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Chapter 1 

Introduction 

1.1 Automated Generation of Communication Software 

Automated software generation is a promising and efficient way of developing reliable software. 
This research aims at automating communication software generation from formally described 
requirement specifications. 

In communication systems services are added frequently. For this reason, the ability to 
develop communication software efficiently and reliably is desired, even though communication 
software is large and complex. 

All users have been provided with the same communication services up to now. From 
now on, however, users expect to be provided with individual services. Today, communication 
networks are evolving toward open networks where the users themselves develop services. 

This situation requires a technique enabling users who do not have detailed knowledge about 
communication networks or communication software, to develop new communication services. 
The proposed method of automating software generation is characterized as follows. 

• To generate software by describing specifications that can be grasped by communication 
service users. 

• To allow the addition of new services even without knowing the details of existing software. 

• To generate error-free, reliable software. 

To achieve our purpose we present a communication software generation method that derives 
satisfactory service specifications from initial requirements described by users, and generates 
software that satisfies the service specifications. We focus on the part of communication software 
that directly participates in providing users with services. In other words, the target of our 
automatic generation is software that needs to be newly developed to handle service additions. 
We do not consider operating systems nor maintenance and administration software. 

The proposed method of automating communication software generation is illustrated in 
Fig. 1. 1. Service designers describe requirement specifications by a specification language 
called STR (State Transition Rule) [1]. The described requirements may be incomplete and may 
sometimes have contradictions. The requirement specifications are transformed into "complete" 
specifications that satisfy the requisites for communication services. Service designers may 
interact throughout the transformation. This transformation is called specification completion. 
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Initial requirements 
described with STR 

Specification completion 
(Chapter 3) 

Protocol completion 
(Chapter 9) 

Protocol synthesis 

(Chapters 4, 5) 

Stepwise refinement 
(Chapter 8) 
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Software specification 
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Communication system 
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Figure 1.1: Flow of Software Generation. 
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The usual development style for communication software is adopted to add a new service 
to existing services. Consequently, it is crucial to detect and resolve all conflicts among these 
services [2]. Specification verification methods [3][4][5] have already been proposed for specifi-
cations described by STR; specification verification is out of the scope of this thesis. 

The obtained service specifications are synthesized to produce protocol specifications. In 
this synthesis a layered architecture model is adopted as the protocol architecture. The OSI 
reference model [6] is typical of the layered architecture model. Communication services are 
provided to users through switching systems and telephone terminals. The synthesized proto-
cols only describe the rules of message exchanges between protocol entities; they do not include 
the control specifications driving such communication equipment: Then, the protocol specifi-
cations are transformed into software specifications furnished with the control specifications of 
the communication equipment. After the obtained software specifications are coded and then 
installed on the communication system specified by the layered architecture model, the system 
can provide users with communication services. 

A functional model [7] has been standardized as an architecture for providing communication 
services. It is a distributed architecture in which each function constitutes a protocol entity. 
Software specifications conforming to the architecture are obtained by stepwise refinement. 

The above software generation methods are oriented for users who are non-experts in com-
munication systems or communication software. A field, however, does exist for experts to 
generate software by implementing given protocol specifications. Message sequence charts [8] 
are proposed for describing these protocol specifications; such charts describe specifications 
that can automatically be synthesized to produce protocol specifications [9]. 

However, synthesized protocols may include exceptional behaviors which do not correspond 
to any of the requirement specifications. This in turn may cause protocol errors such as deadlock 
states. The resolution of such protocol errors from exceptional behaviors is called protocol 
completion. 

This paper proposes methods to automate these subjects. There is no system to automate 
all of them consistently. In other words, this is the first research on generating communica-
tion software from service specifications, which can be described without detailed knowledge, 
through protocol synthesis, after which the generated software is actually used for implementing 
communication services. There are two types of specification description methods. The internal 
behavior of a communication system is usually described in the form of specifications to produce 
communication software. In protocol synthesis methods, service specifications are described by 
regarding a communication system as a black box. These methods have not been applied to 
transform service specifications into executable communication software. On the other hand, 
in this research, incomplete service specifications are transformed into implementable specifi-
cations as communication services, and finally to communication software. 

The proposed methods are incorporated into the software generation system in Fig. 1.2, 

and characterized as follows. 

1. Service specifications are described as a set of state transition rules for terminals observ-
able from outside of a communication system. 

2. Errors in each rule and insufficient rules are detected, and corrected or complemented. 

3. The method can be combined with validation and verification methods for specifications. 

4. Protocol specifications are synthesized from service specifications. 
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Figure 1.2: Communication software generation system. 

5. Detailed specifications are described as knowledge. 

The following effects are expected from communication software generation with the above 
features. 

1. Communication software can be obtained starting from incomplete service specifications. 
This implies that communication service specifications can be obtained from ambiguous 
and fragmentary requirement specifications which are imagined by the users themselves. 

2. Communication software reflects the user's intention. Therefore, the behavior of the 
generated software corresponds to the user's intention. 

3. Specification errors can be detected. 

4. Communication service specifications are described by non-experts. Non-experts are de-
fined as people who do not have knowledge of the communication software architecture, 
protocols and control methods of communication systems. 

5. Experts scarcely participate in automated software generation from users'requirement 
specifications. 

6. The size of the specifications is small. This implies that services are expected to be 
developed in a short time. 

Concerning the method for making feature 1 come true, its details and limits are clarified 
in Chapter 3. Feature 2 is achieved by itself because the specifications that are validated by 
users are automatically transformed into communication software. Feature 3 is achieved both 
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by verifying a requirement specification and by detecting and resolving conflicts between the 
requirement specification and existing specifications. We note that the detection and resolution 

of interference between specifications are out of the scope of this thesis. The proposed method 
is shown to have features 4, 5 and 6 by the results of experiments in Chapter 7. 

Specification languages are indispensable for automating the generation of communication 
software. For this purpose, a specification language called STR is used in this thesis. The 

reason for using STR is described in Section 1.2, which also gives an informal description of 
STR. Sections 1.3 to 1. 7 below describe problems to be solved and related works. Section 1.8 

gives an overview of this thesis. 

1.2 Requisites for a Specification Language 

A specification language is necessary for describing requirements and automating software gen-
eration. We clarify requisites for a specification language that achieves these purposes. 

• Service specifications independent of implementation. 

Service specifications should not include specifications of the architecture nor functions 
provided by the target system. When one uses a communication service, any behav-
ior performed in the environment surrounding the communication system turns into a 
specification of the communication service. 

• New service addition without detailed knowledge of existing specifications. 

New communication services are usually added to existing services. Therefore, it is de-
sirable to be able to describe specifications of new services without knowing existing 

services. 

• Automatic detection of conflicts. 

Contradictions are sometimes included in specifications and there may be conflicts be-
tween new specifications and existing specifications. These undesirable phenomena can 
be detected in the specification description phase. 

• Stepwise refinement from specifications to programs. 

Specifications are gradually refined into software. 

Many specification languages including SDL [10] and LOTOS [11] have been proposed for 

specifying communication software or protocols [12][13][14]. SDL is the most commonly used 
language for the formal specification of telecommunication system behaviors. Much of the 

recent work in this field has centered on LOTOS. These languages can be used to describe 
implementation independent specifications at an appropriate level of abstraction. They incor-
porate an explicit notion of execution order or synchronization among processes. This implies 

that the composition of specifications needs them to be adjusted. On the other hand, in some 
rule-based languages specifications are simply composed by the logical conjunction of rules. In 
other words, specifications can be augmented simply by adding new rules. 

Rule-based specification languages L.O [15], FRORL [16] and STR [1] were proposed in the 

field of communication service specification. Cameron et al. [15] used rule-based language L.O 
to implement a real-life protocol. Tsai et al. [16] used frame-and-rule oriented requirement 
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dial-tone(A), idle(B), m-cfv(B,C), idle(C) 
dial(A,B): 

ring-back(A,C), ringing(C,A), 
ping-ring(B,A), m-cfv(B,C). 

Figure 1.3: An example STR rule. 

R1) idle(A) offhook(A): dial-tone(A). 
R2) dial-tone(A),idle(B) dial(A,B): ring-back(A,B),ringing(B,A). 
R3) dial-tone(A) wrong-dial(A): busy(A). 
R4) dial-tone(A),not[idle(B)] dial(A,B): busy(A). 
R5) ring-back(A,B),ringing(B,A) offhook(B): path(A,B),path(B,A). 
R6) path(A,B),path(B,A) onhook(A): idle(A),busy(B). 
R7) busy(A) onhook(A): idle(A). 
RS) dial-tone(A) onhook(A): idle(A). 
R9) ring-back(A,B),ringing(B,A) onhook(A): idle(A),idle(B). 

Figure 1.4: STR description of pots. 

specification language FRORL. Hirakawa and Takenaka [1] proposed STR as a specification 
language for communication services. In the methods of L.O and FRORL, specifications are 
incrementally refined to obtain protocol specifications; however, they cannot synthesize proto-
col specifications from service specifications. A major difference between STR and these two 
languages is that STR supports conflict detection and protocol synthesis as proposed in this 
thesis. 

Communication service specifications can be described by specifying terminal behaviors 
which can be recognized from outside the communication system(s). With STR, we can describe 
specifications without detailed knowledge of the target system or implementation dependent 
factors. This means that STR is one of such languages able to satisfy the above requisites. In 
this thesis STR is adopted as a specification language. 

We give an informal explanation of STR; a precise definition is given in Section 2.3. Fig-
ure 1.3 shows an example of an STR rule. The "ring-back(A, C)" represents that terminal A 
has the relation "ring-back" to terminal C. The "dial(A, B)" is an event at terminal A. This 
rule shows that if a user on dial-tone receiving terminal A dials terminal B, which implements 
the call forwarding service to terminal C ("m-cfv(B, C)"), and terminal C is idle, then the call 
to terminal B is forwarded to terminal C and the states of terminals A, B and C are changed 
to the ring-back tone receiving state (A), ping-ring receiving state (B), and ringing state (C), 
respectively. 

We next describe an example of a service specification (Fig. 1.4). This service specifies a 
basic telephone service between two telephones, called the plain old telephone service (pots). 

The prefix of each rule is the name of the rule. We briefly explain the specification. 

Rl When a telephone is picked up, its state changes from the idle state to the dial-tone 
receiving state. 
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R2 When a user makes a call to an idle telephone, the state of the calling telephone changes to 
the ring-back receiving state and the state of the called telephone changes to the ringing 
state. 

R3 If a user dials a wrong number, the state changes to the busy tone receiving state. 

R4 If a called telephone is being used (i.e., not idle), the call cannot make a connection and 
the state changes to the busy tone receiving state. 

R5 If the called party answers the phone, the call _changes to the talking state. 

R6 If one of the talking parties hangs up, the state of its telephone changes to idle and the 
other telephone changes to the busy tone receiving state. 

R7 If a telephone in the busy tone receiving state is hung up, the state returns to the idle 
state. 

RS If a user hangs up before dialing, the telephone returns to the idle state. 

R9 If the calling party hangs up while the called telephone is ringing, the states of both 
terminals change to the idle state. 

Each rule describes a terminal behavior that is observable from outside a communication 
system. In this thesis we use STR as a service specification description language; however, the 
results are not inherent to STR. The results can be widely applied for specification languages 
described by production rules. 

1.3 Specification Completion 

Errors at an early stage of software development cost more to debug than those at a later 
stage [17]. Requirements acquisition is the most upstream development process. Nevertheless, 
the system support for requirements acquisition is delayed compared with other development 
phases'. 

Users do not always have precise requirements. It is therefore inevitable that user require-
ments contain ambiguities, insufficiencies and even contradictions [18]. Considering this, it is 
indispensable to support a specification completion method that derives service specifications 
from such problem requirements. One of the objectives of this research is to obtain consistent 
and complete specifications from such problem requirements. 

A lot of different research on specification languages start on the premise that user require-
ments are defined definitely as computer-processable formal specifications. In other words, 
research on formal languages has been focusing on automation, to design software satisfying 
user requirements. Specification verification is one of the support items being studied. Specifi-
cations have to be verified that they satisfy constraints arising from the target system. 

Research concerning automation techniques starting from formal languages has been called 
design engineering. On the other hand, requirements engineering starts on the premise that it 
is difficult to elicit specifications from users. Requirements engineering consists of requirements 
acquisition from users and specification validation. Acquired specifications are validated by 
users. 
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Figure 1.5: Requirements engineering and design engineering. 

Figure 1.5 illustrates the relation between requirements engineering and design engineer-
ing from [19][20]. They are characterized as follows. Requirement specifications obtained by 
requirements engineering describe behaviors of target software systems in their surrounding 
environments. System specifications resulting from design engineering describe functions and 
the architecture of the target system. 

It is crucial to eliminate errors in the requirements acquisition phase to reduce software 
development costs. Requirements acquisition is therefore divided into two phases: elicitation 
and formalization. In the elicitation phase user requirements are clarified and represented as 
specifications. Requirements elicitation is a brain-work session of requirements acquisition. It 
is almost impossible to automate requirements elicitation. Support for requirements acquisition 
differs greatly when formal languages are used and when they are not. 

Requirements Apprentice [18] and the software design support system based on FRORL 
are assumed to separate end-users and requirements analysts who describe requirements by a 
formal language. In our approach, our aim is to enable users or non-specialists of communi-
cation systems to describe their own services. Therefore, we intend to present a requirements 
acquisition method assuming that requirement specifications are to be described by users rather 
than requirements analysts. 

Requirement specifications sometimes contain ambiguities and errors, and sometimes rules 
are missing. One of our objectives is to establish a support method obtaining well-formed 
communication service specifications from requirement specifications. This support consists 

of two phases. One phase is to detect rule errors and missing rules. The other phase is to 
modify and supplement specifications for transforming original specifications into satisfiable 

specifications. 

Domain knowledge plays a key role in supplementing service specifications. However, us-

ing domain knowledge in specification completion poses problems: how to use what kind of 
knowledge, and how to express and how to acquire new knowledge. Domain knowledge usually 
includes common knowledge about the environment surrounding a software system, knowledge 
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on specifications described in the past, and knowledge on analysis and design methods [19]. 
In this thesis an abstraction of existing communication services is used as domain knowledge. 

We do not have to use the same knowledge on analysis and design methods as that used in 
ASPIS [21], because the domain knowledge here is used only for the purpose of supplementing 
insufficient specifications. We assume that the domain knowledge is supplied by experts of com-

munication services. For our purpose domain knowledge should be well supplied. Therefore, 
the method used in BLIP [22] to augment domain knowledge starting from sloppy modeling 
cannot be used. These works can be characterized as application-independent. Application-
independent environments for specifying arbitrary software systems, however, are still years 

away. 
WATSON [23] operates in finite-state reactive systems: those whose most important behav-

ior requirement is the association of particular sequences of input stimuli with corresponding 
sequences of output responses. A communication system is one of such examples. The domain 
knowledge used in WATSON includes knowledge about telephone hardware, network proto-
cols, expected end user etiquette, exception handling, time-outs, and preferred styles of control 

skeleton design. 
In this research domain knowledge is used for supplementing rules lacking in the users'initial 

requirements. The main difference between the approach of WATSON and ours has to do with 
the abstraction level of domain knowledge. In our approach knowledge on communication 
services is abstracted in the domain knowledge rather than terminal behaviors. Therefore, new 
services can be supported when specifications are described. 

1.4 Protocol Synthesis 

A communication service provides information exchange between multiple users. For smooth 
exchange rules are needed to govern the interactions between communication entities. Such 
rules are called protocols. In communication software a protocol determines the outline of a 
control flow. Then, protocol synthesis from a service specification is performed as one step of 
the automatic software generation. 

Protocol architectures have to be defined when synthesizing protocol specifications. There 
are standardized protocol architectures such as the OSI reference model, signaling system No. 
7, etc. In most of them the communication functions are layered. Each layer consists of a 
collection of protocol entities (or protocol processes) that are distributed over different locations. 
Figure 1.6 illustrates a layered protocol architecture model. Protocol entities in the same layer 
are called peer entities or communicating entities. The peer entities of layer N provide the 
communication services called N-services to layer N + 1 users. The services provided by layer 

N are accessed by user entities through a layer interface called service access points. Likewise, 
user entities of layer N access the communication services, called (N-1) services, provided by 
the layer below through another layer interface. The entities of layer N use these services for 
exchanging messages. The rules that govern the exchange of these messages among the entities 

are collectively called an N-protocol. 

We show related works on protocol synthesis assuming a layered architecture model. Probert 

and Saleh [24], and Ichikawa and Takami [25] have surveyed protocol synthesis methods. Two 
kinds of protocol synthesis methods are known for initial specifications. One type starts protocol 
synthesis from partially-defined protocol specifications and the other type starts from complete 

service specifications. 
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(N+ 1)-~ntity r・・・・・・・・・・・(N+ 1)-Entity 

(N) Servi~〗一刀不）Service access point 

(N)-Entity (N)-Entity Layer (N) 
N) Protocol 

(N-1)-Entity (N-1)-Entity Layer (N-1) 

(1)-Entity (1)-Entity Layer (1) 

Physical medium 

Figure 1.6: Layered protocol architecture. 
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The former methods are classified into three types. Merlin and Bochmann [26] proposed the 
submodule construction method. In this method, if a system is to consist of n submodules and 
the system as well as (n-1) submodules are specified, then the method determines the speci-
fications of the additional nth submodule. A lot of research [27] [28] [29] [30] [31] has been done 
to synthesize error-free protocol specifications starting from erroneous and incomplete protocol 
specifications represented by Finite State Machines (FSM). Other approaches [9] [32] synthesize 
error-free protocol specifications from multiple partial protocol specifications described by mes-
sage sequence charts. These three kinds of methods basically synthesize protocols by inserting 
missing p_rimitives such as message send and receive or coordinating communications. 

The latter methods are classified into two types concerning specification description. Bochmann 
and Gotzhein [33] [34] describe service specifications by a LOTOS-based language. Chu and Liu 
[35], Saleh and Probert [36], and Kakuda et al. [37] adopt FSM-based description. These meth-
ods synthesize protocols by inserting appropriate interactions among processes to provide given 
service specifications. 

The protocol synthesis methods described in this thesis use FSM-based description for 
service specifications. Concerning protocol synthesis methods from service specifications, we 
clarify the major difference between the described methods and methods proposed in literature. 
Note that conventional methods describe the execution order of events at service access points 
that are previously defined. In our methods, on the other hand, service specifications are 
described with the rule-based and FSM-based language STR. With this description method 
two features are used to express the wide-range of communication services. A service access 
point is expressed by a variable representing a terminal. If there is a partial state satisfying a 
rule application condition of a rule, the rule is applied to the partial state in the whole system 
state. Because of the features, it is not necessary for the number of terminals participating 
to be bound as long as the number of terminals appearing in the rule application condition is 
finite. This implies that we can describe a communication service that permits an indefinite 
number of participants such as a conference service with unlimited participants. 

Furthermore, in telecommunication systems many events can occur asynchronously at dif-
ferent service access points. In this case, our methods synthesize protocols implementing dis-
tributed algorithms [38] that satisfy given service specifications. In other words, when an event 
occurs at an SAP, its protocol entity has to communicate with other processes by necessity to 
know their states. No such protocol synthesis has been previously proposed in literature for a 
layered architecture model. 

When a user operation at a terminal, called an event, occurs, a synthesized protocol deter-
mines an appropriate rule by exchanging messages among protocol entities. A condition of a 
rule application is represented as a rooted labeled directed graph. The state of the communi-
cation system itself is represented as a directed graph. Consequently, a rule is determined by 
investigating if its application condition graph is included in the communication system graph 
at that time. 

We propose two examination methods. One method examines rule application conditions 
sequentially and the other one examines them in parallel. We can synthesize protocol specifi-
cations that perform these two methods. 

The synthesized protocol implements a distributed algorithm to find a subgraph isomorphic 
to a rule application condition graph in the whole graph. Such a subgraph isomorphism problem 
is one of the NP-complete problems [39]. In an ordinary communication service, the scope to 
be searched is usually not large. Therefore, the synthesized protocol works in a practical time. 
Actually, there is no problem in practical use [40]. 
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1.5 Refinement from Protocols to Software Specifica-

tions 

The above protocol synthesis methods suit the layered architecture model. This kind of pro-
tocol synthesis is available for software generation when there is no constraint on functional 
distribution like with PBX systems. We show that protocol synthesis based on a layered archi-
tecture is useful for generating PBX software by implementing several communication services 
on a PBX. 

Protocol specifications describe message exchange rules between protocol entities. They 
do not involve detailed specifications such as control specifications for actual communication 
systems. The synthesized protocol specification needs to be refined in order to generate exe-
cutable software on a communication system. This refinement has been performed manually 
[15][16][41]; and it has needed detailed knowledge about communication systems and commu-
nication software. 

In this research we aim at generating communication software without using such detailed 
knowledge. Therefore, we define a detailed specification language STR/D (Detailed Specifi-
cation Language for STR) [42] so that detailed specifications can be described as knowledge 
independent of service specifications. This means that detailed specifications are described 
as knowledge beforehand. Note that if such predescribed knowledge is insufficient in refining 
protocol specifications, then an expert on communication systems helps by adding detailed 
knowledge. A new method [43] is proposed to generate such knowledge. 

The communication software generation method described above has been shown to be 
feasible in an application to develop actual PBX software. Several typical communication 
services have been implemented by the automatically generated software. 

Communication systems such as PBX systems have different control interfaces depending 
on their vendors or machine types. While generating different software for each communication 
system, we defined a logical interface common to the PBX systems and generated communi-
cation software conforming to the interface. We provided interface conversion programs to fill 
the gap between the PBX dependent control interfaces and the logical interface. 

There is an interface called CTRON (Central and Communication The Realtime Operating 
System Nucleus) for running the same application program on heterogeneous communication 
systems rather than for automating software generation. If such an interface were installed on 
a PBX, we might be able to adopt the interface as the logical interface. 

In this research we defined a logical interface that can be used to define meanings of state 
primitives on communication systems. Using this interface we have implemented several com-
munication services on two PBX systems. We show an implemented software architecture and 
the defined logical interface, and also show results giving the efficiency of generated software. 

1.6 Stepwise Refinement for Functional Models 

There is another protocol architecture called the functional model [7]. Universal Personal 
Telecommunication [44] has been standardized to be provided using the functional model in 
Fig. 1.7. In the functional model functions are not layered but distributed. These functions 
are distributed in functional entities. 

Conventional protocol synthesis methods including the above described protocol synthesis 
methods are based on the layered architecture model in Fig. 1.6. In this thesis we propose a 
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Figure 1.7: Functional model for UPT service set 1 provision. 

software generation method that is adapted for an architecture with layering and functional dis-
tribution. The method is a semi-automatic refinement method, however, a new more automated 
method [45] has been proposed for this refinement problem. 

1.7 Completing Protocols 

Protocol synthesis is a powerful technique to automate communication software generation. In 
this approach a layered architecture model is adopted as the protocol architecture. The OSI 
reference model [6] is typical of this layered architecture model. Service specifications are defined 
as distributed functions provided by a communication system to its users. A communication 
system can be viewed as a service provider which offers some specified communication services 
to service users who access the system through geographically distributed service access points. 
Protocol synthesis is a very promising way of developing a reliable protocol. However, protocol 
synthesis cannot be applied to the case where the protocol itself is specified even in the context of 
the layered architecture model. In other words, protocol synthesis is likely to produce protocols 
that are different from those that the protocol designer wishes. This problem is solved by 
describing protocols themselves as service specifications, or requirement specifications. 

Message sequence charts [8] are standardized to specify protocols. For the above purpose, 
the service specifications are defined as sets of partial specifications of protocol specifications 
described by message sequence charts. Service specifications described by message sequence 
charts can be synthesized to protocol specifications [9], where a protocol is represented by a 
set of communicating finite state machines with FIFO (First-In-First-Out) channels [46][47]. 
This protocol synthesis method guarantees the following three properties: requirement speci-
fications are feasible, required behaviors are included in a synthesized protocol, and there are 
no nondeterministic behaviors. A synthesized protocol may include exceptional behaviors not 
corresponding to any behaviors in the given service specifications. Even if the service specifica-
tions themselves are verified, these exceptional behaviors may involve protocol errors, such as 
deadlock states or unspecified reception. Unspecified reception means that there is no action 
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to receive specific messages being transmitted. 

We show a method to transform a synthesized protocol into a protocol that returns to a 
normal state when it falls into an exceptional behavior. Protocol completion refers to the case 
where a synthesized protocol has been transformed into an error-free one. We can obtain an 
error-free protocol from error-free service specifications by synthesizing and then completing 

the synthesized protocol. 

Zafiropulo et al. [27] proposed a protocol completion method from given protocol specifi-
cations by letting send and receive events correspond to one another. Kakuda [48] proposed a 
method to add rollback sequences to checkpoints. These methods do not explicitly use the con-
cept of service specifications, or requirement specifications. Consequently, protocol completion 
finishes when a protocol is transformed so that every possible behavior reaches the final state 
with empty channels in due course. 

In this thesis, we clarify the scope within which a protocol can be completed without 
modifying service specifications, and propose a protocol completion method that modifies the 
smallest number of service specifications. If the tactics to tackle exceptional behaviors are 
given by rules, the method automatically completes protocols. We show the effectiveness of the 
method by synthesizing the X.227 protocol from its partial specifications. Since in our method 
service specifications are explicitly used, protocol completion can also be applied to resolve 
undesirable feature interactions [2] appearing as exceptional behaviors. 

1.8 Overview of the Thesis 

We give an overview of this thesis. 

In Chapter 2 we give preliminary definitions. We introduce the layered architecture and 
the functional model as network architectures that are used when synthesizing protocols from 
service specifications. Service and protocol specifications are defined on the network architec-
tures. Then we introduce a rule-based specification description language STR. In STR services 
are specified as state transition rules of terminals connected to a cornrnunication system. A 
rule specifies state transitions of associated terminals when a user operates a terminal. 

In Chapter 3 we discuss a specification completion method[49] [50] [51] concerning cornmu-
nication service specifications described by rules. First we define a service formally and show 
errors that may be contained in specifications. Reachability analysis is used for detecting such 
errors. Hypothesis-based reasoning is used for interpolating incomplete specifications. In this 
interpolation we try to supplement specifications with rules in existing service specifications at 

first. 
If this supplement fails, a communication service model is used for presenting supplementary 

specifications. The communication service model is obtained as an abstraction of communi-
cation services. These communication services have a feature that the number of terminals 
concerned with one service changes dynamically during operation of the service. Note that 
there is a problem with how to express a service on the communication service model. In this 
thesis we represent a service by compositions of fundamental service elements. 

Chapter 4 shows a protocol synthesis method [52] suited for a layered architecture. Protocol 
synthesis is defined as a labeled directed graph rewriting problem. An STR rule describes a 
graph rewriting rule. The state of the communication system itself is represented as a directed 
graph. Rule application is achieved by searching and replacing a subgraph isomorphic to a 
graph representing rule application condition. The subgraph isomorphism problem is one of 
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the NP-complete problems. However, since a number of terminals do not participate in one 
communication service simultaneously, combinatorial explosion of the graph searching time 
does not become a problem in practical use. 

A rule is represented as a pair of labeled directed graphs. The state of all terminals in a 
communication system is also represented as a labeled directed graph. In this graph represen-
tation, a communication service specification describes a set of rules to find the appropriate 
graph representing the condition part of a rule; its resultant is substituted for an isomorphic 
subgraph in a graph representing the communication system. 

In the layered architecture model a protocol entity is assigned to each terminal. Each pro-
tocol entity possesses the state of its assigned terminal. When an event occurs at a terminal, 
its protocol entity initiates communications to determine a rule to be applied. In this chap-
ter we show a protocol synthesis method that generates a protocol entity specification that 
communicates sequentially among protocol entities. 

A graph representing an application condition usually becomes a complex graph with 
branches. We show a protocol synthesis method [53] that produces a protocol entity speci-
fication that communicates in parallel among protocol entities in Chapter 5. 

Protocol specifications synthesized in Chapters 4 and 5 are insufficient for implementing 
communication services on an actual communication system. Protocol synthesis is one step 
for communication software generation. Synthesized protocol specifications are refined with 
detailed knowledge about communication software. In Chapter 6 we define a detailed specifica-
tion description language STR/D [42], and show an example for implementing several services 
on a PBX. 

Chapter 7 shows a result of implementing services on PBX systems [40][54]. The result im-
plies that the proposed software generation method is effective for real-life service development. 
We can generate communication software independent of target systems by providing logical 
interfaces for controlling PBXs. 

In Chapter 8 we show a communication software generation method [55] [56] conforming 
to a functional model. In the functional model multiple protocol entities are placed at one 
service access point. We call a protocol entity in the functional model a functional entity. First 
a service specification is transformed into a set of service specifications of functional entities. 
From the obtained service specifications we can synthesize protocol specifications of functional 
entities. This means that a protocol synthesis problem of a functional model is transformed 
into that of a layered architecture model. 

In Chapter 9 we introduce a protocol completion method of protocol specifications synthe-
sized from message sequence charts. This method is available for developing protocol software 
when a protocol specification is given beforehand. A synthesized protocol may include behav-
iors that do not correspond to any of the requirement specifications. Such behaviors are called 
exceptional behaviors. They do not appear until the protocol is synthesized. Since exceptional 
behaviors can not be verified in the specification description phase, the protocol may fall into 
an abnormal state such as a deadlock state. We show a protocol modification method that 
prevents a protocol from falling into an abnormal state [30]. 

Finally we conclude this thesis in Chapter 10. 
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Chapter 2 

Preliminaries 

We introduce the fundamental concepts in this thesis and the specification description language 
STR. A user is provided with a communication service through a network. The automatic 

generation of communication software differs depending on what kind of network architecture 
is used to provide a communication service. 

Generated communication software from service specifications has to conform to a target 

network architecture. To begin with we introduce the type of network architecture. The 
communication soft~are obeys a protocol defined on the network. The most popular and widely 
accepted protocol architecture is a layered architecture including the OSI reference model. Our 

layered architecture is based on two concepts of layering and abstraction. A protocol layer 
provides the upper protocol layer with services by using services provided by the lower layer. 

However, telecommunication services such as Universal Personal Telecommunication (UPT) 
and Intelligent Network (IN) services are standardized to provide services on the functional 
model. These two types of architectures are adopted as protocol architectures for protocol 
synthesis. 

Next, we define service and protocol specifications. Communication software obeys a pro-
tocol when communicating among protocol entities to provide services. Service and protocol 
specifications have the relation of requirement and implementation specifications. 

Finally, we give a precise definition of STR. The network architecture is a part of the specifi-

cations that show how to implement a communication service. This means that service specifi-

cations have to be independent of specifications concerning the architecture. Consequently, we 
describe service specifications independent of architectures and protocols. In this thesis service 
specifications are described as terminal behaviors observable from outside a communication 

system. Using this description method, service specifications can be described by non-experts 
who do not have detailed kno、vledgeof communication systems and communication software. 

STR is one of the specification languages. 

2.1 Network Architectures 

We introduce the layered architecture and the functional model. The layered architecture model 

is illustrated in Fig. 2.1. 

In the layered architecture model, a user is provided with services through a service access 

point (SAP). A protocol entity is assigned to one SAP. A request from a user is received 

by a protocol entity through a service access point. Upon receiving a request, a protocol 

entity communicates with other protocol entities to provide the user with a service. Terminals 

17 



88  

Communication medium 

Figure 2.1: Architecture model for layered protocol design. 

including telephones should have SAPs in telecommunication services. Communication among 
protocol entities is assumed to be error-free through a reliable communication medium. 

The functional model is a standardized network architecture for providing telecommunica-
tion services. In the layered architecture model functions are abstracted by layering. On the 
other hand, functions are collected into functional entities distributed in a network. Figure 
2.2 shows the functional model. In Fig. 2.2 a terminal is connected to CCAF physically. If 
a service is recognized as UPT, the control of the service is transferred to CCF. Furthermore, 
some of the stimuli at terminals are received at SRF and SRF responds to them. In comparison 
with the layered architecture model, the functional model is characterized by the relationship 
between SAPs and protocol entities as follows: 

• Multiple protocol entities correspond to one SAP. 

• There are protocol entities that are not assigned to any SAP. 

There is a point of view that one SAP corresponds logically to one functional entity. We 
aim at describing specifications without any knowledge of network architecture; however, we 
cannot discriminate SAPs corresponding to functional entities. 

2.2 Service and Protocol Specifications 

A communication system provides communication services for service users who access the 
system through service access points SAPl, • • •, SAPn. In this modeling service specifications 
and protocol specifications are defined as follows [57]: 

• The service specification describes what services the protocol entities of the lower protocol 
layer provide for their users in the upper protocol layer. The services provided by the 
lower protocol layer are based on a set of service primitives which describes the operations 
at service access points through which the services are provided. 
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Figure 2.2: Functional model. 

• The protocol specification describes the interactions among the protocol entities of the 
lower protocol layer. The interactions are defined in terms of the services provided to the 
upper protocol layer, and the services available from the communication medium. 

In a telecommunication system, users are provided services through terminals, which can 
be considered SAPs. Within the communication system, protocol entities cooperate to provide 

services by exchanging messages between entities. This communication between entities is 

provided by the communication medium. In this architecture, each entity corresponds to just 
one SAP for a user in the upper layer. This architecture model is an abstraction of the OSI 

reference model. 
On the other hand, IN services are assumed to be provided on the IN CS-1 functional model 

in Fig. 2.2. In this architecture, there are some entities, e.g., SCF, that do not correspond to 

any SAP. Since this functional model is an internal architecture, the service designer does not 

have to take account of the functional model to describe service specifications. This means that 

service specifications do not and should not have any information about the internal functional 

model. 

2.3 STR 

A service specification has to prescribe requirements to be satisfied by a communication service, 

and should not prescribe other specifications. In communication services, state transitions of 

terminals for a stimulus satisfy this condition. In STR, state transitions of terminals associated 
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with a service are described as rules. We give a minimum definition of STR necessary for this 

thesis. 
A service is defined as a set of STR rules. An STR rule consists of three elements: "initial 

state", "event" and "next state," and has the form: 

initial state event: next state. 

The "initial state" and the "next state" represent global states of terminals. A global state 
is represented by a set of local states. A local state is represented by a set of state primitives. 
A state primitive may have two arguments to express terminal variables. The first argument 
represents the terminal variable having the state primitive. If the second argument is specified, 
the terminal designated by the first argument holds a relation of the primitive to the terminal 
specified by the second argument. Therefore, the local state of a terminal is defined as the set 
of state primitives whose first argument designates the terminal. A state primitive represents 
a terminal state which is recognizable from outside a communication system. 

The "event" may also have two arguments to express terminals. It represents a logical input 
to the terminal designated by the first argument. If the second argument is described in an 
event, this argument represents a terminal identifier given by the event. 

A rule may be applied to a set of terminals tぃ・ ・ ・, tn if its event has occurred at one of the 
terminals; these terminals have the primitives specified by the initial state of the rule. If there 
are two rules, r1, r2, whose state primitives in the initial state are included in the local states 
of terminals t1, ・ ・ ・, tn, and the initial state of r1 is included in r2, then r2 is applied. This 
inclusion relation is not of a total order. Thus, there still exists the possibility that multiple 
rules may be applied. When multiple rules can be applied, we may select a rule arbitrarily. 

In summary, we characterize STR as follows. 

• In STR service specifications are represented by terminal behaviors which are observ-
able from the outside. Therefore, we can describe service specifications without detailed 
knowledge of the communication system inside. 

• Since STR is a rule-based language, new services can be added by adding new STR rules, 
and existing services can be modified by changing the appropriate rules. 

• If we define state primitives so that they are independent of specific terminals and net-
works, we can define communication services independent of terminals. 
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Chapter 3 

Specification Completion of 
Communication Services 

3.1 Problem 

Requirement specifications may include errors, ambiguities or be incomplete. It is essential for 
efficient software development that these problems be removed in the specification acquisition 
stage. Currently, however, this stage in software development is the least supported among 
all stages. We show a method of transforming such problem specifications into meaningful 
specifications as communication services. 

In this thesis specification completion is defined as the ability to derive formal communica-
tion service specifications from requirement specifications. Of course, requirement specifications 
are not always sufficient specifications. They may have ambiguities, missing parts or sometimes 
even be contradictory specifications. 

Specification completion of STR descriptions has been considered for detecting insufficient 
and ambiguous rule descriptions as well as missing rules, and also for solving these errors. 
Figure 3.1 shows specification completion in STR. 

The proposed method uses rules contained in existing services and a communication service 
model as domain knowledge. This knowledge is assumed to have been provided upon the design 
of new services. Future work will seek to acquire sufficient service models and to extend them. 

To confirm that the completed services satisfy their requirements, service designers must 
validate the completed service specifications. Animated simulation [58] can be used for this 

Requirement specification 

• Ambiguous: 
incorrect rules 

• Fragmentary: 
lack of rules 

Specification 
completion 

Se1vice specification 

• Co1Tect rules 

• Sufficient rules 

Figure 3.1: Specification completion. 
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validation. 
In communication software development, new services are developed to be added to existing 

services. In this development style the validity of all service specifications, including existing 
services, is verified by conflict detection and elimination [3]. Hereafter, it is assumed that 
specification completion does not need to provide a process for handling errors resulting from 
the combining of a new service with existing services. 

3.2 S . erv1ces and Requirements 

We define a service in STR. Let S be a set of STR rules. If there is a set of terminals T that 
satisfies the following three conditions, S is called a service. 

Let a be a global state of T such that every terminal in T is in its initial state, i.e., idle. 
Let (3 be a global state of T that is reachable from a by using rules in S. If a set of rules 
satisfies the following three conditions, S is guaranteed to be syntactically correct. 

1. a is reachable from (3 • 

2. There is exactly one applicable rule r at (3 . 

3. For every rule r there is a global state (3 that is reachable from a and where r can be 
applied. 

The first condition guarantees no deadlock state, no livelock. The second condition guar-
antees no nondeterministic state. The third condition guarantees no unnecessary rules. Note 
that S is not always meaningful as a service. The validation that S is a meaningful service is 
left to a service designer. 

3.3 Detection and Elimination of Specification Errors 

Errors in requirement specifications are classified into three types: description errors in rules, 
contradictions among rules and insufficiency of rules. Our purpose is to obtain service spec-
ifications from such problem requirements. We show a method that detects these errors and 
eliminates them. The procedure is illustrated in Fig. 3.2. 

Step 1 Detect the errors in each rule and then correct them by consulting a service designer. 

Step 2 Detect missing rules. This is done by reachability analysis from an initial state back 
to the initial state. If a deadlock state is detected, it is determined that some rules are 
missing. 

Step 3 Ask a service designer to input an additional requirement to designate a state to be 
reached from the detected deadlock state. 

Step 4 Supplement rules by utilizing rules used in existing services. This supplementation 
uses hypothesis-based reasoning. 

Step 5 When an insufficient specification is not supplied with existing rules, generate new 
rules by using a domain model, that is, an abstraction of communication services. 
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Figure 3.2: Specification completion. 

Step 6 Examine if all rules are being used. If unused rules exist, ask a service designer if the 

unused rules are being used for additional requirements. If the answer is affirmative, go 
to Step 2; else discard the unused rules. 

Step 7 Validate if the completed specifications have been accepted. Animated simulation of 
specifications is used in this validation. If the specifications have not been accepted, try 
specification completion again. 

Details of steps 2 to 5 are explained in the succeeding sections. 

3.4 Detection and Correction of Rule Errors 

Rule description errors are classified into two types. One is the case that there are missing 
primitives or wrong primitives in a rule. The other is the case that a rule itself is correct, but 

it contradicts with other rules. These errors are detected as nondeterministic variables, free 
variables or nondeterministic rules [59]. vVe define these errors as follows. 
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Nondeterministic variables A rule in which there are multiple possible next states when 
the rule is applied. 

Free variables A rule with a variable that cannot be trodden from its event variable repre-
senting a terminal where an event occurs. 

Nondeterministic rules Two rules with the same initial state and event, but with different 
next states. 

We exemplify these errors. First, we show an erroneous rule with nondeterministic variables. 
This rule has symmetrical variables B and C for A. When the rule is applied to an actual state 

"path(a,b) ,path(b,a),path(a,c),path(c,a)" 
for terminals a, b and c, there are two possible next states: 

"path(a,b),path(b,a),hold(a,c),hold(c,a)" and 
"path(a,c),path(c,a),hold(a,b),hold(b,a)". 

They are nondetermm1st1c behaviors. 

path(A,B),path(B,A),path(A,C),path(C,A) 
fl.ash(A): 
path(A,B),path(B,A),hold(A,C),hold(C,A) 

Next, we show a rule error of free variables. In this rule C of "idle(C)" in the initial state is 
not identified with the initial state "path(A,B),path(B,A),idle(C)" and the event "flash(A)". 

path(A,B),path(B,A),idle(C) 
flash(A): 
hold(A,B),hold(B,A),ring-back(A,C),ringing(C,A) 

Finally, nondeterministic rules are shown. The first rule specifies that dialed terminal B is 
directly connected from A in the hot-line service. The next rule specifies that dialed terminal 
Bis called. 

dial-tone(A),idle(B) dial(A,B): path(A,B),path(B,A) 
dial-tone(A),idle(B) dial(A,B): ring-back(A,B),ringing(B,A) 

These errors are automatically detected; however, correcting them is left to interaction with 
a service designer. 

There is another kind of errors in which a description is correct as a rule but the rule is 
not suited to a service element. Errors of this type are detected and corrected at the point of 
verifying whether requirement specifications satisfy service conditions. 

3.5 Detection of Insufficient Rules 

We show a method of detecting missing rules as a service specification. If missing rules exist, 
deadlock states will appear when the requirement rules are simulated starting from the initial 
states. Detection of these deadlock states is done by a state enumeration method of conflict 
detection [3]. 

When deadlock states are detected by simulation, the specification completion system lets a 
user input additional requirements specifying states to be reached from the detected deadlock 
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Figure 3.3: Reachability analysis for detecting missing rules. 

states. Figure 3.3 shows such a situation. Deadlock states Tl and T2 are detected and then 
additional requirements are input so that S1 and S2 can be reached from states Tl and T2, 
respectively. Target states S1 and S2 are specified by the user or selected from the current 
states of remaining rules that have not yet been used. 

When enumerating reachable states within requirement specifications, the number of usable 
terminals is always determined before starting the enumeration. Therefore, there is a limit: 
there are undetectable deadlock states that appear only when more terminals, than the prede-
termined number of terminals, are permitted. However, the necessary number of terminals can 
be calculated under some constraints [60] [叫

3.6 Supplementing Insufficient Rules 

If an additional requirement specifies that state B is to be reached from state A, the requirement 
specification is supplemented with a set of rules R1, ・ ・ ・, Ri that enable the transition from a 
state X (っ A)to a state Y (っ B).Figure 3.4 illustrates the hypothesis-based reasoning when 
deadlock state A is detected and a new requirement that B is to be reached from A is added. 
The hypothesis to be added to A has the next two constraints. 

• Hypothesis X-A is empty, or a state X-A can be reached from a part of the initial state 
in Fig. 3.4, say I, independent of the transitions from the remaining part of the initial 

state, say J, to A. 

This implies that X-A is reachable from I without affecting reachability from J to state 
X-A. Owing to this constraint, deadlock at A is resolved. 

• X-A and Y-B are consistent with A and B, respectively. 

When A (B) involves state primitive p, ,p cannot be hypothesized to X-A (Y-B). 
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Figure 3.4: Hypothesis-based reasoning. 

We show an example subjected to reachability analysis with hypothesis-based reasoning in 
order to make up for missing rules. Let us consider the next requirement. 

A: dial-tone(a) 
B: path(a,b) 

Backward hypothesis-based reasoning is used to detect the necessary rules to make state B 
reachable from state A. States A and B are augmented by the hypothesis to state X and Y, 
respectively, so that state Y is reachable from state X. 

X: dial-tone(a),idle(b),m-cfv(c,b), ,(idle(c)) 
Y: path(a,b),path(b,a),m-cfv(c,b), ,(idle(c)) 

",(idle(c))" in states X and Y is a constraint for the states, but not a part of them. Figure 3.5 
illustrates the hypothesis-based reasoning for this example. 

Assume that state 1 surrounded by a bold square is the original target state, and state 
2 "ring-back(a,b),ringing(b,A)" is inferred by applying rule pots-5 after adding hypothesis 
"path(b,a)" to state 1. Then, state 1 results in state 4. Furthermore, state 3 is inferred 
by applying rule cfv-10 after adding hypothesis "m-cfv(c,b), ,(idle(c))" to state 2. Then, state 
4 results in state 6. Consistency is examined when a hypothesis is added to a state. 

In this example we assume that X-A="idle(b),m-cfv(c,b),,(idle(c))" is reachable indepen-
dent of "dial-tone(a)". Then rules pots-5 and cfv-10 are the achieved rules. ¥Ve note that we 
cannot obtain supplementary rules without hypothesis-based reasoning because "path(a,b)" is 
a part of a state of two terminals. 
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pots-5) ring-back(A,B),ringing(B,A) 
offuook(B): 

path(A,B),path(B,A). 

cfv-10) dial-tone(A), idle(C), m-cfv(B,C), --.(idle(B)) 
dial(A,B): 

ring-back(A,C), ringing(C,A), m-cfv(B,C), --i(idle(B)). 
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Figure 3.5: Example of hypothesis-based reasoning. 
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こ

Figure 3.6: Model-based reasoning. 

3.7 Generating New Rules 

3. 7.1 Domain Model 

There is a case where existing rules are not sufficient to supplement missing rules. In this 
case we have to generate new rules. A domain model that is an abstraction of communication 
services is used to generate new rules. 

Such a domain model consists of domain knowledge and a domain dictionary. The domain 
knowledge represents a communication service model expressing abstract communication ser-
vices. This communication service model consists of attributes and attribute operations. The 
attributes characterize the communication services. The attribute operations have functions 
to examine and change the values of attributes. The domain dictionary provides functions for 
transformation between service specifications in STR and communication service models in the 
domain model. 

New rule generation with the domain model involves the following three steps. An outline 
is illustrated in Fig. 3.6. 

Step 1 Transform a detected deadlock state and a target state designated to be reached from 
it into states of a communication service model by using the domain dictionary. 

Step 2 Perform inference on the communication service model to obtain a sequence of attribute 
operations that change the model state transformed from the deadlock state to the model 
state transformed from the target state. 

Step 3 Transform the acquired attribute operations into a set of STR rules by using the domain 
dictionary. 

We define attributes and attribute operations. First, we introduce a call element to de-
fine a communication service model for any services with primitive attributes and attribute 
operations. There are two types of call elements that show unary and binary relations among 
terminals. The former is called type 1 call element and the latter type 2 call element. A state 
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Service state Model state 

pl(a), p2(a,b), p3(b,a) Type 1 call elements: [ [a], vall, val2] 
[ [b], nil, nil] 

Type 2 call elements: [ [a,b], val3, val4] 
[ [b,a], val5, va16] 

Domain dictionary 

pl(A), p2(A,B) 
p3(A,B) 

,. ~{ [ [A], vall, val2], [ [A,B], val3, val4] } 
,. .. { [ [A,B], val5, val6] } 

Figure 3. 7: Transformation between service and model states. 

of n terminals in the domain model is represented as a set of n type 1 call elements for all 
terminals and n x (n -1) type 2 call elements for all combinations among n terminals. Each 
type of call element is defined as a set of attributes. An attribute may have a value called 
an attribute value. The number of terminals that participate in a communication service is 
indefinite in general. A state in the domain model with a combination of call elements makes 
it possible to represent any communication service in a communication service model. 

We call a state represented by STR a "service state", and a state of a communication 
service model a "model state". A model state is defined as a set of call elements, and each call 
element is defined as a set of attribute values. Every call element has identifiers called address 
attributes. There are two address attributes for the originating address and the terminating 
address. A type 1 call element has only an originating address. A type 2 call element, on the 
other hand, has both types of addresses. The originating address represents a terminal that a 
call element belongs to. A type 2 call element is identified by its originating and terminating 
addresses. When a certain service state is given, the set of call elements that defines the 
corresponding model state is automatically determined. An element of the domain dictionary 
defines a relation between a set of state primitives and a set of attributes of one or plural call 
elements. The transformation between service and model states is composed by the relations 

defined in the domain dictionary. 
Figure 3. 7 shows a transformation example. 

Service state 

"pl(a),p2(a,b),p3(b,a)" 

corresponds to model state 

Type 1 call elements : { 

Type 2 call elements : { 
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This correspondence is obtained by the next relations. 

pl(A),p2(A,B) ← + { [[A], vall, val2], [[A,B], val3, val4]}, 
p3(A,B) ← { [[A,B], val5, val6]} 

A model state can be changed to another model state by modifying values of its attributes. 
This modification is performed by a sequence of attribute operations. There are two types of 
attribute operations; primary attribute operations and subordinate attribute operations. The 
difference between both types of operations is that the former have a property to determine the 
arguments of an event. A primary attribute operation consists of an application condition part, 
operation condition part, operation part and event argument part. A subordinate attribute 
operation consists of an application condition part, operation condition part and operation 
part 

The application condition part screens applicable attribute operations for model states. An 
application condition is composed by a call element identifier and an attribute condition. The 
attribute condition is a logical formula with conjunction, disjunction and negation of value tests 
($IF). 

A call element identifier is used for screening call elements examined by the succeeding 
attribute condition. 

Syntax: $CE(call element type, address 1, address 2) 

A call element identifier has three arguments:the call element type, the first address attribute 
and the second address attribute. The call element type is either a type 1 call element, a type 
2 call element or unspecified "-". The first address attribute always represents the originating 
address. The second address attribute is always unspecified for a type 1 call element and is a 
terminating address for a type 2 call element. "-" is used for specifying an arbitrary originating 
or terminating address. Note that we can use oa to represent the originating address of a 
screened call element in a context, and ta the terminating address. 

An attribute condition is used for screening call elements that have already been screened by 
a call element identifier. We can specify concrete attributes and attribute values in an attribute 
condition. 

Syntax: $IF(attribute name, attribute value) 
$IF(attribute name, -) 
$IF(attribute name) 
$IF(attribute name, variable) 

$IF(attribute name, attribute value): tests if the value of the attribute designated by "at-
tribute name" is equal to "attribute value". 

$IF(attribute name,-): tests if the attribute with "attribute name" is undefined. 
$IF(attribute name): tests if the attribute has a value. 
$IF(attribute name, variable): tests if the value of the attribute designated by "attribute 

name" is equal to the value of an attribute with the same "variable". 
An operation condition is used for screening call elements from the selected ones by the 

application condition. The selected call elements are applied by the operations at the operation 
part. An operation condition is a logical formula with conjunction and negation of call element 
identifiers and attribute conditions. 

Operations at the operation part are applied to call elements that are finally screened by 
the operation condition. 
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Syntax: $VALUE(attribute name, attribute value) 
$VALUE(attribute name,-) 
$VALUE(attribute name) 

$VALUE(attribute name, attribute value): changes the attribute value of the attribute 
designated by "attribute name" to "attribute value". 

$VALUE(attribute name, -): changes the value of the attribute designated by "attribute 

name" to "undefined" . 
$VALUE(attribute name): An initial value is set up for the attribute designated by "at-

tribute name". 
The event argument specifies a call element representing arguments of an event. The syntax 

is the same as that of the application condition except that no disjunctive formula can be 

described. 

3. 7.2 Reasoning with Domain Model 

Rule generation method 
We show a method of generating new STR rules when both the start and target states are 

given. The generated rules link from the start state to the target state. The next procedure 

generates missing rules. 

Step 1 Augment the start state so that the set of call elements for the start state includes the 
set of call elements for the target state. Hereafter, the augmented start state is simply 
called the start state. 

Step 2 Transform the start and target states into the sets of call elements according to the 
domain dictionary. The set of attribute values in the call elements of the start state is 
called the start model state, and that of the target state is called the target model state. 

Step 3 Search for sequences of attribute operations with satisfiable application conditions from 
the start model state to a state・including the target state. Here the inclusion between 
the two model states is defined as inclusion between their call elements. In this search we 
use the distance between two model states defined later. 

Step 4 Transform the searched attribute operation sequences into sets of STR rules with the 
domain dictionary. 

Distance 
We define the distance between two model states. Let s and t be two model states. The 

number of attributes with different values in the common call elements of s and t is defined 
as the distance betweens and t, and is denoted by d(s,t). Figure 3.8 shows two model states 

between which the distance is two. 

Model reasoning 
We show a procedure to search for attribute operation sequences from a start model state 

to a target model state. An obtained sequence is a sequence of primary attribute operations 
and subordinate ones. In what order an attribute operation is chosen is as follows. First, an 

attribute operation is chosen so that the distance between the operation applied model state and 
the target model state becomes short. This selection is called immediate reasoning. If there is 
no such attribute operation, another attribute operation is chosen such that the distance does 
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s: ( ‘ 
［ [a], valO, val2 ] t: 

［ [a], vall, val2] 
［ [b], nil, nil ] ［ [b], nil, nil ] 
［ [c], val8, nil ] [ [a,b], va13, va14] 
[ [a,b], val3, va14] d(s,t)=2 [ [b,a], val5, val6] 
[ [b,a], val5, val? ] 

ノ
[ [a,c], nil, val9] 
[ [b,c], nil, nil ] 
[ [c,a], va19, nil ] 

＼ 
[ [c,b], nil, nil ] 

ノ

Figure 3.8: Distance between model states. 

not change before and after an application of the operation. This selection is called detour 
reasoning. If there is no such attribute operation, the third choice is to choose an attribute 
operation such that the distance becomes long after an application of the operation. This is 
called devious reasoning. Figure 3.9 illustrates these three types of reasoning. 

3.7.3 Example 

We show an example to infer a service specification from a fragmentary requirement specifi-
cation. Let us consider a requirement specification for a new service that will combine a call 
forwarding service and a call waiting service. Although a terminating call is forwarded like in 
an ordinary call forwarding service, functions belonging to a terminal are not transferred in 
this service. When a call waiting subscriber (B) sets up to transfer an incoming call to C, the 
incoming call to B is forwarded to C. If the call forwarding terminal is talking with someone 
else (D), however, the call to be forwarded is terminated to C as a call waiting service. If a 
user of terminal C flashes the terminal, the call between C and Dis put on hold and C begins 
to talk with A. 

Let the following requirement specification be given. 
Start state: dial-tone(A),idle(B),m-cw(B),m-trans(B,C),path(C,D),path(D,C), 
Target state: idle(B),m-cw(B),m-trans(B,C), 

m-cw-transed(C),path(A,C),path(C,A),hold(C,D),hold(D,C). 
Let the communication service model be an abstraction of a call waiting service, an ordinary 

call forwarding service and a function transfer service. We provide the next attributes for type 1 

and type 2 call elements. For simplicity, we omit all other attributes necessary for representing 
actual communication services. 

Type 1: [orig], handset, 
Type 2: [orig, term], path, 

tone, 
ring, 

Each attribute can have the following values. 

Type 1 call element: 

cw, ftrans, ftransed ] 
trans ] 

orig represents the originating address that the call element belongs to. 

handset represents the state of a handset. 
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Immediate reasonig Detour reasoning Devious reasoning 

こ こ こ

占 ↓ ↓ 
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cb 
6 cb 占

d(s,t)>d(s l ,t)>d(s2,t) d(s 1,t)=d(s3,t) d(s 1,t)<d(s4,t) 

s: start model state 
t: target model state 

Figure 3.9: Various reasoning on a communication service model. 
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tone represents the tone state. It takes one of the following values: "in", "dial-tone" or "off". 
"in" represents the tone from a receiver, "dial-tone" is the dial-tone from a telephone and 

"off" means the no-tone state. 

cw represents a registration state of the call waiting service. 

ftrans represents the capability of transferring functions. 

ftransed represents the transfered state of functions. 

Type 2 call element: 

orig and term represent the originating and terminating addresses of type 2 call elements. 

path represents the talking state with the terminal designated by the terminating address. 

ring represents the tone state from the terminal designated by the terminating address. 

trans represents the state of function transfer. "on" represents the state that functions are 
transferred and "off" represents the state that functions are not transferred. 

The following attribute operations are registered in the domain dictionary. The attribute 
operations with a label prefixed with PRIM are primary operations and that with the label 
SUBl is a subordinate operation. 

PRIM1: 
Apply_Condition: 

$CE(1,ad2,-):$IF(ftrans,on),$CE(2,ad2,ad3):$IF(trans,on); 

Operation: 
$CE(1,ad3,-):$IF(cw,off),$VALUE(cw,on),$VALUE(ftransed,on); 

Event_Condition: 

$CE(1,ad1,-):$IF(tone,dial-tone),$CE(2,ad2,ad3):$IF(trans,on),$CE(2,ad1,ad3); 

SUB1: 

Apply_Condition: 
$CE(1,ad1,-):$IF(tone,dial-tone),$CE(2,ad2,ad3):$IF(trans,on); 

Operation: 
$CE(1,ad1,-):$VALUE(tone,off); 

$CE(2,ad1,ad3):$VALUE(ring,cw-rbt); 

$CE(2,ad3,ad1):$VALUE(ring,cw-rgt); 

PRIM2: 

Apply_Condition: 

$CE(2,ad1,ad3):$IF(ring,cw-rbt),$CE(2,ad3,ad1):$IF(ring,cw-rgt), 

$CE(2,ad3,ad4):$IF(path,conn),$CE(2,ad4,ad3):$IF(path,conn); 

Operation: 

$CE(2,ad1,ad3):$IF(ring,cw-rbt),$VALUE(path,conn),$VALUE(ring,off); 

$CE(2,ad3,ad1):$IF(ring,cw-rgt),$VALUE(path,conn),$VALUE(ring,off); 

$CE(2,ad3,ad4):$IF(path,conn),$VALUE(path,hold); 

$CE(2,ad4,ad3):$IF(path,conn),$VALUE(path,hold); 
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Event_Condition: 
$CE(2,ad3,ad4):$IF(path,conn), 
$CE(2,ad4,ad3):$IF(path,conn), 
$CE(1, ad3); 

The following correspondences are elements of the domam dictionary. 
Service state Model state 
dial-tone(Tl) [[Tl] ,off,dial-tone, ー，ー，ー］
m-cw(Tl) [[Tl], ー，—， on,-,-]
m-trans(Tl,T2) [[Tl,T2], ー，—，on]
path(Tl,T2) [[Tl],off, —,—, -], [[Tl,T2],conn,-,-] 
cw-ringing(Tl,T2) [[Tl],off,off, —,—, -], [[Tl,T2],-,cw-rgt,-] 
cw-ring-back(Tl,T2) [[Tl],off,off,-,-,-], [[Tl,T2],-,cw-rbt,-] 
hold(Tl,T2) [[Tl],off,-, —, -], [[Tl,T2],hold,-,-] 
idle(Tl) [[Tl ],on,off,-,off,-] 
m-cw-transed(Tl) [[Tl], ー，—，on,-,on]

Event Attribute operation 
PRIMl,SUBl dial 
PRIM2 fl.ash 

We show a reasoning result on the service model defined above. The underlined values show 
modified attribute values. 

Start state: dial-tone(A),idle(B),m-cw(B),m-trans(B,C),path(C,D),path(D,C) 

{ [[A] ,off,dial-tone,off,off,off] ,[[A,B] ,disc,off,off] ,[[A,C], disc,off,off], [[A,D],disc,off,off], 
[[B] ,on,off,on,on,off] ,[[B,A] ,disc,off,off] ,[[B,C] ,disc, off,on], [[B,D] ,disc,off,off], 
[[C] ,off,off,off,off,off] ,[[C,A] ,disc,off,off] ,[[C,B],disc, off,off], [[C,D] ,conn,off,off], 
[[D] ,off,off,off,off,off] ,[[D,A] ,disc,off,off] ,[[D,B], disc,off,off], [[D,C] ,conn,off,off]} 

Half-finished state: 
{ [[A] ,off,dial-tone,off,off,off], [[A,B] ,disc,off,off], [[A,C], disc,off,off], [[A,D] ,disc,off,off], 

[[B] ,on,off,on,on,off], [[B,A] ,disc,off,off], [[B,C] ,disc, off,on], [[B,D] ,disc,off,off], 
[[ C] ,off,off,Q旦，off,皿],[[C,A] ,disc, off,off], [[C,B] ,disc,off,off], [[C,D] ,conn,off,off], 
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D, C] ,conn,off,off]} 

Intermediate state: idle(B),m-cw-transed(C),m-cw(B),m-trans(B,C), 
path(C,D),path(D,C),cw-ring-back(A,C),cw-ringing(C,A) 

{ [[A],off, 遮 off,off,off],[[A,B] ,disc,off,off], [[A,C], disc,cw-rbt,off], [[A,D] ,disc,off,off], 
[[B],on,off,011,on,off],[[B,A],disc,off,off],[[B,C],disc, off,on],[[B,D],disc,off,off], 
[[C] ,off,off,on,off,on], [[C,A] ,disc,cw-rgt, off], [[C,B] ,disc,off,off], [[ C,D] ,conn,off,off], 
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D,C] ,conn,off,off]} 

Target state: idle(B),m-cw-transed(C),m-cw(B),m-trans(B,C), 
path(A,C),path(C,A),hold(C,D),hold(D,C) 

{ [[A],off,off,off,off,off],[[A,B],disc,off,off],[[A,C], 匹皿叫，off],[[A,D] ,disc,off,off], 
[[B],on,off,on,on,off] ,[[B,A] ,disc,off,off] ,[[B,C],disc, off,on], [[B,D] ,disc,off,off], 
[[C] ,off,off,on,off, 叫，[[C,A]幽皿叫，off],[[C,B] ,disc,off,off], [[C,D], hold,off,off], 
[[D] ,off,off,off,off,off], [[D,A] ,disc,off,off], [[D,B] ,disc,off,off], [[D, C] ,hold,off,off]} 

The following STR rules r1 and r2 are generated. 
dial-tone(A), idle(B), m-cw(B), m-trans(B,C), path(C,D), path(D,C) 
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dial(A,B): 
idle(B), rn-cw-transed(C), rn-cw(B), rn-trans(B,C), cw-ring-back(A,C), cw-ringing(C,A), 

path(C,D), path(D,C). 

cw-ring-back(A,C), cw-ringing(C,A), rn-cw-transed(C), path(C,D), path(D,C) 

flash(C): 
path(A,C), path(C,A), hold(C,D), hold(D,C), rn-cw-transed(C) 

In the above example the domain dictionary is completely defined concerning the given re-
quirement specification. However, there are cases in which transformations between service 
states and model states cannot be performed completely. In such cases, the transformations 
are assisted by a service designer. 

3.8 Effectiveness and Limits 

Here, we clarify the effectiveness and the limits of the proposed specification completion method, 
and describe future work. We have presented a requirements acquisition method from an in-
complete requirement specification. Requirement specifications are described by a set of rules, 
and the acquired specification agrees with the requirements of the service designer. Most pub-
lished works start with the premise that the requirements analysts are different from the users 
of the software systems. However, our method allows users to describe their own requirements 
with STR. The proposed method has the ability to correct wrong rules and to supplement rules 
for acquiring complete service specifications. If new rules need to be generated, the require-
ment specifications are converted to a communications service model that is an abstraction 
of the communications services. The proposed method has a limit, however. If a completely 
new requirement specification, i.e., a specification beyond a provided service model, is given, it 
becomes impossible to generate rules to supplement the incomplete requirement specifications. 
Future work includes providing a generic domain dictionary and generic domain knowledge. 
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Chapter 4 

Protocol Synthesis for a Layered 
Architecture -Synthesizing Sequential 
Communication Protocols 

4.1 Graph Representation of Service Specifications 

We use the graph representation of an STR rule to generate a communication protocol from 
service specifications described by STR. An STR rule can be represented by two graphs. The 
initial graph corresponds to the initial state and an event; the next graph corresponds to the 
next state. Both the initial graph and the next graph are called rule graphs. Figure 4.1 shows 

the graph representation of the rule described in Fig. 1.3. 

A rule graph consists of a set of vertices and directed edges. Each vertex has its own name 
and some vertices have labels. A vertex is denoted by a circle. The name of the vertex is 
written in its circle, and the labels of the vertex are written near the circle. Each edge has 
labels that are written near it. An initial graph has a label that shows an event. A vertex 

designated by the first argument of this label is called an event vertex. 

A vertex that has a label or an edge incident to it is called labeled. Other vertices are called 
unlabeled. For each vertex in an initial graph, there must be a path from the event vertex. 

The global state for all of the terminals in a communication system is called a system state; 
the graph denoting the system state is called a system graph. An STR rule states that the 
system graph's subgraph that is isomorphic to the initial graph of the rule should be replaced 
by the next graph of the rule. Figure 4.2 illustrates how an STR rule is applied. If there are 
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Figure 4.1: Graph representation of an STR rule. 
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Figure 4.2: Application of STR rules. 

multiple subgraphs isomorphic to the initial graph, an arbitrary maximal subgraph is selected. 

4.2 Problem 

Let g = (V, E, v0) be a rooted labeled directed graph that has a set of vertices V, a set of 
directed edges E and a root vertex v0. For each vertex of the rooted directed graph, there is a 
path from v0 to the vertex. The set of vertices of g is denoted by V (g). The set of edges of g 

is denoted by E(g). The root of g is denoted by root(g). A labeled directed graph g is denoted 
by g = (V, E) with a set of vertices Vanda set of edges E. 

Definition 1 (Subgraph isomorphism) 

Let g = (V, E) be a labeled directed graph and g1 = (孔E1,v~) be a rooted labeled directed 
graph. The graph g contains a subgraph g'= (V', E1, v0) isomorphic to g1 if and only if there 

exist subsets V'C V and E'C E such that v゚ EV',IV'I = l½I, IE'I = IE1I, and there is a 
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one-to-one mapping f : Vi —• V'that satisfies the following conditions. 

f(vf)=v゚
(x, y) E E1 ==> (f(x), f(y)) EE' 
(J(x), f(y)) EE'=⇒ (x, y) E E1 

a(x) C a(f(x)) 

fJ((x, y)) C (J((f (x), J(y))) 

where a is a function to get a set of labels attached on a vertex and (3 is a function to get a set 

of labels attached on an edge. 

If g has a subgraph isomorphic to g1, then we write g1こg.

Definition 2 (Spanning path) 

For a rooted labeled directed graph g, a spanning path sp(g) is defined as a path that satisfies 

the following conditions. 

1. The ve仕icesof sp(g) make up the set of labeled vertices in g. 

2. The root of sp(g) is root(g). 

3. If (u, v) is an edge of sp(g), then there are paths in g from root(g) to u and from root(g) 

to v such that every vertex of the paths except v appears before u in sp(g). 

The problem to be solved is formally defined as follows. 

Definition 3 (Problem) 

Let R = {凡…，rn}be a set of STR rules. Let G = {g1, …，珈}be a set of initial graphs of R. 
Let G'= {g~, …, g~} be a set of next graphs of R. Let g = (V, E) be a system graph. 

Find a pair of graphs (sg(v0,g),gi) such that sg(v0,g) is isomorphic to gi E G, and there 

is no graph isomorphic to gk E G such that gi is isomorphic to a subgraph of 9k. Then change 
sg(v0, g) to be isomorphic to g~E G'. 

The following lemma is satisfied for subgraph isomorphism. We use this lemma to construct 

a distributed algorithm. 

Lemma 

Let g = (V, E) be a labeled directed graph and g1 = (V1, Eぃ v~) be a rooted labeled directed 

graph. Let p be a spanning path of g1 with the set of edges {(u1, 四）， ・・・， (Um-1, Um)} where U1 

= v~, and Vi = {u1, ・・・,Um, Um+l, ・・・，叫}.The graph g contains a subgraph g'= (V', E', v0) 

isomorphic to 91 if and only if IV'I = I Vi I, IE'I = I E1 I, and there is a mapping f : V1ー→ V' 
that satisfies the following conditions. 

For any labeled vertices ui, Uj in Vi and unlabeled vertices uk, Uz in Vi, 
f(u~) = v0, 
Ui =/= Uj⇒ !(附） =I= f(uj), 

!(附） =I=!(叫，
Uk =/= Uz⇒ !(匹） =I= f(uz), 
(uゎ附） E E1⇔ (f(ui), J(ui)) E E', 

a(ui) C a(f(ui)) 

/J((uゎ'l1、j))(こ /3((!(附），f(uサ））
j]((ui, Uk)) C (J((f(ui), f(uk))) 
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This lemma implies that we can determine the applicability of a rule by traversing along its 
spanning path. 

Next we give the definition of numbering that enables an optimization of communication 
for querying if a set of initial graphs are included in a system graph. This numbering defines a 
spanning path in each initial graph. 

Let g(r1), ・・・， g(rm) be initial graphs with event e. For a set of vertices V defined by 
V(g(r1))U・ ・ •UV(g(rm)) and a natural number n, let f: Vー→{l,• • •,n}u{入} be a numbering 
function that satisfies the following six conditions: 

1. If v(EV) is a labeled vertex, then f(v)E{l,・ • ・,n}; otherwise f(v)=入

2. f(root(g(r1)))=・ ・ ・=f(root(g(rm)))=l, where root(g(ri)) represents the root of g(ri). 

3. For any two vertices u,v(EV(g(ri))), u=f.v implies f(u)=f.f(v). 

4. For any two vertices uEV(g(ri)), vEV(g(rj)), let V1, V2 be two sets of vertices on 
path(root(g(ri)), u) and path(root(g(rj)), v), where path(root(g(rk)), w) is a directed path 
from root(g(rり） tow in g(rk)-Then, J(u)=f(v) implies that f(V1)=f(V2). 

5. Let u,vEV(g(ri)), w,xEV(g(rj)), uvEE(g(ri)) and wxEE(g(rj)). If J(u)= f(v) and J(v)=f(x), 
then (3(uv)~(3(wx) or (3(wx)~(3(uv), where (3(yz) represents the label of an edge yz. 

6. If J(u)=f.f(v) and xis a vertex different from u and v, condition 3 above does not hold 
for an arbitrary function g such that g(u)=g(v) and g(x)=f(x). 

Figure 4.3 shows an example of numbering to vertices in initial graphs rl, ・ ・ ・, r4. 

rl: r2: 

g
 

r3: 

b
 

f
 

a
 

B
 r4: 

f
 ~7 

Figure 4.3: An example of numbering to vertices 

The following properties hold for the above numbering. 
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Property 1 Assume that an initial graph r is a subgraph of a system graph G. It can be 

decided that r is a subgraph of G by traversing vertices in the order of numbers assigned by the 

above numbering function. 

Property 2 Let R be a set of initial graphs with the same event, and r1 and r2 be elements of 

R. Then, there is a numbering such that the set of numbers to the vertices of r1 is a subset of 

numbers to the vertices of r2. 

4.3 Definitions 

Protocol synthesis involves generating a distributed algorithm to find an isomorphic subgraph 

in a system graph. Each protocol entity holds a local state of a terminal. Protocol synthesis 

is defined to derive protocol entity specifications with local states from communication service 
specifications described as global state transition rules. 

When a protocol entity receives an input from a terminal or some other protocol entity, it 
determines a rule to be applied or sends another protocol entity a request to inquire about a 
surrounding global state determining an applicable rule. This communication for state inquiry 
is performed sequentially. Finally, a rule is determined. The rule is informed about the protocol 

entities that have had inquires about their states. Then each protocol entity is made to change 
its state according to the rule. 

A spanning path is determined for each rule. The communication for state inquiry goes 
along a spanning path. If there are isomorphic subgraphs in multiple initial graphs, paths 
are determined at the same time regardless of whether a system graph contains a subgraph 

isomorphic to the subgraphs. This optimizes the communication. For this purpose, we utilize 
the spanning path of a tree generated by overlapping spanning trees of the initial graphs of an 
event. This spanning path is called a provisional communication path. 

A synthesized protocol communicates along provisional communication paths. We give 
the following definitions. Note that sometimes a vertex and a process are used for the same 

meanmg. 
Let C(e) denote a set of initial graphs with an event e. 

Rule inclusion graph Let s be a connected subgraph that has an event vertex and is isomor-

phic to subgraphs of more than one element in C(e). Let D(s) denote the set of elements 

of C(e) that haves as their subgraphs. An ordered pair< s, D(s) > is a Yertex of the rule 
inclusion graph of C(e) if a graph s'generated from s by adding an edge is a subgraph 

of an element of C(e), and D(s) =I-D(s'). An ordered pair< r, D(r) > is also a vertex of 

the rule inclusion graph of C(e) if r EC(e). There is an edge from< s, D(s) > to < t, 

D(t) > iff (1) s亡 t,and (2) there is no other element < u, D(u) > such thats亡 uand 

u亡t.

Rule inclusion graphs are used for determining in what order the inquiring rules should be 

applied. If there is an edge from < s, D(s) > to < t, D(t) > in a rule inclusion graph, then 

graphs is examined before graph t regardless of whether they are included in a system graph. 

Figure 4.4 gives initial graph examples. Figure 4.5 shows the rule inclusion graph for the set 

of initial graphs in Fig. 4.4. Rule graph rl is the maximum subgraph common to rule graphs 

r2 and r3, and the maximum subgraph of rule graph r4 is rule graph r2. Consequently, there 

are four vertices < rl, { rl, r2, r3, r4 } >, < r2, { r2, r4 } >, < r3, { r3 } >, and < r4, { r4 
} > in this rule inclusion graph. 
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Figure 4.4: Examples of initial graphs. 

<rl, {rl ,r2,r3,r4} 

<r3,{r3 }> 

<r4,{r4 }> 

Figure 4.5: Example of a rule inclusion graph. 
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Rule covering tree Let gr= (vr, er, v0) be the initial graph of a ruler. Let tr= (wr, fr, v0) 
be the spanning tree of gr. A rule covering tree Cr is defined as follows: 

The set of vertices of Cr is Vr, and root(cr) = v0. 

Edges from the same vertex are arranged clockwise in lexicographic order of edge labels. 
The set of edges of Cr is the union of er and the edges satisfying the following two 
conditions: 

1. If a leaf vertex of tr has a label, there exists an edge whose initial vertex is the leaf 
vertex of tr. 

2. An edge ab of Cr has a label of an ordered pair. The first element of the label is the 
label of a in Vr, and the second element is the label of ab in er. 

A rule covering tree is uniquely d~termined for a spanning tree of an initial rule graph. A 
rule covering tree must satisfy the following two conditions to define a rule overlapping tree. 
Let s be the spanning tree of the initial graph for rule r, and t a rule covering tree generated 
from s. 

(l) sis an unlabeled subgraph of the initial graph for ruler. 
(2) Let u be a vertex of s. Assume g亡hfor the two vertices g and h in the rule inclusion 

graph that has a vertex whose first element is r. If u is a vertex of h, and u is not a vertex of 
g, then an edge from one of the vertices in g to u is included. 

Figure 4.6 shows rule covering trees for the initial graphs in Fig. 4.4. 

Rule overlapping tree A rule overlapping tree for C(e) is generated by overlapping graphs 
in C(e). The tree satisfies the following conditions. 

1. All the roots of the initial graphs in C(e) are overlapped. 

2. For each element gin C(e), there is a subgraph isomorphic tog. 

3. If vertices u and v in rule covering trees s and t, respectively, are overlapped, then 
every vertex u'between root(s) and u is overlapped by the vertex v'int satisfying the 
conditions that its depth is the same as that of u'and v'is a vertex between root(t) and 
v (Fig. 4.7). 

4. If edges e and f are overlapped, then the labels of e and f are the same or those of 
one are included in the other. 

5. The overlapping is performed in lexicographic order of the labels of edges with the 
same initial vertex. 

A rule overlapping tree is used for examining at the same time whether the common sub-
graphs in multiple rule graphs are included in a system graph. 

．． 
Prov1s10nal commumcation path The provisional communication path for C(e) is defined 

as a path whose vertices are vertices in the rule overlapping tree of C(e) such that: 

1. The initial vertex is the event vertex. 

2. Let g and h be two graphs constituting the first elements of two vertices in the rule 
inclusion graph for C(e). If g亡 h,u is a vertex in both g and h; if v is not a vertex of g 
but a vertex of h, then u appears before v. 
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<{A,u},{a}> <{B },¢> 
rl) 〇 1--Q I: 

<{B },{b}>. 

<{A,u},{a}> r✓<{B},{c}> 
r2) 0 鳳

r3) 〇<{A,u},{a}>=-

<{B},{b}~ 

<{C}, ゎ＞

<{D},'P > 

<{F}, わ＞

<{C}, か＞

r4) 〇<{A,u},{a}>に
<{B},{c}> <{D},{e}> <{E},¢> 

ベ0 le 

Figure 4.6: Examples of rule covering trees. 

root(.s) 

overlapped overlapped 

root(り

Figure 4. 7: Overlapping of vertices. 
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3. Leth be a graph corresponding to a vertex in the rule overlapping graph for C(e). For 
any graph g corresponding to a vertex in the rule inclusion graph for C(e) such that gこ

h, u and v are assumed to be vertices in h, but noting. In h, if u is a vertex in the path 
from the event vertex to v, or there is a vertex w in the path from the event vertex to u 
such that w is in the path from the event vertex to v and w is not a vertex in g, then u 

appears before v. 

4. A unique label is attached to each edge. 

We note that the vertex sequence of the provisional communication path for C(e) includes 
the sequence of a spanning path for each element of C(e) as a subsequence. This implies that 
a state inquiry along a provisional communication path may determine a rule to be applied. 

Inquiry message An inquiry message is a unique message for each edge between adjacent 
vertices in a provisional communication path. In the synthesized protocol, an inquiry 
message has the following information in addition to its message name. 

Actual communication path An actual communication path is a provisional commu-
nication path whose vertices are actual process identifiers to be inquired. Each process 
decides which process to send an inquiry message by using this information. 

Temporary decided rule The rule with the highest priority among the rules satisfying 
their rule application conditions, i.e., their initial graphs are included in the system graph. 

Rule candidates The remaining rules to be checked for applicability. When a pro-
cess receives an inquiry message it screens rule candidates included in a received inqui巧
message by checking its local state. 

Connection information Process information necessary for connection tests. 

Visited processes A sequence of visited processes after an event occurred. 

Temporary process sequence The process sequence for the current temporary decided 

rule. 

Branches A branch consists of a process identifier and an inquiry message. When a 
process receives an inquiry message, the process compares its state with a subgraph of 
the rule overlapping tree corresponding to the inquiry message, in order to obtain a new 
inquiry message and branches (i.e., actual communication paths). This subgraph is the 
intersection of the rule overlapping tree and rule covering trees corresponding to rules 
contained in the rule candidates of the inquiry message. If plural actual communication 
paths to be inquired are obtained, the remaining actual communication paths except 
arbitrary ones are stored as elements of inquiry messages in branches. Process identifiers 
are determined as the processes to which the obtained inquiry messages are to be sent. 

A provisional communication path shows inquiry messages used for examining whether rule 
graphs are included in a system graph, and their communication paths. An inquiry message 
usually implies multiple rules to be checked as to whether they are included in a system graph. 

Figure 4.8 shows the rule overlapping tree for the initial graphs in Fig. 4.4 and its provisional 

commumcat1on path. 

Response message A message denoting whether to apply a rule or nothing at all. When a rule 
is indicated, it contains information on which process the received message corresponds 

to. 
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Rule overlapping tree 

<{C}, rfi> 
③ 量

① <{A,u},{a}>仁 (2

<{E}, わ＞ .. 

Provisional communication path 

①』止ぺ②ユ旦-⑤ユ立-@ユ~ユ旦→⑥

Figure 4.8: Example of a rule overlapping tree. 

Figures 4.9 and 4.10 show actual communication paths when the graphs are included in a 
system graph. The dotted arrows represent communications between processes and the inquiry 
messages attached to them. 

In the example of Fig. 4.9, inquiry messages are communicated along a provisional com-
munication path. Process A sends B a message ml(rl, r2, r3, r4) that implies rules rl, r2, r3 
and r4 are rule candidates. When B receives it, B determines that rule rl is included in the 
system graph, and rules r2, r3, and r4 are to be checked for their applicability. Then B sends 
Ca message m2(r2, r3, r4). When C receives this message, C sends m3(r2, r3, r4) to D which 
is included in the received message as an actual communication path. In the end E receives 
a message m4(r3, r4) and determines that rule r4 is included in the system graph. Since r4 
is not included in any other initial graph, E determines that rule r4 is to be applied. Then E 
sends processes A, B, C, and D a response message indicating that each process will change its 
state according to rule r4. E also changes its state. 

In the example of Fig. 4.10, inquiry message are communicated along a provisional commu-
nication path but some intermediate processes are skipped. When B receives a message ml(rl, 
r2, r3, r4), B determines that rule r1 is a temporary determined rule, rules r2 and r4 are not 
included in the system graph, and rule r3 is to be checked as to its applicability. In the end F 
determines rule r3 is the rule to be applied. 

Figure 4.11 shows the rule overlapping tree and its provisional communication path for the 
non-tree initial graphs in Fig. 4.3. Figure 4.12 illustrates provisional communication paths and 
inquiry messages for the rules in Fig. 4.3. 

State transition segment One or two state transition segments are generated for each la-
beled vertex in the initial graph of a rule. 

• When a vertex is the last vertex in a provisional communication path, a state tran-
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Figure 4.9: Example of communications along a provisional communication path. 
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Figure 4.10: Example of communications skipping intermediate processes. 

Rule overlapping tree 
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<{B}, {j}> 
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<{B}, {c}> 

Provisional communication path 

＞
 

＞ヽ.l
 

低”ヽc
 

｛
 

⑥
|
ド
＇

①ユ止べ②ユ主--~ユ吐-Gr皿L.@

Figure 4.11: Example of a rule overlapping tree for complicated rules. 

47 



C 

rl: 三三三二二ニミ
．．．竺-~!!...... _ b●●●●竺:.D.→．．．．．．．．．．．．．．．．．．竺.~!?.................... _ 

r2三
ml(r2) m2(r2) m3(r2) 

····················• ・・・・・・・・・・・・・・・・・・・・-・・・・・・・・・・・・・・・・・・・・・ 鳴~

r3: 

三ml(r3) m2(r3) m3(r3) 
··················••• ・・・・・・・・・・・・・・・・・・・ ー► ・・・・・・・・・・・・・・・・・・・・・-

r4: 

f
 

ml(r4) m3(r4) m5(r4) 
···················•• ...。················································•·► ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 嘩····•·►

Figure 4.12: Communications for identifying rules in Fig. 4.3. 
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〇:state 

亡ヱ：receive 

に=:): send 

Figure 4.13: State transition segments. 

sition segment is generated such that it receives a predetermined inquiry message 
in the provisional communication path; it sends a response message and changes to 
the next state determined by a rule. 

• When a vertex is not the last vertex in a provisional communication path, two sepa-
rate state transition segments are generated. One segment receives a predetermined 
inquiry message in the provisional communication path, sends another inquiry mes-
sage along the provisional communication path, and then changes to the next state. 
The other segment receives a response message that includes a determined rule and 
changes to the next state. 

Connection test A connection test is used to identify graphs that include plural vertices in 
a provisional communication path. Let i and j be two vertices in a provisional communi-
cation path, and i is nearer to the event vertex than j. The connection test examines if 
the edges from i excluding the edge in the provisional communication path are connected 
to vertices j or vertices connected by edges from j. 

Figure 4.13 shows state transition segments of vertex B obtained from messages in the 
provisional communication path. Connection tests are omitted in this figure. 
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Figure 4.14: Two graphs requiring a connection test for identification. 

① a
 

ペ〇

Figure 4.15: Subgraphs identifiable with local states. 

Figure 4.14 shows two initial graphs that need a connection test to distinguish them. The 
provisional communication path in these two initial graphs is the path 1,2,3. Figure 4.15 shows 
subgraphs that can be identified by processes 1 and 3. The two initial graphs in Fig. 4.14 are 
distinguished when process 3 receives a message that edge bis connected to process 4. 

4.4 Protocol Synthesis Algorithm 

The protocol synthesis algorithm consists of the following six steps. 
(1) Classification of rule graphs 
Classify rules into sets of rules for the same event. Let C(e) be the set of a rule graph with 

an event e. For each rule graph set we initially apply steps 2 to 5; finally, step 6 is applied. 
(2) Generation of rule inclusion graph 
Generate a rule inclusion graph for each rule graph set. 
(3) Generation of rule overlapping tree 
Generate a rule overlapping tree. 
(4) Determination of provisional communication path and inquiry messages 
Determine a provisional communication path and inquiry messages from the rule overlapping 

tree. 

(5) G enerat10n of state transition segments 
Generate state transition segments for each vertex of a rule covering tree corresponding to 

each rule r. The initial state of a state transition segment is the first element of the label 
attached to an edge incident from the vertex in the rule covering tree. 

(6) Synthesis of process specification 

50 



Synthesize a state transition segment from the initial state until no new state is generated. 
Assume a new state s is generated. Collect all state transition segments whose initial state is 
included in s as a subgraph. The collected state transition segments are synthesized as follows. 

• If two kinds of state transition segments correspond to the final vertex of an initial graph 
in the provisional communication path, a middle vertex is included, and their received 
messages are the same, the following synthesis occurs. 

The next states of these state transition segments are changed to the same states as their 
initial states. In the synthesized process specification, the rule candidates of the inquiry 
message to be sent are the intersection of the rule candidates of the received inquiry 
message and the set of rules whose state transition segments are synthesized. Other 
information is obtained as described in the above preliminaries. 

-When the resulting rule candidate set is not empty, the synthesized process sends the 
obtained inquiry message to the nearest process in the provisional communication 
path following the rules contained in the inquiry message. 

-When the resulting rule candidate set is empty and the branches in the received 
message are empty, two possible conditions exist: if the temporary decided rule is 
contained in the received inquiry message, the rule should be applied; if the tem-
porary decided rule is not contained, a special response message is sent to all the 
visited processes. 

-When the resulting rule candidate set is empty but the branches in the received 
message are not empty, the process sends an inquiry message to find a more superior 
rule than the temporary decided rule. 

• If the above does not occur, the following happens. 

The collected state transition segments are synthesized as they are. Each state transition 
segment is synthesized as described above. Figure 4.16 illustrates how collected state 
transition segments are synthesized into a process specification. 

In the synthesized protocol specification, the rule candidates are screened as communication 
progresses, and then a rule to be applied is determined. Once a rule is determined to be applied 
at a process, the process sends response messages indicating the determined rule to the visited 
processes. There are two types of response messages: a message indicating a rule and no rule 
to be applied. A process that receives a response message changes to the state designated by 
the state transition segment. corresponding to the determined rule. A process that receives a 
no rule message returns to the state prior to receiving the inquiry message. 

4.5 Example 

We explain an example of process specification generation. Figure 4.17 expresses a service 
specification. In this service we need two terminals: "data sender terminal" and "data receiver 
terminal". The data sender terminal starts data transmission by an event "start" when both 
the sender and the receiver which is specified by "start" are in the state "idle". The sender 
can always stop sending data by an event "stop". The receiver can always request the sender 
to pause sending data by an event "pause" and to resume the sending of data by an event 
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Figure 4.16: Synthesis of state transition segments. 
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r1) idle(A),idle(B) start(A,B): 
sending(A,B),receiving(B,A). 

r2) sending(A,B),receiving(B,A) stop(A): 
idle(A),idle(B). 

r3) receiving(A,B),sending(B,A) pause(A): 
r-wait(A,B),s-wait(B,A). 

r4) r-wait(A,B),s-wait(B,A) resurne(A): 
receiving(A,B),sending(B,A). 

Figure 4.17: STR description for data sendi1;1g protocol. 

pause(B) 

Figure 4.18: Global state transition diagram for data sending protocol with pause function. 

"resume". Figure 4.18 shows a global state transition diagram for this data sending protocol 
with pause function. 

We show the graph representation for the service specification in Fig. 4.17. 

In this example each rule makes a rule overlapping tree. Using this graph representation 
and the rule overlapping trees, we can get state transition segments which are parts of the 
objective protocol entity specification. Figure 4.20 shows state transition segments for the STR 
rules in Fig. 4.17. The messages used in inter-process communication are generated from the 
provisional communication paths. 

Figure 4.21 shows a protocol entity specification synthesized from state transition segments 
in Fig. 4.20. In Fig. 4.21 the messages "ml", "m2", "m3", and "m4" represent request 
messages, and the messages "rl", "r2", "r3", and "r4" represent response messages. In this 
specification "norule" send and receive are omitted. "Norule" is a special response message to 
indicate that there is no rule to be applied. In the generated protocol entity specification, when 
the protocol entity receives an unexpected request message, the protocol entity is assumed to 
send the message "norule" to the sender of the request message. 

53 



’ 

rl) 0 
idle 

start sendin 

①→①  ~ 土℃
idle 

rece1vmg 

r2) 

stop 

① ~0 rece1vmg idle 
①幽

pause 
r3) ① r-wait 

sending 
B → 0コ．仁①

s-wmt 

r esum e ・  ・ へ r-wait
r4)~ コで）→ A 

rece1vmg 
B 

s-wait 
。コ仁。

sending 

Figure 4.19: Graph representations of STR descriptions for data sending protocol. 
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Figure 4.20: State transition segments for data communication protocol. 
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start(A,B) rl ml(rl) 

rl 

Figure 4.21: Protocol entity specification for data communication protocol. 
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4.6 Complexity of Communication Tirne 

The subgraph isomorphism problem is one of NP-complete problems. We give the number of 
subgraphs in a graph. Let D be the maximum degree of vertices in a system graph G, d be the 
maximum degree of vertices in an initial graph g, and l be the depth of g. The spanning path 
of g is used to search for g in G. The number of graphs isomorphic to gin Gare limited to the 
following: 

D凡(D凡）d ... (D凡）dl-1 = (D凡）£!.=.U.!. 

It follows that theoretically there will be a combinatorial explosion when searching for an 
initial graph to be applied in a system graph. However, in an ordinary communication service, 
the scope to be searched is usually not large. Therefore, the synthesized protocol usually works 
within a practical time. This will be shown by an experiment in Chapter 7. 
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Chapter 5 

Protocol Synthesis for a Layered 
Architecture -Synthesizing Parallel 
Communication Protocols -

5.1 
. . . 

Prehm1nar1es 

Before describing a distributed algorithm for communication services written in STR, we give 
some definitions of graphs. 

(1) spt(g): A spanning tree of g. If g is a rooted graph then the root of spt(g) is the same as 
root(g). 
(2) st(v, t): A subtree of a tree t. The root of st(v, t) is v. 
(3) sg(v, g): A subgraph induced from a subtree st(v, spt(g)). 
(4) N(v): A neighborhood of v. N(v) is a subgraph of g such that the set of vertices of N(v) 
is constructed from v and all adjacent vertices of v, and the set of edges of N(v) is constructed 
from all edges incident to v. 
(5) r(v) = {wl(v,w) E E(spt(g))}. 
r (v) shows all children of v in spt (g). 

Communication time complexity 
The communication time complexity is the maximum possible number of time units from start 
to completion of the algorithm, assuming that the inter-message delay and the propagation 
delay of an edge between processes are at most one time unit of some global clock. This as-
sumption is used only for the purpose of evaluating the performance of algorithms (62]. 

5.2 Protocol Synthesis Algorithm 

The following lemma is satisfied for subgraph isomorphism. We use this lemma to construct a 
distributed algorithm. 

Lemma 
Let g = (V, E, v0) and g1 = (½, E1, v~) be two rooted graphs. Let SG be a set of subgraphs of 
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g and SG1 be a set of subgraphs of g1 as follows. 

SG = {N(v0)} U {sg(v,g)lv E f(v0)}, 

SG1 = {N(vf)}u{sg(v,g1)lvE買vf)}, ISGI = ISG叶

If and only if the following conditions are satisfied, then g1 is isomorphic to g. 
(1) For each sgi E SG, there exists an isomorphic graph sg1i E SG1・

(2) Let H be a set of isomorphic mappings in (1) such that 一 oowmg expression 1s satisfied. H={h北： V(sgi) V(sgli)}, then the f 11 ・

Vv EV, ¥/hi, hi EH, hi(v) =柘(v)

5.2.1 Local State 

A local state has a set of adjacent process identifiers and a set of primitives representing 
the relationships between the adjacent processes. A local state also has a set of primitives 
representing a corresponding terminal state. 

Let g be a graph representing a global state; then a local state in the global state is a 
neighborhood of a vertex of g. A local state scan be represented by a state identifier (sid) and 
a set of pids of adjacent processes. 

s = (sid, P), P = {pid。,pid1, ... pidk} 

where pid。showsthe self identifier. 

5.2.2 Message 

We use the following three kinds of messages for inter-process communications. 

(1) Request message 
A request message is used to ask for a global state around a neighborhood process. A 
request message consists of a message identifier (mid). The mid of a request message req 
implies a set of subgraphs of the initial graphs to be checked. The set of subgraphs is 
denoted by G(req). 

(2) Response message 
A response message is used for responding to a request message and consists of a mid and 
a set of pids. A response message res implies a set of graphs G(res) and a set of pids as 

follows. 

G(res) = {g1, …保},P(res) = {P1, …凡},pi= {pidiO, pidil, ... pidit} 

where 9i is a subgraph of the initial graph. The Pi gives an isomorphic mapping hi 
between 9i and a system graph as follows. 

h凸） = pidij, Vj E V(gi) 

(3) Order message 
An order message is used for notifying of a local state transition according to an STR 
rule and consists of a mid. The mid of an order message ord implies a:o. STR rule and a 
vertex in the rule graph. 
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process 

｛ 

STATE state; MESSAGE message; 

for (;;) { 

receive(message); 
state= bpb(state, message); 

｝ 

｝
 

Figure 5.1: Distributed algorithm. 

5.2.3 Algorithm Outline 

A process behavior after receiving a message m at state s is called a basic process behavior and 
is denoted by bpb(s, m). The distributed algorithm is constructed from a set of basic process 
behaviors as shown in Fig. 5.1. 

The inter-process communications are done as follows. 

bpb(s, ev): When a process receives an event ev at state s, this determines a set of graphs 
G(s, ev) whose elements may be isomorphic to subgraphs of a system graph. For each adjacent 
process whose pid is recorded in s, a set of graphs G(pid, s, ev) is determined. Consequently, 
the process sends a message req to the adjacent process and the message implies G(pid, s, ev). 

A response message res from the adjacent process implies a set of graphs G(res) c G(pid, s, ev). 
After all response messages are received, a set of graphs G'(s, ev) c G(s, ev) is determined by 
analyzing the messages. Then, the process chooses a graph g in G'(s, ev) and sends order mes-
sages to the related processes to achieve a global state transition according to the STR rule 
whose initial graph is isomorphic to g. 

bpb(s', req): When a process receives the message req at state s', this determines a set of 
graphs G(s', req) whose elements may be isomorphic to subgraphs of a system graph. For each 
adjacent process, a set of graphs G(pid, s', req) is determined. Consequently, the process sends 
a message req1 to the adjacent process and the message implies G(pid, s', req). 

A response message res'from the adjacent process implies a set of graphs G(res') c 
G (pid, s', req). After all response messages are received, a set of graphs G'(s', req) c G (s', req) 
is determined by analyzing the messages. Then, the process returns a response message res, 
which implies G'(s', req). 

bpb(s, ord): When a process receives an order message ord, it changes its state according to the 
STR rule implied by ord. 

A basic process behavior bpb(s, m) is constructed from four elements as follows. 

(1) Send request messages. (2) Receive response messages. 

(3) Determine a set of subgraphs. (4) Send a response message. 

Figure 5.2 illustrates how an STR rule is determined by inter-process communications. 
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Figure 5.2: Inter-process communications. 

5.3 Graph Analysis 

In the distributed algorithm, a process searches for a set of subgraphs of rule graphs. To define 
this set of subgraphs, we analyze rule graphs. 

5.3.1 Graph Resolution 

A resolution tree is constructed by dividing the initial graph of an STR rule as follows. 

Resolution tree 
Let g and spt(g) be an initial graph and a spanning tree of g. Then g is split into its subgraphs 

as follows. 

g = N(vo) U sg(v1,g) U ... sg(vm,9) 

where v0 is the root of g and vi, …, Vm are children of v0. Each sg(vi,g) is a subgraph of gin-
duced from st(vi,spt(g)). Each subgraph sg(vi,9) is also split into its subgraphs. A resolution 
tree of g called rt(g) is constructed from g and spt(g). There are three kinds of nodes in rt(g): 

an event node, edge nodes, and neighborhood nodes as follows. 

{1) Event node 
An event node consists of the event of a rule and has one child. The event node is the root of 

a resolution tree, and the child of the event node is a neighborhood node corresponding to the 

root of g. 

(2) Edge node 
An edge node edv corresponds to an edge of spt(g) and is constructed from two kinds of elements 

邸 follows.

edv = (LABEL(edv), sg(edv)) 
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LABEL(edv) is a set of labels attached to the edge. sg(edv) is an induced subgraph sg(v',g) 
when v'is the terminal vertex of the edge in g. The children of the edge node are neighborhood 
nodes. 

(3) Neighborhood node 
A neighborhood node nv corresponds to a vertex v of g and is constructed from three kinds of 
elements as follows. The children of the neighborhood node are edge nodes. 

nv = (N(nv), sg(nv), F(nv)) 

where N(nv)=(V0, E。)is a neighborhood of v(N(v)), sg(nv)=(V, E) is an induced subgraph of 
g(sg(v,g)), and F(nv) is a set of mappings on Vas follows. 

Mappings on a set of vertices 

F(nv) = {f(nv), f(ed附），…J(edvk)}
f(ed防）： V-→ (¼u {入｝）
f(ed叫(v)= V (if V E  1/4), 

入 (otherwise)

where edvi is a child node of nv. The graph sg(edvi) = (¼, Ei) contained in edvi is a subgraph 
of sg(v, g). 

Let R be a set of STR rules and G be a set of initial graphs of R. For each graph g E G, we 
construct a resolution tree rt(g). The set of resolution trees for the graphs in G is denoted by 
RT(G). The spanning trees used for generating resolution trees of RT(G) satisfy the following 
condition. 

咋，9iE G, (gi亡 9j⇒ spt(gi)亡 spt(gi))

5.3.2 Graph Synthesis 

A synthesis tree SYT(G) is constructed by synthesizing the resolution trees in RT(G) into one 
tree. 

Synthesis Tree 

A synthesis tree consists of four kinds of nodes as follows. 

(1) Root node 
A root node has no internal structure. The children of a root node are event nodes. 

(2) Event node 
An event node ev consists of two elements. One is an event denoted by event(ev) and the other 
is a set of graphs denoted by G(ev). The children of an event node are neighborhood nodes. 

ev = (event(ev), G(ev)) 

(3) Edge node 
An edge node edv consists of two elements. One is a set of labels LABEL(edv) and the other 
is a set of graphs denoted by G(edv). The children of an edge node are neighborhood nodes. 

edv = (LABEL(edv), G(edv)) 
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(4) Neighborhood node 
A neighborhood node nv consists of two elements. One is a neighborhood N(nv) and the other 
is a set of graphs denoted by G(nv). For each graph in G(nv), a set of mappings is attached. 
These mappings are similar to the nodes in a resolution tree. The structure of nv is described 
as follows. 

nv 

G(nv) 

SGi(nv) 

(N(nv), G(nv)) 

{SG1(nv), …SGk(nv)} 

(sgi(nv), 凡(nv))

For each rooted graph sgi(nv) = (½, Ei), the neighborhood of the root is isomorphic to the 
neighborhood N(nv) = (½0, EiD)-

For each child node of nv, there is a corresponding mapping in凡(nv).

~(nv) = {fi(nv), fi(ed附），…fi(ed叫｝

where edvi is a child node of nv. 
In the set of graphs G(edvj), there is a graph S9ii = (烏恥） isomorphic to a subgraph of 

部 (nv).The fi(ed叫 isa mapping as follows. 

fi(ed巧）：¾-(均 u{入｝）
fi(ed巧）（叫＝附 (ifthere is a corresponding vertex in怜），

入 (otherwise)

The graph sgij is determined by sgi(nv) and edvj, so it is denoted by sg(sgi(nv), edvj)-Figure 
5.3 illustrates a synthesis tree. 

Synthesis Tree Construction 

Let G be a set of initial graphs of STR rules, and Gk = {g1, …gk} be a subset of G. Then, 
synthesis tree SYT(G) is constructed recursively as follows. 

(I) SYT(G1) 
Synthesis tree SYT(G1) is constructed by creating a root and an edge that connects the root 
with rt(g1), 

(II) SYT(Gk+1) 
SYT(Gい） is constructed from SYT(Gk) and rt(gk+I) as follows, where Gk+I = Gk U {9k+i}-

Let ev, nv, edv be an event node, a neighborhood node, and an edge node of SYT(G砂 Let
evk+I, nvk+I, edvk+I be an event node, a neighborhood node, and an edge node of rt(gk+1), 

(1) Event node synthesis 
Compare events in evk+I and ev. 

If ev and evk+I have the same event, then add 9k+I to G(ev), and for each nvk+1 E r(evk+i) 
and nv E r(ev), synthesize st(nvk+1, rt(gk+1)) with st(nv, SYT(Gり） as described below in (2). 

If any event node in EVENT(G砂doesnot have the same event as evk+I has, then add 
rt(gk+I) to root(Gサ
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(2) Neighborhood node synthesis 
Compare neighborhoods in nvk+l and nv. 

If N(nv) is identical to N(nvk+1), then synthesize nvk+I with nv as described below in (2-1). 

If any node in r(ev) does not have N(nvk+i), then add st(nvk+I, rt(gk+1)) to ev. 

(2-1) G (nv) synthesis 
Let sg(nv) be an element of G(nv). Compare sg(nvk+I) and sg(nv). 

If sg(nv) is isomorphic to sg(nvk+1), then st(nvk+I, rt(gい）） is already included in st(nv, SYT(Gk 
Therefore, st(nv, SYT(Gり） is not modified. 

If any graph in G(nv) is not isomorphic to sg(nvk+1), then add sg(nvk+i) to G(nv). 

For each edvk+I E f(nvk+1), there is a node edv E f(nv) such that LABEL(edv) 
LABEL(edvk+I) because N(nv) is identical to N(nvk+I)-Then synthesize st(edvk+I, rt(gk+l)) 
with st(edv, SYT(Gり） as described below in (3). 

(3) Edge node synthesis 
Let sg(edv) be an element of G(edv). Compare sg(edvk+i) and sg(edv). 

If sg(edv) is isomorphic to sg(edvk+1), then st(edvk+I, rt(gk+1)) is already included in 
st(edv, SYT(Gり）• Therefore, st(edv, SYT(Gり） is not modified. 

If any graph in G(edv) is not isomorphic to sg(edvk+I), then add sg(edvk+1) to G(edv). 
For each nvk+l E f(edvk+i) and nv E f(edv), synthesize subgraphs as described in (2). 

5.4 Distributed Algorithm Generation 

To generate a distributed algorithm, we first generate a set of local states and messages. We 
then generate a set of basic process behaviors. 

In this paper, we assume that the number of labels a process may have is restricted; accord-
ingly there is a maximum number of labels (maxlabel). 

5.4.1 State Generation 

Let s, r, v be a local state, an STR rule, and a vertex of the rule graph of r. Let N(r, v) and 
N'(r, v) be a neighborhood of v in the initial graph and the next graph of r. 

If N(r, v)亡 s,then let s'be a local state that is generated from s by changing N(r, v) to 
N'(r, v). If the number of labels of s'does not exceed maxlabel, then the STR rule may be 
applied to s. The next state is denoted by next(s, r, v). 

The set of local states S is generated recursively as follows. 

(I) s。={N(r,v)lr E R,v E V(r)} 
(I I) Si+I =Siu {next(s, r, v)ls E Si, r ER, v E V(r)} 

where V(r) is a set of vertices in the rule graphs of r. S becomes a finite set. 

5.4.2 Synthesis Tree Modification 

Let node and S (node) be an event or edge node of SYT (G) and a set of neighborhoods in the 
node in f(node). Let s be a local state in S, and let S(node, s) and NV(node, s) be a subset 
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of S(node) and a subset of f(node) as follows. 

S(node, s) 

NV(node,s) 

{ state E S (node) I state亡 s}

{nv E r(node)I N(nv) E S(node, s)} 

(1) If S(node) contains s, there is a node nv(s) E f(node) that satisfies N(nv(s)) = s. 
If S(node) does not contains, then create a new neighborhood node nv(s) as a child of the 

node as follows. 
N(nv(s)) = s, G(nv(s)) = </> 

(2) For each node nv in NV(node, s), add G(nv) to G(nv(s)) in order. Then synthesize a 
subtree st(nv, SYT(G)) to st(nv(s), SYT(G)) as described earlier (G(nv) synthesis). 

5.4.3 Message Generation 

For each vertex of a rule graph, an order message is generated. A set of request messages and 
response messages are generated from synthesis tree SYT(G). 

For each edge node edv, a request message req(edv) is generated. The req(edv) implies a 
set of graphs G(edv). 

For each neighborhood node nv, create a set of subsets GSET(nv) as follows. 

GSET(nv) = {GilGi c G(nv), (Vgi, 島EGi, ,(gi亡島））｝

For each element Gi E GSET(nv), a response message res(nv, Gi) is generated. 

5.4.4 
．．  

Process Behavior Generation 

Let node be an event or edge node in SYT(G) that corresponds to message m. Let nv be the 
child of the node whose neighborhood is identical to states. A basic process behavior bpb(s, m) 
is generated as follows. 

(1) Send request messages 
Let edvi be a child node of nv. A request message to the adjacent process req(edvi) is generated 
from edvi. The destination of req(edvi) is the process connected with the labels of edvi. 

{2) Receive response messages 
A set ofresponse messages for req(edvi) is generated from the child nodes of edvi. Let res(edvi) 
be a response message for req(edvi)-Then the following is satisfied. 

G(res(edvi)) E LJ GSET(nvi) 
nVj打 (edv;)

(3) Determine a set of isomorphic subgraphs 
(3-1) Response message id comparison 
For each edvi E r (nv) and for each sgi = (½ ゎ島） E G(nv), confirm whether the implied set 
of graphs G(res(edvi)) contains a subgraph sg(sgi(nv), edvi) = (½i, Eji)-Then create a set of 
graphs G1 as follows. 

G1 = {sgi E G(nv)JVed功 Er(nv), sg(sgi(nv), edvi) E G(res(edvi))} 
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(3-2) Pid comparison 
Let和 bea set of pids in res(edvi) that corresponds to sg(sgj(nv), edvi)-Pji gives a mapping 
hii : YJiー→ PI DS where PI DS is the set of process identifiers in a system. 

The node nv contains a mapping 方 (ed防）：½ 一→ V}i• We define the mapping hii as follows. 

励：½ 一➔ (PIDSU{入｝）
hji(v) = hji・fi(edvi)(v) (if方(edvi)(v)ヂ入），

入 (otherwise)

For each sgi E G1, for each v E½, and for each edvi, edvk E f(nv), confirm whether hii(v) is 
identical to Ii五(v).Then create a set of graphs G2 as follows. 

G2 = {sgi E G収VE½ゎ¥/edvi,edvkE r(nv), hii(v) = Ii五(v)}

(4) Send a response message 
We can define the mapping hf : ½ 一PIDSas follows. For each vertex v E½= V(sgj), 
there is a mapping hJi and hJi(v) =I-入.Then hi(v) is defined as'½i(v), which is a pid in PIDS. 

Create a response message res(nv) as follows. 

G(res(nv)) = G2, P(res(nv)) = {P1, P2, …凡｝，
pi= {朽(v)Iv E乃， sgiE G叶

5.5 Evaluation 

Let d be the depth of SYT(G). It takes at most d time units to send request messages. It 
also takes at most d time units to send response messages. It takes one time unit to send order 
messages. Therefore, the communication time complexity of the distributed algorithm becomes 
2d+1. 

The depth of SYT(G) is identical to the depth of the deepest resolution tree in RT(G). 
Therefore, the communication time complexity does not depend on the number of STR rules; 
it only depends on the STR rule that has the largest number of processes. 

The computation complexity of each process is determined by the efficiency of the re-
sponse message id comparison and the pid comparison. The former efficiency is proportional 
to lf(nv)IIG(nv)l2, and the latter efficiency is proportional to lf(nv)ll½IIG(nv)I-

Let n be the number of STR rules. lf(nv)I and l½I are considered constants for n. When 
estimating the number of graphs in a neighborhood node IG(nv)I proportional to log(n), the 
computation complexity becomes O((log(n))り．
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Chapter 6 

Software Specification Generation 
from Protocol Specifications 

In the previous two chapters we showed protocol synthesis algorithms. In this chapter, we 
define a detailed specification description language STR/D (Detailed Specification Language 
for STR). 

6.1 Detailed Specification Language STR/D 

STR/D describes supplementary specifications to implement service specifications described 
with STR. An STR/D specification consists of a set of STR/D rules. An STR/D rule describes 
tasks to be executed on the state transitions of terminals by STR rules. Each STR/D rule has 
the syntax: 

position-designation {task-designation} 

This rule specifies that "task-designation" is executed at positions where the condition 
"position-designation" is satisfied on a state transition of a protocol entity. 

6.1.1 Position Designation 

A synthesized protocol entity specification consists of local states, inputs and other elements. 
To designate positions in a protocol entity specification we use local states and message inputs. 
The local states and message inputs depend on the state primitives and events of STR rules. 
This implies that we can describe STR/D rules by knowing state primitives and inputs that are 
being used or are to be used in STR rules. If we describe STR/D rules with state primitives 
and events but without depending on individual protocol entity specifications, the STR/D rules 
turn out to define meanings of these STR elements. If new state primitives and events are used 
for describing a service, it is necessary to define new STR/D rules to specify them as a matter 

of course. 
Positions are designated by states, inputs and their combinations. 

State designation 
Local states in a protocol entity are described by a set of state primitives~so we use state 

primitives for designating local states. States are specified by initial, terminal, state, next-state, 
primitive and next-primitive. 
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initial A rule for the initial position designates initial tasks to begin services. Position 1 in Fig. 
6.1 is designated by initial. 

terminal A rule for the terminal position designates final tasks before returning to the initial 
state. Position 6 in Fig. 6.1 is designated by terminal. 

state State designates the positions just after inputs at the specified state. Positions 2, 3 and 
4 in Fig. 6.1 are designated by state. 

next-state Next-state designates the position just before the specified state. Position 5 in Fig. 
6.1 is designated by next-state. 

primitive Primitive designates the positions just after inputs at the states that have spec-
ified state primitives. Positions 2, 3 and 4 in Fig. 6.1 are designated by primitive. 
The difference between state and primitive is whether a state is completely specified or 
partially-specified. 

next-primitive Next-primitive designates the positions just before the states that have specified 
state primitives. Position 5 in Fig. 6.1 is designated by next-primitive. 

Among these state designations, state and primitive can be combined with next-state and 
next-primitive. Such a combination designates the position 5 in Fig. 6.1. 
Input designation 

Inputs designate the positions just after receiving the designated message. There are four 
types of inputs: event, request, respond and norule. Every position after receiving a message of 
the specified type is designated if only an input type is specified. As for event we can specify 
individual event names. Input designation can be combined with state designations. Positions 
2, 3 and 4 in Fig. 6.1 are designated by input. 
State transition designation 

State transition paths are designated by describing the difference in primitives in the current 
and the next states. The syntax is as follows. 

transition (<state transition expression>) 

The state transition expression in this rule is described as the following syntax (1) or (2). 

(1) + (a set of state primitives) 
(2) -(a set of state primitives) 

Syntax (1) describes the state primitives not included in the current states but in the next 
states, and syntax (2) describes the state primitives not included in the next states but in the 
current states. Position 5 in Fig. 6.1 is designated by transition. 

6.1.2 Task D ・es1gnation 

Tasks described in "task-designation" conform to C statements. These tasks are separated 
by semicolons if multiple tasks are specified in a single task-designation. We can describe a 
conditional statement in a task-designation. This statement will be used to change the next 
state according to the status of a task. A conditional statement is written by the following 
syntax. 
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Figure 6.1: Task insertion. 
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primitive(dial-tone(A)) {tone_on(DLTONE);} 

stateJnput((dial-tone(A)) & (event dial(A,B))) {tone_on(RBTONE);} 
transition(-(idle(A)) +(ringing(A,B))) { tone_on(RGTONE);} 

Figure 6.2: Example of STR/D rules. 
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unless(< C expression >) { < C statements >} 

< state designation>; 

This statement describes a specification when a condition is not satisfied. If the C expression 

is not satisfied, the C statements in this statement are executed and the protocol entity changes 
its state to the designated state. 

6.2 Example 

Figure 6.2 shows an example of an STR/D description corresponding to Fig. 1.3. Rule r1 

indicates that tone_on(DLTONE) is executed just before entering a state having the prim-
itive "dial-tone(A)". Rule r2 indicates that tone_on(RBTONE) is executed when the event 

dial(A,B) occurs at a state that contains the primitive dial-tone(A). Rule r3 indicates that 
tone_on(RGTONE) is executed on a .transition where the primitive "idle(A)" is deleted and the 
primitive "ringing(A,B)" is added at the next state. 

The following example gives the STR/D rules for implementing pots in Fig. 1.4 on a PBX. 

A, B, C, U; 

start {Initialize O ; } 
term {Stop();} 
transition (-(dial-tone(A)) +(ring-back(A,B))) 

{ Stop_dial(); Tone_off (DT); R_path(B); Tone_on(RBT); } 

-(ring-back(A,B)) +(path(A,B))) { Tone_off(RBT); Connected(B); 
-(path(A,B)) +(idle(A))) { F_path(B); Disconnect(B); } 

-(idle(A)) +(ringing(A,B))) { Tone_on(RNG); } 

-(ringing(A,B)) +(path(A,B))) { Tone_off(RNG); 
-(path(A,B)) +(busy(A))) 

{ Disconnected(B); Tone_on(BT); } 
-(busy(A)) +(idle(A))) { Tone_off(BT); } 

-(ring-back(A,B)) +(idle(A))) { F_path(B); Tone_off(RBT); 

-(ringing(A,B)) +(idle(A))) { Tone_off(RNG); } 

-(dial-tone(A)) +(busy(A))) 

{ Stop_dial () ; Tone_off (DT); Tone_on (BT) ; } 
-(idle(A)) +(dial-tone(A))) { Tone_on(DT); Start_dial(NML); 

-(busy(A)) +(idle(A))) { Tone_off(SBT); } 

-(dial-tone(A)) +(idle(A))) { Stop_dial(); 

var 

transition 
transition 

transition 

transition 
transition 

transition 

transition 

transition 

transition 

transition 

transition 

transition 
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Connect(B); 

Tone_off(DT); 

｝
 

｝
 

｝
 

｝
 

｝
 

We note that every rule is described by state transition designations in this example. 
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Chapter 7 

Application to PBX Software 
Generation 

This chapter shows results of an automated software generation method applied to PBX sys-
tems. First we show the results of a specification description task to implement seven typi-
cal services on a PBX, and then clarify the effectiveness of the proposed software generation 
method. We then describe results obtained by implementing one of these services on two kinds 
of PBX systems and again evaluate the proposed method. Software is obtained as follows. 
First, protocol specifications are synthesized from service specifications using the algorithm in 
Chapter 4 and then the protocol specifications are transformed into software specifications by 
the refinement method in Chapter 6. 

7 .1 Results of Specification Description 

Communication software is usually developed incrementally to provide new services. Services 
such as POTS, CCBS, CW, CFV, TWC, UPT and TCS have been implemented according to 
this development style. These services are defined as follows. 

POTS The Plain Old Telephone Service (POTS) involves an ordinary call between two sta-
tions. 

CCBS A customer subscribing to the Completion of Call to Busy Subscriber (CCBS) service 
can, after reaching a busy station, hang up first, and then dial the activation code to 
activate CCBS. When the busy station goes on-hook and the calling station is on-hook, 
the calling station is rung. Upon an answer, the call is automatically completed to the 
station previously busy. 

CW The Call Waiting (CW) service informs a busy station user that another call is waiting. 
The busy station may answer the new call by one of two methods. One is with a flash, 
placing the original call on hold and answering the new call. The other is for the busy 
station user to go on-hook, in which case the station user is rung and connected to the 
new call upon an answer. 

CFV The Call Forwarding Variable (CFV) service allows a station to redirect calls intended for 
that station (base station) to another station (remote station). A subscriber can activate 
the service in two ways. The first way is as follows: The subscriber goes off-hook, receives 
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a dial tone, and dials the service prefix followed by a 2-digit CFV activation code or dials 
the 2-digit CFV activation code at the end of the dialing signal. A recall dial tone is then 
heard by the subscriber. At this time, the Directory Number of the remote station is 
dialed and the system attempts to complete the call in the normal manner. If the remote 
station answers, CFV is activated. The second way to activate the CFV service can be 
used if the remote station does not answer the call or is busy. The subscriber merely 
repeats the same procedure as described in the previous text within 2 minutes of hanging 
up from the first attempt. On this second activation the system applies a confirmation 
tone following a delay of at least 1 second of a dial tone to the base station, rather than 
attempting to complete the call to the remote station. A receipt of confirmation tone tells 
the subscriber that CFV has been activated. If the timed interval has elapsed, a second 
request for service activation is processed as an initial request. 

If the subscriber has the call forwarding feature activated and receives a call, a ring 
reminder is applied to the base station (when idle), to indicate that the call has been 
received and forwarded. The subscriber cannot answer calls at the base station while 
CFV is active, but can originate calls. 

To deactivate call forwarding, the subscriber goes off-hook, receives a dial tone, and dials 
a deactivation code; a confirmation tone is then returned to the customer. Dial tone 
returns after the confirmation tone. 

TWC Three-Way Calling (TWC) is a custom calling feature that allows a customer to add a 
third party to an existing conversation without operator assistance. The party initiating 
TWC may put one party on hold in private while dialing or talking to another party 
and can later include the party on hold. The added party may be dropped from the 
connection with a flash from the initiating party. 

UPT Universal Personal Telecommunication (UPT) enables access to telecommunication ser-
vices while allowing personal mobility. It enables each UPT User to participate in a 
user-defined set of subscribed services and to initiate and receive calls on the basis of a 
personal, network-transparent UPT Number across multiple networks at any terminal, 
fixed or mobile, irrespective of geographic location, limited only by terminal and network 
capabilities and restrictions imposed by the network operator. 

TCS Terminating Call Screening (TCS) screens incoming calls against a screening list consist-
ing of time and originating terminal directory numbers. In this experiment, the screened 
call activates either POTS, message transfer or call transfer. 

Seven services S1, ・ ・ •, S7 are defined as a combination of these services. 

S1 POTS itself. 

S2 A specification consisting of S1 and CBS. 

S3 A specification consisting of S2 and CW. 

S4 A specification consisting of S3 and CFV. 

S5 A specification consisting of S4 and TWC. 

S6 A specification consisting of S5 and UPT. 

74 



Table 7.1: Number of rules and primitives in library software 

Service STR rules STR/D rules Library 

S1 23 14 10 
S2 46 (+23) 16 (+2) 10 (+o) 

83 80 (+34) 20 (+4) 12 (+2) 

S4 129 (+49) 26 (+6) 12 (+o) 

S5 207 (+78) 26 (+o) 12 (+o) 

86 348 (+141) 72 (+46) 16 (+4) 

87 379 (+31) 76 (+4) 16 (+o) 

Table 7.2: Ratio of added rules and primitives in library software 

Added service STR rule STR/D rule Library 
CCBS (81→ 82) 50 13 

゜cw (82→ 83) 43 20 17 
CFV (S3→ S4) 38 23 

゜TWC (S4→ S5) 38 

゜゜UPT (S5→ 86) 41 64 25 
TCS (86→ 87) 8 5 

゜I Average 36 29 7
 

87 A specification consisting of 86 and TC8. 

Table 7.1 shows the results of the experiment. Each figure shows the number of rules 
or primitives in the library software, and each figure in parentheses shows the number of 
supplementary parts compared with that of the previous service. 

The library software was developed manually, and is of a small size. In fact, the total 
size of the library software is about two thousand lines in the C language. The library soft-
ware was developed by using primitive software provided by a platform beforehand. Table 7.2 
lists the percentages of added parts in Table 7.1. Table 7.3 represents optimization ratios in 
communications among processes. 

7.2 Evaluation of Description Results 

Table 7.2 shows that the average ratios of added STR rules, STR/D rules and library software 
are 36%, 21 % and 7%, respectively. A more detailed knowledge of communications software 
and systems is necessary to do development in the order of library software, STR/D rules and 
STR rules. Supplementary library software is expected to be unnecessary or very small in size 
after services have been developed to a certain extent. 

Furthermore, the following semi-automated addition will be expected as far as STR/D rules 
are concerned. STR/D rules can possibly be generated semi-automatically by defining the 
semantics of primitives in STR rules with a conceptual model of communication services. 
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Table 7.3: Ratio of the number of times and time in communications 

Service Times(%) Time(%) 

S1 57 57 

S2 53 49 

S3 56 51 

S4 43 37 

85 42 34 

S6 36 28 

S7 33 25 
Average 46 40 

The proposed method can be applied to cases where non-experts are developing communi-
cation services. In this case the software development described above will make it possible to 
implement the services on a communications system. Consequently, almost all of the parts can 
be automatically or semi-automatically generated by the non-experts in software development. 
These facts imply that the proposed automated software generation method can be applied to 
communication service development by non-experts. 

We evaluated the effectiveness of the method in an application. A PBX of a large size with 
3,600 lines maximum was used in this experiment. About 30% of the software was dedicated 
to service control in the PBX. 

Next we evaluated the optimization method described in this thesis. Table 7.3 shows ratios 
of optimization in communications for an application of appropriate rules in the algorithm 
of Chapter 4 compared with a naive algorithm. The optimization ratios become big in large 
services. In the supposed development style of communications software by non-experts, it 
is assumed that services have already been equipped to a certain extent. It therefore follows 
that communications is expected to be below 33% and 25% in the number of times and time, 
respectively. 

7.3 Software Architecture 

We show a software architecture for controlling communication services using a generated pro-
gram. This architecture is developed on two PBX systems. It aims to minimize the target 
hardware dependent parts and to maximize the customizability of the application interface 
used by STR and STR/D rules. This software architecture can be easily applied to a dis-
tributed system consisting of multiple nodes. 

7.3.1 Processes 

There are five kinds of processes: STRP, INP, OUTP, SMP and TIMER as shown in Fig. 7.1. 
In the following, we explain these processes and their roles. 

STRP processes are automatically generated from the STR and STR/D rules. An STRP 
process is created when a call is originated or terminated at a terminal in the idle state. 
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INP converts inputs from a terminal to events which are specified in STR rules. INP has 
converting and buffering functions for inputs from terminals through the OS (Operating 
System), and also has a function for creating STRP processes. An event may be made 
from a sequence of inputs and sometimes multiple events are made from one input from 
a terminal. Since all inputs from terminals go through the INP, the INP can provide a 
function for mutual exclusion of rule application with the semaphore. 

OUTP converts outputs from STRP to PBX control primitives which can control a PBX 
hardware unit directly. OUTP has converting and buffering functions for outputs to the 
OS. 

SMP records events and communications between processes for logging. 

TIMER is used as a timer. 

INP and OUTP have two layers, the basic primitive layer for customizability of the appli-
cation interface and the application primitive layer for the logical interface of STRP processes. 

7.3.2 Logical Interface 

There are two layers of PBX control prilllitives: basic primitive and application primitive lay-
ers. They are implemented within INP and OUTP. The interface between OS and INP, or 
OUTP is called the hardware interface (HI). The interface between basic primitives and ap-
plication primitives is called the basic primitive interface (BPI), and the interface between 
application primitives and STRPs is called the application primitives interface (API). Applica-
tion primitives are made from basic pri皿tives.BPI is independent of any specific hardware. 
Consequently, we can customize API by using BPI without hardware knowledge. The major 
difference between API and BPI is terminal identification. In BPI a terminal is expressed by 
a physical address, while in API a terminal is identified by a logical number, i.e., a telephone 
number. 
Basic primitive interface 

The basic primitive interface is established in order to add interfaces to new events and new 
tasks without using hardware control primitives. Events and tasks may increase in number 
when new services are developed by using new events or new state primitives. 

• Each input from a hardware or a timer basically corresponds to one event. A sequence of 
dials is valid only if it identifies a terminal. In STR an event is defined as a logical input 
from a terminal rather than an actual input. In other words an event is set to the largest 
input sequence which does not have to be divided when a new service is added. 

• Primitives for controlling a hardware unit are set so that one primitive is used for one 
objective. When we use these primitives, it is not necessary to designate a means for 
achieving the objective. For example, it is not necessary to designate a speech path or 
a conference trunk to connect terminals. This enables one to connect terminals without 
knowing the other party's situation. 

Application primitive interface 
API is the interface for events and tasks used in STR and STR/D. Basically we do not 

designate hardware resources unless we need them for services, such as resource reservation. 

78 



Table 7.4: Execution time. 

Execution time C dynamic steps 

STRP /MMP I 1.1 I 1.2 

Table 7.5: Number of states and transitions. 

STRP I MMP I STRP* 
Number of states 

Number of transitions 
12-63 

6
 

2
 

9

＿
 

ll-41 

Application primitives are made from basic primitives. We have described such things as pots, 
three way calling service, call forwarding service, call waiting service, call completion service 
for a busy subscriber, and Universal Personal Telecommunication, with the current API which 
does not designate hardware resources. Each STRP is assigned to a terminal by INP for an 
origination and by communication primitive "send" for receiving a terminating call. 

7.4 Implementation Results 

We show the execution time for an individual service dependent part in the developed PBX. 
We compare STRP and MMP which is an optimized program. 

A simplified POTS is used to compare the execution times of STRP and MMP. STRP 
and MMP have the same architecture. Each terminal is controlled by a process, and each 
process communicates with other processes to know its state. MMP is a dedicated program to 
implement pots. Table 7.4 shows the result. "Execution time" represents the consumed time 
of tlie processes, and "C dynamic steps" shows the steps of the C source program. According 
to the result the automatically generated program STRP runs in comparable time with MMP. 

The execution time depends on the transition times and message size from call origination 
to call termination. Table 7.5 shows the size of state transitions. STRP is obtained from 15 
STR rules and 16 STR/D rules. STRP communicates two times, i.e., to examine the state of 
the other STRP and to know the rule to be applied. On the other hand, MMP does not need 
to know the state of the other MMP via communication after the first communication, because 
MMP does not change its local state on account of a call from a third party. Therefore, MMP 
communicates less times using less messages than STRP. STRP, unlike MMP, sends a message 
which has its local state, i.e., STRP communicates with MMP for synchronization. Further 
work is needed for optimization. STRP* is a manually optimized STRP. 
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Chapter 8 

Software Generation for Functional 
Model 

The protocol synthesis methods in Chapters 4 and 5 produce a protocol assuming a layered 
architecture model. There is another protocol architecture called the functional model [7]. Uni-
versal Personal Telecommunication [44] has been standardized in order to be provided using the 
functional model in Fig. 1.7. In the functional model functions are not layered but distributed. 
These functions are distributed in functional entities. The software generation method in this 
chapter can be applied to this functional model. 

8.1 Stepwise Refinement 

We show a method of generating software conforming to any functional model from STR and 
STR/D rules. First we obtain the "service specifications" of each functional entity from STR 
rules which specify terminal behaviors, and STR/D rules. Then we synthesize finite state ma-
chine based functional entity specifications from the obtained service specifications of functional 
entities. In this method, we use intermediate languages STR(L) and STR/D(L). They have 
the same syntax as STR and STR/D, but they specify the local specifications of one functional 
entity. 

Specification generation of functional entities consists of the following three steps: 

Step 1 Event assignments to functional entities: 

The events described in STR rules are manually assigned to functional entities where they 
truly occur. 

Step 2 STR(L) and STR/D(L) rule generation from the original STR and STR/D rules, and 
event assignments: 

First we compare conditions described by the initial-state, event and next-state in an STR 
rule and position-designations in STR/D rules. If the conditions of the STR rule match 
those of the STR/D rules, we combine these rules to obtain new global state transition 
rules. The obtained global state transition rules consist of four elements: the revised 
initial-state, event, task-designation, and the revised next-state. 

Next we divide each obtained global state transition rule into local state transition rules 
for each functional entity used in executing the tasks in the task-designation; however, 
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the states of the generated local state transition rules specify global states originated in 
the STR and STR/D rules. In this division, communication actions are divided into two 
types: send action and receive action. The event assigned to one of the functional entities 
in Step 1 is specified in the assigned functional entity. 

Finally, we can generate STR(L) and STR/D(L) rules from the obtained local state 
transition rules. In this generation, the send action generates a new STR/D(L) rule for 
the appropriate entity, and the receive action generates the event of a new STR(L) rule 
for the appropriate entity. 

Step 3 Functional entity specification generation: 

From the generated STR(L) and STR/D(L) rules for each entity, an FSM based entity 
specification is generated by using the same method in the synthesis of process specifica-
tion in the protocol synthesis method in Chapter 4. 

The above functional entity specification generation can be applied when primitive send 
and receive actions can be extracted from the tasks to be executed in functional entities. 

8.2 Application 

8.2.1 U . n1versal Personal Telecommun1cation 

UPT (Universal Personal Telecommunication) [44] permits access to telecommunication services 
with personal mobility. Each UPT user has a unique UPT number. When a UPT user initiates 
or receives a call, the access is verified by a check of the UPT number and authentication code. 
If the authentication is verified, the user can proceed to procedure identification. 

UPT services are implemented on the functional model shown in Fig. 1. 7. In Fig. 1. 7 the 
Functional Entities (FEs) have the following meanings: 

FEl Originating CCAF 
FE2 Originating CCF; associated with SSF 
FE3 Transit CCF 
FE4 Terminating CCF 
FE5 Terminating CCAF 
FE6SCF 
FE7 SDF(l) (SDF in the local network) 
FE8SRF 
FE9 SDF(h) (SDF in the home network) 
where the terms are as follows: 
SSF Service Switching Function 
SRF Specialized Resource Function 
CCF Call Control Function 
CCAF Call Control Agent Function 
SCF Service Control Function 
SDF Service Data Function 
This functional model cannot be modeled by the layered architecture described in Fig. 2.1; 

however, each functional entity can be modeled by the layered architecture. The functional 
model cannot be observed from outside a communications system. Therefore, we synthesize 
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the process specification incrementally. First, the "service specifications" of each functional 
entity are obtained from STR rules, which specify terminal behaviors, and from STR/D rules. 
Process specifications are then generated from the obtained service specifications of functional 

entities. 
The following is an outline of the steps required for a UPT user to access a UPT service 

and undergo identification and authentication: 

1. Access code input by UPT user 

2. Recognition of access code, suspension of call processing in CCF, connection of SRF 
(Establish Temporary Connection) 

3. Prompt and response for user identification (input UPT number) 

4. Prompt and response for user authentication (input authentication code) 

5. UPT user's service provider provides authentication check and sends result 

6. Decision: 

• if successful, proceed to procedure identification 

• if unsuccessful and more attempts allowed, advise user of failure and restart at 3 

• if unsuccessful and no more attempts allowed, advise and release call. 

Figure 8.1 shows the information fl.ow for the procedure of "access, identification and authen-
tication". There are two other information flows involved in the above actions: "authentication 
rejection and retry" and "maximum retries reached". 

8.2.2 STR Description of UPT 

Figure 8.2 shows the STR description for the information flows of access, identification and 
authentication; retry; and, maximum retries reached. This description introduces new vari-
ables to denote UPT users. The variables declared by "Terminal" denote terminals as before; 
variables declared by "User" are used for UPT users. In Fig. 8.2, the UPT user gets access 
through terminal "A", "U" denotes the user's UPT number, and "V" denotes the other users' 
UPT numbers. 

STR rules rl, r2, r3 express the information flow in Fig. 8.1. Rule r4 expresses the 
sequence of authentication retries performed because of a wrong authentication code. Rule r5 
expresses the sequence when the retry limit is exceeded. 

The following gives the meaning of each of the state primitives and events in Fig. 8.2: 

State primitives 
dial-tone(A) represents a state where a UPT service initiation request can be received. 
ident(A) represents a state where a UPT number can be received. 
auth(A,U) represents a state where the authentication code for UPT number "U" at 

terminal "A" can be received. 
success(A) represents the authentication succeeded state. 
fail(A) represents the authentication failed state resulting from the authentication retry 

limit being exceeded. 
mJ.imit(A) holds when the authentication retry through terminal "A" exceeds the limit. 
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Terminal A; 
User U, V; 
rl) dial-tone(A) 

uptreq(A): ident(A). 
r2) ident(A) 

idnumber(A,U): auth(A,U). 
r3) auth(A,U) 

acode(A,U): success(A,U). 
r4) auth(A,U) 

acode(A,V): ident(A). 
r5) auth(A,U), mJimit(A) 

acode(A,V): fail(A). 

Figure 8.2: STR description of authentication in UPT. 

Events 
uptreq(A) represents the UPT service initiation request. 
idnumber(A,U) represents an event for which a UPT identification number is received. 

"U" denotes the received UPT user's identification number. 
acode(A,U) represents reception of the authentication code for user "U" at terminal "A". 

8.2.3 STR/D Description 

Figure 8.3 shows the supplementary specification needed to implement the STR rules in Fig. 
8.1 on the functional model in Fig. 1.7. In addition to the declaration of the STR description, 
the functional entities defined in Fig. 1. 7 are declared by "Entity". Tasks described in the 
"task-designation" are provided as routines. 

If there are two or more entities described as parameters of a task, then the task includes 
communications between the described entities. Tasks are carried out in the described order 
when more than one task is described in a single "task-designation". Therefore, the original 
order of communications is preserved. 

8.2.4 Stepwise Refinement of UPT 

We apply the stepwise refinement method to generate functional entity specifications from the 
specifications in Fig. 8.1 and Fig. 8.3. 

Step 1 The events described in the rules in Fig. 8.1 are manually assigned to functional entities 
as follows: 

uptreq(A) 
idnumber(A, U) 
acode(A,C) 

CCAF 
SRF 
SRF 

Step 2 We now generate new STR(L) and STR/D(L) rules according to the assignment ob-
tained in Step 1. "sl(A)", "s2(A)" are newly generated state primitives. The following 
rules are the STR and STR/D rules for the entity SCF. Note that each generated STR 
rule specifies a local state transition of one functional entity. 
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Terminal A; 
User U; 
Entity CCAF, SSF/CCF, SCF, SRF; 

transition(-(dial-tone(A)) +(ident(A))) 
{ UptReq(CCAF, SSF /CCF); 
InitialDP(SSF /CCF, SCF); 
ReqReport(SCF, SSF /CCF); 
TempConnect(SCF, SSF /SCF); 
SetupReqlnd(SSF /CCF, SRF); 
SetupRespConf(SRF, SCF); 
AssistReq(SRF, SCF); 
PromptCollect(SCF, SRF, "Provide your 

identity"); } 
input(event number(A, U)) 
{ CollectedUserlnf(SRF, SCF); 
PromptCollect(SCF, SRF, "Provide your 

authentication code"); } 
transition(-(auth(A, U)) +(success(A))) 
{ CollectedUserlnf(SRF, SCF); } 
transition(-(auth(A, U)) +(ident(A))) 
{ PromptCollect("Wrong authentication, 

please retry. 
Provide your authentication code"); } 

transition(-(auth(A, U)) +(fail(A))) 
{ PromptCollect("Retry limit exceeded. 

Your line is now blocked. 
Please hang up."); } 

Figure 8.3: STR/D rules for authentication. 
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dial-tone(A) InitialDP(A): sl(A). 
sl(A) AssistReq(A): s2(A). 
s2(A) CollectedUserlnf(A): ident(A). 

transition(-(dial-tone(A)) +(sl(A))) 
{ send(SSF /CCF,ReqReport); 
send(SSF /CCF,TempConnect); } 

transition(-(sl(A)) +(s2(A))) 
{ send(SRF,PromptCollect, 

"Provide your identity"); } 
transition(-(s2(A)) +(ident(A))) 
{ send(SRF,PromptCollect, 

"Provide your authentication code"); } 

Step 3 Finally, we generate entity specifications from these generated STR(L) and STR/D(L) 
rules. 
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Chapter 9 

Completing Protocols 

The formal design of protocols produces reliable protocols through the automatic detection of 
protocol errors. In this chapter we present an error-free protocol synthesis method by complet-
ing protocols synthesized from service specifications described by message sequence charts. 

9.1 Protocol Model 

9.1.1 Protocol and Service Specifications 

Protocol specifications are descriptions utilizing concurrent processes made up of sets of pro-
cesses that can communicate. Sets of processes that define protocol specifications are called 
objects. A process is represented by a limited state transition machine with one initial state 
(and also with a final state) [47]. Each process has receive channels that can receive messages 
from other processes in FIFO (First-In-First-Out) order. A channel from process p to process q 
is expressed as chpq・The unit of action executed by a process is called an event, and a process 
produces state transitions by executing events. 

There are four types of events: send events, receive events, output events, and input events. 
Send events are represented by the form -q(m). When process p executes -q(m), message 
mis attached to the end of channel chpq・Receive events are represented by the form +p(m). 
When process q executes +p(m), message m at the beginning of channel chpq is removed. An 
output event -(m) signifies that the process executed by this event is outputting message m to 
the outside, and input event +(m) means that the process executed by this event is inputting 
message m from the outside. 

For nondeterministic branches to be excluded from process specifications and for programs 
to be automatically generated from process specifications, transitions from send events and 
output events are not included in branches deriving from multiple transitions obtained from 
the same state [9]. 

Service specifications representing requirements with respect to objects are expressed using 
message sequences. A message sequence is the set of event sequences for each process. 

Definition 4 (Service specification) Service specifications with respect to objects consist of 
sets of message sequences that are written in the following syntax: 

object obj { Pi = seqi I i = 1, ・ ・ ・, N }, 
obj: object name 

Pi: process name 
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object ms {p = +(req) -q(l) + q(2) -(ack), 
q = +p(l) -(called)+ (ok) -p(2)} 

Figure 9.1: Example of a message sequence. 

req 

ー

2
 ack 

Figure 9.2: Message sequence chart of Fig. 9.1. 

seqi: event sequence 
In addition to the four types of events already defined, there are also quasi-events that 

represent subobject calls. Subobjects are defined as message sequences in which the object name 
has been replaced by a subobject name. 

In all event sequences, events to the left are executed before events to the right. With 
respect to subobject call events, events in the same process that called a subobject are executed 
from left to right; then after the events in the subobject have finished being executed, the event 
切nmediatelyfollowing the subobject call event is executed next. At the time a subobject is called 
and the subobject has finished being executed, the channel over which the process was received 
must be completely empty. 

A diagram representing a message sequence is called a message sequence chart. Figure 9.1 is 
an example of a message sequence representing the service specification for an object ms made 
up of two processes p and q. The corresponding message sequence chart is shown in Fig. 9.2. 

The conditions under which service specifications are converted to a protocol are as follows. 
Cl: The order in which events are executed in the service specifications is preserved. 
C2: No event not already in the service specifications is added. 

Protocols can be synthesized out of sets of message sequences that satisfy these conditions 
[9]. Figure 9.4 shows a protocol synthesized from service specifications based on the message 
sequences shown in Figs. 9.1 and 9.3. State O is the initial and also the final state of each 

process. 

9.1.2 Beh ・av1ors 1n Protocols 

After defining the executability of events, we next define behaviors that can occur in protocols. 
Let process p be in state s. When event f is allocated to produce a transition from state s to 
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object ms {p = +q(3) -(called)+ (ok) -q(4), 
q = +(req) -p(3) + p(4) -(ack)} 

Figure 9.3: Another message sequence for object ms. 

process p process q 

Figure 9.4: Example protocol synthesized from message sequence charts. 

state t, the following conditions must be defined in order for event f to be executable. If these 
conditions are met, process p produces a transition to state t after event f is executed. 

• When f is -(m), it is executable without conditions. 

• When f is -q(m), it is executable without conditions, and message m is added to the 
end of chpq・ 

• When f is +(m), it is executable if message m is input from the outside. 

• When f is +q(m), it is executable if message mis present at the beginning of chqpi after 
the event is executed, message mis removed from the beginning of chqp• 

Assume a protocol P. When a given sequence of messages is input to P, the behavior 
occurring in P will be defined. Regarding all processes included in P, event execution begins 
from an initial state, and behaviors are defined in terms of the event sequence sets derived for 
each process. 

Definition 5 (Behavior) A behavior b with respect to a protocol P is defined as a set of 
process event sequences satisfying the conditions: 

(1) A process event sequence is described as: 

Pi = seqi, where Pi is a process name in P and seqi is an event sequence of process Pi・If Pi = 

seqi and Pi = seqi are two process event sequences in b, then Pi =I= Pi. 
(2) Let all the processes in P be in their initial states. Then, there is a sequence s of input 

messages from the outside such that all the events in b can be executable in P according to the 
above definition of event execution. Once a process returns to its final state, the process can 
never execute any event in b with respect to s. 

91 



b = {p = +(req) -q(l), 
q = +p(l) -(called) } 

Figure 9.5: Example of a partial behavior. 

In the event there are two behaviors b1 and b2 and every process event sequence of b1 is a 
prefix of the same process event sequence of b2, then b1 is called a partial behavior of b2. In 
Fig. 9.5, the event sequence set b is a behavior of the object ms in Fig. 9.4 and is a partial 
behavior of the message sequence in Fig. 9.1. 

When all processes have reached their final states after executing all event sequences be-
longing to a behavior, and all channels are empty when the final states are reached, then that 
behavior is said to be completed. 

9.2 Definition and Nature of Exceptional Behaviors 

9.2.1 Definition of Exceptional Behaviors 

In protocols made up of service specifications with multiple message sequences, it is possible 
for behaviors to occur that do not correspond to the message sequences configuring the service 
specifications of required specifications; in other words, non-required behaviors. 

Let behavior b consist of two elements: event sequence s1 of process p1 and event sequence 
砂 ofprocess p2. When a send event included in s1 and a receive event included in s2 make up 
a communication between process p1 and process p2, then s1 and s2 are defined as being linked. 
This linked relationship is transitive. 

Definition 6 (Exceptional behavior) With respect to service specifications R, when behav-
ior b of a protocol satisfying R meets the following two conditions, then b is said to be an 
邸 ceptionalbehavior: 

l Behavior b is not a partial behavior of any service specification. 

2 Regarding event sequences that are elements of behavior b, the following apply: 

(a) A subset c of b exists such that the elements of c are mutually linked, and c is not a 
partial behavior of any service specification that is included in R. 

(b) No process in b can execute an event with respect to any arbitrary input from the 
outside. 

Condition 2(a) excludes behaviors from exceptional behaviors that occur when two message 
sequences with no mutual influence are executed at the same time. The following behavior 
example illustrates the only exceptional behavior that could occur in the protocol illustrated in 
Fig. 9.4. The exceptional behavior exhibits the property of 2(b). Process p waits for message 
2 from process q, and process q waits for message 4 from process p after executing every event 
described in ex. This is a deadlock state. Consequently, these two processes cannot execute 
any events anymoreヽ;vithrespect to any arbitrary input from the outside. 

ex= {p = +(req) -q(l), 
q = +(req) -p(3)} 
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9.2.2 Nature of Exceptional Behaviors 

Exceptional behaviors occur when a protocol initiates an action in line with a message sequence, 
and an event is executed that does not belong to the message sequence. The event causing this 
exceptional behavior is called a causative event. 

Definition 7 (Causative event) Let the set of service specifications be represented by R, and 
assume that event sequence set c is an exceptional behavior in a protocol synthesized from R. Let 
d be a partial behavior of c. Then an event f in c is said to be a causative event of exceptional 
behavior c if the following conditions are satisfied: 

1. There is a service specification in R that contains d as its partial behavior. 

2. The behavior derived by executing all events in d and f is not a partial behavior of any 
service specification in R. 

Let c be an exceptional behavior of protocol P synthesized from service specifications R, and 
let partial behavior d of c be a partial behavior of r(ER). Considering that c is the exceptional 
behavior derived by executing event f after executing all events contained in d, f is one of the 
following: 

• An input event configuring a branch. 

• A receive event configuring a branch. 

• If e is considered to be an event deriving from an initial state and not configuring a branch 
with another event, then e is an input event, an output event, or a send event. 

Other events besides those discussed above must derive from a state other than an initial 
state and cannot configure a branch. This clarifies that they cannot be causative events of 
exceptional behaviors. 

9.3 Completing Algorithm 

We define how to complete protocols, including exceptional behaviors, and then show the 
algorithm. 

9.3.1 Definition of Completion 

Definition 8 (Detection of exceptional behavior) When there is an event f that may be 
executed only in exceptional behavior b at process p, if f has been executed at p, it is defined 
that p detected exceptional behavior b. 

Definition 9 (Protocol completion) Let b be an exceptional behavior that may happen in 
protocol P. Exceptional behavior b is called completed if one of the processes in P detects that 
b is an exceptional behavior and P is modified so that all the processes go back to their final 
states with empty channels. If every exceptional behavior in P is completed, then protocol P is 
called completed. 
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We note that every process associated with an exceptional behavior can detect the excep-
tional behavior if one of the processes detects it. This is achieved by exchanging messages 
between the process that detected the exceptional behavior and other processes. 

The matter of what to do after an exceptional behavior is completed depends on the situa-
tion, including designer's intention. There are several cases. For example, every process returns 
to its initial state, returns to its specific state and then proceeds to a succeeding procedure, 
or proceeds to an error procedure. Therefore we introduce a function to specify a state where 
a process goes to when an exceptional behavior is completed in the process. In the following 
method, state plays this role. 

9.3.2 Completing Method 

We clarify a range that is influenced by event addition to complete a protocol. 

Definition 10 (Scope influenced by modification) Let R = {r1, ・ ・ ・, 圧}be a set of ser-
vice specifications and e = {p1 = b1, ・ ・ ・,Pn = bn} be an exceptional behavior that may happen 
in the protocol synthesized from R. Let scope(bk) be the set of service specifications such that a 
behavior of process p in r1(ER) contains bk as a pa廿ialbehavior. 

scope(bk) represents service specifications that are influenced by modifying behavior bk in Pk・ 
For any pair of加 =bk(E e) and r1(E scope(bk)), there is p。=bv(E s) such that r1 ff. scope(b。)．
If there are multiple p。=bv, we determine one of them by selecting the smallest suffix v. We 
denote (k, l〉asa suffix determined by suffixes k and l. In the following, however, (k, l〉isnot 
necessarily the smallest suffix. We have only to determine one suffix. 

Since there is an assumption that every receive channel is empty when a subobject is called, 
we have only to complete every object and subobject. We do not have to take account of the 
interaction among an object and subobjects. The initial state of a subobject is defined as the 
state where no event has yet been executed; the final state of a subobject is defined as the state 
where every process has been executed and is finished, i.e., there is no transition leaving the 
state. 

A reachability analysis can detect exceptional behaviors as possible behaviors in a protocol 
that does not correspond to any service specifications [65]. Completing a protocol requires 
completing every latent exceptional behavior in the protocol. We note that both service speci-
fications and exceptional behaviors may be modified upon completing exceptional behaviors. 

Input 

Service specifications R = { r1, ・ ・ ・, r1} 
A synthesized protocol specification P = {P1, ・ ・ ・,Pn} 
Exceptional behaviors E = { e1, ・・・,em} 
state(ei, p): A state to be reached at process p after completing exceptional behavior eか

Output 

A completed protocol specification P'= {p~, • ・ ・, p~}. 
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Function 

new(p): Returns a new state that is different from any other state. 

Procedure 

(k) (k) Assume that exceptional behaviors e1, • • •, ek have been completed. Let R(k) = {r 
(k) { ( k)'  

1 , ・ ・ ・, r1 } 
r. = PI = aj,I'...'Pn = a; 翌}be the service specifications; E(k) = { eik), • • •, e岱}be the 

exceptional behaviors; p(k) = {Pik), • • •, p炉}be the protocol specification, at that time. We 
(k) (k) (k) (k) (k) . 

now complete ek+I. Let ek+l = {P1 = c1 , ・・ ・,Pn= en }. Events of a message sequence ek+1 m 
the protocol p(k) are executed according to the definition without input from the outside. Let 

stp; be the state of process Pi (i = 1, ・ ・ ・, n), and contij be contents of the channel from process 
Pi to Pi (i = 1, ・ ・ ・, n, j = 1, ・ ・ ・, n, i # j) when the execution has finished. We use new(p) if a 

(k) new state 1s needed in process p on the way to the completion of e When e (k) • 
k+l• k+I 1s completed, 

we change the reached state to state(e凰，p).

Case 1 Neither stp; is the final state of process Pi (i = 1, ・ ・ ・, n), and there is at least one 
nonempty channel for each process. 

Append receive events to each process Pi to receive every remaining message in each channel. 

Case 2 Every stp; is the final state of process Pi (i = 1, ・ ・ ・, n) and every contij(l ::; i ::; 
n, l ::; j ::; n, i # j) is empty. 

Assume that 

becomes 

(k) 
ek+l' 
rY¥j = 1, • • • ,l) 

e~ 罰={p1 = Clk)(i)'・ ・ ・,Pn = c~k)(i)} 
(k)(i) (k)(i) (k)(i) 
乃 ={P1 = aj,1 , ・ ・ ・, Pn = aj,n } 

when p1 = c 
(k) (k) 
1 , ・ ・ ・, Pi = ci have been completed. We modify service specifications in 

(k)(i) 
scope(ci初） and the exceptional behavior ek+1 so that they give different event sequences 

in process Pi+l. Let 9i, ゎ加 (i= 1, ・ ・ ・, n; j = l, • • •, #(scope(c~ 翌））） be new messages, where 

#(scope(ci唸i))))is the number of elements of (scope(c~~ り））） • For each ruEscope(c~~?))), we 
choose a service specification r v E scope(c仕）(i)). Note that two event sequences of process (i+l,u〉

(k)(i) 
P(i+l,u〉inek+l and r u are different. Then we modify them as follows. 
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process Pi+ 1 process P<i+ l,u> 
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Figure 9.6: Separation of en exceptional behavior from a service specification. 

Tu= { Pl -
(k){i) 

Pi+l = au,i+_l + P〈i+l,u〉(9i+I,u),''',
(k)(i) 

P(i+l,u) = au.ii+l.u) -Pi+1(9i+1,u), ・ ・ ・, 

Pn 

r。={ P1 

Pi+I (k)(i) ・・

P〈i+l,u}= av,(i+l.u) -Pi+l (hi+1,u)・ ・ ・, 

(k)(i) Pn 
ek+l = { P1 

(k) 
Pi+l = ci+l + P(i+l,u〉(hi+1,u),・ ・ ・, 

(k) 
P(i+l,u) = C?+l,u〉-Pi+1(hi+1,u), ・ ・ ・, 

k) 
- ----------------_p_n__= en_} __ ---- --- --------

We reflect the modification to the protocol as shown in Fig. 9.6. Then process Pi+I detects 

the exceptional behavior at state state(e『ぶ，p(i+l)).

Case 3 Other exceptional behaviors. 
Every state of process Pi(i=l,・ ・ •,n) is classified into one of the following four cases, and 

there is at least one process classified into (b) or (c). 

(a) stp; is the final state, and contij = 0 (i=/-j,j = 1,・ • •,n). 

(b) stp; is the final state, and there is at least one channel chPiPi such that contijヂ0.

(c) stp; is not the final state, and contij = 0 (i=/-j, j = 1, • • •, n). 

(d) stp; is not the final state, and there is a channel ch加 isuch that contij =/-0. 

If a process classified into (b) or (c) detects an exceptional behavior, the processes classified 

into (a) can be completed as in Case 2. In other words, the processes classified into (a) receive 
a message from a process classified into (b) or (c), and detect the exceptional behavior. The 

• 
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procedure in Case 1 can be applied to the processes classified into (d). Consequently, we have 

only to modify processes classified into (b) or (c) to detect exceptional behaviors and go to the 

specified states with empty contij・ 

Let Pi+I be a process classified into (b) or (c). Assume that 

(k) 
ek+l' 
ヂ(j= 1, ・ ・ ・, l) 

becomes 

e『罰={P1= Cik)(i), ・ ・ ・, Pn = c~k)(i)} 
(k)(i) (k)(i) (k)(i) 
乃 ={p1= ai,1 , ・ ・ ・,Pn = ai,n } 

(k) (k) 
when p1 = c1 , ・・・,Pi= ci has been completed. Let 9ii (i = 1, ・ ・ ・, n; j = l, ・・・， #(scope(c昌~l(i))))
be new messages. Then we modify service specifications and the exceptional behavior as follows. 

• When Pi is classified into (b): 

・ ・ ・ e  an event sequence to receive all messages remaining Let d叫＝叫(h1)+ Pi/h1)) b 

in the channels of Pi• We modify e『2ii)as follows. 

忍誓＝｛ ... Pl = C1 
(k)(i) ， 
(k)(i)' 

Pi+l = C叶 1 di+l,"', 
Pn = c~k)(i)} 

For each Tj E scope(c~ 叡）， welet pred(P{i+l,j〉)be the event sequence of process P{i+l,i〉

when Tj is executed and the event sequence of process Pi+l has become cり~(i), and 

succ(p〈i+l,j〉)be the remaining event sequence of process P{i+l,i}・Then we modify乃
(k)(i) 

as follows. 

r?)(i) = { P1 = at?i), ・・・，
k)(i) 

Pi+l = Ci+l + P〈i+l,j〉(9i+1,i),・ ・ ・ 
P(i+l,i〉=pred(p〈i+l,j〉)-Pi+I (9i+I,j) succ(p〈i+l,j〉)，...'

(k)(i) 
J,n } Pn = a-

We reflect the modification to the protocol as shown in Fig. 9. 7. 

• When Pi is classified into (c): 

For each乃 Escope(c~ 翌）， wemodify as follows. 

叫罰={ P1 = elk)(i)'...' 
(k)(i) 

Pi+l = ci+l + P(i+l,j〉(9i+l,j),・・・，

P(i+l,i〉= pred(P(i+l,i)) -Pi+1 (9i+l,j) succ(P(i+l,i)), ・ ・・，

r・
(k)(i) 
3 = { Pl 

Pn = c?~)~:/ 
= aj,1 '・・・，

Pi+l 

P(i+l,j〉

Pn 

= pred(Pi+1) + P(i+l,i〉(9i+1,j)succ(pred(Pi+1)), ・・・，

= pred(p〈i+l,j〉)-Pi+1(9i+1,j) succ(P(i+l,j)), ・ ・ ・, 
(k)(i) 

= aj,n } 
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process Pi+ I process P <i+ Ij> 
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Figure 9.7: Separation of an exceptional behavior classified into (b) from a service specification. 

process Pi+ 1 process P<i+lJ> 

• 

Figure 9.8: Separation of an exceptional behavior classified into (c) from a service specification. 
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We reflect the modification to the protocol as shown in Fig. 9.8. 
The above procedure completes a synthesized protocol P from the service specifications R 

when a set of exceptional behaviors E is given. Exceptional behaviors classified into Case 1 

can be completed without modifying any service specifications. Completing other exceptional 
behaviors need modification of service specifications. Exceptional behaviors classified into Case 
3(a) are not handled in conventional protocol completion methods without using service spec-

ifications explicitly. 

9.4 Application 

We apply the protocol completion algorithm to X.227 [66]. First we briefly explain X.227. X.227 
is one of a set of Recommendations produced to facilitate the interconnection of information 
processing systems and specifies the protocol for the association-service-element for application― 

association control: the Association Control Service Element (ACSE). The ACSE provides 
services for establishing and releasing application-associations. The protocol is governed by the 
use of the presentation-service (X.216) and the session-service (X.215), however, we take account 
of only X.227 and omit some abnormal procedures. Consequently, the service specifications and 
the resultant synthesized protocol in this example do not exactly coincide with Recommendation 
X.227. 

9.4.1 Premise 

The protocol completion algorithm is supposed to be applied under the situation: 

1. A designer describes message sequences as service specifications. 

2. The designer then synthesizes a protocol from the specifications. This synthesis can 
be automated [9]. If the protocol includes an exceptional behavior, then the designer 
completes the protocol by applying the algorithm. 

Therefore, the above-mentioned situation cannot be applied in the case of an already com-
pleted protocol. Then, assuming the following protocol design steps, we show that the objective 
protocol specification is obtained by simulating protocol completion. 

1. We extract primary sequences of X.227 given as a standard and assume that they consti-
tute the service specifications. 

2. We obtain the protocol specification of X.227 by completing the protocol synthesized from 
the service specifications. 

9.4.2 Completing Process 

Preliminary 

We assume the next two subobjects as service specifications. Figure 9.9 illustrates the subob-

jects. 

1. Subobject 1: A sequence from the initial state to the associated state. Let the service 

specifications be R1 = { r}, Ti, rふ吋｝．
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Figure 9.9: Service specifications of X.227. 
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RLRE+ 
A-RLScnf+ 

STAO: Initial state STA5: Associate state 

Figure 9.10: Synthesized protocol from service specifications in Fig. 9.9. 

2. Subobject 2: A sequence from the initial state to the associated state. Let the service 
specifications be R2 = { d, r~, r5, rl}. 

We can synthesize the protocol in Fig. 9.10 from the service specifications. In this figure 
we use an abbreviated notation to represent events. A message over a bar abbreviates a receive 
event or an input event. If the message has the prefix "A-", then the message is an abbreviation 
of the input event of it, and other messages over bars are abbreviations of receive events of 
them. A message under a bar abbreviates a send event or an output event. If the message 
has the prefix "A-", then the message is an abbreviation of the output event of it, and other 
messages under bars are abbreviations of send events. 

Completing the protocol 

(1) Subobject 1 

STEPl: Detection of exceptional behaviors 

The protocol includes an exceptional behavior that occurs when A-ASCreq is inputted to 
processes pl and p2 at the same time. Then AARQ is received neither by pl nor by p2 

as shown in Fig. 9.11. Let these states be st~1 and st~2. 

STEP2: Classification of exceptional behaviors 

101 

I 



Since neither st~1 nor stふisthe final state, and there are non-empty channels at both pl 
and p2, the exceptional behavior is classified into Case 3(a) in the previous section. 

STEP3: Completion (Fig. 9.11) 

• Addition of a receive event for coping with unspecified reception 

Add receive events of AARQ to states stょandst贔．
• Decision of additional sequences and states to be reached 

This process is a designer-dependent matter, and there are various procedures. In 
this example, each process informs its upper layer and processes exchange ABRT 
with others. Finally each process goes back to its initial state. 

(2) Subobject 2 

STEPl: Detection of exceptional behaviors 

The protocol includes an exceptional behavior that occurs when A-RLSreq is inputted to 
processes pl and p2 at the same time. Then RLRQ is received neither by pl nor by p2 
as shown in Fig. 9.11. Let these states be st;1 and st贔

STEP2: Classification of exceptional behaviors 

Since neither s佑norst贔isthe final state, and there cire non-empty channels at both pl 
and p2, the exceptional behavior is classified into Case 3(a) in the previous section. 

STEP3: Completion (Fig. 9.11) 

• Addition of a receive event for coping with unspecified reception. 

Add receive events of RLRQ to states s砧andst贔
• Decision of additional sequences and states to be reached. 

This process is also a designer-dependent matter, like in the case of subobject 1. 

_ __ H~r_~,_e1t_s:h 2_I"_QQ~§s_hiform_1,j_1;~up12_er J~ye:i-_9-nd proc_~s-~p_l_~end~E_2_]lL!{E_-t--_. Fip.ally 
process pl goes back to STA3 and process p2 goes back to STA4. 

The above steps produce complete service specifications that contain additional completed 
sequences and the original service specifications. It follows that we can get a completed protocol 
as illustrated in Fig. 9.12 that contains three new states STA6, STA7 and STAS. We note that 
STAS is not defined in X.227. This state is created because ABRT can be received at any 
state except STAO in the original X.227, however, we omitted such abnormal procedures in this 
example. 
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Figure 9.11: Exceptional behaviors in X.227 and their completion. 
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RLRE+ 

RLRE+ forp2 
A-RLScnf+ 

Figure 9.12: X.227 protocol obtained by the completion method. 
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Chapter 10 

Conclusion 

We conclude this thesis by summarizing the obtain(:)d results. In this thesis we investigated the 
following three subjects. 

1. Transformation from initial incomplete requirements into complete service specifications. 

2. Automated software generation from service specifications. 

3. Transformation from protocols with errors into complete protocols. 

In Chapter 3, we proposed a specification completion method for a rule-based specification 
language STR. The completed specification agrees with the requirements of the service designer. 
The method obtains complete service specifications by eliminating errors and supplementing 
insufficient rules in the initial requirements. Most published works start on the premise that the 
requirements analysts are different from the users of the software systems. In this method, the 
users themselves can describe their own requirements rather than requirements analysts. If new 
rules are necessary, the method generates them by using an abstraction of conventional commu-
nication services. The proposed method has a limit, however. If a completely new requirement 
specification is given, it becomes impossible to generate rules to supplement the incomplete 
requirement specifications. Future work includes providing a generic domain knowledge. 

As far as automated software generation is concerned, we obtained three algorithms. The 
first two algorithms described in Chapters 4 and 5 synthesize a protocol from service specifi-
cations. The algorithms assume a layered architecture which is commonly used for a protocol 
architecture. They differ in their message exchange methods between protocol entities. The 
algorithm in Chapter 4 synthesizes a sequential communicating protocol. The algorithm in 
Chapter 5, in contrast, synthesizes a parallel communicating protocol. A parallel communi-
cating protocol uses more message exchanges than a sequential communicating protocol but 
usually spends less time for message exchanges. These algorithms are definitely different from 
protocol synthesis algorithms in published work. In our methods the execution order of events 
is not specified in service specifications. The execution order of events is usually considered as 
an implementation dependent factor [64]. Another difference is that the methods in this thesis 
synthesize protocols implementing distributed algorithms. 

In Chapter 6 we defined a detailed specification language STR/D that refines protocol 
specifications so that they become implementable. The language aims at refining protocol 
specifications without knowing individual service specifications as best as possible. In an ex-
periment, typical communication services were found to be capable of refinement independent 
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of the individual rules in Chapter 7. The refinement specifications were dependent on state 
primitives and events. We implemented several communication services on PBX systems by 
using a generated software specification. In actual communication networks the protocol be-
tween communication systems was specified beforehand. We had a problem determining how 
to conform the generated software to the protocol. 

In order to generate communication software that can be installed on an actual network, we 
proposed a stepwise refinement method that generates software conforming to the functional 
model in Chapter 8. This method solves the protocol conformance problem described above. 
However, the problem of how to increase the ratio of automation still remains. 

For the final subject, i.e., to transform erroneous protocols into error-free protocols, we 
presented a protocol completion method. Exceptional behaviors often happen in communication 
software which is used to control multiple independent entities. A protocol completing method 
which resolves undesired states caused by exceptional behaviors has been proposed. There are 
two cases in which exceptional behaviors are eliminated. 

(a) A protocol specification is modified, but service specifications are not. 
(b) A protocol specification and service specifications are both modified. 
Every exceptional behavior can be completed in the proposed method, though conventional 

protocol completion methods which do not use service specifications cannot complete some 
exceptional behaviors. The method has been applied in order to obtain an error-free X.227 
protocol from a set of partial specifications of X.227. Future work includes having designers 
assist in specifying states to be returned to after the resolution of undesirable exceptional 
behaviors. 

These results enable non-experts of communication systems and software to develop com-
munication software semi-automatically, although they have to interact to decide specifications, 
and the assistance of experts is necessary to transform the obtained protocol specifications into 
detailed software specifications. The proposed method has the following features: 

1. It is possible to obtain complete service specifications that reflect the users'intention 
from incomplete service specifications. 

2. It is possible to g enerate commumcat10n software sem1-automat1cally by only using de-

誓

ヽ

tailed specifications to define the semantics of primitives and events in STK on a commu-―-- ---------

nication system. Furthermore, this detailed knowledge can be described as knowledge. 

3. In the case that protocols themselves are specified rather than service specifications, it 
is possible to obtain complete protocol specifications by describing given protocols by 
message sequence charts. 
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