated software generation from service specifications.

3. Transformation from protocols with errors into complete protocols.

In Chapter 3, we proposed a specification completion method for a rule-based specification
language STR. The completed specification agrees with the requirements of the service designer.
The method obtains complete service specifications by eliminating errors and supplementing
insufficient rules in the initial requirements. Most published works start on the premise that the
requirements analysts are different from the users of the software systems. In this method, the
users themselves can describe their own requirements rather than requirements analysts. If new
rules are necessary, the method generates them by using an abstraction of conventional commu-
nication services. The proposed method has a limit, however. If a completely new requirement
specification is given, it becomes impossible to generate rules to supplement the incomplete
requirement specifications. Future work includes providing a generic domain knowledge.

As far as automated software generation is concerned, we obtained three algorithms. The
first two algorithms described in Chapters 4 and 5 synthesize a protocol from service specifi-
cations. The algorithms assume a layered architecture which is commonly used for a protocol
architecture. They differ in their message exchange methods between protocol entities. The
algorithm in Chapter 4 synthesizes a sequential communicating protocol. The algorithm in
Chapter 5, in contrast, synthesizes a parallel communicating protocol. A parallel communi-
cating protocol uses more message exchanges than a sequential communicating protocol but
usually spends less time for message exchanges. These algorithms are definitely different from
protocol synthesis algorithms in published work. In our methods the execution order of events
is not specified in service specifications. The execution order of events is usually considered as
an implementation dependent factor [64]. Another difference is that the methods in this thesis
synthesize protocols implementing distributed algorithms.

In Chapter 6 we defined a detailed specification language STR/D that refines protocol
specifications so that they become implementable. The language aims at refining protocol
specifications without knowing individual service specifications as best as possible. In an ex-
periment, typical communication services were found to be capable of refinement independent

105

of the individual rules in Chapter 7. The refinement specifications were dependent on state
primitives and events. We implemented several communication services on PBX systems by
using a generated software specification. In actual communication networks the protocol be-
tween communication systems was specified beforehand. We had a problem determining how
to conform the generated software to the protocol.

In order to generate communication software that can be installed on an actual network, we
proposed a stepwise refinement method that generates software conforming to the functional
model in Chapter 8. This method solves the protocol conformance problem described above.
However, the problem of how to increase the ratio of automation still remains.

For the final subject, i.e., to transform erroneous protocols into error-free protocols, we
presented a protocol completion method. Exceptional behaviors often happen in communication
software which is used to control multiple independent entities. A protocol completing method
which resolves undesired states caused by exceptional behaviors has been proposed. There are
two cases in which exceptional behaviors are eliminated.

(a) A protocol specification is modified, but service specifications are not.
(b) A protocol specification and service specifications are both modified.
Every exceptional behavior can be completed in the proposed method, though conventional

protocol completion methods which do not use service specifications cannot complete some
exceptional behaviors. The method has been applied in order to obtain an error-free X.227
protocol from a set of partial specifications of X.227. Future work includes having designers
assist in specifying states to be returned to after the resolution of undesirable exceptional
behaviors.

These results enable non-experts of communication systems and software to develop com-
munication software semi-automatically, although they have to interact to decide specifications,
and the assistance of experts is necessary to transform the obtained protocol specifications into
detailed software specifications. The proposed method has the following features:

1. It is possible to obtain complete service specifications that reflect the users'intention
from incomplete service specifications.

2. It is possible to g enerate commumcat10n software sem1-automat1cally by only using de-

誓

ヽ

tailed specifications to define the semantics of primitives and events in STK on a commu-―-- ---------

nication system. Furthermore, this detailed knowledge can be described as knowledge.

3. In the case that protocols themselves are specified rather than service specifications, it
is possible to obtain complete protocol specifications by describing given protocols by
message sequence charts.

106

，
疇

Bibliography

[1] Hirakawa, Y. and Takenaka, T., "Telecommunication Service Description Using State
Transition Rules", in Proc. Sixth Int. Workshop on Software Specification and Design
(Como, Italy), pp. 140-147, Oct. 1991.

[2] Cameron, E. J. and Velthuijsen, H., "Feature Interactions in Telecommunications Sys-
tems," IEEE Commun. Magazine, vol. 31, no. 8, pp. 18-23, Aug. 1993.

[3] Harada, Y., Hirakawa, Y., Takenaka, T. and Terashima, N., "A Conflict Detection Support
Method for Telecommunication Service Descriptions", IEICE Trans. Commun., vol. E75-B,
no. 10, pp. 986-997, Oct. 1992.

[4] Ohta, T., Takami, K. and Takura, A., "Acquisition of Service Specifications in Two Stages
and Detection/Resolution of Feature Interactions," in The Fourth Telecommunications
Information Networking Architecture Workshop (L'Aquila, Italy), vol. 2, pp. II-173-II-
187, Sep. 1993.

[5] Inoue, Y., Takami, K. and Ohta, T., "Automatic Detection of Service Interactions in
Telecommunications Service Specifications", in IEEE International Conference on Com-
munications, pp. 1835-1841, May 1994.

[6] Zimmermann, H., "OSI Reference Model-the ISO Model of Architecture for Open Systems
Interconnection," IEEE Trans. Commun, vol. COM-28, no. 4, pp. 425-432, Apr. 1980.

[7] Menso Appeldom, Roberto Kung, and Roberto Saracco, "TMN + IN = TINA," IEEE
Commun. Magazine, vol. 31, no. 3, Mar. 1991.

[8] ITU-T, "Message Sequence Chart: Recommendation Z.120," Sep. 1994.

[9] Ichikawa, H., Itoh, M., Kato, J., Takura, A., and Shibasaki, M., "SDE: Incremental Spec-
ification and Development of Communications Software," IEEE Trans. Comput., pp. 553-

561, Apr. 1991.

[10] F四rgemand,0. and Olsen, A., "Introduction to SDL-92," Computer Networks and ISDN
Systems vol. 29, no. 9, pp. 1143-1167, May 1994.

[11] Bolognesi, T. and Brinksma, E., "Introduction to the ISO Specification Language LO-
TOS," Computer Networks and ISDN Systems vol. 24, pp. 25-59, 1987.

[12] Belina, F. and Hogrefe, D., "The CCITT-Specification and Description Language SDL,"
Computer Networks and ISDN Systems, vol. 16, no. 4, pp. 311-341, 1989.

107

[13] Faci, M., Logrippo, L. and Stepien, B., "Formal Specification of Telephone Systems in LO-
TOS: the Constraint-Oriented Style Approach," Computer Networks and ISDN Systems,
vol. 21, pp. 53-67, 1991.

[14] Drayton, L., Chetwynd, A. and Blair, G., "Introduction to LOTOS through a Worked
Example," computer communications, vol. 15, no. 2, pp. 71-85, Mar. 1992.

[15] Cameron, E. J., Cohen, D. M., Guithner, T. M., Keese Jr., W. M., Ness, L. A., Norman,
C. and Srinidhi, H. N., "The L.O Language and Environment for Protocol Simulation and
Prototyping," IEEE Trans. Comput., vol. 40, no. 4, pp. 562-571, Apr. 1991.

[16] Tsai, J. J. P., Weigert, T. and Jang, H.-C., "A Hybrid Knowledge Representation as a
Basis of Requirement Specification and Specification Analysis," IEEE Trans. on Software
Eng., vol. 18, No. 12, pp. 1076-1100, Dec. 1992.

[17] Boehm, B. W., "Software Engineering Economics," IEEE Trans. Software Eng., vol. SE-10,
no. 1, Jan. 1984.

[18] Reubenstein, H. B. and Waters, R. C., "The Requirements Apprentice: Automated Assis-
tance for Requirements Acquisition," IEEE Trans. Software Eng., vol. SE-17, no. 3, Mar.

1991.

[19] Jarke, M., Bubenko, J., Rolland, C., Sutcliffe, A. and Vassilou, Y., "Theories Underlying
Requirements Engineering: An Overview of NATURE at Genesis," IEEE Int. Symp. on
Requirements Engineering (San Diego, California), pp. 19-31, Jan. 1992.

[20] Rolland, C. and Proix, C., "A Natural Language Approach for Requirements Engineering,"
4th Int. CAiSE Conference, vol. 593, pp. 257-277, 1992.

[21] Puncello, P. P., Torrigiani, P., Pietri, F., Burlon, R., Cardile, B. and Conti, M., "ASPIS:
A Knowledge-Based CASE Environment," IEEE Software, pp. 58-65, Mar. 1988.

[22] Wrobel, S., "Design Goals for Sloppy Modelling Systems," Int. J. Man-Machine Studies,

..

疇

----- ---pp.-4€H-4-7-7, vol.-2-9,-no.-4-,-pp.-461-——~482-,-0G-t.-1988 • ------ --------- -------------------------- ----

[23] Kelly, V. E. and Nonnenmann, U., "Reducing the Complexity of Formal Specification
Acquisition, In Automating Software Design," Automating Software Design, ed. Lowry,
M. R. and McCartney, R. D., AAAI Press, pp. 41-64, 1991.

[24) Probert, R. L. and Saleh, K., "Synthesis of Communication Protocols: Survey and Assess-
ment," IEEE Trans. Comput., vol. 40, no. 4, pp. 468-476, Apr. 1991.

[25] Ichikawa, H. and Takami, K., "Automatic Generation of Communications Software," The
Journal of IEICE, pp. 522-530, vol. 77, no. 5, May 1994.

[26) Merlin, P. and Bochmann, G. V., "On the Construction of Submodule Specifications and
Communication Protocols," ACM Trans. Programming Languages and Syst., vol. 5, no. 1,
pp. 1-25, Jan. 1983.

[27) Zafiropulo, P., West, C. H., Rudin, H., Cowan, D. D., and Brand, D., "Towards Analyzing
and Synthesizing Protocols," IEEE Trans. Commun, vol. Com-28, no. 4, pp. 651-661, Apr.
1980.

108

ごi

[28] Sidhu, D. P., "Protocol Design Rules," in Protocol Specification, Testing, and Verification,
pp. 283-300, 1982.

[29] Kakuda, Y. and Wakahara, Y., "Component-Based Synthesis of Protocols for Unlimited
Number of Processes," in Proc. IEEE COMPSAC'87, pp. 721-730, 1987.

[30] Takura, A. and Ichikawa, H., "Completing Protocols According to Requirements," in Proc.
!CCC Symp. (Beijing, China), pp. 116-119, Sep. 1989.

[31] Takura, A. and Kanai, A., "Completing Protocols Synthesized from Service Specifications,"
submitted to IEICE Trans. Commun ..

[32] Genji, K., Takami, K. and Takenaka, T., "Telecommunication Service Design Support
System Using Message Sequence Rules," IEICE Trans. Commun., vol. E75-B, no. 8, pp.
723-732, Aug. 1992.

[33] Bochmann, G. V. and Gotzhein, R., "Deriving protocol specifications from service speci-
fications," in Communications, Architectures 8 Protocols, Proc. of the ACM SIGCOMM
'86 Symp., pp. 148-156, 1986.

[34] Gotzhein, R. and Bochmann, G.V., "Deriving Protocol Specifications from Service Speci-
fications Including Parameters," ACM Trans. Computer Syst., vol. 8, No. 4, pp. 255-283,
Nov. 1990.

[35] Chu, P. M. and Liu, M. T., "Synthesizing Protocol Specifications from Service Specifica-
tions in FSM Model," Proc. Comput. Networking Symp., pp. 173-182, Apr. 1988.

[36] Saleh, K. and Probert, R., "A Service-Based Method for The Synthesis of Communications
Protocols," Int. J. Mini and Microcomputers, vol. 12, no. 3, pp. 97-103, 1990.

[37] Kakuda, Y., Nakamura, M. and Kikuno, T., "Automated synthesis of protocol specifi-
cations from service specifications with parallelly executable multiple primitives," IEICE
Trans. Fundamentals, vol. E77-A, no. 10, pp. 1634-1645, Oct. 1994.

[38] Hagihara, K., "Distributed Algorithms," J. Japanese Society for Artificial Intelligence, vol
5, no. 4, Jul. 1990.

[39] Garey, M. R. and Johnson, D. S., "Computers and Intractability, A Guide to the Theory
of NP-Completeness," NY: W. H. Freeman and Co., 1979.

[40] Takura, A., Kawata, K., Ohta, T. and Terashima, N., "Communication Software Genera-
tion Based on Two-Layered Specifications and Execution Environment," in IEEE GLOBE-

COM'93 (Houston, USA), pp. 362-368, Dec. 1993.

[41] Dendorfer, C. and Weber, R.,'、Fromservice specification to protocol entity implementa-

tion -An exercise in formal protocol development," in Protocol Specification, Testing and
Verification, XIIpp. 163-177, 1992.

[42] Takura, A., Ohta, T. and Kawata, K., "Task Generation Mechanisms in a Communication

Software Generation Systems," in 1993 Asia-Pacific Conj. on Communications, 2E.2, Aug.
1993.

109

[43] Sera, T. and Takura, A, "Task Generation for Distributed Functional Model," to appear
in Int'l J. on Artificial Intelligence Tools.

[44] CCITT, "Draft Recommendation F.851, Universal Personal Telecommunication (UPT) -
Service Description," Oct. 1992.

[45] Sera, T, Takura, A. and Ohta, T., "Architecture Refinement for a Distributed Functional
Model," in Proc. of the IASTED Int. Conj. (Orland, Florida), pp. 173 -176, Jan. 1996.

[46] Bochmann, G. v., "A general transition model for protocols and communications services,"
IEEE Trans. Commun., vol. COM-28, no. 4, pp. 643-650, Apr. 1980.

[47] Brand, D. and Zafiropulo, P., "On Communicating Finite-State Machines," J. ACM, vol.
30, no. 2, pp. 323-342, Apr. 1983.

[48] Kakuda, Y., "A Recovery Sequence Generation System for Design of Recoverable Proto-
cols," Trans. IEICE, vol. E7 4, no. 6, pp. 1715-1727, Jun. 1991.

[49] Nakamura, M., Takura, A. and Ohta, T., "A Method for Requirements Elicitation Using
a Domain Model," in Task Force on the Engineering of Computer Based Systems, May
1994.

[50] Ohta, T. and Takura, A., "The Automated Acquisition of Requirements Specifications for
Communications Software," in Proc. of Seventh Int. Conf Computing and Information
(ICCI'95), pp. 1009-1021, 1995.

[51] Takura, A, Ueda, Y., Haizuka, T and Ohta, T., "Requirements Acquisition of Communi-
cations Services," to appear in International Communications Conference (ICC'96), Jun.
1996.

・̀'’.，此

i

疇

[52] Takura, A., Sera, T., Ohta, T., "Protocol Synthesis from Service Specifications Described
by Graph Rewriting Rules," RIMS workshop, Jul. 1995.

[53] Takura, Ohta, T. and Kawata, K., "Process Specification Generation from Communica-
--- -----t声 Servrc-e-5pectftcations-;-"--A-uto-mate--d-Softwnre-E--rrg-:-,-no:---2, pp.-16'1-182,--1995--;---------------------

[54] Takura, A. and Ohta, T, "Two-Layered Communications Service Specification Description
and Program Specification Generation," Trans. JPS Japan, vol. 35, no. 5, pp. 1104-1113.
May 1995.

[55] Takura, A. and Ohta, T., "Stepwise Telecommunication Software Generation from Service
Specifications in State Transition Model," in 1993 Int. Conj. Network Protocols (Boston,
USA), pp. 135-142, Oct. 1994.

[56] Takura, A. and Ohta, T., "Stepwise Refinement of Communications Service Specifications
for Conforming to a Functional Model," IEICE Trans. on Communications, vol. E77-B,
no. 11, pp. 1322-1331, Nov. 1994.

[57] Liu, M. T., "Protocol Engineering," it Advances in Computers, vol. 29, pp. 79-195, 1989.

[58] Takami, K., Harada, Y., Ohta, T. and Terashima, N., "A Visual Design Support System
for Telecommunications Service," in IEEE Phoenix Conj. Computers and Communications,
pp. 593-599, Mar. 1993.

110

0

トヽ＼

[59] Ueda, Y., Takura, A. and Ohta, T., "A Verification method of Communications System
Service Specifications," Technical Report of IEICE, KBSE94-44, pp. 25-32, Nov. 1994.

[60] Shibata, K., Hirakawa, Y., Takura, A. and Ohta, T., "Reachability Analysis for Specified
Processes in a Behavior Description," IEICE乃ans.Commun., pp. 1373-1380, vol. E76-B,
no. 11, Nov. 1993.

[61] Sato, M., "Reachability Analysis for Communication Service Specification Descriptions in
Global State Rules," IEICE乃ans.Commun., pp. 245-251, vol. J78-B-I, Jun. 1995.

[62] Awerbuch, B., "Optimal Distributed Algorithms for Minimum Weight Spanning Tree,
Counting, Leader Election," in Proc. of the 19th A CM Symp. on Theory of Computing,
pp. 230-240, 1987.

[63] Kato, J. and Arakawa, N., "Software Architecture for Automated Communications Soft-
ware Development," in Proc. IEE 7th Int. Conj. Software Eng. Telecommun. Switching
Syst., pp. 29-33, Jul. 1989.

[64] Chandy, K. M. and Misra, J., "Parallel Program Design, A Foundation," Addison-Wesley
Publishing Company, 1989.

[65] Itoh, M. and Ichikawa, H., "Protocol Verification Algorithm Using Reduced Reachability
Analysis," Trans. IEICE, vol. E66, no. 2, pp. 88-93, Feb. 1983.

[66] CCITT Recommendations X.220 -X.229, "Data Communication Networks, Open Systems
Interconnection (OSI) Protocol Specifications, Conformance Testing," vol. VIII, Fascicle
VIII.5, 1988.

111

	01
	02
	MX-4111FN_20201204_113613

