
ATRテクニカルレポート表紙

〔公 開〕

TR-C-0124

Knowledge Representation
a n d A c q u i s i t i o n
3-D shape Ontologies f o r

”

ホァキン

Joaquin
デルガド

DELGADO
ジュリ

Yuri
ティヘリノ

TIJERINO

ー，

，

5
 ，

2 2

ATR通信 システム研究所

Knowledge Representation and Acquisition
for 3-D shape Ontologies

*Joaquin DELGADO and **Yuri TIJERINO

*Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466 Japan
E-mail:jdelgado@egg.ics.nitech.ac.jp

** ATR Communication Systems Research Laboratories

2-2 Hikaridai, Seikacho, Sorakugun, Kyoto 619-02 Japan

Abstract: In order to build more intuitive virtual environments, there is a need for the computer to understand
the meaning of virtual objects in a way that reflects common sense knowledge of such objects. This report
introduces several mechanisms for building a 3-D shape ontology that eventually would add such common
sense knowledge to the What You Say is What You See (WYSWYS) framework [1]. Principally, this can be
achieved through ontologies of primitive 3-D shapes and of combination of such shapes into more complex
shapes. The representation used for expressing 3-D shapes is accomplished through a two-level ontology
approach, that is a knowledge level and a symbol level, where the former is a representation closest that of
humans while the later is a high level computer representation in the form of implicit parametric functions.
Under the same approach, this report proposes a more detailed ontology hierarchy, mainly concentrating on the
evaluation of formal methods for the edition and construction of the symbol level ontology using Ontolingua
[2], and in knowledge acquisition through knowledge reuse and machine learning techniques, for building the
knowledge level ontology. It presents a modification of the case based reasoning (CBR) algorithm PROTOS [3]
for this last purpose. To the end, this report also gives guidelines for future implementation and further research
topics.

1. Introduction

Communication of mental images in an intuitive way is a very important goal to
achieve in human-to-human and human-to-machine interaction. In computer supported
cooperative workspace (CSCW) [4] and more recently in the Virtual Space Teleconferencing
System --VSTS [5], being developed at ATR, the need for integration of language and
gestures for the manipulation and modification of 3-D shapes led to the WYSWYS framework,
where a new communication paradigm was proposed for such virtual environments. One of
the most important features of this proposal was to point out the existence of a two-level
ontology for bridging the knowledge gap between human and computers. To clarify what the
word ontology is, in philosophy it means the study of existence, but in artificial intelligence
circles it usually means the set of most primitive terms or concepts that describes some!hing.
Applying it to the task of adding visual knowledge to the computer, we can use ontologies to
get the machine to understand the meaning of virtual objects in such way that reflects
common sense knowledge of such objects. This approach for 3-D shape representation
consists of a symbol level and a knowledge level, where the former is a representation closest
to that of humans while the later is a high level computer representation in the form of
implicit parametric functions that capture the meaning of a shape based on the interpretation
of a set of parameters and their values. Common sense about complex 3-D sh~pes can be
expressed through these ontologies of primitive 3-D shapes and of combinat10n of such
shapes into more complex shapes at the knowledge level. Indeed, it has been suggested that
easy decomposition into parts is the characteristic of basic level categories that determines
their high degree of distinctiveness and informativeness [6]. Going further on that line of
research this report proposes a more detailed ontology hierarchy and actually describes how
each part of this hierarchy can be made.

One of the main problems in building any ontology is to choose the most appropriate
tool for creating and editing it, looking towards portability and standards in knowledge
representation and current technology. For that purpose, an ontology editor tool from the

-1 -

Knowledge Sharing Lab. at Stanford University, called Ontolingua, has been evaluated by
translating the existing rule base system of shapes and adjectives as part of ATR's most
recent VSTS prototype [7], into a formal symbol level ontology in the editor. That implied
the creation and design of such ontology that did not exist before.

On the other hand, knowledge acquisition about 3-D shapes, can be achieved either
by the reuse of previously built high level ontologies or by machine learning techniques. In
that sense the case-based knowledge acquisition algorithm PROTOS was first evaluated and
later modified in terms of more adequate learning heuristics for the 3-D shape domain,
resulting in a modified PROTOS system. All this in order to build systems that can acquire
knowledge and be able to learn, under user guidance, about the complex 3-D shapes that the
user builds himself for teaching the computer.

Fig.1 A virtual teleconferencing room. We want to be able to interact
with the computer in a more intuitive and intelligent manner.

This report is organized in the following manner. Section 2 gives an overview of the
ontology hierarchy, showing the components or sub-ontologies needed to define well the
symbol level and knowledge level ontologies. Section 3 actually shows how the symbol
level ontology was designed and partially built using Ontolingua. Section 4 introduces the
knowledge level ontology for complex shapes and also gives a detailed example of how this
ontology can be incrementally built through a knowledge acquisition tool specifically modified
for this purpose. Section 5, discusses further possibilities of enriching this ontology with
component-relation and shape modification ontologies and how the two level ontology approach
allows knowledge reuse. Several appendixes were added, including implementation guidelines
for a translator between Ontolingua and Nextpert (the current knowledge base system), and
the interface between the knowledge level and system level.

2. Ontology Hierarchy

As shown in Figure 2, The knowledge representation hierarchy consists of three levels: the
machine level representation, the symbol level ontology and the knowledge level ontology.
While the machine level is not an ontology, and therefore left out of the scope of this report,
emphasis will be done in describing both the symbol level and the knowledge level ontologies
more in detail, with the recent advances and difficulties in constructing such ontologies. 鼻

-2-

■ Task specific
Ontologies

口Concept
Ontologies

Figure 2. The conceptualized ontology hierarchy

In the figure, Concept Ontologies refers to Gruber's [2] definition of an ontology, in
other words it refers to a set of definitions of content-specific knowledge representation
primitives: classes, relations, functions, and object constants. On the other hand Task Ontologies,
refers, according to [8], to a vocabulary of concepts for describing the problem solving
structure of all the existing tasks in a domain-independent manner.

3. Symbol Level Ontology Design using Ontolingua

In the 3-D shape ontology context a symbol level ontology is the one most proximate
to the low-level computer representation of 3-D shapes. Definitions for the parametric
representation, chosen for the 3-D shapes, descriptors related with the parameters and basic
3-D primitive shapes such as sphere, cone, cube, etc…, and their representation independent
features, are stated in this ontology. Therefore, it is more less a static ontology in the sense
that once it is defined, no learning process is needed for further knowledge acquisition.
Furthermore the general conception (idea) of an object is not only related to its basic form or
shape but also to the way this complex object is organized from other primitives, this is the
component-relation ontology, that also belongs to the symbol level, and which formalizes
relations between 3-D pnm1tive shapes in order to complete the definition of complex 3-D
shapes. It is left for the discussion section.

The existing prototype system for the symbol level ontology had integrated a
visualization module with a rule based system for achieving the classification o[~-Dyrimitive
shapes. This system was based only on rules and not on a formal spec1f1cat10n of an
ontology. One of the goals was to create a formal specification of the ontologies listed in the
ontology hierarchy. The first problem was how to build such ontologies?

For this purpose we decided to evaluate Ontolingua.

We chose to evaluate Ontolingua, an on-line network service of the Knowledge
Sharing Laboratory from Stanford University, for editing and constructing portable ontologies
(**), basically because of:

1) Its a tool that gives a methodology and facilitates building complex ontologies in a
cooperative way. It also checks consistencies while supporting ontology creation or
definition.

-3 -

Ontolingua: Ontology Editor and Data Base

Ontology Editing
and Checking

Feature Missing:

No Knowledge
Processing

-
New Design!! 詈

＼ ニ

Figure 3. The Ontolingua system: an On-line network service of the
Knowledge Sharing Laboratory from Stanford University

2) Allows portability, knowledge reuse and sharing to some extent. It offers a wide
range of existing ontologies (ontology library) which can be integrated into our
ontology

3) It is compatible with current agent processing technology. The future need for a

distributed knowledge processing platform entails us to assume a multi-agent
perspective for further research, in which knowledge sharing between agents will
be essential

As shown in figure 3, the translation of the existing two level rule base adjectives
and shapes, from its original source written as rules in Nextpert Object, an expert system
shell, into Ontolingua was done as the first step (see apendix A). Although Ontolingua does
not support Knowledge Processing --it wasn't intend to do so, it does support automated
tr8.11slation to several Knowledge Based System's shells皿 dknowledge representation 1皿 guages
such as SOAR, LOOM, Prolog Syntax, Knowledge Inteerchang Format (KIF) etc…The next
step is to build a translator between and Nextpert Object for which guidelines are given in
section 6.2. Anyway, the actual design of the ontologies were also reflected in the existing
system and new definitions and changes were also done in Nexpert Object because of actual
system requirements.

In the next two subsections, there is a partial description of how the symbol level
ontology was designed and defined using Ontolingua. For more details, the reader can refer
to the Appendix A that contains a full description of the ontologies built in Ontolingua.

(**) http://www-ksl-svc.stanford.edu:5915/

3.1. The 3D-Parametric-Models

．

This ontology is intended to be for the conceptualizing of parametric 3-D solid models
for computer graphics. Therefore it can contain any class of mathematical model for representing
3-D shapes. Particularly we have defined one class Sq-~arametric-Model that stands for the
candidate representation called superquadrics recognized as a powerful representation for

-4-

intuitively building 3-D models in [9]-[11] and [16]. Supercuadrics are defined by the flowing
vector:

x = f(z)cos叫双cose2co+ a4)

y = g(z)sin叫双cose2w+a4)

z = a3sinE2co

where, f(z) = al * (1 -kl * x I a3) ; and
g(z) = a2 * (1 -k2 * z I a3)

In Ontolingua we have classes, relations, functions, and object constants. Here is an example
of the definition of the Sq-Parametric-Model.

,,, Sq-Parametric-Model

(Define-Frame Sq-Parametric-Model
: Own-Slots
((Arity 1)

（ Documentation
"This is a 3d solid math model based on a parameter space
named superquadrics")

(Instance-Of Class) (Subclass-Of Thing))
: Template-Slots
((Al 1 (Slot-Value-Type Real-Number))
(A2 1 (Slot-Value-Type Real-Number))
(A3 1 (Slot-Value-Type Real-Number))
(A4 0 (Slot-Value-Type Real-Number))
(El 1 (Slot-Value-Type Positive))
(E2 1 (Slot-Value-Type Positive))
(Kl O (Slot-Value-Type Real-Number))
(K2 0 (Slot-Value-Type Real-Number)))

: Issues
((: Source

"The definition of the superquadrics model is
given by Hirikoshi, as follows:

where,

x = f(z) cos(alpha)"El *(cos(omega)"E2 + A4);
y = g(z) sin(alpha)"El *(cos(omega)"E2 + A4);
z = A3 * sin(omega)"E2;

f(z) =Al* (1 -Kl* x / A3); and
g (z) = A2 * (1 -K2 * z / A3) ")))

No relations were defined but 25 functions defined as follows:

-Al, A2, A3, A4, Kl, K2 as function that returns the values of the parameters of the
superquadrics.

-Descriptor functions, that represents the Descriptor Ontology:

-5 -

Descriptor Formal representation

Flat 町<mzn(a;, ak)/3; z ::f: J ::f:k

Holed (top-bottom) a4 > 1.0

Long la;, -a札<fia; max(a;i ap < ak <min(2av初）；i:;i=j:;ck

Round latitude le2・1.01 < L1e
Round longitude ~J" 1.01< L1e

Short la;-ajl <凶；a1r < min(a;, a;); i :f: j ::/: k
Similar scale parameten le2 -1.01 < b.e; i :;tJ
Squared latitude le1I < Lio
Squared longitude 厨 <L1o
Tall lai• a~< l:ia; max(a1, a2) < a3 < min(2aJ, 2ai)

Tapered top 0< k戸1or O < k1~1
Very long lai -a;I < 6.a; a戸2ak,i ;t j ;t k; i,j = 1, 2

Very tall la; -a,!< la; a3~min(2町， 2a1)

Table 1. Descriptor ontology, where i, j, k = 1, 2, 3; △ e = 0.3; !:..a= 1/30 I:3m=lam

Here is a list of all the boolean functions that are axioms of the class Sq-Parametric-Model
as shown it Table 1:

Has-Hole
Has-Round-Longitude
Has-Sharpened-Side-I
Has-Similar-Scale-Parameters
Has-Square-Longitude
Is-Long
Is-Tall
Is-Tapered-Top-N-S
Is-Very-Tall

Has-Round-Latitude
Has-Sharp-Top
Has-Sharpened-Side-2
Has-Square-Latitude
Is-Flat
Is-Short
Is-Tapered-Top-E-W
Is-Very-Long

Even if these functions are part of the 3-D-Parametric-Models ontology they actually are the
Descriptor Ontology (a task ontology) shown in the ontology hierarchy. It also important to
point out, due to impact on higher level ontol?gy, that these functions are not strictly defined
in terms of the parameters but they also mclude ranges of tolerance that later allows
approximation in formal shape descriptions.

3.2. 3-D-Shapes

This ontology is for defining 3-D Shapes either simple primitives of complex shapes,
independent of their graphical representation. It gives semantics to graphical objects than can
be part of a system.

3d-Shapes includes the following ontologies

3d-Parametric-Models
Component-Assemblies

/* Representation Dependent * /
/* Included as part of an integration experiment

Class hierarchy (15 classes defined):

* 3d-Geometric-Primitive

Cone
Cylinder
Cylindrical-Tube
Hoop

Cube
Cylindrical-Rod
Disk
Ingot

Pyramid Shpere
Rectangular-Rod Unknown
Rectangular-Sheet
Rectangular-Tube

* 3d-Compiex-Shape /*Tobe used further at the knowledge level*/

-6 -

濤

．

CLASS: 3-D Geometric-Primitive
Features

SUB-CLASSES: -Cone 八
* h= 20
＊じ=5

-Cube 四

-Pyramid.

-Sphere

* b= 10

* h= 20
* b = 10
* w = 15

* r= 5

-Unknown~

Figure 4. 3-D PrimitiveShape ontology._ Based on the so called
"Platonic Shapes" and some other basic topological shapes.

It is important to point out that intrinsic attributes of simple shapes, such as the radio of a
Sphere, is declared in this ontology as independent from the geometric representation but its
calculated and extracted from the parameters of the graphical representation.

Axioms of this ontology follows the rules stated in the following table:

cCondition holds true r:n ~ o

~ 唇~ ::i I -， " ［ 骨
_ Implicit false or non-'O ュi

applicable ~ e .
("l 巨jユ 弓躙 Conditionholds falselz ~ 旦 箆 r:r.i

n
匡国

~
瓦~ 目.... Q.. • ~ [匡『言 8 喜 ""1

Some primitive descriptors Cl) Cl) "1 0. ("C 且 (l)

Flat '' '" '"

一
'"' "'" ● ""● '"" '"' ● "" ◎ " " """'

Holed (top-bottom) 瓢 瓢 ::::,.裟翁::? : •ヽ•::❖.••• ,:..., >:ヘ❖ < @ 瓢

゜
w»«w•:: -•• ・-:•：,-,．·:：.❖• ＇ < 瓢 瓢 w❖, ．． .．a❖ ．． .w ．:．・，，❖ ．， R 瓢

Long '"" 一・--■■

一
一"●● 一"'"' ''● @ " "' '''

● ,

'"" "

Round latitude

゜
● ""'

゜゚゚ ゜゚
’’

，

'' '' ＇

゜Round longitude "'
....

''"

一
"■ "■ "'"一 '"""' '""" '""● ●'"' . "" '"'" R

Short 一"'● ー"● ●● ,.

一一
@ ◎ ●●● 一—•• •一

＿
一

Similar scale parameters ● "'"●

゜
●● "●9

一
'" "'' '" .' '' "'""' "'"" ,,, " @

Squared latitude '"

゜
'""'

一
'"'" '"■ """'

"●●●

゜゚゚ ゜゚
● ""●

Squared longitude

゜
@

゜゚゚ ゜゚゚ ゜゚゚ ゜
''

Tall

゜
ー'"'

゜
, .. ,,,. ●● "●9 ● ●● "● .. 一9-・-

゜
ー・

● ,_
9●● ,■ 一

Tapered top

゜
欲細%召 ，，，と.-❖,❖a・❖・ゃ.❖~ ウ 貫 怨漆瀦;•~ 瓢瓢 綴瓢：姿

゜
袈毅淡唸： 慾ふャ•:••` :.••A • 1 ,-,:.;.-:-:❖ :·-•::.·さ❖••• ·:•c ❖ .-:--: 祢.. 終.. ：淡：：S •

Very long '' '" '' ''"•• ● , " """""" ■ """ """ "'

゜
'' " . ''

Very tall "'"● '"'"
,,,,,,. R @ ,

一••一 "'"'"' ● """
●'""● ◎ ""'●●

Table 2. Basic 3-D primitive shape ontology based on descriptors

For the classifzcation of a primitive 3-D shape (an object of the class Sq-Parametric-Model)
the boolean functions for the descriptors are used. Note that through out these functions
independence of the underlying geometric representation is achieved. This ontology of shapes
is not intended to be exhaustive by any means. On the contrary they are given with the
intention of allowing further definition of other shapes.

-7 -

We have then created, in Ontolingua, two extendable ontologies: the Sq-Parametric-
Model ontology and the 3d-Shape ontology. The former one used for the shape's parametric
representation and their description through dimensional adjectives, and the later corresponds
to the geometric primitive shape ontology, also described in the ontology hierarchy (figure
2). These are the results of formalizing and re-designing the preexistent two-level rule based
system (adjectives and shapes) into well defined ontologies. We have also achieved through
them graphical representation independence, being able to build the next level of the knowledge
representation with primitive 3-D shapes and some of their known attributes, as addressed in
visual knowledge common sense, without having to deal with their underlying graphical
representation.

4. Knowledge Level Ontology

The knowledge level is the closest to that of human representation of 3-D shapes.
Based on primitive shapes as components and relations between these components (symbol
level ontology), we can think of an intuitive way of building more complex 3-D shapes as
meaningful objects in terms of the common sense that this shape reflects. The final goal is to
apply this constructive paradigm to as may domains as possible. This immediately recalls
the need for the computer to learn new concepts. One of the limitations of the formalization
described in previous sections is that it requires much effort to formalize all sort of common
sense shapes. For this reason it becomes necessary to automate or semi-automate the
formalization process. Basically this can be achieved either by machine learning techniques
or by knowledge sharing and reuse. While a machine learning algorithm, named Protas, was
evaluated and modified for suiting our problem, knowledge sharing and reuse is left as
further discussion. We also give an example of how a complex object ontology can be
created using the modified Protos algorithm. The shape modification ontology that will
enable shape deformation in terms of conceptualized transformations, using language and
gestures, is also in the discussion section.

4.1. Knowledge Acquisition

To employ case based reasoning (CBR) for interactive on-line learning new complex
shapes seemed adequate and was demonstrated by evaluating and modifying of Protos
algorithm. The off-line learning by data presented to the computer, although not discussed
in this report, can be achieved by using ID3 [12], Explanation-Based Leaming (EBL) [13] or
any other generalization-based method, but is has been shown [14] that these methods are not
likely to perform as well as exemplar-based methods in domains with weak theories. We
have chosen exemplar-based methods which are a specialization of case based reasoning,
because we are dealing with weak theories.

4.1.1 Protos Algorithm and Modification

Protos is a machine learning program which acquires knowledge for performing
heuristic classifications. The program learns by the by-product of performing classification
under guidance of a human teacher. When presented with a case to be classified, Protos
classifies the case by recalling an appropriate previous case and explaining its similarity to
the new case. If classification fails, the teacher is asked to supply an explanation. By learning
from explanations in addition to examples, Protos is able to classify from little training and
to justify its conclusions. It is considered a case-based or exemplar-based classification
system --it takes input in the form of a new case and then tries to find a similar past case that
was retained as an exemplar of a particular category/concept. Its output is the category (i.e.,
the classification of the case), accompanied by the specific exemplar and a set of explanations
of how the features of the case are similar to the features of the exemplar. Here is the general
Protos algorithm :

-8 -

遍

Given:
a set of exemplar-based categories C = { Cir c2, ... , en}
and a case (NewCase) to classify.

REPEAT
Classify:

FIND an exemplar of cj belonging to C that STRONGLY MATCHES
NewCase and classify NewCase as cj.

EXPLAIN the classification.

Learn:
IF the expert disagrees with the classification of explanation

THEN
acquire classification and explanation knowledge
and ADJUST C so that NewCase is correctly classified
and explained.

UNTIL the expert approves the classification and explanation.
- - - -- ---- - - - - - - ---

For explaining exactly where the modification of the algorithm occurred a more detailed
explanation about Protos and how it works follows .

Protos learns about four things --features, exemplars, categories, and relations --
from the teacher (Protos also autonomously learns indexing and featural importance). Let's
examine each of these.

* Features are terms used to describe a case. For example, I could describe a the case
"1994 western house" with the following features: roof, walls, chimney, TV _antenna,
(doors 2), garage, garden and (windows 4)。Obviously,a feature can be in the
form of a proposition or a predicate with arguments.

* An exemplar is a case which Protos has processed and retained. An exemplar is an
instance of a concept. For example, the exemplar "1994 Western House" is an
instance of the concept "house".

* A category is a collection of instances of a concept. The category "house" might
consist of the exemplars "1994 Western House", "1889 Japanese House", and
"1966 Muscovite House".

*Relations are learned from explanations. For example, Protos will ask what the
relevance of "door" is to "house". The teacher might respond with the
explanation "door has function entrance is part of house". From this, Protos installs
two relations in its knowledge base: "door has function entrance" and "entrance is
part of house".

The efficient use of exemplars during classification requires that they be indexed so
that they can be efficiently retrieved when they are likely to be similar to a new case. Now
we should describe how Protos learns four type of indices --remindings, censors, prototypicality,
and difference links.

l) Remindings are initially learned from feature-to-category explanations given by the teacher
when a new exemplar is added to the category network. For example, when the teacher
explains that entrance is part of house Protos learns a reminding from entrance to house The
strength of a reminding estimates p(C/f), the probability of the classification given the feature.
This strength comes from the strength of the explanation.

2) Censors are negative remindings, i.e., an index to the category network saying that the
presence of a certain feature tends to rule out a given classification.

-9 -

3) The prototypicality of an exemplar is a measure of how typical the exemplar is of the
category. Every time that an exemplar is successfully used in matching a new case, its
prototypicality is automatically increased.

4) Protos learns difference links as a result of a "near miss" matches during classification. It
connects two exemplars (in the same or different categories) and indicates important features
which discriminate between the two.

Having mentioned the important concepts, now a more detailed Protos algorithm for
using and learning indexing knowledge will be presented, in order to focalize the modified
part.

GIVEN: a case (NewCase) to classify.

To find an exemplar matching NewCase:

1 Collect rernindings from New Case's features to categories.
2 Combine remindings to related categories (**)
3 Retain the N categories with the strongest combined remindings.
4 Select, in order of prototypicality, several exemplars of

each category.
5 Collect rernindings from NewCase's features to exemplars,

and add these to list of exemplars. Order the
list by reminding strength.

REPEAT (consider the exemplars in decreasing order)
6 Let Exemplar] be the exemplar with the next highest

reminding strength.
7 Determine the similarity of NewCase and Exemplarl.

UNTIL a sufficiently strong match is found.
8 Use exemplar differences from Exemplar] to locate a better

match (Exemplar2) .

Exemplar2's category is used to classify NewCase and the match
between Exemplar2 and NewCase is used to explain this
classification. Indexing knowledge is acquired by discussing
this classification and explanation with the expert as follows.

IF the expert rejects the classification or explanation
9 THEN Reassess the remindings from NewCase1s features.

ELSE (the expert accepts the classification and explanation)
10 Increase protopypicality ofExemplar2.

IF NewCase is retained as an exemplar
11 THEN Learn remindings for NewCase. (*)

IF NewCase was initially classified or explained
incorrectly

12 THEN record exemplar differences.

Steps 1 through 8 describes how Protos uses indexing knowledge to find an exemplar matching
a given case. Steps 9 through 12 describes how Protos acquires indexing knowledge. The
point that was directly modified was step 11 (*), i.e .. , the core process of learning remindings.
This affects the overall learning process and it is reflected mostly in step 2 (**) in the
matching part of the algorithm.

The major modification was due to the fact that in the process of learning a reminding
by compiling an expert-supplied explanation of a case feature, Protos heuristically analyzes
each explanation to determine the category or exemplar to which the reminding should refer
and the strength of the reminding. That means that it chooses only one category of the
network to which refer the reminding. Although this simplifies the algorithm it leaves out the
possibility of propagating the reminding though the category network that is an important

-10 -

綸

aspect to include in order to accelerate learning and minimize misses. This is clearly evident
in part-whole and generalization-specialization relations that are much of our concern. Say
for example, that the following expanation is presented to Protos:

prism suggests roof witch is part of house
Protos would then prompt asking to which one and only one of the categories involved

(roof or house) should be referred the reminding from the feature prism. We have found that
assigning the reminding to only one category produces inconsistencies and many errors at the
hypothesis formation time for classification since the hypothetical categories are only drawn
based on the reminders. If we choose only to refer the reminding from prism to roof then if
later, we present a more complex case, say a prism and a cube, it would be considered as a
roof without even listing among the categories candidates for classification, the correct one,
i.e., a house.

Therefore the modification consisted in the propagation of remindings through the
category network creating remindings not only to the main category target but also to its
relatives (inferred from part-whole and generalization -specialization relations). The strength
of the reminders are weakened towards more higher hierarchies. In case of the explanation
given as example, a strong reminder will be created between prism and roof, but also a less
stronger reminder will be established between prism and the category house enabling a more
accurate list of hypothesis for faster and better learning.

4 .. 2. Complex Object Ontology through an example

House ontology obtained by using Protos.

Category Structure

part of
Houses

specialization

part叫

区 巨

へへ
三 □ 旱＿旦三l........ .. ~.. l----....

-----、----~..: —).!~---- ~

Figure 4. Partial description of the category network obtained when
building a simple house ontology with modified Protos.

We have built an experimental simple house ontology (only considering the part-whole
relations of the complex objects), with the help of the modified Protos program. We now
present part of the outputted knowledge base that can serve as basis for constructing the
formal ontolo~y. It was generated in Common Lisp and, once the features and
learningmechamsm of Protos is understood, its comprehension is straight forward.

(term : name house
: importances ((story_2 0. 70) (rectangular_sheet 0.34)

-11 -

(semi-cylinder O. 34)

(square_base_pyramid 0.34) (cylinder 0.34) (cone 0.34)

(cube 0.95) (prism 0.78) (roof 0.70)

(walls O. 70))

: exemplars (proto_house humble_house dome_house indian_house

small_house two_story_house)

: relations (((house has part roof) "Joaquin" "A roof is part

of a house")

((house has function (shelter person)) "Joaquin"

"A house has the function of shelter for persons")
((house has part walls) "Joaquin" "walls are part of

a house ")))

冨

(term :name

: comment

: category

: features

: typicality

proto_house

"A general abstract house"

house
(walls roof)

6. 50)

(term

(term

:name wa11s

: remindings ((house 0.67))

: importances ((cy1inder O. 48) (cube O. 48))

: exemplars (wallsl walls2)

: relations (((walls equivalent story_2) "joaquin"

"Story 2 are walls of the second floor")

((walls equivalent story_l) "joaquin"

"Story_l are the walls of the first floor")

((walls is part of house) "Joaquin" "Walls are
part of a house")

((walls sometimes is inferred from cube) "Joaquin"

"A cube suggest a house's base because of it's form.")

((walls sometimes is inferred from cylinder) "Joaquin"

"A cylinder suggest a base of a house because of
it's form.")))

:name

: remindings

: importances

:exemplars

: relations

roof

((house O. 70))

((triangle_base_pyramid O. 48)

(rectangular_sheet O. 48)

(semi-cylinder 0.48) (square_base_pyramid 0.48)

(cone O. 48) (prism O. 48))

(proto_roof roof5 roof2 roofl roof3 roof4)

(((roof is part of house) "Joaquin" "A roof is part

of a house")

((roof sometimes is inferred from prism) "Joaquin"

"A prism always suggest a roof because of its form")

((roof sometimes is inferred from cone) "Joaquin"

"Cone sometimes suggest roof because of it's form")

((roof sometimes is inferred from square_base_pyramid)
"Joaquin"

"A square base pyramid suggest roof because of it's form")

((roof sometimes is inferred from semi-cylinder)

"J oaquュn’’
"A semi cylinder suggest roof because of it's form")

((roof sometimes is inferred from rectangular_sheet)

"Joaquin"

"A rectangular sheet suggest roof because it's form")

((roof sometimes is inferred from

triangle_base_pyramid) "Joaquin"

"A triangle base pyramid suggest roof because of
it's form")))

-12 -

Even if a generic house (proto house) is considered to be composed of roof and
walls, we have two more shape depende五texemplars, the small house and the indian _house.
While the small_house is composed if a prism and a cube (as pnsm is an exemplar of roof
and cube an exemplar of walls), the indian house or hut (*) is composed of a cylin~er and a
cone (in the same way exemplars of roof a五dwalls).

(*) Protos also allows the definitions of synonyms of terms, that is very convenient as we
may need to refer to the same term with different names, for example, a cube could also be
called a box ..

In this section we have discussed why is it necessary to automate the knowledge
acquisition process of formalizing 3-D common sense shapes, and we have also shown the
modifications made to a machine learning program called Protas for such purpose. In
addition, a simple house ontology is described as a experimental result of using this modified
program for learning about combinations of primitive shapes than can somehow, describe the
shape of a house.

5. Discussion

5.1. Component-Relation Ontology

According to Lang's proposal [15]:

a) Knowledge of shape is object-centered and based on axes of symmetry.

b) Knowledge of orientation is based on the relation of the object-centered axial
system to the axes of local space.

c) The axes oflocal space consists of the vertical axis (determined by gravity) and the
observer's line of sight.

Now merged with these concepts, first we had adopted the "Position-Orientation" theory for
representing the relations between two primitives, at the geometric representation level, as
two pairs of vectors, where eac~pair represents the general position and the orientation of a
primitive component in space, m respect to the local space coordinates. The local space of
the complex object is defined as for the bounding box that covers all the components. This
although quite straightforward was not sufficient for building a case of a complex 3-D shapes
for learning purpose.

Based on this and other analyses, we have reached the following conclusions:

-Definitions of complex objects has to be user's view point dependent.

-Definitions of complex objects, within a range, should be scale independent. For example,
no matter if it's big or small, a shape of house should be identified as a house.

-A hierarchy of objects (components) has to be drawn and relations between them should be
stated in a logic predicate form. This enables intelligent processing and learning at the
knowledge level. Numerical constraints that truly holds the relations expressed through the
position and orientation of each component, are verified only at the lowest level and only
when it's needed.

-13 -

Directional Propositions: Connectional Propositions:

Predicates of Position

....
Figure 5. Partial description of a proposed Component-Relation Ontology

One of the problems that arises with the model of component-relation ontology,
shown in figure 5, is to define well the "touches" or "connected_ with" relations between
primitive shapes. Bearing the predicates of position for each component and the directional
propositions that establishes spatial relations between the components, where and how do
two shapes touch can be important information when learning about complex shapes.

At this first glance we could use elements of the primitive shapes , such as faces,
edges, vertices and other properties such as radius, height, etc…, that can be useful for
establishing such relations and can be defined in the 3d-Shape ontology. Each geometric
primitive could have "slots" corresponding to elements that belongs to them. In that sense we
give the following examples:

-Pyramid:-

-Cube:-

-Sphere:-

-Cylinder:-

-Hoop:-

(Rectangular_face(base),Triangle_face(tl,t2,t3,t4),
Edge(el, e2, e3, e4, e5, e6, e7, e8), Vertex(top, vl, v2, v3, v4),
Scalar(hight))

(Rectangular_face(top, bottom,l eft, right, front, rear),
Edge(el, ... ,el2), Vertex(vl,v2, ... ,v8), Scalar (hight, length, width))

(Scalar(radius),Curve_surface(body))

(Circular_face(top, bottom),Curve_surface(body),
Scalar(inner_rndius, outer_radius))

(Circular_face(top,bottom),Curve_surface(body),
Scalar(inner_radius, outer_radius, Circular_hole(hole))

Taking this into account the exemplar of "house" in figure 5, would be redefined as:

House(P, C) = Pyramid(P)
and Cube(C)
and P.base "connected_to" C.top
and standing(P)
and above(P,C)

Cases then will be represented as a group of features predicates and propositions that
describe relations between these features giving a more qualitative description of the world.
If quantitative descriptions become necessary they could be included in the description in
form of predicates and can eventually be transformed into qualitative descriptions or left as

-14 -

numeric ones that can be suitable for a precise description of an exemplar.

Further research has to be done in order to build a well defined component-relation
ontology but we do believe that this approach could give some insights in achieving it.

5.2. Knowledge Share & Reuse

Ontology Lattice

Thing…
...

Simple-Geometry…
Component-Assemblies

r

'-

Dme-Cml…
Components-With-Constraints
Mace-Domain
Vt-Design…

Mechanical-Components,・
3 d-Parametric-Models

3d-Shapes
houses
cars
furniture

ノ

Figure 6. Ontology Lattice

As analized by Simmons in [16], this interesting question arise: what are the prospects
for developing re-usable ("generic") ontologies of objects that encode knowledge of
characteristic shapes for natural language processing and virtual environments? Biederman
[17], estimates that there are about 3,000 identifiable and easily distinguishable basic level
object categories in the cognitive and linguistic repertoire of typical adults, and that there
may be as many as 10 geometric types for each category, yielding about 30,000 shapes that
each of us knows about (he suspects that this estimate may be too large in about one order of
magnitude). Many of these 3,000 categories overlap between individuals, but some of them
correspond to idiosyncratic knowledge stemming from personal experience and expertise: an
architect, for example, can distinguish a wide variety of roof shapes that all look the same to
the rest of us. Leaving besides the fact that idiosyncratic categories such as house roofs may
be very important for many practical AI applications; thus the size of a truly generic ontology
of object shapes that would be of interest to many projects may be one order of magnitude
larger than Biederman's estimate: on the order of a hundred thousand object categories.

Assembling an object taxonomy that large by hand would be a horrendous project,
possibly taking as much as decades to complete. But there are numbers of ways the problem
can be reduced some of them already addressed in this report. One would be to structure a
generic ontology as hierarchy of useful sub-ontologies, such as a taxonomy of roof shapes.
This is the top-down approach, adopted by the Cyc project [18) for building a huge "common
sense" ontology. The other is to allow users to build ontologies in a more independent way,
that later could be integrated, in a bottom-up fashion. For that pu叩osean ontology integration
tool is needed, striving for commitment, called ontological commitment by Gruber [2], on the
definitions of terms that want to be shared by different systems. This is the Ontolingua's
approach, that can also be used as a powerful tool for building ontologies in a cooperative
way, even for agent systems purpose. As shown in figure 6, our ontologies Sq-Parametric-
Models and 3-d-Shapes could be (at least in theory) integrated in a more wide ontology
lattice that Ontolingua offers as an ontology library. But even then, it would not be efficient
to build a shape ontology by hand; using a learning algorithm that matches the performance
of human beings, is surely a better aproach. Al_though _not consider to match the performance
of a human being, Protos has shown, by expenments m the medical audiology domain, to be
quite accurate (98 %). The modification proposed in this report gives more power to its

-15 -

lean:in~p応ocess and allows Protas to handle more efficiently "part-of'and "generalization-
speciahzat10n" category hierarchies suitable to the shape ontology problem. We believe that
it will not be long until we could teach the computer the shape of a house, just building one
out of primitive shapes, or maybe inputting it as a picture, and say, "This is a house".

5.3. Shape Modification Ontology

In order to add knowledge to the computer that not only contains the common sense
knowledge that these shapes reflect, but also shape knowledge about possible transformations
of such objects, a modzfzcation ontology has to be created at the knowledge level. Based on
adjectives (dimensional, functional, of form, …, etc.; some of them already part of the description
ontology at the symbol level) we can think of verbal derivative, such as lengthen, shorten,
rounded, straighten, etc., that can serve as basis for more complex transformations of 3-D
shapes. Say, for example, that we want to make a house more modern. This desired
transformation could have several underling adjectives related to the concept modern, in the
house domain, that can indicate what type of shape modification has to be performed. Say an
architect defines a modem house to be simple, with more horizontal lines, open to the
exteriors, etc. This is indeed difficult to conceptualize, but based on the exemplar model,
we have thought of two approaches, at lower level, that might lead us to achieve the desired
goal. Let's give an example for better illustrating these two approaches: Having a prototypical
exemplar of an old style Japanese house A and other prototypical exemplar of a modern
Japanese house Band the transformation A~ B, meaning "make A more modem", then:

1) The Parameter Interpolation approach: The parameters of the geometric model (say
supercuadrics) underling both shapes A and B, are interpolated resulting in another shape C,
that will have both characteristics of A and B. C can be considered either a "modernized old
Japanese house" or a "old fashioned modem Japanese house".

2) The Genetic Algorithm approach: This is similar to the previous approach but rather
than interpolating the parameters, a GA algorithm can be used to produce an offspring C of
the parents A and B rather more accurate in terms of inherited q叫 ities.Different weights
could be given to the genetic combination to reflect qualifications such as "more", "less",
"very",'barely", etc. in transformations such as "make A旦2!!modem".

5.4. Proposed System Architecture

System Architecture WTK: WorldTooIKit

NXP: Nexpert Object

OL: Ontolingua

PR: New Protos

Speecl} input

Speech
Recognition
Module

VR Devices 1/0

t World Rendering
and Sensor
Module

WT

か

Control
Expert System

NXP

Analogy
Engine

PR

Gesture
Recognition
Module

Gesture input

Figure 7. Proposed System Architecture

-16 -

Towards an actual implementation of a prototype for the intuitive to use virtual

environment, this new system architecture was proposed as the result of this research.

6. Concluding Remarks

* We have constructed a simple ontology of 3-D shapes and subjectively came to the

conclusion that adding common sense knowledge to virtual objects is possible due to the

2-Level Ontology approach.

* We evaluated whether Case-Based Reasoning can be used to acquire such knowledge.

Demonstrated with simple cases of houses that this can be done. Though further integration

has to be made between the case-based reasoning system and Ontolingua.

7. Acknowledgments

We would like to thanks ATR Communication Systems Research Laboratories and all

its personnel, for its support during this research. We specially thank Fumio Kishino and
Professor Naohiro Ishii for allowing the realization of this project and Mr. Roberto Lopez for
his contributions and critics.

References

[1] Tijerino, Y.A., Abe, S., Miyasato, T. and Kishino F. (1994) What You Say Is What You See, --Interactive
Generation, Manipulation and Modification of 3-D Shapes Based on Verbal Descriptions--, Artificial Intelligence

Review Journal Vol. 8, No. 2, 123-142

[2] Gruber, T. (1992). A translation approach to portable ontology specifications, Standford University Knowledge

Systems Laboratory, Technical Report KSL 92-71

[3] Bareiss, R. (1989). Exemplar-based knowledge acquisition: a unified approach to concept representation,

classification, and learning. Academic Press, Inc.

[4] Takemura, H. and Kishino, F 1992). Cooperative work evirornnent using virtual workspace, in Proc. of
CSCW'92, pp. 226-232.

[5] Kishino, F. (1990). Communication with realistic sensations. 3-D image, 4, 2. (In Japanese)

[6] Tverskey, B. and Hemenway, K. (1984). Objects, parts and categories. Journal of Experimental Psycology:

General 113, pp. 169-193

[7] Tijerino, Y. A., Yoshida, M., Abe, S., and Kishino F. (1995) A shape knowledge representation scheme

and its application on a multi-modal interface for a virtual space teleconferencing system. In Proc. 4th IEEE

International Workshop on Robot and Human Communication, Tokyo, Japan, pp. 259-264.

[8] Mizoguichi, R., Tijerino, Y. A. and Ikeda, M. (1992). Two-level mediating representation for a task

analysis interview system, In Proc. of AAAI-92 Workshop for Knowledge Representation Aspects of Knowledge
Acquisition. San Jose, Ca., pp. 107-114

[9] Pentland, A. P. (1986). Perceptual organization and the representation of form, Artifical Intelligence, 28, pp.

293-331.

[10] Hirokoshi, T and Kasahara, H. (1990). 3-D Shape indexing language, in Proc. of the 1990 Internatio, 四l

Conference on Computers and Communications, pp. 493-499.

[11) Terzopoulos, D. (1991). Dynamic 3D models with local and global defonnations: defonnable superquadrics.

IEEE Trans. Pattern Anal. Machine Intelligence, 13 (7), pp. 703-714.

-17 -

[12] Quinlan R. (1986). Induction of decision trees, Machine Learning, Vol. 1, No. 1, pp. 81-106.

(13]Dejong, G. F. (1986). Explanation-based learning. In R. S. Michalsky, J. C. Carbonell, T. M. Mitchell

(eds.), Machine Learning: An artificial intelligence approach, Vol. II. Los Altos, CA: Morgan Kaufmann.

[14] Porter, B. W., Bareiss, R. and Holte, R. C. (1990) Concept learning and heuristic classification in

weak-teory domains. Artificial Intelligence Journal, vol. 45 (nos. 1-2), pp. 229-264.

(15] Lang, E. (1989). The Semantics of dimensional designation of spatial objects. In M. Berwisch, E. Lang

(eds.), pp. 263-417.

[16] Simmons G. (1993). Towards an integrated theory of geometric knowledge in object concepts: where

language and vision meet. In N. Guarino and R. Poli, Ladseb-CNR Internal Report 01/93: Internal Workshop on
Formal Ontology in Conceptual Analysis and kKowledge Representation.

[17] Biederman, I. (1988). Aspects and Extensions of a Theory of Human Image Understanding. In Z. W.
Pylyshyn (ed) Computational processes in human vision: An interdisciplinary perspective. Norwood, NJ:

Ablex. pp. 370-428.

(18] Lenant, D. B. and R. V. Guba (1990). Cyc: Towards programs with common sense. Comm. ACM, 33 (8),

pp. 30-49.

-18 -

Appendix A

Ontologies in Ontolingua

This appendix summarizes the ontologies 3D-PARAMETRIC-MODELS and 3D-SHAPES,
built with the help of an ontology editing tool called Ontolingua. The Knowledge Sharing
Laboratory (KSL) at Stanford University, offers this tool as an interactive online service on
the World Wide Web for cooperative creation and edition of "portable" ontologies, also being
able to serve as an ontology library. Among the things it offers we can mention the automatic
translations of ontologies into several knowledge representation languages and systems, and
the consistency checking between its primitives for creating and editing such ontologies,

--classes, relations, functions, and object constants--proved to be very

useful!. It can be found in the WWW at http:/ /www-ksl-svc.stanford.edu:591 5/.

Ontology 3 D-PAR AME TR IC-MODELS

(In-Package "ONTOLINGUA-USER")

、,、 Writtenby user Jdelgado from session "test" owned by group JUST-ME

iii Date: Aug 31, 1995 19:15

(Define-Ontology

3d-Parametric-Models

(Frame-Ontology)

"An ontology of 3d solid models for Computer Graphics"

: Io-Package

"ONTOLINGUA-USER"

: Intern-In

((Kif-Meta Logconst)

(Kif-Numbers Positive Real-Number Min<> Number Max*>=+/ -Abs=<)

(Kif-Relations Function Binary-Relation) (Kif-Sets True)))

(In-Ontology (Quote 3d-Parametric-Models))

iii ------------------Classes--------------

iii Sq-Parametric-Model

(Define-Frame Sq-Parametric-Model

: Own-Slots

((Arity 1)

（ Documentation

"This is a 3d solid math model based on a parameter space")

(Instance-Of Class) (Subclass-Of Thing))

: Template-Slots

((Al 1 (Slot-Value-Type Real-Number))

(A2 1 (Slot-Value-Type Real-Number))

(A3 1 (Slot-Value-Type Real-Number))

(A4 0 (Slot-Value-Type Real-Number))

-19 -

(El 1 (Slot-Value-Type Positive))

(E2 1 (Slot-Value-Type Positive))

(Kl O (Slot-Value-Type Real-Number))

(K2 0 (Slot-Value-Type Real-Number)))

: Issues

((: Source

"The definition of the superquadrics model is given by

Hirikoshi, as follows:

x = f(z) cos(alpha)"El *(cos(omega)"E2 + A4);

y = g(z) sin(alpha)"El *(cos(omega)"E2 + A4);

z = A3 * sin(omega)"E2;

where, f(z) =Al* (1 - Kl* x / A3); and

g (z) = A2 * (1 - K2 * z / A3) 11)))

iii ------------------Relations--------------

＇ Functions--------------

; ; ; Al

(Define-Function Al

(?Frame)

; ; ; A2

: ->

?Value

"Scale on the X axis"

: Def

(And (Sq-Parametric-Model ?Frame) (Number ?Value)))

(Define-Function A2

(?Frame)

i; i A3

: ->

?Value

"Scale on the X axis"

: Def

(And (Sq-Parametric-Model ?Frame) (Number ?Value))

: Documentation

"Scale on the Y axis")

(Define-Function A3

(?Frame)

; ; ; A4

: ->

?Value

"Scale on the X axis"

: Def

(And (Sq-Parametric-Model ?Frame) (Number ?Value))

: Documentation

"Scale on the Z axis")

-20-

(Define-Frame A4

: Own-Slots

((Arity2)

(Documentation "'expansion'radius factor; >1.0 for

toroidal")
(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Number)))

; ; ; El

(Define-Frame El

(positive)")

: Own-Slots

((Arity2)

(Documentation "east/west deformation exponential

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Number))

: Issues

((:Example "El< 1.0 makes square corners;

El= 1.0 makes smooth circles;

El> 1.0 makes hyperbolics slopes")))

; ; ; E2

(Define-Frame E2

;;; Has-Hole

: Own-Slots

((Arity 2)

（ Documentation

"north/south deformation exponential {positive)")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Number)))

(Define-Frame Has-Hole

II• II)

: Own-Slots

((Arity 2)

(Documentation "Determines if a supercuadric is¥11holed¥

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Has-Hole ?X True) (> (Abs (A4 ?X)) 1.0))))

, , , Has-Round-Latitude

(Define-Frame Has-Round-Latitude

: Own-Slots

((Arity 2)

（ Documentation

"Determines if a supercuadric has¥"round latitude¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((=> (Has-Round-Latitude ?X)

(<=> (Has-Round-Latitude ?X True)

(=< (Abs (- (E2 ?X) 1.0)) 0.3)))))

-21 -

;;; Has-Round-Longitude

(Define-Frame Has-Round-Longュtude
: Own-Slots

((Arity 2)

（ Documentatュon

"Determines if a supercuadric has¥"round longitude¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms
((=> (Has-Round-Longitude ?X)

(<=> (Has-Round-Longitude ?X True)

(=< (Abs (- (El ?X) 1.0)) 0.3)))))

; ; ; Has-Sharp-Top

(Define-Frame Has-Sharp-Top

: Own-Slots

((Arity 2)

（ Docurnentatュon
"Determines if a supercuadric is¥"sharp¥" pointed.")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Has-Sharp-Top ?X True)

(And (Has-Sharpened-Side-1 ?X True)

(Has-Sharpened-Side-2 ?X True)))))

,,, Has-Sharpened-Side-1

(Define-Frame Has-Sharpened-Side-1

: Own-Slots

((Arity 2)

（ Documentation

"Determines if a supercuadric has one side¥11sharp¥11.")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconsヒ））

：認ioms

((<=> (Has-Sharpened-Side-1 ?X True)

(=< (Abs (- (Kl ?X) 1)) 0.1))))

,ヽ, Has-Sharpened-Side-2

(Define-Frame Has-Sharpened-Side-2

: Own-Slots

((Arity 2) (Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<:::> (Has-Sharpened-Side-2 ?X True)

(:::< (Abs (- (K2 ?X) 1)) 0.1)))

: Documentation

"Determines if a supercuadric has one side¥11sharp¥11.")

;;; Has-Similar-Scale-Parameters

-22 -

(Define-Frame Has-Simュlar-Scale-Parameters
: Own-Slots
((Arity 2)

（ Documentation

・"It's true if the supercuadric has¥"similar scale

parameters.")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Has-Similar-Scale-Parameters ?X True)

(And

(=< (Abs (- (Al ?X) (A2 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(=< (Abs (- (Al ?X) (A3 ?X)))

(I (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(=< (Abs (- (A2 ?X) (A3 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))))))

;;; Has-Square-Latitude

(Define-Frame Has-Square-Latitude

: Own-Slots

((Arity2)

（ Documentation

"Determines if a supercuadric has¥"square latitude¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Has-Square-Latitude ?X True) (=< (Abs (E2 ?X)) O. 3))))

,,, Has-Square-Longitude

(Define-Frame Has-S中 are-Longitude

: Own-Slots

((Arity 2)

（ Documentation

"Determines if a supercuadric has¥"square longitude¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

：訟ioms

((=> (Has-Square-Longitude ?X)

(<=> (Has-Square-Longitude ?X True) (=< (Abs (El ?X))

0. 3)))))

;;; Is-Flat

(Define-Frame Is-Flat

: Own-Slots

((Arity2)

（ Documentation

"Determines if a supercuadric is considered¥11flat¥1111)

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconsヒ））

: Axioms

((<=> (Is-Flat ?X True)

(Or

(And (< (A3 ?X) (Min (Al ?X) (A2 ?X)))

(< (A3 ?X) (/ (Min (Al ?X) (A2 ?X)) 3)))

-23 -

；；；エs-Long

(And (< (A2 ?X) (Min (Al ?X) (A3 ?X)))

(< (A2 ?X) {/ (Min (Al ?X) (A3 ?X)) 3)))

(And (< (Al ?X) (Min (A2 ?X) (A3 ?X)))

(< (Al ?X) (/ (Min (A2 ?X) (A3 ?X)) 3)))))))

(Define-Frame Is-Long

II• II)

iii Is-Short

: Own-Slots

((Arity 2)

(Documentation "Determines if a supercuadrics is¥"long¥

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Is-Long ?X True)

(Or

(And

(=< (Abs (- (Al ?X) (A2 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(> (A3 ?X) (Max (Al ?X) (A2 ?X)))

(< (A3 ?X) (* 2 (Min (Al ?X) (A2 ?X)))))

(And

(=< (Abs (- (Al ?X) (A3 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(> (A2 ?X) (Max (Al ?X) (A3 ?X)))

(< (A2 ?X) (* 2 (Min (Al ?X) (A3 ?X)))))

(And

(=< (Abs (- (A2 ?X) (A3 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(> (Al ?X) (Max (A2 ?X) (A3 ?X)))

(< (Al ?X) (* 2 (Min (A2 ?X) (A3 ?X)))))))))

(Define-Frame Is-Short

II• II)

iii Is-Tall

: Own-Slots

((Arity 2)

(Documentation "Determines if a supercuadrics is¥"short¥

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (エs-Short ?X True)

(And

(=< (Abs (- (Al ?X) (A2 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(< (A3 ?X) (/ (Min (Al ?X) (A2 ?X)) 2))))))

(Define-Frame Is-Tall

: Own-Slots

((Arity 2)

(Documentation "Determines if a superquadrics is¥11tall¥1111)

(Domain Sq-Parametric-Model)

（エnstance-Of Binary-Relation Function) (Range Logconst))

: Axioms

-24 -

((<=> (Is-Tall ?X True)

(And

(>= (Abs (- (Al ?X) (A2 ?X)))

(I (+ (Al ?X) (A2 ?X) (A3 ?X)) 3 0))

(>= (A3 ?X) (Max (Al ?X) (A2 ?X)))

(< (A3 ?X) (* 2 (Min (Al ?X) (A2 ?X))))))))

iii Is-Tapered-Top-E-W

(Define-Frame Is-Tapered-Top-E噸

: Ow正 Slots

({Arity2)

(Documentation "Determines if a supercuadric is tapered at

the

top in East West direction.")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconsヒ））

: Axioms

((<=> (Is-Tapered-Top-E-W ?X True)

(And(=< (K2 ?X) 1.0) (> (K2 ?X) 0.0)))))

;; ; Is-Tapered-Top-N-S

(Define-Frame Is-Tapered-Top-N-S

: Own-Slots

((Arity 2)

(Documentation "Determines if a supercuadric is tapered at

the

top in North-South direction.")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Is-Tapered-Top-N-S ?X True)

(And(=< (Kl ?X) 1.0) (> (Kl ?X) 0.0)))))

, , , Is-Very-Long

(Define-Frame Is-Very-Long

: Own-Slots

((Arity 2)

（ Documentation

"Determines if a supercuadrics is¥11very long¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Logconst))

: Axioms

((<=> (Is-Very-Long ?X True)

(Or (Is-Very-Tall ?X True)

(And

, , , エs-Very-Tall

(=< (Abs (- (Al ?X) (A3 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(>= (A2 ?X) (* (Max (Al ?X) (A3 ?X)) 2)))

(And

（＝く (Abs (- (A2 ?X) (A3 ?X)))

(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(>= (Al ?X) (* (Max (A2 ?X) (A3 ?X)) 2)))))))

-25 -

(Define-Frame Is-Very-Tall

: Own-Slots

((Arity2)

; ; ; Kl

（ Documentation

"Determines if a supercuadrics is¥"very tall¥".")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Func_tion) (Range Logconst))

: Axioms

((<=> (Is-Very-Tall ?X True)

(And
(=< (Abs (- (Al ?X) (A2 ?X)))
(/ (+ (Al ?X) (A2 ?X) (A3 ?X)) 30))

(>= (A3 ?X) (* 2 (Max (Al ?X) (A2 ?X))))))))

(Define-Frame Kl

; ; ; K2

: Own-Slots

((Arity 2) (Documentation "tapering factor on North/South")

(Domain Sq-Parametric-Model)

(Instance-Of Binary-Relation Function) (Range Number)))

(Define-Function K2

(?Frame)

: ->

?Value

"Scale on the X axis"

: Def

(And (Sq-Parametric-Model ?Frame) (Number ?Value))

: Documentation

"tapering factor on East/West")

------------------Instance--------------

iii -----------------—訟iom --------------

iii ------------------Other--------------

Date: Thu, 31 Aug 1995 19:16:36 -0700

To: jdelgado@atr-sw.atr.co.jp

From: KSL Network Services <Ontology-librarian@HPP.Stanford.EDU>

Subject: Ontology 3D-SHAPES

(In-Package "ONTOLINGUA-USER")

,、, Written by user Jdelgado from session "test" owned by group JUST-ME

; ; ； Date: Aug 31, 1995 19:16

{Define-Ontology

3d-Shapes

{3d-Parametric-Models Component-Assemblies)

-26-

"This ontology is for defining 3-D Shapes. It gives

semantics to graphical objects than can be part of

a complex system."

: Io-Package

"ONTOLINGUA-USER"

: Intern-In
((Frame-Ontology Slot-Value-Type Thing Alias Subclass-Of Class Instance-Of

Documentation Arity)
(Kif-Numbers Number Positive) (Kif-Sets True)))

(In-Ontology (Quote 3d-Shapes))

、,、 ------------------Classes--------------

111 3d-Geometr1c-Pr1m1tュve

(Define-Class 3d-Geometric-Primitive

(?X)

, , , Cone

"Primitive 3-D sh_apes."

: Def
(And (Thing ?X)))

(Define-Frame Cone

True)

,、, Cube

: Own-Slots

((Arity 1)

(Documentation "The class of all shapes¥11like¥11 cones.")

(Instance-Of Class)

(Subclass-Of 3d-Geometric-Primitive Sq-Parametric-Model))

: Template-Slots

((Has-Round-Latitude True) (Has-Square-Longitude True)

(Is-Tall True))

: Axioms

((<=> (Cone ?X)

(And (Sq-Parametric-Model ?X) (Is-Tall ?X True)

(Has-Square-Longitude ?X True) (Has-Round-Latitude ?X

(Has-Sharp-Top ?X True) (Not (Has-Hole ?X True))))))

(Define-Frame Cube

: Own-Slots

((Alias Sq-Parametric-Model) (Arity 1)

(Documentation "The class of all shapes¥11like¥11 cubes.")

(Instance-,)£Class)

(Subclass-Of 3d-Geornetric-Prirnitive Sq-Parametric-Model))

: Template-Slots

((Has-Hole) (Has-Similar-Scale-Parameters True)

(Has-Square-Latitude True) (Has-Square-Longitude True))

: Axioms

((=> (Cube ?X) (Sq-Parametric-Model ?X))

(=> (Cube ?X) (Not (Is-Tapered-Top-E-W ?X True)))

(=> (Cube ?X) (Not (Is-Tapered-Top-N-S ?X True)))

-27 -

True)

; ; ; Cylinder

(=> (Cube ?X) (Not (Has-Hole ?X True)))

(<=> (Cube ?X)

(And (Sq-Parametric-Model ?X)

(Has-Similar-Scale-Parameters ?X True)

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

(Define-Frame Cylinder

cylinders.")

True)

: Own-Slots

((Arity 1)

Documentatュon "The class of all shapes¥11like¥11 （

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<=> (Cylinder ?X)

(And (Sq-Parametric-Model ?X) (Is-Tall ?X True)

(Has-Square-Longitude ?X True) (Has-Round-Latitude ?X

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

Cylindrical-Rod

(Define-Frame Cylindrical-Rod

: Own-Slots

((Arity 1)

True)

（ Documentatュon

"The class of all shapes¥11like¥11 cylindrical rods.")

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<==> (Cylindrical-Rod ?X)

(And (Sq-Parametric-Model ?X) (Is-Very-Tall ?X True)

(Has-Square-Longitude ?X True) (Has-Round-Latitude ?X

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))})))

; ; ; Cylindrical-Tube

(Define-Frame Cylindrical-Tube

: Own-Slots

((Arity 1)

True)

（ Documentation

"The class of all shapes¥11like¥11 cylindrical tubes.")

(Instance-Of Class) (Subclass-Of 3d-Geornetric-Prirnitive))

: A.xiorns

((<=> (Cylindrical-Tube ?X)

(And (Sq-Parametric-Model ?X)

(Or (Is-Very-Tall ?X True) (Is-Tall ?X True))

(Has-Square-Longitude ?X True) (Has-Round-Latitude ?X

-28 -

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True)) (Has-Hole ?X True)))))

＇ , , , Disk

(Define-Frame Disk

: Own-Slots

((Arity 1)

(Documentation "The class of all shapes¥11like¥11 disks.")

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<=> (Disk ?X)

(And (Sq-Parametric-Model ?X) (Is-Short ?X True)

(Has-Square-Latitude ?X True) (Has-Round-Longitude ?X

True)

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True)) (Has-Hole ?X True)))))

; ; ; Hoop

(Define-Frame Hoop

: Own-Slots

((Arityl)

(Documentation "The class of all shapes¥"like¥" hoops.")

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<=> (Hoop ?X)

(And (Sq-Parametric-Model ?X) (Is-Short ?X True)

(Has-Square-Longitude ?X True) (Has-Round-Latitude ?X

True)

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True)) (Has-Hole ?X True))}))

;;; Ingot

(Define-Frame Ingot

True)

．
, , , Pyramid

: Own-Slots

((Arity 1)

(Documentation "The class of all shapes¥11like¥11 ingots.")

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<==> (Ingot ?X)

(And (Sq-Parametric-Model ?X) (Is-Long ?X True)

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

(Not (Is-Tapered-Top-E項 ?XTrue))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

(Define-Frame Pyramid

: Own-Slots

((Arity 1)

(Documentation

"The class of all shapes¥" like¥" rectangular base

pyramids.")

-29 -

True)

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<=> (Pyramid ?X)

(And (Sq-Parametric-Model ?X) (Is-Tall ?X True)

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

(Has-Sharp-Top ?X True) (Not (Has-Hole ?X True))))))

Rectangular-Rod

(Define-Frame Rectangular-Rod

: Ow正 Slots
((Arity 1)

（ Documentation

"The class of all shapes¥"like¥" rectangular rods.")

(Instance-Of Class) (Subclass-Of 3d-Geornetric-Prirnitive))

: Axioms

((<=> (Rectangular-Rod ?X)

(And (Sq-Parametric-Model ?X) (Is-Very-Long ?X True)

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

True)
(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

; ; ; Rectangular-Sheet

(Define-Frame Rectangular-Sheet

: Own-Slots

((Arity 1)

True)

（ Documentatュon

"The class of all shapes¥11like¥11 rectangular sheets.")

(Instance-Of Class) (Subclass-Of 3d-Geornetric-Prirnitive))

：認iorns

((<=> (Rectangular-Sheet ?X)

(And (Sq-Parametric-Model ?X) (Is-Flat ?X True)

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

,ヽ, Rectangular-Tube

(Define-Frame Rectangular-Tube

: Own-Slots

((Arity 1)

（ Documentation

"The class of all shapes¥11like¥11 rectangular tubes.")

(Instance-Of Class) (Subclass-Of 3d-Geometric-Primitive))

: Axioms

((<=> (Rectangular-Tube ?X)

(And (Sq-Parametric-Model ?X)

(Or (エs-Very-Tall ?X True) (Is-Tall ?X True))

(Has-Square-Longitude ?X True) (Has-Square-Latitude ?X

True)

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True)) (Has-Hole ?X True)))))

-30-

; ; ; Sphere

(Define-Frame Sphere

: Own-Slots

((Alias Sq-Parametric-Model) (Ari ty 1)

（ Documentatュon
"This is the class of primitive 3-D shapes that are¥"like

¥"
spheres.")

Test))

（エnstance-OfClass)

(Subclass-Of 3d-Geometric-Primitive Sq-Parametric-Model

:Template-Slots

((Radio 1 (Slot-Value-Type Positive))

(Radio 1 (Slot-Value-Type Positive)))

: Axioms

((<=> (Sphere ?X)

(And (Sq-Parametric-Model ?X)

(Has-Similar-Scale-Parameters ?X True)

(Has.-Round-Latitude ?X True) (Has-Round-Longitude ?X True)

(Not (Is-Tapered-Top-E-W ?X True))

(Not (Is-Tapered-Top-N-S ?X True))

(Not (Has-Hole ?X True))))))

.
I I I ------------------Relatュons --------------

＇ Functions--------------

． ,、、 Radュo

(Define-Function Radio

(?Frame)

: ->

?Value

"The Radio of a Sphere."

: Def

(And {Sphere ?Frame) (Number ?Value}))

;;; ------------------Instance--------------

I I 、一―----------------Axiom--------------

iii ------------------Other--------------

-31 -

Appendix B

Modification of Protas program

The original code of the CL-Protas program (The common lisp version of Protas)
was found at the software repository of the Artificial Intelligence laboratory, Department of
Computer Sciences, University of Texas at Austin. All the copyrights are given to Daniel L.
Dvorak, who had rewritten the original Protos system (implemented in Prolog) into Common
Lisp, and to the authors of the Protos algorithm and following research, Ray Bareiss and
Bruce W. Porter.

This program has been modified with the permission of the authors, on the behalf
that it was used strictly for research purposes.

CL-Protos is a machine learning program which acquires knowledge for performing
expert heuristic classification. It has been modified in it's heuristics to allow a more
flexible learning proccess, sometimes in detriment of its computational cost. All the
modifications have been stated in the program's text as comments and the original lines have
been quoted, facilitating the direct comparision between the original version and the modified

one.

----------ー---
-*-Mode: Lisp; Syntax: Common-lisp; Base: 10; Package: PROTOS -*-

Copyright (c) 1988, Daniel L. Dvorak. ,．,．,.，

9.‘.‘.‘

,．,.‘.，
Last modified by Joaquin Delgado, Aug. 29 1995

(in-package 'protos)

(defvar *cur-exemplar*)

{defvar *feat*)

(defvar *cat*)

(defvar *exp*)

;;global of current exemplar being used.

;;global of current feature

; ; global of current category

;;global of current exemplar

f If ・・・＝＝
f If

’‘’ ...
ヽI I

f I I

; ; ; Overview:

discuss

D I S C U S S

This file

MATCH

contains the

W I T H

functions

T E A C H E R

that Protas uses to

.
,
．
，
.
,
．
,
．
,
．
,
．
,
．
,
．
，
．
,
.
,
.
,
．
,
．
,
.
,

.
,
.
，
.
,
．
‘
.
,
．
,
．
,
．
,
．
,
．
,
．
,
．
,
．
,
.
,
．
,

.
,
．
‘
.
,
．
,
．
,
．
,
．
,
．
‘
.
,
．
,
．
,
．
‘
.
,
．
,
．
,

a proposed exemplar-to-new case match.

where it all starts is "discuss-match".
The top-level function

Functions: add-new-exemplar

get-approximate-importances

discuss-differences

discuss-high-importances

discuss-match

discuss-success

discuss-failure

discuss-exemplars

discuss-relevances

discuss-removals

discuss-unmatched

discuss-unmatched-importances

(*)

-32 -

enter-explanation

read-category

''
, , (*) This part was modi fed、specificallythe functions:

; ; 1) set-remュndings2
ii 2) select-rirninding-target

'''
- -鴫細

(defparameter *exemplar-menu* (make-menu

: label "-%What would you like to do?"

'((#¥T . : J. tems ("Try the most prototypical remaining exemplar."

return next-exemplar))

(#¥s . ("Select a specific exemplar of this category. " return

show-exemplars))

(#¥C . ("Create new exemplar from this case." return

add-exemplar))

(#¥A . ("Abandon this case."

abandon)))))

return

- --- - ---- ------ --- -- ---- - -I I I

; ; ; Function: (discuss-match match)

I I I

iii Given: match, the details of an exemplar-to-newcase match

Returns:

I I I

•9 •9 •I

., ., .‘

2 values: action and match、where:

action is either:

'done --match contains an approved match structure;

'newex --match contains a newly created exemplar;

'retry --retry finding a match for this case;

'redo --redo the match to this exemplar;

'next --try the next hypothesis.

Called by: compare

., .‘

.,

•9 •9 •9

•9 •9

.,

•9

., .,

Notes; Discuss-match presents the match to the teacher and asks

if the classification is correct. Regardless of the answer,

the teacher is presented with other questions which may

modify the current match. It is in the subordinate functions

of discuss-match where Protos learns from the teacher.

.. ・--If f

(defun discuss-match (match)

(print-match match)

(examine-explanations match)

(let ((promptl (format nil "-%Is -A the correct classification for this

case? "

(getname (exemplar-category (match-exemplar match))))))

(if (prompt promptl nil'y-or-n nil nil)

(discuss-success match)

(discuss-failure match))))

.. ・--I I I

; ; ; Function: (discuss-success match)

.,
•9

.,
’‘’ •I

.‘

.,
.‘
 .,

•I

Given: match, the results of an exemplar-to-new case match where the

the teacher has approved the classification (but hasn't

yet approved the exemplar that the case was matched
to) .

•
,

•9

.‘

-33 -

iii Returns:

., .,
•9

、、,

I I I

-- the same match if the teacher agrees that the chosen

exemplar is appropriate;

a different match if the teacher chooses a different

exemplar; or

--nil if no more action is needed on this match (such as when

the teacher decides to make a new exemplar from the case or

the teacher decides to abandon the case).

’‘’
Caller: discuss-match、

... --I I 、
(defun discuss-success (match)

(let* ((newcase (match-newcase match))

action)

、, Set the classification of the new case.

{ setf { case-category newcase) { exemplar-category {match-exemplar
match)))

(multiple-value-setq (action match) (discuss-exemplars match))

;; Return if teacher decided to make exemplar of the new case.

(if (eql'newex action)

(return-from discuss-success (values'newex match)))

;; Return if the case is being abandoned by the user.

(if (eql'done action)

(return-from discuss-success (values'done match)))

; ; Ask about unmatched features.

(discuss-unmatched match}

; ; Ask for unfocused instruction.
(discuss-unfocused)

;; Update prototypicality of the exemplar.

(if (mergeable match)

(progn

(if (prompt (format nil

"~%~%This case (~A) is・similar enough to ~A that

Protos~

~%is prepared to forget the case (and just
retaュn ~A).~

~%~%Will it ever be important to distinguish
between these two? "

(case-name newcase)

(getnarne (match-exemplar match))

(getnarne (match-exemplar match)}}

nil'y-or-n nil nil)

(progn

(update-prototypicality (match-exemplar match) 0.75)

(return-from discuss-success (values'newex (add-new-exemplar
newcase))))

(progn

(update-prototypicality (match-exemplar match) 1.0)

(merge-exemplar match)

(return-from discuss-success (values'done match)))))

, , match was not mergeable

(progn

(format t "~%This case is different enough from ~A-

-34 -

-%that it will be made into an exemplar."

(getname (match-exemplar match)))

(if (>= (match-similarity match) *strong-match*)

(update-prototypicality (match-exemplar match) 0.50)

(update-prototypicality (match-exemplar match) 0.25))

(return-from discuss-success (values'newex (add-new-exemplar

newcase)))))))

,、、----------
; ; ; Function: (update-prototypicality exemplar amount)

•9 •I

.‘

; ; ; Purpose:

value

This function increments the given exemplar's typicality

and then (re-) sorts the affected category's list of

exemplars

in decreasing order of typicality.

ff f-----------------------------

(defun update-prototypicality (exemplar amount)

; ； Add amount to the exemplar's typicality value.

(incf (exemplar-typicality exemplar) amount)

; ； Re-sort the category's exemplars by typicality value.

(let ((category (exemplar-category exemplar)))

(setf (category-exemplars category)

(sort (category-exemplars category) #'>= :key #'exemplar-

typicality))))

-35 -

I I I

I 、,

--
Function: (discuss-exemplars match)

Given: match, a match to a Protas-selected exemplar of the correct

category;

Returns:

Caller:

3 values, action and match, where:

--action may be either'mrgex,'done or'newex, and

--match is either a teacher-approved exemplar of the same

category、oris a new exemplar (as when the teacher

decides to make a new exemplar of the case).

discuss-success

--------------------------響一＿＿＿ー・呵----ーー・------------------囀 ------

(defun discuss-exemplars (match)

(declare (special closed-exemplars))

(let* ((exemplar (match-exemplar match))

(newcase (match-newcase match))

(viewed-exemplars (list exemplar))

(category (exemplar-category exemplar))

(exemplars (category-exemplars category))

(exemplist (copy-list exemplars)))

(loop

(tagbody

(if (prompt "-%Is this a suitable exemplar for matching the new case?

nil'y-or-n nil nil)

(return-from discuss-exemplars (values'mrgex match)))

;; The teacher has rejected this match, saying that this is not a

; ; suitable exemplar. So, remember this fact so that the function

; ; "test-hypotheses2" will skip over this exemplar if it appears in

; ; the list of hypotheses. This could happen if we reached this

; ; unsuitable exemplar through a difference link.

(push (match-exemplar match) closed-exemplars)

; ; If this incorrect match is strong enough (i.e., is a "near miss"),

; ； then remember it for possibly installing a difference link later

;; when the case finally is correctly classified.

(if {>= (match-nth-root-of-similarity match) *near-miss-threshold*)

{push match *near-misses*))

;; Teacher has said no, this isn't a suitable exemplar for the new

case.

; ; So, Protos now offers the teacher one of 4 choices:

; ; 1. Take the most prototypical exemplar remaining and match to

it.

; ; 2. Display the names of this category's exemplars and allow

teacher

; ; to select one of them.

; ; 3. Install this case as a new exemplar of its category.

; ; 4. Abandon this case.

(ecase (menu-select *exemplar-menu*)

(next-exemplar

;; Find the next most prototypical exemplar that hasn't already

been viewed.
(do ()

-36 -

((endp exemplist))

(setq exemplar (pop exemplist))

(if (not (member exemplar viewed-exemplars))

(go SHOW-EXEMPLAR)))

ii No more exemplars left on exemplist.

(if (prompt "-%You have rejected all exemplars in this category.-

-%The only choice now is to either make a new

exemplar-
-%of this case or abandon the case.-

-%Shall I make a new exemplar of this case?

nil'y-or-n nil nil)

(return-from discuss-exemplars (values'newex (add-new-exemplar

newcase)))

name))

(progn

(format t "-%Then this case is being abandoned.")

(return-from discuss-exemplars (values'done nil)))))

(show-exemplars

;; Print the names of all the exemplars of this category.

(terpri)

(print-node-names exemplars t 11, 11)

(loop

(let ((input (prompt "-もPleaseenter one of the above names:

nil'termname category'category)))

(setq exemplar (find input exemplars :test #'equal :key #'node-

(if exemplar (go SHOW-EXEMPLAR)))))

(add-exemplar

ii Make a new exemplar of the new case.

(setf (case-category newcase) category)

(return-from discuss-exemplars (values'newex (add-new-exemplar

newcase))))

(abandon

(return-from discuss-exemplars (values'done nil))))

SHOW-EXEMPLAR

, , This is the bottom of the loop that begins by asking if the

exemplar

ii in the displayed match is a suitable match for newcase. We arrive

ii here only if the teacher has selected a different exemplar to

examュne.
(push exemplar viewed-exemplars)

(setq match (compare-new-case exemplar newcase))

(print-match match)

（ examュne-explanationsmatch)))))

-37 -

--I I I

; ; ； Function: (add-new-exemplar newcase)

I I I

...
‘’’
，、、
...
I I I

Given: newcase, a case from which an exemplar

installed;

is to be built and

I I I Returns: This function is executed for its side-effect of creating

and
．．．
‘’‘ ... ,、、
．．．
I I I

．．．
I I I

...
ヽI I

...
I I I

．．．
’‘’

installing a new exemplar in the category network.

Callers: discuss-success, discuss-failure, discuss-exemplars.

Design: --If newcase's category is unknown, prompt for it.

--Ask if any features of newcase should NOT become part of

the exemplar, and then remove them.
...
I I I Create the exemplar from newcase and install it as a member
...
‘’’

of the given category in the category network.
...
I I、 For each feature that is newly occurring within the
category

iii ask about its relevance to the category. For each explana-

iii tion given by the teacher、gleanremindings from F-->C

,,, explanations and estimate importances from C-->F explana-

ii; tions.
, , , --Initialize prototypicality of new exemplar to 1.0.

links. ,,, --Install pending difference

---I I I

(defun add-new-exemplar (newcase)

(let ((category

exemplar)

(case-category newcase))

;; If newcase's category is
(if (null category)

unknown, then prompt for it.

(progn

(setq category (read-category))

(setf (case-category newcase) category)))

;; Ask if any features of newcase should NOT become

;; exemplar. If so, remove them from the newcase.

(discuss-removals newcase)

features of the

;; Create the exemplar from newcase and install it as a member

;; of the given category in the category network.

(setq exemplar (make-term :name (case-name newcase)

: comment (case-comment newcase)

: features (case-features newcase)

: category (case-category newcase)

: typicality 1. 0))

(push exemplar *history*)

(setq *cur-exemplar* exemplar)

ii Create the symbol that has the print-name of this exemplar.

i i (note that this is a'set', not a'setf') .

(set (case-name newcase) exemplar)

;; Update number of exemplar-containing categories.

(if (null (category-exemplars category))

(incf *nurnber-of-ec-categories*))

-38 -

;; Add this new exemplar to the category's list of exemplars (which are

ii sorted by typicality). Since this is a brand new exemplar、itwill

; ; have the lowest possible typicality and can therefore simply be

; ; added to the end of the list. Also, install the "has-exemplar" and

ii "is-exemplar-of" relations between the category and exemplar.

(setf (category-exemplars category)

(nconc (category-exemplars category) (list exemplar)))

(install-relation (list category) (list exemplar) nil *verb-hasExemplar*

nil)

ii For each feature of this exemplar, save a pointer to this exemplar

ii in the feature's s七ructure. This is used in combine-remindings

ii (specifically、strengthen-features) so that if featural exemplars

ii are present in a match、theywill be matched first.

(dolist (feature (exemplar-features exemplar))

{push exemplar (feature-of-exemplars feature)))

ii Discuss any fault variables that should be added to the category.

(discuss-faultvars exemplar)

;; Discuss relevance of features new to this exemplar's category.

(discuss-relevances exemplar)

;; Discuss category's unmatchable high-importance features.

(discuss-high-importances category exemplar)

;; Install pending difference links.

(discuss-near-misses exemplar)

; ; End of function.

(if *trace-new-exemplar*

(progn

(format t "-%The following new exemplar has been created:-%")

(print-exemplar exemplar t 1)))

exemplar))

-39 -

,,,--

I I 、

the

Function: (read-category)

Returns: A category node.

Design: This function prompts the user for a category name.

input is recognized as an existing category, then a pointer

to that category node is returned.

;.; ; Callers: add-new-exemplar
,、、--
(defun read-category ()

(loop

If

(let* ((input

'ternmame

(prompt "-&What is this case's category? " nil

nil nil))

(object (check-term-name input'ask)))

,、 If the name entered by the user exists or has been created ...

(if object

; ; then make sure it is a category (as opposed to, say、an

exemplar)

＂）））））

(if (my-exemplar-p object)

(progn

(format *query-io*

"-%Error: -A is an exemplar, not a category.-

遠 Pleaseenter a different category name: "
input))

(return-from read-category object))

,, user apparently said to forget this term.

(format *query-io* "-%Sorry, but you HAVE to enter a category name:

-40-

--
'''
; ; ; Function: (discuss-removals newcase)

、
.
,
．
,
．
,

,
．
,
．
,
．
,

,
．
‘
.
，
．
,

Given: newcase, a case to be made into an exemplar

Purpose: The teacher is asked if any of the features of the new
case

’‘’ ．．． , , ,
... ，、、

‘‘’
; ; ； Called by: add-new-exemplar
．．． -------------------------疇------------・―--------------------, ,、
(defun discuss-removals (newcase)

are irrelevant to its future role as an exemplar of the

category. If so, the teacher is allowed to remove those

features.

(let ((features (case-features newcase))

(category (case-category newcase))

ュnput)

(format *query-io* "-%Case -A is composed of the following features:-%"

(case-name newcase))

(print-node-names features *query-io* ", ")

(if (not (prompt (format nil "-もAreany of these features IRRELEVANT-

～告toits role as an exemplar of -A? "
(getname category))

nil'y-or-n nil nil))

(return-from discuss-removals (values)))

(setq input (prompt "-%Then please enter, one per line:" "-&--->"

'termname newcase'case))

;; If no features to be deleted, then just return.

(if (null input)

(return-from discuss-removals (values)))

;; Verify that each feature to be deleted was spelled correctly.

(dolist (fname input)

(let ((feature (check-term-name fname'ask)))

(if feature

(if (member feature features)

(setq features (delete feature features))

(format *query-io* "-%Skipping -A -- it wasn't a feature of the

case anyway. "
＼

fnarne)))))

ii Done deleting features -- store results back in newcase.

(setf (case-features newcase) features)

(format *query-io* "-%Thank you. Case -A now contains only these

features:-%"

(case-name newcase))

{print-node-names features *query-io* ", ")

（ terprュ）））

-41 -

I I I

; ; ; Function: (discuss-faultvars exemplar)
．．．
I I I

...
I I I

with

Purpose: This functions adds new fault variables

, ,、
、、、
, ,、

I I I

...
ff I

...
f If

．．． , ,、
．．． ,、、
;;;---
(defun discuss-faultvars (exemplar)

(let* ((category (exemplar-category exemplar))

(known-faultvars (category-faultvars category))

(maybe-faultvars nil)

pred)

Design:

the teachers approval.

1. specified as

to the category,

features of this

2.

3.

Collect all the variables

exemplar.
Remove the variables that are already known to be fault

variables of this exemplar's category.

For each remaining variable、askthe teacher if the

variable is a fault variable.

ii Check every feature of exemplar for possible fault variables.

(dolist (feature (exemplar-features exemplar))

(if (and (setq pred (term-predicate feature))

(predicate-relations pred)

(not (member pred known-faultvars)))

(push pred maybe-faultvars)))

ii Ask user about each candidate fault variable.

(dolist (var maybe-faultvars)

(if (prompt (format nil "-もIs-A a fault variable of -A?

(getname var) (getname category))

'y-or-n nil nil)

(category-faultvars category))))))
nil

(push var

,,,--
; ; ; Function: (discuss-near-misses exemplar)
... , , ,
．．． , , ,

with

Given:

．．．
If f

... , , ,
exemplars
... , , ,
...
’‘’
; ; ; Does

features

an exemplar which the new case

or has been made into, and

near-misses、a global

has

list of

either

strong

been merged

matches to

that were rejected by the teacher.

For each near
．

miss, the teacher is shown the unmatched

,
．
,
.
,

,．
‘
.
,
r

,
.
,
.
,
0

of the new case and the near-miss-exemplar, and is asked to

specify which features are important discriminators.

If any of the discriminating features currently is of

...
I I I

teacher

．
spurious importance to the target exemplar, then ask

low

the

,, , for a reassessment of the importance.

・・--
‘’’

(defun discuss-near-misses (chosen-exemplar)

;; Consider each near-miss in turn

(dolist (match *near-misses*)

-42-

Guard against the unusual situation where a near-miss was recorded

to
what turned out to be the chosen exemplar. This can happen in the

rare
、, case where the teacher changes his/her mind about a match.

(if (not (eq chosen-exemplar (match-exemplar match)))

(let* ((exemplar (match-exemplar match))

(c-urnnatched (match-urnnatched match))

(e-urnnatched nil))

,, Collect non-spurious features of exemplar not matched by current

case.
(dolist (result (match-results match))

(if (and (eql'unmatched (result-type result))

(I= 0 . 0 (result-importance result)))

(push (result-feature result) e-unrnatched)))

(format t "-も～もProtospreviously mistook this case for the exemplar

-A."

(getname exemplar))

(discuss-differences e-unmatched chosen-exemplar exemplar t)

(discuss-differences c-unmatched exemplar chosen-exemplar nil)))))

＇ ., .‘

，
; ; ; Functュon:

•9

., .,
Given:

(discuss-differences features from-exemplar to-exemplar

from-chosen)

a list of features of the to-exemplar that were not matched

by

the from-exemplar, and a'from-chosen'flag that is non-nil

if

.,
•9

.‘
 from-exemplar is the "chosen exemplar" for the new case.

、、,
Does: installs a difference link in the from-exemplar pointing to

the

to-exemplar, annotated with a subset of'features'approved

by

the teacher as important discriminating features. If the

teacher feels that none of'features'are important

discrimina-

tors, then no difference link is installed.

.. ・--I I I

(defun discuss-differences (features from-exemplar to-exemplar from-chosen)

(if (null features)

(return-from discuss-differences nil))

(if from-chosen

; ； Ask teacher about discriminating features of mistaken exemplar.

(format t "-%The features of -A that were not matched by the current

case are:-%"

(getname to-exemplar))

; ； Ask teacher about discriminating features of the chosen exemplar.

(format t "-%The features of this case that were not matched by -A

are:-%"

(getname from-exemplar)))

(let ((diff-features nil))

(dolist (feature features)

-43 -

(format t " -A" (getname feature)))

(format t "-%-%Which of these features (if any) are important

discriminators?")

(dolist (feature features)

(if (y-or-n-p "-&--> -A ?-26T" (getnarne feature))

(push feature diff-features)))

；；エfno features were specified, then just return.

(if (null diff-features)
(progn

(format t "-%Since no features were designated as important

discriminators、~
-%then no difference link will be created/changed from

-A to -A"

(getname from-exemplar) (getname to-exemplar))

(return-from discuss-differences (values))))

,、 Displaythe difference link to be installed.

(let ((newdiff (make-difference :node to-exemplar

: features diff-features))

(olddiffs (exemplar-differences from-exemplar}})

(format t "-%Installing new difference link:-

-%-12@A: " (getname from-exemplar))

{print-difference newdiff t 1)

(terpri t)

,、 Before installing the new difference link, check to see if there

ii is already a difference link between these two exemplars.

i. i If so, ask the user if it should be retained or deleted.

(do list (olddiff olddiffs)

(if (eq to-exemplar (difference-node olddiff))

(progn

(format t "-%A previous difference link exists:-

-%-12@A: " (getname from-exemplar))

(print-difference olddiff t 1)

(if (y-or-n-p "-&-%Do you want this to be deleted? ")

(setf (exemplar-differences from-exemplar) (delete olddiff
olddiffs))))))

(push newdiff (exemplar-differences from-exemplar))

;; All of the discriminating features should probably have at least

; ; moderate importance to the exemplar or category possessing those

; ; features. If not, ask teacher to reassess the importance.

(dolist (feature diff-features)

(multiple-value-bind (imp node) (get-importance feature to-exemplar)

(declare (ignore node))

(if (or (null imp) (< (cdr imp) *reassess-importance-threshold*))

(progn

(format t 11-%-%-A is a discriminating feature, but it is

currently-

～もof -A importance. Please reassess its

importance."

(getname feature) (qualitative-value (cdr imp)

'importance))

(reassess-importance feature to-exemplar))))))))

-44-

;;;--

Function: (qualitative-value strength type)

Returns: a word giving a qualitative interpretation of the strength

of
an importance or reminding.

, , , Note: There is a "clinical scale" of normal, mild, moderate、
severe、profound.

, ,、一---
(defun qualitative-value (strength type)

(if (null strength) (return-from qualitative-value'unknown))

(ecase type
(importance (cond ((null strength)'spurious)

((>= strength *importance-necessary*)'necessary)

((>= strength *importance-high*)'high)

((>= strength *importance-moderate*)'moderate)

((>= strength *importance-low*)'low)

(t'spurious)))

(reminding (cond ((= strength *reminding-absolute*) 'absolute)

((>= strength *reminding-strong*) 'strong)

((>= strength *reminding-moderate*) 'moderate)

（（＞ strength (- *reminding-moderate*)) 'weak)

（（＞ strength (- *reminding-strong*)) 'moderate)

((> strength (- *reminding-absolute*)) 'strong)

(t 'absolute)))))

,, Function to compute the average of a set of numbers.

(defun average (&restvalues)

(/ (apply#'+ values) (length values)))

(defparameter *importance-alist*

'((necessary .、 (average *importance-absolute* *importance-

necessary*))

(high . , (average *importance-necessary* *importance-high*))

(moderate . , (average *importance-high* *importance-

moderate*))

(low . , (average *importance-moderate* *importance-low*))

(spurious . , 0. 0)))

(defparameter *decide-importance-menu* (make-menu、

: label "-%Do you agree?"

: items'(ほ¥Y . ("Yes."

yes))

("no, let me revise the Explanation"

return

return (#¥E

revise-expl})

(#¥I

revise-imp}))))

("no、 let me just revise the Importance" return

(defparameter *importance-menu* (make-menu

: label "-%What do you believe its importance to be?"

: twocol t

: items'((#¥N . ("Necessary"

(#¥L . ("Low"

(#¥H . ("High"

(#¥S . ("Spurious"

(#¥M . ("Moderate"

-45 -

return necessary))

return low))

return high))

return spurious))

return moderate))

(#¥Q . ("Quit (leave it unchanged)" return nochange)))))

1 ,,--

Function:

.,
•9

.‘

, , , Purpose:

which

(reassess-importance feature node)

Given a feature and a node (an exemplar or category) for

., .‘

.,

we want to reassess the feature's importance, this function

shows the user the feature's current importance (if any) in

qualitative form and asks the user for a revised

qualitative
value.

I I,--------------------------------
(defun reassess-ュmportance (feature nodel)

(let (qual-impl

qual-imp2

targeヒ）

;; Get importance of this feature, and node to which it is important.

(multiple-value-bind (importance node2)

(get-importance feature nodel)

ii Set the target node which is to get the revised importance value.

ii If no importance already exists, then make the target be a

category
ii rather than an exemplar.

(setq target (if importance

node2

(if (my-exemplar-p nodel)

(exemplar-category nodel)

nodel)))

; ; Convert importance value to a qualitative form (high, moderate,

etc.).

(setq qual-impl (if importance

(qualitative-value (cdr importance)'importance)

'unknown))

(format t "-も～毛-Acurrently is of -A importance to -A"

(getname feature)

qual-impl

(getname targeヒ））

,, Ask teacher for a revised qualitative value of importance.

(setq qual-irnp2 (menu-select *importance-menu*))

; ; If it's not the same as the old value then modify the importance.

(if (and (not (equal'nochange qual-imp2))

(not (equal qual-impl qual-imp2)))

(let ((new-imp (cdr (assoc qual-irnp2 *importance-alist*))))

; ; If there was a previous importance cons

(if importance

; ; Then modify its strength

(rplacd importance new-imp)

; ; Else create a new importance.

(push (cons feature new-imp) (category-importances target)))

; ; Sort the category's importances.

(setf (category-importances target)

（ (sort category-importances target) #'>= :key #'cdr)))))))

--
’‘’

Function: (get-unknown-features exemplar)

’‘’

-46-

•9.‘., •9.,.

's

•
9
.
,

．
＇
・
ユ

''' ．．．
''' ...
'''
to

Given:

Returns:

Design:

exemplar、

a

a newly-created exemplar

list of features of the new exemplar

For each feature of the new exemplar、

whose

unknown to its category or immediate general categories.

this

importance

function looks

... , , ,
．．．
‘’’ ...
‘’’ ... , ,、
．．． ヽ,,
．．．
‘‘’ ．．． , , ,
．．．
If f

... , , ,
．．．
, , ヽ

... , , ,

'*'*'* ．．

see if the importance of this feature is

--idiosyncratically to the exemplar,

to the exemplar's category, or

--to the next-most-general category(s).

known:

If not found in any of these places, then the feature is

included in the list of unknowns that is returned.

If the feature is found in the next-mos← general category,
then its importance is copied into the exemplar's category.

l*l*l*I ．．．． ー need to ask Ray if this last step is
．

wise.

... , , ,
;;; Called by:

;;;--
(defun get-unknown-features (exemplar)

(let ((category・(exemplar-category exemplar))

(unknowns (copy-list (exemplar-features exemplar))))

ii Delete from unknowns all features having idiosyncratic

(dolist {imp {exemplar-importances exemplar))

{setq unknowns {delete {car imp) unknowns :count 1)))

importance.

ii Delete from unknowns all features having importance to the category.

(dolist (imp (category-importances category))

(setq unknowns (delete (car imp} unknowns :count 1)))

;; Return now if all featural importances are known.

(if (null unknowns) (return-from get-unknown-features nil))

ii Delete from unknowns all features having importance to the

; ; next-most-general category(s).

(dolist (rel (node-relations category))

(if (eq *verb-hasTypicalGen* (relation-verb rel))

(dolist (cat (relation-to-nodes rel))

(dolist (imp (category-importances cat))

(if (member (car imp) unknowns)

(push imp (category-importances category)))

(setq unknowns (delete (car imp) unknowns :count 1))

(if (null unknowns) (return-from get-unknown-features nil))))))

unknowns))

'''
; ; ； Function: (discuss-high-importances category exemplar)
...
'''
'''

'''
、、,
、、,

’’‘

Given: --category, the category of the new exemplar,

exemplar, the newly-created exemplar

Purpose:

and

If this category already has another exemplar、i.e., a

prototype, then check every high-importance feature of the

-47 -

prototype to see if it can be matched to a feature of the

new exemplar. If not, ask the teacher if he/she wants to

lower the importance of that feature.

•9

., .,
I I I

Notes: This procedure was part of the original Prolog Protos but

was not mentioned in Ray Bareiss's dissertation since it

was considered a detail.

’‘’
I I I Caller: add-new-exemplar

(defun discuss-high-importances (category exemplar)

(let ((prototype (first (category-exemplars category)))

(e-features (exemplar-features exemplar))

(imps nil))

;; If not in learning mode, then just return.

(if (null *learning-mode*)

(return-from discuss-high-importances (values)))

;; If the new exemplar IS the prototype, then just return.

(if (eq prototype exemplar)

(return-from discuss-high-importances (values)))

;; For each feature of known importance to the category

(dolist (imp (category-importances category))

(let* ((feature (car imp))

(strength (cdr imp)))

; ; If the feature is of high importance and is NOT a feature of

; ; this new exemplar ...

(if (and (>= strength *importance-high*)

(member feature (exemplar-features prototype))

(not (member feature e-features)))

(push imp imps))))

(if (null imps)

(return-from discuss-high-importances (values)))

(setq imps (nreverse imps))

(format t "~2%The following are features of the prototype of ~A (~A)~

~%that are currently of high importance to the category.~

~%Protos is going to see if each of these features matches~

~%a feature of the new exemplar."

(getname category) (getname prototype))

(let ((column 0))

(dolist (imp imps)

(if (= column 0) (terpri))

(setq column (mod (1+ column) 3))

(format t " -25A" (getname (car imp))))

(terpri))

(dolist (imp imps)

(let ((feature (car imp))

(strength (cdr imp)))

(format t "-も -A ... " (getname feature))

;; Then see if feature is related to an exemplar feature.

(let ((result (kbpm'FtoF feature strength prototype e-features)))

(princ (result-type result))

-48 -

;; If not, then ask teacher to reassess

; ; of this feature to the category.

(if (eql'unmatched (result-type result))

(let ((qual-impl (qualitative-value strength'importance))

qual-imp2)

(format t "-2%-A is a feature of -A importance to category -A-

-%that does not match any feature of this

(lower) the importance

new
exemplar.-

-%The importance of -A may be set

(getname feature)

qual-impl

(getname category)

(getname feature))

;; Ask teacher for a revised qualitative value of

(setq qual-imp2 (menu-select *importance-menu*))

•I

.,
If not

importance.

(if

alist*))))

#'cdr)))))))))))

•9.,.,.,.,.,.,
.
,
．
,
．
‘
.
,
．
,
．
,
．
,

•9.‘.,•9.,.,.,

Given:

Notes:

I I I

...
ff I

... , ,、
can

, , ,
．．． , , ,

(#¥L

(#¥s

it's

exemplar,

the

("Enter

("let protos

("declare

same

an

as the old value then

(and (not (equal'nochange qual-imp2))

(not (equal qual-impl qual-imp2)))

(let ((new-strength (cdr {assoc qual-irnp2

; ; Then modify its strength

(rplacd imp new-strength)

; ; and re-sort the category's importances.

(setf (category-importances category)

(sort (category-importances category)

a newly-created exemplar

explanation."

Look for an explanation."

the feature Spurious."

too high."

importance.

modify the

*importance-

#'>= :key

...
’’ ---—←一＿＿＿＿＿＿＿＿一
;;; Function: (discuss-relevances exemplar)
...
I I 、
...
’’’ ．．．
I I I

ヽI I Purpose: Given a newly-created exemplar, this function attempts to

determine the relevance of each feature whose importance to

the category (or to the exemplar itself) is unknown.

This function contains the top-level control for asking about

the relevance of features to a category. Details are handled

in the subordinate functions search-explanation,

ask-for-explanation, and discuss-explanation.

This function gives the teacher the option of submitting an

explanation before Protos attempts to find one itself. This

save a lot of time in those situations where the teacher KNOWS

that Protos will not be able to find a feature-to-category

explanation (unsuccessful searches are time-consuming). ''、

'''
; ; ; Caller: add-new-exemplar

’‘’
.. ・--
(defparameter *choose-explanation* (make-menu

: label nil

: items'((#¥E

enter))

return

return look))

return

-49 -

.
spurュous))

(#¥U

unexplain)))))

("leave this feature Unexplained. " return

(defun discuss-relevances (exemplar)

(let ((category (exemplar-category exemplar))

(unknowns (get-unknown-features exemplar))

(ask-first nil))

;; If all features accounted for, then there is nothing to do.

(if (null unknowns) (return-from discuss-relevances nil))

(format t "-も～もProtosis currently unaware of the relevance-

～もof-D feature-:P to the category -A."

(length unknowns) (getname category))

, , If several unknowns, see if teacher wants to be asked about each

one.

,、 Ifonly 1 or 2 unknowns, then just go ahead and ask about each one.

(if (< (length unknowns) 3)

(setq ask-first t)

(if (prompt " -毛～もShouldProtos ask you about each feature-

遠 beforeit tries to find an explanation itself? "

nil'y-or-n nil nil)
(setq ask-first t)))

, , Main loop --determine the relevance of each unknown feature.

(dolist (feature unknowns)

ii If teacher is to be prompted about each feature ...
(if ask-first

i i then prompt the teacher ...
(progn

(format t "-2もWhatis the relevance of -A to -A?-

～も一―--"
(getname feature) (getname category))

、, The teacher is given 3 choices:

1 --Protos will search for an explanation.

2 -- Protos will ask for an explanation
., .,

from the

teacher.

,、 3--Teacher declares that the feature is spurious.

(case (menu-select *choose-explanation*)

(look (search-explanation feature category t))

(enter (ask-for-explanation feature category))

(spurious (set-spurious feature category))

（ unexplaュn nil)

(otherwise (format t "Error: discuss-relevances: menu returned

unexpected value."))))

;; else search the category network for an explanation.

(search-explanation feature category t}}}}}

-50 -

·---—·-----------ヽI I

; ; ； Function: (search-explanation feature category first-time)

、、,
; ; ; Purpose: This function tries to find an explanation relating the

gュven
I I I

I I 、
feature to the given category.

; ; ； Desュgn: --Do search for explanatュon.
,ヽ, -- If found, call dュscuss-explanatュon,

;;; else explain that no explanation was found and ask teacher

,ヽ, if he/she wants to give an explanatュon.
, , , -- If yes, call ask-for-explanatュon,
,, , else declare the feature to be spurュous.

---------------------------------------・ ―-----------------ー・~ー・ー-I I I

(defun search-explanation (feature category first-time)

(let ((result (kbpm'FtoT feature *importance-big* category (exemplar-

features *cur-exemplar*))))

(case (result-type result)

(explained (discuss-explanation feature category (result-explanation

result)))

(excluded nil) don't learn a reminding or importance here.

(unmatched (format t "-%Protas -: [still-;-] could not find an

explanation.-

-%What is the relevance of -A to -A?

～も―---
first-time (getname feature) (getname category))

（（ case menu-select *choose-explanation*)

(look (search-explanation feature

(enter (ask-for-explanation feature

（ spurious (set-spurious

（ unexplaュn nil)

category nil))

category))

feature category))

(otherwise (format t "Error: search-explanation: menu
returned unexpected value."))))

-A-%"

(spurious (set-spurious feature category))

(otherwise (format t "-%Error: search-explanation: result-type =

(result-type result))

(set-spurious feature category)))))

(defun set-spurious (feature category)

(push (cons feature O. 0) (category-importances category)))

(defparameter *new-term-menu* (make-menu

: label "Is this a:"

: items'((#¥T . ("New term."

new-term))

(#¥A .

(#¥s

(#¥Q

("Abbreviation for an existing term."

("Synonym for an existing term."

("Quit (return to previous menu)."

-51 -

return

return abbrev))

return synonym))

return quit)))))

(defun enter-new-terms ()

(let (action termname termname2 node)

(loop

(setq termname (prompt "-%-%Enter term name (terminate with blank
line) ---> "

nil

nil'termname nil nil))

(if (null termname) (return (values)))

(setq action (menu-select *new-term-menu*))

(case action

(new-term

(check-term-name termname'ask))

((abbrev synonym)

(setq termname2 (prompt "-% Enter name of existing term--->

'termname nil nil))

(if (null termname2) (return (values)))

(if (not (syrnbolp termname2))

(progn

(format t "-% Error: -A is not a symbol. " termname2)

(return (values))))

(if (not (boundp termname2))

(progn

(format t "-% Error: -A is unknown." termname2)

(return (values))))

(setq node (eval termname2))

(if (not (node-p node))

(progn

(format t "-% Error: -A is a -A, not a node."

termname2 (type-of node))

(return (values))))

(if (eql action'abbrev)

(setf (node-abbrev node) termname)

(push termname (node-synonyms node)))

(set termname node))

(quit

(return-from enter-new-terms (values)))))))

-52-

;;;--

; ; ； Function: (ask-for-explanation feature category)

’‘’
; ; ； Purpose: This function prompts the teacher for an explanation

relating

，、、
．．．
‘’’
, , ,

the given feature to the given category {or, the teacher can

give the missing fragment that will allow Protos to find an

explanation from feature to category.

;;; Design: --Get explanation from teacher.

iii -- Verify that the given explanation provides a path through

iii the category network from the feature to the category.

, , , -- If so, call discuss-explanation,

iii else harass the teacher for a correct explanation.
iii ______ _

(defun ask-for-explanation (feature category)

(let (explanation)

(format t

"-%-%Please explain how -A is related to -A (preferred)-

-%or how -A is related to -A (alternate form).-%"

(getname feature) (getname category)

(getname category) (getname feature))

(setq explanation (enter-explanation})

(if (null explanation) (return-from ask-for-explanation nil))

(setq *feat* feature)

(setq *cat* category)

(setq *exp* explanation)

; ; Try.to verify the explanation by the simple syntactic strategy

;; of noticing if the explanation begins with'feature'and ends

; ; with'category'(or vice versa). If so, then we don't have to

;; do the more time-consuming search through the category network.

(let ((to-nodes (get-leaves explanation t nil))

(start-term (explanation-start-term explanation)))

(cond ii Is this a feature-to-category explanation?

((and (eq feature start-term) (member category to-nodes))

(discuss-explanation feature category explanation))

;; Is this a category-to-feature explanation?

((and (eq category start-term) (member feature to-nodes))

(discuss-explanation feature category explanation))

;; Apparently this is a fragment, so must search the C.N.

(t (search-explanation feature category t))))))

-53 -

--
'''
; ；； Function: (discuss-explanation feature target explanation

','

’‘’ ... , , ,

, , ,

',,

,''
．．．
','
...
,''
, , ,

','
,'ヽ

Given:

Do:

Note:

an explanation which may be either feature-to-target or

target-to-feature (where "target" is a category or exemplar).

Set both a reminding and an importance from the explanation.

The reminding comes from the feature-to-target explanation

and the importance from the target-to-feature explanation.

Simply invert the given explanation to get the other type.

If the target is related to a more general category,

set-reminding will ask the user if the reminding
then

should
really
．．．
f If

．．． , , ,
．．．
ヽf I

go to the more general category. If the user agrees, then

set-reminding returns the new (reminded) category so that

set-importance will install the importance in that new

category.
．．． , ,、
; ; ; Callers: ask-for-explanation, search-explanation
．．．
’‘’

(defun discuss-explanation (feature target explanation)

(let ((from-leaves (get-leaves explanation nil nil))

inverse-explanation)

;; If this is a feature-to-[category or exemplar]

(if (member feature from-leaves)

explanation

; ; then set reminding, invert explanation,

{progn

(multiple-value-setq (target explanation)

and set

(set-reminding feature target explanation))

(if target

(progn

importance

(setq inverse-explanation (invert-explanation explanation))

(set-importance feature target inverse-explanation))))

;; else this must be a [category or exemplar]-to-feature explanation,

; ; so invert the explanation, set reminding, then set importance.

ii The reason why the reminding is always set before the importance

; ; is that'set-reminding'may truncate the explanation, changing

; ; the target.

{progn

(setq inverse-explanation (invert-explanation explanation))

(multiple-value-setq (target explanation)

(set-reminding feature target inverse-explanation))

(if target

(set-importance feature target explanation))))))

-54 -

’‘’
iii Function: (set-reminding feature target explanation)

I、,
...
I I I

’’‘
I I I

I I ヽ

I I I

; ii Purpose:

explanation,

, , , this functュonwill

111 heurュstュcs.
I I I

I I I

I I I

really

Given: feature, the feature causing this reminding;

--target, the category or exemplar that is the object of

the reminding to be installed;

explanation, a feature-to-target explanation.

Given a feature-to-category or feature-to-exemplar

Returns:

install a reminding,

Two values:

The target category reminding

., .
,
f

.，・ユ
points

I I I

the

the

．．．
‘’’ ... , ,、
be
．．．
I I I

．．．
I I I

' ' ; ; ; Heuristュcs
relation、

to.

target

If the

It can be different than the supplied target

is

or

subject to several

exemplar

a category and the

a truncated version of the

explanation

target

contains

explanation)

(let (quality)

; ; If mutual exclusion found,

(if (check-mutex explanation)

(return-from set-reminding (values nil nil)))

;; If explanation truncated down to nothing,

(if (null explanation)

(return-from set-reminding (values nil nil)))

that

teacher agrees

reminding be to a more general category.

--The explanation from feature to actual target.

supplied explanation.

a

don't install reminding.

;; Apply heuristics for truncating the explanation.

(setq explanation (truncate-explanation explanation))

the

mutual

;; If target of explanation is an exemplar,

;; install the reminding and return.

(if (my-exemplar-p target)

(progn

(setq quality (explanation-strength explanation))

(set-reminding2 feature target quality)

(return-from set-reminding (values target explanation))))

just return.

to let

This may

exclusion

;;; then no reminding is installed.

; ; ； -- If the target of the explanation is an exemplar、then

i;; 、 installthe reminding without applying further heuristics.

iii -- If the explanation contains a "has-specialization",

iii "has-part", or a weak link、thentruncate the explanation

; ; ； at that point (thus changing the target of the reminding).

--- - ---------- - ------ -- ------------ --
‘’’
(defun set-reminding (feature

;; Install reminding to target(s) of the possibly-truncated explanation.

(setq quality (explanation-strength explanation))

ii For each target of this explanation ...

(dolist (e-target (get-leaves explanation t nil))

-55 -

(set-reminding2 feature e-target中 ality))

(values target explanation)))

- - - - ----- - - - --- - ---- - -- ---
‘’‘

Function: (set-reminding2 feature target quality)

Modified by Joaquin Delgado, 28 Aug. 1995

Purpose:

'target'

This function installs a reminding from'feature'to

., ., .,
with the given'strength'if there is not already a

reminding

between'feature'and'target'. If there is, then it is

updated

only if this new reminding is stronger.

--
''ヽ

(defun set-reminding2 (feature target quality)

(let ((rem (assoc target (feature-remindings feature))))

;; if there is an existing reminding to this target ...

(if rem

;; then update the reminding strength only if this one is stronger

(if (> quality (cdr rem))

(progn

(rplacd rem quality)

(if *trace-new-remindings*

(print-reminding feature target quality t))))

, , else create a reminding to it or a more general target.

(progn

(if (not (my-exemplar-p target))

(setq target (select-reminding-target feature target quality)))
、,Original---

ii (push (cons target quality) (feature-remindings feature))

(if *trace-new-remindings*

(print-reminding feature target quality nil))
．． - --- ---- -- - ----- ------ -- - -、、

Modified by Joaquin Delgado on Aug 28, 1995

,, IF target is a list

(if (listp target)

(dolist (e-target target)

(push (cons e-target quality) (feature-rernindings feature))

(if *trace-new-rernindings*

(print-reminding feature e-target quality nil))

(setq quality (/ quality 4)))

The strenght of the reminder will be O. 25% less for

more

general categories.

; ; ELSE

(progn

(push (cons target quality) (feature-remindings feature))

(if *trace-new-remindings*

{print-reminding feature target quality nil))))

(trim-remindings feature)))))

．．． --・ ―---------------------、、,
Function:. (select-reminding-target feature target quality)

Modified by Joaquin Delgado on Aug 28, 1995

-56 -

.
,
．
,
．
,
．
，
．
,
．
,
e

•9.,

.,.,.,.‘h

•9.

,.,.,.‘.,

t

Given:

Returns:

'''
＇ generalュzatュon,

...
‘’‘
has

'''
asked

-- a feature that evokes a reminding,

-- a potential target for that reminding, and

-- the quality (strength) of the reminding.

the actual

．
given

functional,

target for

target or

the

a

one or more more-general

reminding、

more general

or partonomic hierarchies.

categories,

which may be

category

either

in the

If the given target

then the teacher is

,,, to select the desired target.

.. ・--
’’‘

(defun select-reminding-target (feature target quality)

(let ((relatives (collect-relatives target

(list *verb-hasTypicalGen*

verb-hasFunction

verb-partOf)

nil)))

;; If this target has no categories that are more general,

; ; return the original target.

(if (null relatives)

（ return-from select-reminding-target target))

then just

(format

-Ato-A."

guery-io "-発Protas is

quality (getnarne feature)

ready to install a -4,2F reminding from

(getname target))

; ; IF only one more general category ...

(if (null (cdr relatives))

THEN ask about it specifically

;;Original---

; ; (if (y-or-n-p "-も～もShould it instead install it to the more
category -A ? 11

general

, , (getname (car relatives)))

; ; (setq target (car relatives)))

---I I

; ; Modified by Joaquin Delgado on Aug, 28 1995

(if (y-or-n-p

category -A ? "

"-%-%Should it also install it to the more general

(getname (car relatives)))

(setq target (list target (car relatives})))

ii target is a list of all the posible targets

considers important

ii ELSE ask for a selection from the list of more general categories.

(progn

that the user

; ;Orュginal---
; ； (format *query-io* "-毛～もShouldit _instead install it

more general categories:-も＂）

; ; Modified by Joaquin Delgado on Aug 29 1995

(format *query-io* " -も～もShould it

general categories:-も＂）
・---

''

to one of the

also install it to the more

-57 -

(prュnt-node-namesrelatives *query-1.0* "or")

(format *query-io* " ")

(if (y-or-n-p)

,, added by Joaquin Delgado

(progn

; ； Original

I I

I fail))

(loop

(format *query-io* "-%Then please specify which one: ")

(setq target (check-term-name (read *query-io* nil nil)

(if (member target relatives) (return (values)))

(format *query-io* "-発Error: you must enter one of the

above terms.")))))

; ; Modified by Joaquin Delgado on Aug 29 1995

(setq temp (prompt " -もPlease specify which ones、 in

order of importance (from less to most)-

-%one category per line (terminate with

blank line): -%"

"-&---> "'symbol nil nil))

(dolist (e-target temp)

(setq e-target (check-term-name e-target'fail))

(if (not (member e-target relatives))

(progn

(print-node-names relatives *query-io* " or
")

(format *query-io* "-%Error: you must enter

categorュes among of the above terms.")

(read-char)

(setq temp nil)

(return))

(progn

(if (not (listp target))

(setq temp2 (list

(push e-target temp2))))

(if (not (null temp))

(return)))

(setq target (reverse temp2))))))

target)))

I I ---
target))

.ヽ. ・--
‘’

Function: (check-rnutex explanation)

Purpose: Given an explanation、this function returns T if a mutual-

exclusion relation is found anywhere within the

explanation.

Otherwise, it returns NIL.

.. ・--I I I

(defun check-mutex (explanation)

(if (eq *verb-MEx* (relation-verb (explanation-relation explanation))}

(return-from check-mutexヒ））

(dolist (term (explanation-from-terms explanation))

(if (explanation-p term)

(if (check-mutex term)

(return-from check-mutex t))))

(dolist (term (explanation-to-terms explanation))

(if (explanation-p term)

(if (check-mutex term)

-58 -

(return-from check-mutex t)}})

nil)

-59 -

--I I I

; ; ; Function: (set-importance feature target explanation)
...
I I I

．
; ; ; Given:
．．．
I I I

．．．
I I I

．．．
I I I

...
I I I

...
'''

-- feature、the feature whose importance value is to be set;

--target, the category or exemplar where the importance is

to be stored;

--explanation, a category-to-feature or exemplar-to-feature

explanation.

iii Purpose: Given a category-to-feature or exemplar-to-feature

explanation,

iii this function sets the importance of the feature in the
category

I I I

...
I I 、
．．．
I I I

...
I I I

...
‘’’

or exemplar, respectively.

Notes: --The importance value (a number in the range 0

taken from the strength of the explanation.

; ; ; Callers: discuss-explanatュon

1.0) is

... --I I 、

(defun set-importance (feature target explanation)

(if (null explanation) (return-from set-importance (values)))

(let* ((quality

(qual-impl

(category

(explanation-strength explanation))

(qualitative-value quality'importance))

(if (my-exemplar-p target)

(exemplar-category target)

target))

qual-imp2)

;; Show explanation to teacher for possible modification.

(format t "-も～発Protosbelieves that -A is of -A importance to -A-

～もbasedon the explanation:-

～発＂

(getname feature) qual-impl (getname category))

(print-explanation explanation)

;; See if teacher agrees with this value of importance.

(case (menu-select *decide-importance-menu*)

(yes ii Teacher agrees with importance, so nothing to do.

nil)

(revise-expl ;; Teacher wants to revise the explanation.

(prog ()

TOP

（ setq explanation

(get-specific-explanation feature target'TtoF

(exemplar-features *cur-exemplar*)))

(if (null explanation)

(progn

(format t "-%-もProtos could not find an explanation from -A

to -A"

＇ again? ")

(getname feature) (getname category))

(if (y-or-n-p "-もDo you wish to revise your explanation

(go TOP)))

(print-explanation explanation))

(set-importance feature target explanation)

(return-from set-importance (values})))

-60 -

(revise-imp ;; Teacher wants to just revise the importance.

(setq qual-imp2 (menu-select *importance-menu*))

(if (and (not (equal'nochange qual-imp2))

(not (equal qual-impl qual-imp2)))

(setq quality (cdr (assoc qual-imp2 *importance-alist*})))))

;; Install the feature's importance in the category.

(push (cons feature quality) (category-importances category)}})

''、------------------------
; ; ; Function: (discuss-unmatched-importances match)

I I I

; ; ; Gュven: a match of an exemplar of a wrong category to a newcase;

’‘’
; ; ； Purpose: This function examines the exemplar's unmatched features to

determine which ones are believed to be of moderate or low

importance, since it is possible that the reason the

...
I I I

I I I

feature is

I I I

... ,、、

...
I I 、
...
I I I

unmatched is because the importance was set too low.

Protos then asks the teacher to reassess the importance

of each of these features. The teacher is told the current

qualitative strength of the feature's importance and then

asked

;;; to revise the importance to beeュther "necessary", "high",

,,, "moderate", "low"、or "spurious".
; ; ; ______________________________________ :,_ ______________________ _

(defun discuss-unmatched-importances (match)

(let ((results (match-results match))

(first-time t))

(dolist (result results)

(if (and (eql'unmatched (result-type resulヒ））

(< (result-importance result) *importance-high*))

(progn

(if first-time

(progn

(setq first-time nil)

(format t

,,_も～もTheincorrectly matched exemplar contains unmatched features-

-%of moderate or low importance. A possible reason that this case-

～発was classified incorrectly is because one or more of those

features-

-%is really more important than Protos currently believes.")))

(reassess-importance (result-feature result) (match-exemplar

match)))))))

-61 -

... ------------------------・ ――-------------------------------------I I 、
; ; ； Function: (get-approximate-importances exemplar)

I I I

...
I I I Given: exemplar, a newly-created exemplar
．．．
I I I

; ; ; Returns:

each

an alist of (feature importance) with one entry

．．．
I I I

...
I I I

...
‘’’ ...
’‘’

Caller:
...
ヽI I

;;; Purpose

belief

feature of the exemplar,

importance.

discuss-relevances

sorted in decreasing order of

The decision to create this function was based on

for

the

...
I I I

...
ヽI I

that when Protas discusses the relevance of each feature to its

category, it is best to discuss the most important features
...
‘’‘

first. Without this function, Protos would present the

features
...
I I I

...
I I I

...
ヽI I

in the order in which they occurred in the new case

bear no resemblance to importances).

(which may

＇ ; ; ； Desュgn For each feature, this function looks for its importance

value

;;; in the following places (in this order):

; ; ; -- in the exemplar's category;

; ; ; -- in neighboring categories (immediate neighbors only);

; ii -- otherwise, the value O is assigned.

・・--I I I

(defun get-approximate-importances (exemplar)

(let* ((featuresl (copy-list (exemplar-features exemplar)))

(features2 (copy-list featuresl))

(category (exemplar-category exemplar))

(c-importances (category-importances category))

(importances nil))

;; -------------Extract importances from the category.

(dolist (feature featuresl)

(let ((pair (assoc feature c-importances)))

(if pair

(progn

(push pair importances)

(setq features2 (delete feature features2))))))

(if (null features2)

(return-from get-approximate-importances

（ sort importances #'> :key #'cdr)))

(setq featuresl (copy-list features2))

Extract importances from neighboring

- ----
(dolist (relation (node-relations category))

(dolist (to-node (relation-to-nodes relation))

(if (my-category-p to-node)

categories.

; ; --------Extract importances from this neighbor. -----------

(let ((c-importances (category-importances to-node)))

(dolist (feature featuresl)

(let ((pair (assoc feature c-importances)))

(if pair

-62 -

(progn

(push pair importances)

(setq features2 (delete feature features2))))))

(if (null features2)

(return-from get-approximate-importances

（ sort importances #'> :key #'cdr)))

(setq featuresl (copy-list features2))))))

ii ------- Assュgnzeroュmportanceto any remaュning features.

(dolist (feature features2)

(push (cons feature 0.0) importances))

(return-from get-approximate-importances

（ sort importances #'> :key #'cdr))))

-63 -

I I I

, , ,

I I I

Function: (discuss-urunatched match)

Given: match, an approved exemplar-to-newcase match;

Does:

Caller:

For each non-spurious unmatched feature of the exemplar,

the teacher is asked to explain how a feature of the new case

is related to the unmatched exemplar feature. The teacher

may either enter an explanation or enter "none"、"n" or "no".

discuss-success

--
‘’’

(defun discuss-unmatched (match)

(let ((introduction t) ; Print introduction only on first feature.

node

(results (match-results match)))

;; Iterate through the match results looking for unmatched features.

(do* ((results results (cdr results))

(result (car results) (car results)))

((endp results))

(let* ((feature (result-feature result)) pointer to feature

(importance (result-importance result)) importance of this
feature

(quality (result-quality result))

(unmatched (match-unmatched match))) unmatched
features

(if (eql'unmatched (result-type result))

(progn

(if introduction

(progn

(setq introduction nil)

(format t

"-%-%Protos would like to improve this classification by discussing-

-%some of the exemplar features it could not account for.-%")))

feature -A.-

case? "

(if (prompt (format nil

"-%Protos could not account for the exemplar

-%Is -A related to any feature of the new

(getname feature) (getname feature))

nil'y-or-n nil nil)

(let (newresult)

(format t "-%Please explain how -A is related to some

feature of the new case."

(getname feature))

(enter-explanation)

(setq newresult (compare-feature feature

importance

(match-exemplar match)

(match-newcase match)))

(format t "-発～もThe exemplar feature -A now has the

following match:"

(getname feature))

(print-result O newresult)

;; Replace the unmatched result with the explained result.

-64 -

newresult)))))

newresult)))))

newresul t)))

(rplaca results newresult)

;; Depending on the type of result, adjust the list

; ; of unmatched case features.

(ecase (result-type newresult)

(identical

(setq urunatched (delete feature unmatched)))

(explained

(setq urunatched (nset-difference

unmatched (explanation-from-terms (result-explanation

(excluded

(setq unmatched (nset-difference

unmatched (explanation-from-terms (result-explanation

(unmatched nil)

（ spurious nil))

(setf (match-unmatched match) unmatched)

, , Update the overall similarity by dividing by the old

;; similarity and multiplying by the new similarity.

(setf (match-similarity match)

(* (/ (match-similarity match) quality) (result-quality

))))))))

(defun discuss-unfocused ()

ii Ask for unfocused instruction.

(format t "-%-%If there is any other instruction that you wish to

provide,-

-%you may now do so from the following menu:-%")

(menu-select-2'*unfocused-instruction-menu*))

-65 -

;;;--------------------------------------

; ; ; Function: (discuss-failure match)

I I I

iii Given: match, the results of an exemplar-to-new case match where the

iii the teacher has rejected the match because it is to a

,、, wrong category .
•

,

•I

.,
; ; ; Returns:

the
the same match with the action slot set to'next if

;;; teacher has said to try the next hypothesis;

iii -- the same match with the action slot set to'done if the

; ; ; teacher decided either to create a new exemplar from

this

., .‘
 •I case or just abandon this case .

•
‘

•9

.,
; ; ; Caller:

.‘
 .,

•9

．
; ; ； Design:

category.

discuss-match

-- Reassess remindings that led to this (incorrect)

iii -- Ask for any revisions to the new case.

、、, --Ask for censors.

iii -- Ask for reassessment of importances of low-importance

iii unmatched features.

iii -- If strong match then record for later difference links.

iii -- Allow unfocused instruction.

iii -- Ask teacher whether to install this case as a new exemplar

iii or discard it and go on to the next hypothesュs.
.. ・--ヽI I

(defparameter *failure-menul* (make-menu

: label "-毛～毛Whatdo you want to do with this case now?-
-%--"

:items I ((#¥c• ("Create an exemplar from this case" return create))

(#¥R ("Retry finding a match for this case" return retry}}

(#¥M ("reMatch this case to same exemplar" return redo))

(#¥T ("Try next hypothesis" return next))

(#¥Q ("Quit (abandon this case)" return

abandon)))))

(defun discuss-failure (match)

(declare (special closed-categories))

; ; The teacher has rejected this match because it is to the wrong

category.

; ; So, remember that fact so that the function "classify2" will skip over

ii any other hypothesized exemplars of the same category.

(push (exemplar-category (match-exemplar match)) closed-categories)

(format t "-も～もProtoswill now try to learn from this error.")

;; If this incorrect match is strong enough (i.e., is a "near miss")、
ii then remember it for possibly installing a difference link later

ii when the case finally is correctly classified.

(if (>= (match-nth-root-of-similarity match) *near-miss-threshold*)

(push match *near-misses*))

(reassess-remindings match)

(discuss-censors match)
(d' iscuss-urunatched-importances match)

-66 -

(discuss-unfocused)
(case (menu-select *failure-menul*)

(create (values'newex (add-new-exemplar (match-newcase mate五））））

(retry (values'retry match))

(redo (values'redo match))

(next (values'next match))

(abandon (values'done nil))))

(defparameter *censor-strength-menu* (make-menu

: label nil

: items'((#¥w . ("Weak" return , -0 . 2 5))

(#¥M. ("Mcl.erate" return ,-0.50))

(#¥S . ("Strong" return 、-0.75))

(#¥A . ("Absolute" return , *absolute-censor*)))))

(defun discuss-censors (match)

(let* ((exemplar (match-exemplar match))

(category (exemplar-category exemplar})

(newcase (match-newcase match))

(features (case-features newcase))

input

feature

strength)

(format *query-io* "-2もThefeatures of the new case are:-令＂）

(print-node-names features *query-io* ", ")

(if (prompt (format nil "-2発Are any of these features ェutually
exclusive-

(progn

～もwiththe category -A? "

(getname category))

nil'y-or-n nil nil)

(loop

(format *query-io*

＂～も Please enter their name(s), enclosed in parent呵l:eses (or

type nil).-
～知—-> ")

(setq input (read *query-io* nil nil))

(if (or (null input) (listp input))

(return (values)))

(format *query-io* "-もInputerror!"))

(dolist (fname input)

(setq feature (check-term-name fname'ask))

(if feature

(progn

(format *query-io* " -もPlease rate the strength of -A's

negative evidence:"
(getname feature))

(setq strength (menu-select *censor-strength-menu*))

(push (cons category strength) (feature-remindings feature))

(if *trace-remindings*

(print-reminding feature category strength nil}))))))))

(de fun add-censor ()

(let (name feature target strength)

-67 -

(format *query-io*

"-もA censor lets a feature¥11discount¥11 a category or exemplar.-

遠 Pleaseenter a feature name---------------->")

(setq name (read *query-io* nil nil))

(if (null name)

(return-from add-censor nil))

(setq feature (check-term-name name'ask))

(if (null feature)

(return-from add-censor nil))

(format *query-io* "-%Please enter a category or exemplar name--->")

(setq name (read *query-io* nil nil))

(if (null name)

(return-from add-censor nil))

(setq target (check-term-name name'ask))

(if (null target)

(return-from add-censor nil))

(format *query-io* "遠Please rate the strength of -A's negative

evidence:"

(getname feature))

(setq strength (menu-select *censor-strength-menu*))

(push (cons target strength) (feature-remindings feature))

(if *trace-remindings*

(print-reminding feature target strength nil))))

(defun change-importance ()

(let (name feature target)

(format *query-io* "-もEntername of feature--------> ")

(setq name (read *query-io* nil nil))

(if (null name)

(return-from change-importance (values)))

(setq feature (check-term-name name'ask))

(if (null feature)

(return-from change-importance (values)))

(format *query-io* "-%Enter category or exemplar---> ")

(setq name (read *query-io* nil nil))

(if (null name)

(return-from change-importance (values)))

(setq target (check-term-name name'ask))

(if (null target)

(return-from change-importance (values)))

(reassess-importance feature target)))

(defun show-relations ().

(format *query-io* "-%Please enter the name of any term--->")

(let* ((name (read *query-io* nil nil))

(relations nil)

node)

(if (and (symbolp name) (boundp name))

(s etq node (eval name))

(setq node (check-term-name name'fail)))

(if (and node (node-p node))

(progn

(setq relations (node-relations node))

(if relatュons
(progn

(format t "-%Relations that begin with -A:" name)

(dolist (rel relations)

(format t "-% ")

(print-relation rel t 1)))

-68 -

(format t "-%No relations involve this -:[term-;predicate-]."

(predicate-p node))))

(format t "-も-Ais not a term or predicate!" name))))

-69 -

Appendix C

House knwoledge base produced by Protas

This knowledge base was generated by the modified Protos program, as the result of learning

about general geometric forms of different examples of houses in the more general HOUSE

domain.

;;; -*-Mode: Lisp; Syntax: Common-lisp; Base: 10; -*-
iii Modified by Joaquin Delgado 08/23/95

; ; ； Comments: -Remindings to higher categories and classes were

; ; ； first introduced by hand. PROTOS only sets remindings

I I I

one at a time, and does not propagate remindings in higher

herarchies

(term :name walls
: remindings ((house o・. 67))

: importances ((cylinder 0.48) (cube 0.48))

: exemplars (wallsl walls2)

: relations (((walls equivalent story_2) "joaquin"

a house")

form.")))

"Story 2 are walls of the second floor")

((walls equivalent story_l) "joaquin"

"Story_l are the walls of the first floor")

((walls is part of house) "Joaquin" "Walls are part of

((walls sometimes is inferred from cube) "Joaquin"

"A cube suggest a house's base because of it's form.")

((walls sometimes is inferred from cylinder) "Joaquin"

"A cylinder suggest a base of a house because of it's

(term :name roof

: rernindings ((house O. 7 0))

: importances ((triangle_base_pyramid 0.48) (rectangular_sheet 0.48)

(semi-cylinder 0.48) (square_base_pyrarnid 0.48) (prism

0. 48))

: exemplars (proto_roof roofs roof2 roofl

roof3 roof4)

: relations (((roof is part of house) "Joaquin" "A roof is part of a

house")

((roof sometimes is inferred from prism) "Joaquin"

"A prism always suggest a roof because of its form")

((roof sometimes is inferred from cone) "Joaquin"

"Cone sometimes suggest roof because of it's form")

((roof sometimes is inferred from square_base_pyrarnid)

"Joaquin"

"A square base pyramid suggest roof because of it's form")

((roof sometimes is inferred from semi-cylinder)

"Joaquin"

"A semi cylinder suggest roof because of it's form")

((roof sometimes is inferred from rectangular_sheet)

"Joaquin"

"A rectangular sheet suggest roof because it's form")

((roof sometimes is inferred from

triangle_base_pyramid) "Joaquin"

-70 -

"A triagle base pyramid suggest roof because of it's

form")))

(term :name house

: importances ((story_2 0.70) (rectangular_sheet 0.34) (semi-cylinder

0.34)

(square_base_pyrarnid 0.34) (cylinder 0.34) (cone 0.34)

(cube 0.95) (prism 0.78) (roof 0.70)

(walls 0. 70))

: exemplars (proto_house hurnble_house dome_house indian_house

small_house two_story_house)

: relations (((house has part roof) "Joaquin" "A roof is part of a

house")

((house has function (shelter person)) "Joaquin"

"A house has the function of shelter for persons")

((house has part walls) "Joaquin" "walls are part of a

house ")))

(term :name

: comment

: category

: features

: typicality

(predicate :name

(term :name

proto_house

"A general abstract house"

house

(walls roof)

6.50)

shelter)

person)

(term :name (shelter person)

: relations ((((shelter person) sometimes is function of house)

"Joaquin"

(term :name

: remindings

: relations

(term :name

: comment

: category

: features

"A house has the function of shelter for persons")))

prism

((walls -9999.00) (roof 0.78) (house 0.01))

(((prism always suggests roof) "Joaquin"

"A prism always suggest a roof because of its

proto_roof

"(This is a prototypical roof)"

roof

(prism)

form")))

: typicality

: differences

2.25

((proto_house <-- (cube))))

(term :name

: remindings

: relations

(term :name

(term

: comment

: category

: features

: typicality

:name

: remindings

: relations

form")))

cone

((walls -.75) (house 0.34))

(((cone sometimes suggests roof) "Joaquin"

"Cone sometimes suggest roof because of it's

roofl

"(Yet another example of roof)"

roof

(cone)

1.00)

square_base_pyramid

form")))

((walls -.75) (roof 0.80) (house 0.56))

(((square_base_pyramid suggests roof) "Joaquin"

"A square base pyramid suggest roof because of

-71 -

it's

(term :name roof2

:category roof

: features (square_base_pyramid)

: typicality 1.00)

(term :name semi-cylinder

(term

(term

(term

(term

: remindings ((roof 0.45) (house 0.34))

: relations (((semi-cylinder sometimes suggests roof) "Joaquin"

:name

: comment

: category

: features

: typicality

:name

: remindings

: relations

:name

: comment

: category

: features

: typicality

:name

: remindings

: relations

"A semi cylinder suggest roof because of it's form")))

roof3

"(Yet another example of roof)"

roof

(semi-cylinder)

1.00)

rectangular_sheet

((walls -.75) (roof 0.48) (house 0.34))

(((rectangular_sheet sometimes suggests roof) "Joaquin"

"A rectangular sheet suggest roof because it's form")))

roof5

"(Yet another example of roof)"

roof

(rectangular_sheeヒ）

1.00)

triangle_base_pyrarnid

((roof 0.48) (house 0.01))

(((triangle_base_pyramid sometimes suggests roof)

"Joaquin"

form")))

(term :name

: comment

: category

: features

: typicality

(term :name

: synonyms

"A triagle base pyramid suggest roof because of it's

roof4

"(Yet another example of roof)"

roof

(triangle_base_pyramid)

1.00)

cube
(box)

:remindings ((roof -9999.00) (walls 0.78) (house 0.01))

: relations (((cube always suggests walls) "Joaquin"

"A cube_ suggest a house's walls because of it's form.")

((cube has typical generalization parallelopypid)

"Joaquin"

(term :name

: comment

: category

: features

: typicality

11 A cube is a type of parallelopypid 11)))

wallsl

"(Yet another example of walls)"

walls

(parallelopypid)

2.25

:differences ((humble_house <-- (rectangular_sheet))

(proto_house <-- (prism))))

(term :name cylュnder
: remindings ((walls O. 45) (house O. 34))

: relations (((cylinder sometimes suggests walls) "Joaquin"

"A cylinder suggest walls of a house because of it's

form.")))

-72-

(term :name

: comment

: category

: features

: typicality

(term :name

walls2

"(Yet another example of walls)"

walls

(cylinder)

1.00)

parallelopypid

((roof -. 75)) : remindings

: relations

"Joa叩 in"

(((parallelopypid has typical specialization cube)

"A cube is a type of parallelopypid")))

(term :name

: comment

over a cylinder)"

: category

: features

: typicality

: differences

(term :name

indian_house

"(This is an example of an indian house,

house

(cone cylinder}

1.00

((wallsl <-- (cube})))

small_house

．
i.e. a cone

: cormnent

: category

: features

"(This is a small house, e.i. a pyramid over a box)"

house

: typicality

(cube sguare_base_pyramid)

1.00)

(term :name dorne_house

: comment "(This is a dome-like house,i.e. a semi-cylinder over a
parallelopypid)"

: category

: features

house

(semi-cylinder parallelopypid)

1.00 : typicality

: differences ((proto_roof <-- (prism))))

(term :name humble_house

(case

(term

(term

: comment

: category

: features

: typicality

:name

: comment

: creator

:name

: remindings

: relations

:name

: remindings

: relations

11 (This is an example of a humble_house) 11

house

(parallelopypid rectangular_sheet)

1.00)

two_story_house

"(This is a two story house)"
.、
Joaquin)

story_l

((house 0. 70))

(((story_l equivalent walls) "joaquin"

"Story_l are the walls of the first floor")))

story_2

((house O. 70))

(((story_2 equivalent walls) "joaquin"

"Story 2 are walls of the seccond floor")))

(case :name two_story_house

: category HOUSE

: preclassify T

: features (story_l story_2 prism)

: disposition (BECAME TWO_STORY_HOUSE)

: comment "(This is a two story house)"

: creator Joaquin)

-73 -

(term :name two_story_house

:comment 11 (This is a two story house) 11

: category house

: features (story_l story_2 prism)

: typicality 1.00)

-74 -

Appendix D

Implementation Guidelines

D-1 Ontolingua - Nextpert Translation

Both Ontolingua and Nextpert Object are Object Oriented (0.0.) and Rule-Based, and use an

intermediate (programmer readable) language for representing both objects and rules in

lisp like format. Both also have a pretty good interface for defining and editing ontologies in
a "led by hand" mode, essential for a good quality knowledge design. The main difference is
the expressiveness and the purpose of the underlying languages:

* In Ontolingua, KIF (Knowledge Interchange Format) is a very expressive language, that
was not designed for KP but as an interchange format of knowledge. It is self defined by a KIF
ontology and it is extensible in any extent due to the way it was designed. A good example is

the Frame Ontology that is the basic data structure for KR in Ontolingua. Its application

independent and as general as it can be for facilitating the translation between different

sources of knowledge. It supports non-monotonicity, that is the capability of drawing

conclusions based on the absence of knowledge from a database (incomplete information).

* In Nexpert Object, Nexpert is an application oriented language that is used for KR and KP

as well. This makes it more r:.omplicated to understand and limits it's extensibility. On the

other hand, its 0.0. characteristics are more powerful as it supports methods for describing
behavior and control of individual slots, objects or set of objects. This, in principle is not

supported by KIF nor Ontolingua. It supports non-monotonicity as well.

Analogies were found not at the underlying language level but at the knowledge input level

and the data structures used to represent knowledge. The constructions of ontologies in both

systems have similar pattern, making it simpler, after understanding the analogies, to
translate ontologies from one system into another. Some times, depending which is the

source and the target system, some information might be incomplete.

Here is a list of all the mayor concepts needed to be understood in order to build any basic

ontology in Ontolingua. Beside each question I will add, between parenthesis, what possibly

are relative or equivalent concepts in the Nexpert Object system. For further anaysis

please refer to the bibliography.

In Ontolingua.-

What is an Ontology? (A Knowledge Base)

An ontology is an explicit specification of some topic. For our purposes, it is a formal and
declarative representation which includes the vocabulary (or names) for referring to the

terms in that subject area and the logical statements that describe what the terms are, how

they are related to each other, and how they can or cannot be related to each other. Ontologies

therefore provide a vocabulary for representing and communicating knowledgeabout some

topic and a set of relationships that hold among the terms in that vocabulary.

What is a Frame? (An Object)

A frame is a named data structure (or object) which is used to represent some concept in a

domain. A frame can be a class, instance, slot, facet, function, relation, or axiom. A frame

-75 -

allows one to group some related statements about that concept. Associated with each frame

is a group of slots, facets, and values on the slots or facets.

What is a Term? (An Object)

A term is any object that has a definition (e.g., slots, classes, instances, relations, functions).
An axiom is not considered a term.

What is a Class? (A Class)

A class is a representation for a conceptual grouping of similar terms. For example, a
computer could be represented as a class which would have many subclasses such as personal

computers, mainframes, workstations, etc. Each class is described by a definition which

specifies the slots and values that describe the class itself (not the members of the class),

slots and values that describe the instances of that class, and logical statements (called

axioms) that describe the class but can't be represented using slots and values.

What is an Instance? (An Object in its pure sense)

All of the terms in an ontology that have an associated definition (Le.classes, slots, relations,
functions, facets) are an instance of some class. Classes are instances of Class, functions are
instances of Function, etc. An instance should not be confused with an Individual because an
instance may be a class whereas an Individual cannot be a class.

What is a Facet? (A Meta-Slot)

Facets are used to represent information about a slot on an object. Usually facets represent

some constraint on an instance slot. For example, Slot-Value-Type is a facet which can be
used to represent that for instances of the class Person, the value of the slot Has-Mother

must be an instance of Female-Person. The most commonly used facets are: Slot-Cardinality,

Minimum-Slot-Cardinality, Maximum-Slot-Cardinality, and Slot-Value-Type.

What is an Instance Slot? (A Slot)

An instance slot is a slot on a class that is used to describe a property of the instances of a

class rather than the class itself. For example, mass would be an instance slot because it is
used to describe how much a particular instance weighs rather tha:1 what the class weighs

(obviously a class doesn't have mass since it is an abstract concept). Whereas, subclass-of
is an own slot because it is used to describe the class itself.

What is an Own Slot? (A Class Slot)

Own Slots are slots used to describe properties of the term itself. For most terms (i.e., any
term except a class), the only slots they have are own slots. However, most classes also

have instance slots that are used to describe properties of the instances of a class rather
than the class itself. For example on the class Mother, subclass-of is an own slot because it

is used to indicate a property of the class Mother. Whereas, has-children would be an

instance slot because it describes a property of instances of the class Mother.

What is a Value? (A Special type of property -named "Value")

-76 -

ヽ

A value is a term which is related to the current definition through a slot or facet. For

example, FemalePerson would be the value of the slot subclass-of for the class Mother. As

another example, 1 would be the value of the facet Minimum-Slot-Cardinality for the slot

Has-Children on the class Mother.

What is a Relation? (Is not defined explicitly in Nexpert Object)

A relation is used to describe a relationship among two or more terms. If a relation

represents a relationship between only two terms, it is called a slot or a binary relation. If

the relation describes a relationship among n terms such that there is a unique nth term

corresponding to any set of the first n-1 terms, then the relation is called a function.

What is a Function? (Is not defined explicitly in Nexpert Object)

A function is a special type of relation which relates some number of terms to exactly one

other term. That is, a function is a relation such that no two relationships of n terms in the
relation have the same first n-1 terms. For example, mother is a function that relates an

animal to exactly one female animal. A function may also be referred to as a slot if it relates

only two terms.

What is Domain? (Is not defined explicitly in Nexpert Object)

The domain of a slot is a class that restricts the terms on which the slot can be added. A

slot can only be added to terms which are an instance-of its domain.

Note that the domain is typically a superset of the exact-domain of a relation. For example,

one can say that the domain of Mother-Of is Female-Animal, but since not all female

animals are mothers, Female-Animal could not be the exact-domain of Mother-Of.

What is Range? (Is not defined explicitly in Nexpert Object)

The range of a relation is a class that restricts the values which the relation can have. A

value can only be added to the relation if it is an instance-of its range.

Note that the range is typically a superset of the exact-range of a relation. For example,

one can say that the range of Has-Mother is Female-Animal, but since not all female

animals are mothers, Female Animal could not be the exact-range of Has-Mother.

NOTE: Relations, functions, domains and ranges are implicitly defined when creating Classes
and defining rules in Nexpert Object.

What is an Axiom? (A Rule)

An axiom is a sentence in first order logic that is assumed to be true without proof. In

practice, we use axioms to refer to the sentences that cannot be represented using only

slots and values on a frame.

Axioms must be entered in prefix notation. Use => to indicate logical implication, <=> to

indicate logical equivalence, and to indicate conjunction, or to indicate disjunction, not to

indicate negation, and exists to indicate existential quantification. Free variables are assumed
to be universally quantified. Variable names must start with a question mark.

-77 -

For example, you would represent the statement:

If any two animals are siblings,
then there exists someone who is the mother of both of them.

With the axiom:

(=> (sibling ?sib1 ?sib2)
(exists (?mom) (and (has-mother ?sib1 ?mom)

(has-mother ?sib2 ?mom)))

What is an Augmented Definition?

An augmented definition is rather like any other definition, only it is a specialization of a
definition made in a different ontology. For example, if I have an ontology of vehicles, and

another ontology of police vehicles that includes the ontology of vehicles, I might want to

augment the definition of the class Vehicle so that all vehicles have radios and guns. This can
be done by augmenting the definition of the class Vehicle in the police-vehicles ontology.

On The Nexpert Object side.-

We have several differences as follows:

METHODS: As said before methods describe the bohavior of individual slots, objects, or sets

of objects. Methods are composed primarily of a set of actions which when executed modify
the behavior of the object upon which they act.

There is an effort for "Extending Otolingua for Representing Control Knowledge" by Eliana
Cohelo and Guy Lapalme to be presented in IJCAl-95, but actually because KIF can be

extended for an specific application, I don't see any problem in creating a "method ontology".

RULES: In Nexpert, rules have three basic parts:

Left-hand side conditions
The Hypothesis
The right-hand side actions

Although this does not differs from any rule definition, in Nexpert the Hypothesis, is a

boolean slot and it is treated as a special object as seen in the application interface.

Rules, in Nextpert, represent among other things: relations, heuristics, procedural knowledge,

and temporal structure of knowledge. This might suggest that Ontolingua's relations and
functions might be some kind of rules, but focused in an ontological way this is not true.

Partial Conclusions

Because the representation of Control Knowledge is not essential for the meanings of this
project (building an 3-D Shape Ontology) and there is a way of interpreting Nextpert's KR

Data Structures into Ontolingua's own data structures it is feasible to use Ontolingua for this
project.

Bibliography

1) Ontolingua, on-line system "help", KSL-lnteractive Network Services, URL:

-78 -

．

｀
戸

＂

http://ksl.stanford.edu 1

2) Neuron Data, Nexpert Object system manuals: "Knowledge Design".

3) Michael R. Genesereth, Richard E. Fikes, "Knowledge Interchange Format, Version 3.0,
Reference Manual", Report Logic-92-1 , C.S. Department, Stanford University

D-2 Knowledge Level and_ Symbol Level Interface

Here is a rough description of what the interface between the symbol level and the knowoledge
level might require. First I would like to remind you some important points:

-A case (or exemplar) description is a collection of features that represent•attributes that
the TEACHER (user) thinks are potentially RELEVANT to its classification. •

-Each feature represents an independent attribute of the case.

-If RELATIONSHIPS BETWEEN ATTRIBUTES are relevant to the case's classifications in

our system), they must be included in its featural description. The CONSISTENCY of these

relations have to be enforced by the teacher (or by the system).

Here is an example:

Case: ARCH /* Formed by three blocks * /

Features: block(a), block(b), block(c), above(c,a), above(c,b)

touches(c,a), touches(c,b), doNotTouch(a,b)

These relations have to be consistent with the VR world!!

What Is needed for the integration:

1) That Nextpert Object o「whatever,decides and initiates the classification (or learning)

process, by giving me the list of all the FEATURES of the new inputed case. Therefor it has

to be decided when a newly formed case is ready for classifying. If there is an analogous

case in the case base then PROTOS will create an hypothesis of what the case is.

2) That an interactive conversation could be held between the computer and the teacher in
the learning process mainly for imputing domain knowledge as an explanation (using a fixed
vocabulary). Note that the user has to be able to refer to any component of a complex object

in an unambiguous way.

To get a grasp of what is intended to say in point 2 here is an example of a very idealized

conversation with PROTOS:

SYSTEM: Protos, a new case has the features roof、walls, window, door、

antenna、 above(roof,walls),touches(roof、walls)

PROTOS: Based on this description, I am most strongly

reminded of the category HOUSES. I will retrieve a past example,

-79 -

House-01, and will try to explain the similarity of these two

cases by comparing their features. Many of the features of the

new case match House-01 directly, but there are still some

features I cannot match. First, House-01 does not have window.

TEACHER: That is true. However a window ENABLES a person

inside a house to see to the outside, so it is a relevant

feature to house in general.

PROTOS: I now believe that having a window is a moderated

feature for HOUSES. In future cases if a window appears it will

remind me of houses.

TEACHER: O.K.

PROTOS: Second, House-01 does not have antenna.

TEACHER: An antenna is not a important feature for a house
(it's spurious).

PROTOS: Since this case doesn't differ from House-01 in many

respects, I・will not save it as a new exemplar of HOUSES. Is

this a satisfactory disposition of this case?

TEACHER: Yes.

囀

-80 -

	001
	002
	003

