
ATRテクニカルレポート表紙

TR-C-0103

Towards the Realization of

Real-Time Collision Detection

アンドリュー スミス
Andrew Smith

北 村 喜 文

Yoshifumi KITAMURA

1 9 9 4 1 2 . 2 0

ATR通信システム研究所

〔公開〕

..
書

Towards the Realization of
Real-Time Collision Detection

Andrew Smith and Yoshifumi Kitamura
Artificial Intelligence Department

ATR Communication Systems Research Laboratories

December 20, 1994

Contents

ー Optimization of Octree-Based Collision Detection

1 1 . Introduct10n
1.2 Original Collision Detection Algorithm

1.3 Opt1m1zat1ons .
1.3.1 Use of Face Octrees Instead of Volumetric Octrees
1.3.2 Intersection of Octree Black Nodes with Overlap Regions of Bounding Boxes
1.3.3 Progressive Refinement of Octrees in Searching for Interfering Black Nodes

1.3.4 Association of Polyhedral Faces with Octree Black Nodes

5

5

5

5

5

6

6

6

2

2.3
2.4

Efficient Algorithms For Octree Motion

2.1 Introduct10n
2.2 Octree Shape Rep resentat1on .

2.2.1 Basic Representation Scheme/Linear Representation
2.2.2 Octree Motion Basic Algorithm

Compaction of Octrees .
Arbitrary Octree Motion .
2.4.1 Problems with Related Work
2.4.2 Exact Source Cube/Target Cube Intersection Test
2.4.3 Arbitrary Motion Efficient Algorithm
2.4.4 Parallel Algorithm
Octree Translation Only .
Experiments .
Discussion
Conclusion

2.5

2.6

2.7
2.8

7

7

7

7

8

9

9

9

0

1

1

1

2

2

3

1

1

1

1

1

1

1

3

3.3

3.4

A Simple and Efficient Method for Accurate Collision Detection Among Deformable Poly-
hedral Objects in Arbitrary Motion 15

3.1 Introduction 15

3.2 Efficient Collision Detection Approaches 16

3.2.1 Related Collision Detection Research 16

3.2.2 Evaluat10n 16
3.2.3 Proposed Algorithm . 18

Collision Detection Algorithm 18
3.3.1 Assumptions 18
3.3.2 Outline of the Method 18
3.3.3 Approximate Interference Detection Using Boundmg Boxes 18

3.3.4 Determmation of Faces Intersecting Overlap Regions 18
3.3.5 Face Octree Spatial Subdivision Stage 19

3.3.6 Face Pair Interference Check 19

3.3.7 Efficient Triangular Patch and Axis-Aligned Box Intersection Determination. 20

Experiments. 21

3.4.1 Standardized Objects 21

3.4.2 Multiple General Objects 22
3.4.3 C ompanson Against Competmg Algorithms 22

Discussion 25

Conclusion 26

3.5

3.6

ー

4 Parallelization of Collision Detection 28
4.1 Introduction. 28
4.2 Face Pair Swept-Space Interference Method 28
4.3 Parallelization Strategy Consideration 29

4.4 Parallelization of Swept-Space Method 29

4.4.1 Single Program, Multiple Data Method 29

4.4.2 Producer-Consumer Method 30

4.5 Implementations and Experimental Results ．．．． 30

2

List of Figures

2.1 The octree shape representation. (a) The ordering of octants (b) An example octree (c) Pointer-
based representation of the example octree. 8

2.2 Th e octree mot10n basic algorithm illustrated for the 2D case (quad tree). 9
2.3 Results from the tests done for the arbitrary motion algorithms. 13
2.4 Results from the tests done for the translation motion only algorithms. 14
2.5 Th e space shuttle experimental object. 14

3.1 Control flow of collision detection. 19
3.2 A n overlap region 20
3.3 Faces intersecting the overlap region 20
3.4 Face pair intersection test 21
3.5 Examples of experimental objects (standardized spheres with different numbers of faces) 21
3.6 Computation time for each processing cycle for two identical sphere objects with 168, 528, 960

and 3968 faces. 22
3.7 Computation time at the last stage of the proposed collision detection between two identical

b" sphere o Jects agamst the number of planar patches of the objects 23
3.8 Computation time at each processing cycle for 15 space shuttle objects-collision between two

objects is detected at the last cycle. 24
3.9 Computation time for each processing cycle for the proposed algorithm and the separating plane

competing algorithm for 10, 20, 30, and 40 identical sphere objects (528 triangular patches each). 25
3.10 Computation time for each processing cycle for the proposed algorithm and the octree update

competmg algorithm for the environment of figure 3.11. 26
3.11 The experimental environment used to obtain the data for figure 3.10. 27
3.12 The space shuttle experimental object (528 triangular patches) 27

4.1 Face pair swept-space mterference method. 29
4.2 Computation required at every cycle for two spheres moving from non-colliding to colliding

positions. 30
4.3 Computation time required at the last cycle by the SPMD and producer-consumer parallel

methods, for two spheres moving from non-colliding to colliding positions. 32

3

Preface

This technical report consists of 4 chapters which together describe my research activities during my stay at
the Communication Systems Research Laboratory of the Advanced Telecommunications Research Institute
from October of 1993 to December of 1994. The main focus of my research at ATR was on efficient algorithms
for collision detection, and the flow of my research was as follows. Upon my arrival at ATR, work on efficient
collision detection for polyhedral objects had been going on for about 6 months. This original algorithm works
by precomputing octrees for polyhedral objects, updating these objects'octrees at each time step and checking
for interference of objects'updated octrees to localize possible collisions among the faces of the obJects. This
algorithm was shown to be quite efficient compared with the standard polyhedral collision detection method,
where all combinations of different objects'faces must be tested for collision, but was still not effective for real-
time collision detection in a virtual environment. Thus, my original project was to implement this algorithm
on a parallel computer for real-time performance.

In starting work on parallelization of the original collision detection algorithm, I discovered various opti-
mizations to the serial algorithm which made it roughly 5 times faster. These optimizations are described in the
first chapter entitled "Optimization of Octree-based Collision Detection." Another problem with the original
algorithm was that it had to move the octrees of objects at each time-step, which was quite time consuming.
Thus, I investigated the problem of octree motion and discovered that not much research had been previously
done on efficient algorithms for octree motion. Against this lack of research, I formulated various optimizations
to the octree motion algorithm being used for collision detection, and these are described in the second chapter
entitled "Efficient Algorithms for Octree Motion."

After implementing these optimizations to collision detection and octree motion, the collision detection
was quite a bit more efficient but, unfortunately, still not entirely suitable for real-time applications. Thus, I
formulated a new, more efficient collision detection algorithm. This algorithm was similar to the optimized col-
lision detection algorithm (described in "Optimization of Octree Based Collision Detection"—the optimizations
described in this chapter form the basis of the new algorithm) except that it eliminated the precomputation
and update of octrees; instead, the algorithm used bounding boxes and octree-like spatial subdivision directly
on the polyhedral faces to find the colliding faces. This new algorithm was shown by experiments to be more
efficient than the original collision detection algorithm, and was suitable for real-time applications. This new
algorithm is described in the third chapter entitled "A Simple and Efficient Method for Accurate Collision
Detection Among Deformable Polyhedral Objects in Arbitrary Motion." Finally, another version of this new
algorithm, which does not miss collisions between time instants by testing for intersection of faces'swept space
between time instants, was implemented. This version of the new algorithm was quite a bit slower (due to
the necessity of computing interference between swept spaces) and did not have real-time performance; thus,
parallelization of this algorithm was done and the last chapter, entitled "Parallelization of Collision Detection
for Real-time Performance," describes the parallel algorithms and experimental results. These four chapters
together describe the research that I conducted while at ATR.

4

Chapter 1

Optimization of Octree-Based
Collision Detection

1.1 Introduction

The collision detection algorithm in [KTK94] was shown to be much more computationally efficient than the
standard, polyhedral method. However, in terms of getting real-time performance, it is still not sufficient. In
this short chapter, four important optimizations to the original algorithm of [KTK94] are presented.

1.2 Original Collision Detection Algorithm

The algorithm is used to determine the colliding faces, if any, of different objects in the world. The details
of the collision detection algorithm are given in [KTK94]. However, briefly, the algorithm proceeds as follows.
All objects in the world are represented using two object representations: a polyhedral representation (the
main representation), and the octree representation (the auxiliary representation-used for efficient collision
detection). All objects (both the polyhedral representation and octree representation) are moved to new
positions at discrete time steps, and collisions are checked for at these times. Thus, at each time step the
collision detection proceeds as a series of course-to-fine steps:

1. For every object, compute the bounding box of the polyhedral representation of the object. For every pair
of objects, determine whether the bounding boxes of the objects overlap. Any object whose bounding
box doesn't overlap any other object's bounding box does not collide and does not need to be checked
by the following steps.

2. Rebuild the octrees of the remaining objects (i.e., move the octrees). Then, search the rebuilt octrees for
interference (i.e., when two or more objects have black nodes at the same location in the rebuilt octrees).
Any object whose rebuilt octree doesn't interfere with any other object's rebuilt octree does not collide
and does not need to be checked by the following steps.

3. For all interfering black nodes and all objects whose rebuilt octrees contain those black nodes (found in
step 2), find the faces from the polyhedral representation of the object that intersect the interfering black
node; do this by checking all faces of the object for intersection with the interfering black node. Then,
for each interfering black node find all possible pairs of faces (where the faces are from different objects)
from the faces found to be intersecting that black node.

4. For each pair of faces found in step 3, sweep each face the area that it moves up to the current timestep
(i.e., the area it sweeps as it moves from the previous timestep to the current). Then, form the convex
hull of each swept area and determine if the two convex hulls intersect. If the convex hulls intersect then
the two faces are considered to have collided, otherwise not.

1.3 Optimizations

1.3.1 Use of Face Octrees Instead of Volumetric Octrees

The original algorithm uses standard, volumetric octrees. In this type of octree, any node that is completely
contained in (internal node) or intersects a face of (face node) an object is included in the octree of the object.

5

However, for collision detection purposes, collisions will never be detected for internal nodes and thus it is
wasted computation to move and check interferences for them. Thus, this optimization is to use octrees which
only contain face nodes—called face octrees.

1.3.2 Intersection of Octree Black Nodes with Overlap Regions of Bounding Box-

es

In the original algorithm, if an object's bounding box overlaps with other objects'bounding boxes then the
octree for the object is completely rebuilt and checked for interference with other objects'rebuilt octrees (step
2). However, the only black nodes in an object's octree that could possibly cause interference are the ones which
are contained in or intersect the regions of overlap of the object's bounding box with other objects'bounding
boxes. Thus, this optimization changes step 2 to update only part of an object's octree: the part that is
contained in or intersects the regions of overlap of the object's bounding box with other objects'bounding
boxes.

1.3.3 Progressive Refinement of Octrees in Searching for Interfering Black Nodes

In step 2 of the original algorithm, the octrees of objects are first completely rebuilt and then checked for
interference. However, this does not take advantage of the hierarchical nature of the octree in order to quickly
(i.e., with minimal rebuilding of octrees) localize interfering black nodes. This optimization essentially inter-
leaves the rebuilding of octrees with the checking for interfering black nodes, progressively refining parts of
octrees found to be interfering with other objects'octrees until the level of resolution is reached. With this
optimization, instead of completely rebuilding the octrees and only then checking for interfering black nodes,
octrees are partially rebuilt to a certain level (starting from the highest level-root node) and then, the partially
rebuilt octrees are checked for interference; only interfering black nodes (i.e., nodes that contain or intersect
with black nodes from two or more objects'octrees) in the partially rebuilt octrees are rebuilt to the next lower
level.

1.3.4 Association of Polyhedral Faces with Octree Black Nodes

In step 3 of the original algorithm, all faces of an object must be checked for intersection with an interfering
black node. This is extremely computationally expensive, especially if the object has thousands of faces. This
optimization greatly reduces the number of faces that must be checked for intersection with an interfering black
node. This is done by associating (using pointers) the black nodes of the source octrees with the polyhedral
faces that are contained inside of or intersect with them. Then, when the source octrees are rebuilt (i.e., moved
to reflect the new position of the objects) these pointers are copied to the new rebuilt octree; a black node in
a rebuilt octree copies all pointers from every source octree black node that is inside of or intersects with that
black node. Finally, in step 3 instead of checking an interfering black node for intersection with all faces of the
objects which contain that black node only the faces pointed to by the pointers for that interfering black node
need to be checked.

＇

6

Chapter 2

Efficient Algorithms For Octree
Motion

Abstract

This chapter presents efficient algorithms for updating moving octrees. The first algorithm works for octrees
undergoing both translation and rotation motion; it works efficiently by compacting source octrees into a
smaller set of cubes (not necessarily standard octree cubes) as a precomputation step, and by using a fast,
exact cube/cube intersection test between source octree cubes and target octree cubes. A parallel version of
the algorithm is also described. Finally, the chapter presents an efficient algorithm for the more limited c邸 eof
octree translation only. Experimental results are given to show the efficiency of the algorithms in comparison
to competing algorithms. In addition to being fast, the algorithms presented are also space efficient in that
they can produce target octrees in the linear octree representation. ・

2.1 Introduction

Octrees are commonly used in computer graphics and robot path planning applications as an au、xiliaryobject
representation to speed up spatial access to the parts of the main object representation. For example, in collision
detection octrees of objects can be searched to localize quickly interference between objects [KTAK94]. In
speeding up the spatial access to the parts of the main object representation, the octree is immensely helpful.
The problem is that when an object moves the octree for that object must be updated to reflect the new
location, which is not as straightforward as for other object representations such as boundary representations
and is in general very computationally intensive. Not much research has been done on algorithms for arbitrary
octree motion [WA87, H087].

This chapter deals with the problem of efficiently updating moving octrees [SKK94]. The chapter starts by
considering the general problem of arbitrary motion of octrees (i.e., both translation and rotation) and takes
as a basis the arbitrary octree motion algorithm described in [WA87]. The chapter describes a new, more
efficient octree arbitrary motion algorithm and provides data showing that the algorithm runs 3 to 4 times
faster than [WA87]. The new algorithm has two important features which allow it to run efficiently. The first
feature is based on the fact that the computational cost of octree motion is proportional to the number of
black nodes; thus, the chapter shows how, as precomputation, an octree can be compacted into a smaller list
of nonoverlapping cubes (usually about half as many cubes). The second feature is the use of a fast cube/cube
intersection test which is specialized for efficient moving of octrees. A parallel version of the arbitrary motion
algorithm will also be presented and experimental results will be given to show it's effectiveness. Finally, the
chapter considers the more limited problem of octree translation only and describes a simple method which
can be used to translate octrees most efficiently. It is important to note that, in addition to being fast,
the algorithms presented in this chapter are also space efficient; this is because they can be used for octrees
represented in the linear octree representation.

2.2 Octree Shape Rep
．

resentation

2.2.1 Basic Representation Scheme/Linear Representation

The octree is a volumetric, hierarchical shape representation scheme. The octree represents the shape of an
object by recursively subdividing cubes into 8 smaller cubes (octants), starting from a single large root cube

7

representing the entire world space. A cube is labelled black (white) if it is completely contained within the
object (free space); otherwise, the node is labelled gray. Cubes at the highest level ofresolution (smallest cubes)
are called voxels and, since there can be no gray voxels, are labelled black or white depending on application
specific rules. An example of an octree is shown in figure 2.1.

Since an explicit pointer-based octree storage scheme can be prohibitively expensive in terms of memory
requirements, more compact linear encodings of octrees have been invented. An example of this is the DF-
representation for octrees [Man88]. Essentially, this scheme stores an octree by listing consecutively the octree
nodes encountered on performing a preorder traversal of the octree, where the alphabet used is "(", (gray
node), "B" (black node), and "W" (white node). Since there are only three characters in the alphabet, two
bits per node are sufficient for storing the octree. As an example, the example octree of figure 2.1 has the
DF-representation "(B(BWBBBWWWBWBWB (B(BWBBBWBWBBB
WBW".

z

(a) (b}

皐
level 3 depth 0

level 2 depth 1

level 1 depth 2

gray black white

level 0 depth 3

(c)

Figure 2.1: The octree shape representation. (a) The ordering of octants (b) An example octree (c) Pointer-
based representation of the example octree.

2.2.2 Octree Motion Basic Algorithm

The basic algorithm for moving an octree [WA87] (for both translation only and arbitrary motion) is to apply
the motion transformation matrix to each black cube in the octree to be moved (called the source octree)
separately (for a series of motions, the same source octree is always used and only the motion matrix is
changed; this prevents digitization errors from contin叫 lyincreasing) and to test recursively, starting from
the largest cube, for intersections between the transformed black cubes and the standard, upright (i.e., faces
parallel to the standard euclidean coordinate axes) cubes of the new octree to be created (called the target
octree). Standard cubes in the target octree are labelled white, gray, or black depending on whether they don't
intersect with a transformed black cube, intersect partially with a transformed black cube, or are completely
inside of a transformed black cube. Target voxels are labelled black or white depending on application specific
rules. After a transformed source black node is tested for intersection with a target octree gray node, the gray
node is tested to see if its 8 children are all labelled black or all labelled white; if so then the children are erased
and the gray node is labelled the same as the children were (this is called condensing the octree). This basic
algorithm is illustrated in figure 2.2 (to simplify the figure, we illustrate the algorithm for the 2D case, called
a quadtree; the octree algorithm works in an analogous way). The following sections will describe efficient
variations of this basic algorithm.

＇

8

ャ

a black node of
the source octree

a transformed
node

ャ

the target octree of
a transformed node

Figure 2.2: The octree motion basic algorithm illustrated for the 2D case (quad tree).

2.3 Compaction of Octrees

Note the fact that the computational cost of octree motion is proportional to the number of black nodes in
the source octree. Also, since motion always starts from the same source octree much precomputation on the
source octree can be done to speed up the octree motion. In particular, it is not even necessary to store the
octree directly as an octree. Thus an optimization to the basic algorithm is, as a precomputation step, to
compact the octrees to be moved into the smallest set of nonoverlapping cubes. The cubes in this compacted
set are not restricted to being the standard cubes of an octree (e.g., they don't necessarily have side lengths
which are powers of 2), but they completely cover the black area of the octree.

Conceptually, the smallest set of nonoverlapping cubes which completely cover an octree's black area can
be found by examining all combinations of integer side length cubes which are inside the root cube. Practically,
however, this is intractable. Here, we merely wish to demonstrate the utility of octree compaction for octree
motion. So for demonstration purposes we used the following approximate algorithm; this algorithm is not
guaranteed to find the strictly smallest set of nonoverlapping cubes but it does generally find a set that contains
about half as many cubes as there were black cubes in the original source octree.

The algorithm works as follows. First, the bounding box of the octree is found; this is the axis-aligned
parallelpiped inside the root cube which just encloses all of the black cubes of the octree. Next, all cubes
which have integer side length and which are contained inside the bounding box at integer-valued vertices
are enumerated in order from larger to smaller cubes (the ordering of same sized cubes does not matter).
The enumerated cubes are then scanned from larger cubes to smaller cubes. Each scanned cube is tested for
intersection with the white cubes in the octree and the cubes that don't intersect any white cubes (i.e., that
are completely inside the black area of the octree) are put into a new list. This new list is scanned, again from
larger cubes to smaller cubes, and the scanned cubes which don't intersect any cubes already in the output list
(this is initialized to contain no cubes) are added to the output list. After this, the output list will contain a
list of cubes which are nonoverlapping and which completely cover the black area of the octree; usually, there
will be fewer cubes than there are black cubes in the octree. Note that this basic algorithm could be easily
combined with a random or genetic algorithm component to get better compaction. For example, an extra step
could be added which randomly changed the order of the enumerated cubes and then ran the algorithm again;
this could be done for some number of steps and the smallest set found could be used. For our experiments
(see section 2.6), we scan the list of enumerated cubes n times, where n is the number of enumerated cubes,
starting from a different cube for each scan (but still going from larger cubes to smaller cubes—thus, not all
cubes are always scanned).

2.4 Arbitrary Octree Motion

2.4.1 Problems with Related Work

For arbitrary octree motion, the transformed source cubes are not necessarily upright and so there is no
simple intersection test. [WA87] claims that performing an accurate intersection test between the transformed
source cubes and the target octree standard cubes is too computationally expensive and that an approximate
intersection test between the circumscribed spheres of the transformed source cubes and the non-voxel target
octree standard cubes will allow most efficient arbitrary motion of octrees (remember that target voxels are
handled by application specific rules—thus, the created target octree is not approximate). There are two

，

problems with this, however. First, [WA87) claims to be testing for intersection between the circumscribed
spheres of the transformed source cubes and the target octree standard cubes. However, the mathematical test
that is actually described to perform this intersection test is in fact geometrically an intersection test between
the bounding boxes of the circumscribed spheres of the transformed source cubes and the target octree standard
cubes; thus, it is doubly approximate. Second, [WA87) claims that using~n approximate intersection test is the
efficient way to move octrees; however, an important result of this chapter is that using the exact cube/cube
intersection test described in this chapter greatly reduces the total number of such cube/cube intersection tests
(the exact test eliminates more target cubes from further consideration earlier on) which need to be performed
and allows the algorithm to run approximately 40% faster.

2.4.2 Exact Source Cube/Target Cube Intersection Test

The exact source cube/target cube intersection test requires the positions (i.e., center point and eight corner
points) of each cube before motion (i.e., their upright positions) and both the motion transformation matrix
and the inverse motion transformation matrix. In the algorithm, any transformations done on the source
cube use the motion transformation matrix and any transformations done on the target cube use the inverse
transformation matrix. The test will return one of three possibilities: intersection, no intersection, or complete
intersection (this will be returned if the target cube is completely inside the source・cube). The test is a series
of coarse-to-fine steps邸 follows:

1. Determine the smaller of the two cubes. If the two cubes are the same size then the source cube is
considered to be the smaller cube. Also, determine the radius of the circumscribed and inscribed spheres
of the smaller cube.

2. Transform the center point of the smaller cube and determine if either its circumscribed sphere or inscribed
sphere (these will be centered at the transformed center point and have radiuses as calculated in step
1) intersect with the upright version of the larger cube1. If the circumscribed sphere does not intersect,
then the two cubes definitely do not intersect. If the inscribed sphere does intersect, then the two cubes
definitely do intersect (however, if the smaller cube is the target cube, then even if intersection is detected
continue to the next step to check for complete intersection). Otherwise, continue to the next step.

3. Next, transform the eight corner points of the smaller cube and check to see if any of them are contained
within the upright version of the larger cube. If the smaller cube is the target cube then check to see
if all of the eight transformed points are contained within the upright version of the larger cube; if
so then return complete intersection (if not all eight points are inside, but one or more is inside then
return intersection). If not, Stop and report intersection after finding the first such corner point inside.
Otherwise, continue on to the next step.

4. Transform the eight corner points of the larger cube and check to see if any of them are contained within
the upright version of the smaller cube. Stop and report intersection after finding the first such corner
point inside. Otherwise, continue to the next step.

5. Now, because we have gotten this far we know that the two cubes are intersecting if and only if each cube
has at least one edge (i.e., one of the edges of its faces) intersecting a face of the other cube. Determine
the edges of the transformed version of the smaller cube. Then, test each edge against every face of the
upright version of the larger cube to see if there is a face for which the edge is on the outside of the
face. If there does exist such a face, then the edge cannot be intersecting with the other cube. If there
is no such face, then the edge might be intersecting the other cube so store it in a list of edges. If, after
checking all edges, there are no edges in the list then the two cubes definitely do no intersect. Otherwise,
pass the list of edges onto the next step.

6. For each edge in the list of edges and for each face plane of the upright cube that it intersected, find the
intersection point of the edge with that plane. If the intersection point is inside the face of the upright
cube, then there is definitely intersection. If not then continue with the next face (for the current ed?e)
or the next edge (from the list). If all such edges and faces are checked without finding any intersect10n
points on a face, then there is no intersection. This concludes the test.

Note that optimizations to this can be made for efficient octree motion. For example, the circumscribed
and inscribed radiuses can be precomputed since there are only a finite number of them. Also, even though
a source or target cube might need to be tested for intersection with many other cubes, its center point and
eight corner points only need to be transformed once.

1The actual sphere/cube intersection test used is described on page 335 of [Gla90]; however, we optimize this test by noting
that it does not need to be called twice separately for the circumscribed and inscribed spheres—since both have the same center
point the calculation of dmin is the same for both and thus only an extra conditional is needed at the end for the extra sphere.

＇

10

2.4.3 Arbitrary Motion Efficient Algorithm

The new algorithm works by recursively traversing (in preorder) the target octree down to the level of resolution
(starting from the root and with all source black cubes, which are gotten from octree compaction or by simply
listing the original source black cubes) and testing the traversed target nodes for intersection (using the exact
source cube/target cube intersection test described in section 2.4.2) with the source cubes. A target node
is only tested for intersection with the source cubes found to be intersecting with its parent node (i.e., the
source cubes are passed down recursively from the root node to the target nodes with which they intersect).
A non-voxel target node determines its color (black, white, or gray) depending on its intersections with the
source cubes passed to it (black if the cube/ cube intersection test returns complete intersection for one or more
of the source cubes, white if the cube/cube intersection test returns no intersection for all source cubes, and
gray if the cube/cube intersection test returns intersection for one or more source cubes). However, a non-voxel
target node that initially determines itself to be gray in this way waits for its children to determine their colors
before finally determining its own color; if the children are all white then the non-voxel target node sets itself
to be colored white and if the children are all black then the non-voxel target node sets itself to be colored
black (this is condensing the target octree). Target octree voxels are tested for intersection with source cubes
using an application specific rule and determine themselves to be black or white depending on whether this
rule returns intersection or no intersection.

To create the target octree in the DF-l'epresentation, each target node, upon determining its color, writes
the symbol for its color (i.e., "(", "B", or "W") to the current location in an array (the current location is
initialized to be element 1 of the array) and increments the current location to point to the next location in the
array. However, a gray node, before incrementing the current location and recursing to its children, saves the
current location; if it later changes itself to be white or black (due to condensing) it sets the current location
to be the saved current location, sets the current location in the array to be its new color symbol ("W" or
"B"), and increments the current location. After the target octree has been completely traversed in this way,
the array will contain the DF-representation of the target octree.

2.4.4 Parallel Algorithm

The algorithm can be fairly easily parallelized, due to the many independent cube/cube intersection tests which
are involved. Before the parallel algorithm is run, a precomputation step is run to divide the source black cubes
evenly among the processors. ~n other words, if there are N processors then processor i will receive source
black cubes i,i + N,i + 2N, ... After the precomputation step, each processor runs the serial algorithm on the
source black cubes that it was assigned and creates a partial target octree. After all processors create a partial
target octree, one of the processors creates the target octree by performing a union on all of the partial target
octrees.

2.5 Octree Translation Only

For translation only, the transformed source cubes are axis-aligned. Thus, the test for intersection between a
source and target cube is simply testing the source cube against the six face planes of the target cube to see
if it is completely outside of one of them (i.e., this is just like checking bounding boxes for intersection). This
is the conventional algorithm but, unfortunately, it doesn't take into account the fact that many of the target
cubes'faces share the same face plane and so there are many redundant tests of source cubes against the same
face planes. The most efficient way to perform octree translation is thus to test the source cubes against the
face planes only once, storing the results, and then combining the results to create the target octree.

In particular, the main idea is to perform binary space subdivision in each of the x, y, and z dimensions
separately for each source cube and then combine these results and add them to the target octree. In other
words, successively divide the one dimensional space in half, starting from the space which extends from the
minimum to maximum extent of the dimension, and determine on which side of the division the source cube
lies—the side(s) on which the source cube lies are further subdivided and this continues to the level of resolution
of the target octree. After the x, y, and z dimensions have been separately subdivided and compared against
the source cube (for all source cubes), these results are combined by traversing the target octree starting from
it's root (and down to the level of resolution) and determining whether the source cubes overlap any of the
target cubes traversed (using the test described in the previous paragraph); however, the determination of
which side of a face plane a source cube is on does not actually have to be calculated, but rather can be looked
up from the results of the binary space subdivision. This method minimizes the number of source cube/face
plane comparisons that must be done and results in a large speedup over the conventional approach (see section
2.6). To obtain the octree in the DF-representation, the algorithm for arbitrary motion (described in section

11

2.4.3) is used except that instead of using the cube/ cube intersection test the binary space subdivision results
are looked up to determine if there is intersection between source cubes and target cubes.

2.6 Experiments

We implemented the algorithm and a test environment on a Silicon Graphics 4D/340VGX, which is a shared-

memory multiprocessor with four 33 MHZ MIPS R2000A/R3000 processors. We first did experiments for the
arbitrary octree motion algorithms. All time measurements are for the time taken to create completely the

target octree. As the application specific rule for target voxels, we determine that a target voxel intersects

a source node if the center point of the target voxel (inverse transformed) is inside of the upright version of

the source node; this is the rule that was used by [WA87]2 and we use it here for direct comparison with

our algorithm図 Asthe test, we moved a space shuttle object (resolution level 5 source octree with 863 black

nodes— 458 black cubes after being compacted with the octree compaction algorithm described in section 2.3)
with both translation and rotation motion for a number of cycles; at each cycle we measured the time that

it took to create the target octree. Using this test, we compared the algorithm of [WA87] against a version

of [WA87] which uses the exact source cube/target cube intersection test described above (i.e., other than

that the algorithm is the same as [WA87]一notethat these implementations both represent octrees using an
explicit pointer-based representation). Then, we compared our proposed efficient arbitrary motion algorithm,

with all features (i.e., compaction ofoctrees, use of linear octree representation, etc.), against [WA87]. We also

implemented the parallel version of the proposed efficient algorithm and performed the test using 2, 3, and 4

CPUs. Figure 2.5 shows the space shuttle test object. The results of the experiments for the arbitrary octree

motion algorithms can all be seen in figure 2.3. Also, at the last cycle (cycle 39) of the experiment the Weng

and Ahuja algorithm performed 54007 cube/cube intersection tests while the same algorithm with the exact

cube/cube intersection test performed only 43223 such tests; the numbers for the other cycles were similar.

Finally, we compare the conventional octree translation algorithm against our proposed efficient translation

algorithm (both described in section 2.5). As the application specific rule for target voxels here, we determine

intersection if any part of a target voxel intersects a source node. As the test, we use the same test as for the

arbitrary motion test without the rotation component (i.e., move the space shuttle with the same translation
component). Once again, at each cycle we measured the time that it took to create the target octree. Note that

we tested the proposed efficient translation algorithm both with and without octree compaction; the result from

without compaction shows that the proposed method truly is efficient (and not due to just the compaction).

The results of the experiments for octree translation algorithms can be seen in figure 2.4.

2. 7 Discussion

As can be seen from the figures, the arbitrary motion algorithm is quite efficient in comparison to the algorithm

of [WA87]. Figure 2.3 shows that, as we stated previously, the algorithm of [WA87] works approximately 40%

faster when it uses the exact cube/cube intersection test. Even better, our new algorithm runs nearly 4 times
faster than [WA87]. In addition, the parallel algorithm achieved reasonable speedups. The parallel algorithm

(with four processors) achieves about an eight times speedup over the algorithm of [WA87]. In addition,
the optimized translation algorithm performs about 3 times better than the basic algorithm; note also that

the translation algorithm is much faster than the arbitrary motion algorithm (for the same object and same

translation, but without the rotation)一thus,if motion is only translation then big performance gains can be

had by using the translation only algorithm instead of the arbitrary motion algorithm.

[H087] also describes an algorithm for updating octrees undergoing arbitrary motion; it works similar to

[WA87], except that it avoids condensing octrees by comparing traversed target nodes for intersection with

both the black and white nodes of the source octree (i.e., if a target node intersects only black source nodes or

only white source nodes then the node is known definitely to be black or white—no condensing is necessary).
We did not implement this algorithm in order to compare it to ours. This is because, even allowing for speedups

due to faster computer hardware our algorithm performs better for similar sized octrees (i.e., compared to

the performance figures given in [H087], our algorithm performs more than 115 times better, and just better

hardware most likely cannot make up for this).

2Because of this specific rule, when testing for intersection between a source cube and a non-voxel target cube it suffices to test
for intersection between the source cube and a shrunken version of the non-voxel target cube which just contains all the center
points of the voxels in the non-voxel target cube. This is a cube which has the same center point as the non-voxel target cube but
whose side length is one less. This rule specific optimization is used in (WA87] and we also use it, but it is not generally applicable.

3Note, however, that to insure correctness in collision detection and robot path planning the rule must be to label a target
voxel black if any part of it intersects with any transformed source node—our algorithm can easily and efficiently adapt to this
rule whereas (WA87] cannot.

12

computation time (milliseconds)

900

800

700

600

500

400

300

200

100

゜

＇ r -， I
＇ ，

I ¥ / I¥ ヽ

,-'', -、,＇、, ---―', ___、 II ,ヽ" -
.,, ーへ Iヽ ,, V ヽ ’‘ ‘ ヽI ヽヽ．ヽ ＇ 、1 、I

＇ A
‘’

.'-.

,'、 9、

... :、9

ー・’

‘‘
,,-. ,'

→ ・'、・、../ ¥/ ・/

,----
---,

....... .. ・・. ... -- ~
．． a

‘‘ ---, ~ ------ -- ------✓ _,,,
← → ,~I~ ~

’＼ ＇冗ヽヽ` ． ‘ヽ ．．，、... ・；,. ---・・ ，． ヽ巳—―--、 -----.~ -----．—心—，，•. --、,,,..--、/-"''..,. --へ,,,... '長`、..-＿、←,、.---― ・.ヘ. ‘、’`

、., .'、, -. , 、（

,_ -- ,,, 、ヽ _,,,, .. 一•.. ・;.,, .. -・' 1ノ•、ベ...―-..-. "--. . 、.,__,・ペ, , .. _ヽ/ ` ~ • ..、•. —

_＼ aplrgooproitshem d
(4 processor,

I

Weng & Ahuja
lgorithm

Weng & Ahuja
lgorithm with
xact cube/cube
ntersection
test

proposed
lgorithm

゜
10 20

t (cycles)
30 40

Figure 2.3: Results from the tests done for the arbitrary motion algorithms.

A final important characteristic of the new arbitrary motion algorithm is that it can optimize geometric
search using octrees. In other words, in many applications the octree serves merely as an auxiliary object
representation to some main representation which is actually visualized (e.g., boundary representation, con-
structive solid geometry). In this case the octree is used to speed up spatial access to the parts of the main
representation. In this kind of an application, it is not always necessary to update completely (i.e., to voxel
level) the octree for an object, but rather only until the necessary spatial access operation is complete. For

example, in collision detection using octrees, if a non-voxel target node is found to be intersecting only source
black cubes from one object then it is not necessary to check the child nodes of that target node (because there
can be no collisions anywhere within that target node—only one object's source black cubes are contained
within it). The new arbitrary motion of this chapter can easily handle this situation, whereas (WA87] cannot
because it must traverse the target octree many times for each source black cube separately.

2.8 Conclusion

In this chapter, we have presented efficient algorithms for updating octrees undergoing both arbitrary mo-
tion and translation only motion. The arbitrary motion algorithm achieves efficiency by using a fast, exact

cube/ cube intersection test and by compaction of octrees as a precomputation step. An efficient parallel version
of the arbitrary motion algorithm was also presented. For translation only, efficiency is achieved by testing

source black cubes against face planes in the target octree only once and then combining the results to create

the target octree. Both the arbitrary motion algorithm and the translation only algorithm can be used for
octrees represented in the linear OF-representation.

13

computation time (milliseconds)

350

300

250

200

150

100

50

、 Conventional
translation algorithm

.,

‘

ヽ，

, , , , r、/"/'/'/ -, / -、, ヽ

＇

'--,、‘、/、',__ _..、 --―|― ーー、‘、,,..-----,,、,,...---「―-----ヤ --------------1―----------,、、,/'、‘’•‘‘

・・・・・・・・,, /・・・・ ・.. ・・’•ノ I • / /!-./ ._/¥¥・・・-I --

Proposed translation
algorithm (without
octree compaction)

Proposed translation
algorithm (with
octree compaction)

゜
゜

10 20
t (cycles)

30 40

Figure 2.4: Results from the tests done for the translation motion only algorithms.

，

Figure 2.5: The space shuttle experimental object.

14

Chapter 3

A Simple and Efficient Method for

Accurate Collision Detection Among

Deformable Polyhedral Objects in
Arbitrary Motion

Abstract

We propose an accurate collision detection algorithm for use in virtual reality applications. The algorithm works

for three-dimensional graphical environments where multiple objects, represented as polyhedra (boundary

representation), are undergoing arbitrary motion (translation and rotation). The algorithm can be used directly
for both convex and concave objects and objects can be deformed (non-rigid) during motion. The algorithm

works efficiently by first reducing the number of face pairs that need to be checked accurately for interference

by first localizing possible collision regions using bounding box and spatial subdivision techniques; face pairs

that remain after this pruning stage are then accurately checked for interference. The algorithm is efficient,

simple to implement, and does not require any memory intensive auxiliary data structures to be precomputed
and updated. Since polyhedral shape representation is one of the most common shape representation schemes,

this algorithm should be useful to a wide audience. Performance results are given to show the efficiency of the
proposed method.

3.1 Introduction

In a virtual environment, we can simulate various kinds of physical phenomena. An important example of this

is being able to determine when moving objects collide; this is called the "collision detection problem." It is
vitally important to be able to update a virtual environment at real-time rates to engender realism for a user.

Unfortunately, current collision detection algorithms, if used, are an enormous bottleneck and make real-time

update impossible [Pen90, Hah88]. The difficulty of collision detection for polyhedral objects can be seen by
examining the basic, naive way of performing it. The basic method works by performing static intersection

tests at discrete time instants; the time interval between tests is assumed small enough so that collisions are not

missed. Then, interference among polyhedral objects at a time instant is detected by testing all combinations

of faces and edges for the presence of an edge of one object piercing the face of another object; if such an

edge-face pair exists then there is a collision [Boy79]. The average time complexity for this test (for n objects)

is 0(炉EF),where E and Fare the number of edges and faces in the average object. As can be seen from this

complexity figure, the problem lies in the necessity of having to perform such a large number of computationally

expensive intersection tests at every time instant, where the number of such tests increases quadratically as

the number and complexity of objects increase. For anything more than a simple world with a few objects of

a few hundred faces each, this method is untenable in terms of maintaining real-time performance.

The main problem with the basic, naive collision detection method is that it requires such a large number

of computationally expensive edg':-face intersection checks. In an actual virtual world, the number of edge-face

pairs that intersect at any time mstant is a small percentage of the total number of possible pairs (in fact,

much of the time there are no intersections). Thus, it is desirable to have a collision detection algorithm which

checks a number of edge-face pairs proportional to the number that actually intersect. In this chapter, we

present an algorithm that realizes this and can be used for general (i.e., the environment can contain both

15

convex and concave objects), deformable polyhedral objects undergoing arbitrary motion [SKTK95].
The remainder of the chapter is organized as follows. The next section discusses other research efforts

towards efficient collision detection. After that, the details of our collision detection algorithm are described.
Next, experiments carried out using our algorithm are described, and performance results, showing the efficiency
of the approach, are given. Finally, the last section concludes the chapter.

3.2 Efficient Collision Detection Approaches

There is much literature devoted to efficient collision detection approaches and this section discusses this
research. The first subsection simply describes other approaches to efficient collision detection. Then, the
last two subsections evaluate these other approaches, describing the problems with them which make them not
entirely suitable for practical, large-scale virtual environments and how our algorithm addresses these problems.

3.2.1 Related Collision Detection Research

Much research on collision detection for polyhedra aims to drastically reduce the number of edge-face pairs that
need to be checked for intersection. A common first step in many collision detection routines is an approximate
bounding region (usually an axis-aligned box or a sphere) overlap test to quickly eliminate many objects as
not interfering. An extension of this idea is to use a hierarchy of bounding regions to localize collision regions
quickly [Hah88). Related methods use octrees and voxel sets. [GSF94) stores a voxel data structure with each
object, with pointers from voxels to polyhedra faces that intersect them. Collision is localized by testing for
intersection of voxels between two objects. [KTK94) stores an octree for each object and, at each time instant,
checks the interference of objects'updated octrees; face pairs from inside of interfering octree nodes are then
checked for collision. Other voxel and octree methods include [MWSS, Tur89, ZPOM93, SH92, Hay86).

Another method for collision detection involves keeping track of the distance between each pair of objects
in the world; if the distance between a pair goes below some small threshold then the pair has collided. A
noteworthy use of this idea for collision detection of rigid, convex objects is [LMC94), where coherence of
objects between time instants (i.e., object positions change only slightly) and the property of convex polyhedra
are used to detect collisions among objects in roughly constant time per object pair. Other research which
uses this distance based approach include [GJKSS, Qui94).

Briefly, some other approaches to collision detection are as follows. (BV91) uses a data structure called a
"BRep-Index" (an extension of the well-known BSP tree) for quick spatial access of a polyhedron in order to
localize contact regions between two objects. [Bar90) finds separating planes for pairs of objects; using object
coherence, these separating planes are cached and then checked at succeeding time instants to yield a quick
reply of non-collision most of the time. [SF91] uses ideas from the z-buffer visible surface algorithm to perform
interference detection through rasterization. [Van94) uses back-face culling to remove roughly half of the faces of
objects from being checked for detailed interference; the basic idea is that polygons of a moving object which do
not face in the general direction of motion cannot possibly collide. [FHA90] uses a scheduling scheme, whereby
object pairs are sorted by distance and only close objects are checked at each time instance. [Hub93) uses four
dimensional space-time bounds to determine the earliest time that each pair of objects could collide and does
not check the pair until then. [Pen90) models objects as superquadrics and shows how collision detection can
be done efficiently using the inside/outside function of a superquadric. For coarse collision detection, [FPB94]
stores bounding regions of objects in a stack of 2D structures similar to quadtrees (to reduce memory use) and
uses only bit manipulations to add or delete objects to this (to reduce computation).

Finally, our algorithm uses ideas from methods for localized set operations on polyhedra [MT83, FK85).
These methods attempt to perform efficiently set operations, such as intersection, union, etc., on polyhedra by
localizing the regions where faces are using spatial subdivision techniques; a set operation for a face then only
needs to be done against the other faces inside the region that the face is in. As a particular example, the idea
of intersecting faces with overlap regions of bounding boxes in order to localize the interference region of two
objects was first described in [Mar72) and we use this idea effectively in our algorithm.

3.2.2 Evaluat10n

We evaluate the above algorithms on the basis of four properties of a collision detection algorithm necessary
for effective use in a practical, large-scale virtual environment inhabited by humans. These are the ability to
handle deformable (non-rigid) objects, the ability to handle concave objects, not using excessive amounts of
memory for storing auxiliary data structures, and having better than 0(記） complexity for n objects in the
world. None of the algorithms surveyed in the previous subsection has all four properties and some do not
even have one of them. Our algorithm can satisfy all four of these properties.

16

Deformable Objects

In a virtual environment inhabited by humans, it is very important to be able to perform collision detection
for objects which deform during motion. For example, in physical-based simulations forces between colliding

objects are determined and the colliding objects are then deformed based on these forces. In general, a
user should be allowed to deform objects in a virtual environment, which necessitates collision detection for

deformable objects. Many of the above algorithms require precomputation and computationally expensive
updating of auxiliary data structures (e.g., octrees, voxel sets, BRep-indices, etc.) for each object. This limits
their usefulness because it means that objects are essentially limited to being rigid; this is because when an

object defonns, its auxiliary data structures must be recomputed and this is usually an expensive operation.

Our collision detection algorithm handles deformable objects.

Auxiliary Data Structures

In addition to being expensive to recompute, storing auxiliary data structures for each object can take up

considerable memory. This limits the number of objects for which such algorithms can be effectively used. Our
algorithm does not require any auxiliary data structures beyond simple bounding boxes and arrays.

Concave Objects

Another problem is that some of the above collision detection algorithms require objects to be convex [Bar90,

LMC94, GJKSS, Qui94]. However, it is clear that most objects of interest in the real-world are concave and a
virtual environment, to be useful, should allow concave objects. To solve this problem, the above authors argue
that a concave object can be modeled as a collection of convex pieces. While this can in fact be done for any
concave object, it adds many fictitious elements (i.e., vertices, edges, etc.) to an object. In addition, breaking
a concave object up into convex pieces means that the one object becomes many objects; unfortunately, this
greatly worsens the complexity problem described in the next section (because each convex piece of the concave
object must be treated as a separate object for the purposes of collision detection). Most importantly, however,

any algorithm that requires objects to be convex or unions of convex pieces cannot be used to detect collisions
for deformable objects; this is because, in general, deformations of an object easily lead to concavities. Our
algorithm deals directly with concave objects in the same way as convex ones, with no extra computational

overhead.

Complexity

The O(n2) complexity problem becomes apparent for large-scale virtual environments. [Pen90] discusses prob-
lems due to computational complexity in computer-simulated graphical environments and notes that collision

detection is one such problem for which, in order to simulate realistically complex worlds, algorithms which
scale linearly or better with problem size are needed. To understand the problem concretely, consider a col-
lision detection algorithm that takes 1 millisecond per pair of objects. While for very small environments
this algorithm is extremely fast, the algorithm is impractical for large-scale environments. For example, for

an environment with just 50 objects 1225 pairwise checks between objects must be done, taking more than a
second of computation; in this example, real-time performance cannot be maintained for environments with
more than 14 objects (being able to compute something in 100 milliseconds or less is considered to be real-time

performance [CMN83]). All of the distance based approaches [LMC94, GJK88, Qui94] and many of the others
[Bar90, Pen90, GSF94] suffer from this complexity problem. In our experiments, we did use a bounding box test
among objects which is 0(炉） for n objects. However, the bounding box test between two objects is extremely

fast and thus should not become a bottleneck unless there are many objects in the environment; for such an
environment, however, the problem can be easily solved by using a bounding box check with better complexity

([Kir92] describes such a method) or by skipping the bounding box stage altogether and going directly to the

face octree spatial subdivision stage which is 0(n) for n objects.

Other

A few other minor problems with the surveyed algorithms are as follows. Some of these algorithms [Tur89,

Pen90] cannot be used for polyhedra, which limits their usefulness for current graphical applications where

polyhedra dominate as the object representation. Some of the algorithms do not provide accurate collision

detection (i.e., identify exactly which objects are interfering and which faces of the objects interfere一 [KTK94]

describes how this is useful for operator assistance) among objects [SF91, Hub93, FHA90, FPB94]. While most
of the algorithms described above are clearly improvements over the basic, naive collision detection algorithm,

none of them provide a solution to the problem that is as general, efficient, and simple as ours. The details of

our collision detection algorithm are presented next.

17

3.2.3 Proposed Algorithm

Our proposed algorithm is an extension of the methods for localized set operations for use in collision detection.
In particular, we extend the ideas in [MT83, FK8.5, Mar72] to a world with multiple objects; these papers
describe algorithms for 2 objects but never precisely explain how to extend their algorithms efficiently to
handle multiple objects (thus, direct use of these algorithms requires 0(n2) complexity for n objects). In

addition, these algorithms, in testing for intersection between a face and_an axis-aligned box (while performing
spatial subdivision), advocate using an approximate test between the bounding box of the face and the axis-
aligned box; however, in developing our algorithm we found that using the exact intersection test described in
a later section gave better performance (because it reduces the number of edge-face pairs even more, without
much of an added computational cost). Also, these algorithms are used for performing static set operations;
we show how they can be. used for collision detection in a dynamic environment with multiple moving objects.
Finally, we provide empirical evidence to show the efficiency of the proposed algorithm. The next section
describes the details of our proposed collision detection algorithm.

3.3 Collision Detection Algorithm

3.3.1 Assumpt10ns

All objects in the world are modeled as polyhedron (boundary representation). The faces of a polyhedron are
assumed to be triangular patches without any loss of generality of range of representation. Objects can be
concave or convex. The objects are undergoing motion which_ is not predetermined (e.g., a user can move his
graphical hand in a sequence of non-predetermined, jerky motions); object motion can be both translation and
rotation. Objects can be deformed during motion. Given this kind of environment, the goal is to be able to
detect the colliding objects in the world and, in particular, the face pairs, between objects that are interfering.
Collision will be checked for all objects at discrete time instants (i.e., at each time instant the new positions of
objects will be determined, and collision will be checked for at that time instant before the computer graphic
images of the objects are drawn to the screen). It is assumed that the speeds of objects are sufficiently slow
compared with the sampling interval so that collisions are not missed. Finally, it is assumed that there is a
large cube which completely bounds the world (i.e., that all objects will stay inside of this cube); let the side
length of this cube be L.

3.3.2 Outline of the Method

Fig:w.re 3.1 shows the control flow of our method. Suppose there are n objects in the workspace. The bounding
boxes for each object are updated periodically (at discrete time instants•••, t;_1, t;, t;+1, ••·)using observed
object motion parameters. Updated bounding boxes are checked for interference. For each object with an
interfering bounding box all overlap regions of the object's bounding box with other objects'bounding boxes
are determined. Next, for each such object all faces of the object are checked for intersection with the overlap
regions of the object; a list of the object's faces which intersect one or more of the overlap regions is stored.
Then, if there is a list of faces for more than one object, a face octree (i.e., an octree where a node is black
if and only if it intersects faces) is built for the remaining faces (for all objects'face lists, together), where
the root node is the world cube of side length L and the face octree is built to some user specified resolution.
師inally,for each pair of faces which are from separate objects and which intersect the same face octree voxel
(1.e., smallest resolution cube) it is determined whether the faces intersect each other in three-dimensional
space. In this way, all interfering face pairs are found. Note that the intersection of faces with overlap regions
and face octree stages repeatedly test for intersection of a face with an axis-aligned box; thus, we describe an
efficient algorithm for testing this intersection.

3.3.3 App . rox1mate Interference Detect10n Using Bounding Boxes

At every time instant, axis-aligned bounding boxes are computed for all objects and all pairs of objects are
compared for overlap of their bounding boxes. For each pair of objects whose bounding boxes overlap, the
intersection between the two bounding boxes is determined (called an overlap region as shown in Figure 3.2)
and put into a list of overlap regions for each of the two objects. The overlap regions are passed to the next

step.

3.3.4 Determination of Faces Intersecting Overlap Regions

For every object which has a list of overlap regions, all faces of the object are compared for intersection with
the overlap regions. Once a face of an object is determined to be intersecting with at least one overlap region

18

extraction of rotation and translation

-・・,・・・・・・・-,---、

interference test usi~g bounding boxes I !

Figure 3.1: Control flow of collision detection.

it is placed in a face check list for the object. If there are face check lists for two or more objects then these

are passed on to the next stage. Figure 3.3 shows an example of faces intersecting an overlap region.

3.3.5 Face Octree Spatial Subdivision Stage

A face octree is built down to a user specified resolution for the remaining faces starting from the world cube

of side length L as the root. To minimize computation, only as much of the face octree as is necessary for
collision detection is built; in particular, a parent node is subdivided into its 8 children only if it contains faces

from two or more objects, and only the faces which were found to intersect the parent node are tested for

intersection with the children nodes. Also, there is no condensation of the face octree (i.e., 8 black child nodes

are not erased and replaced by their single, black parent node). If there are voxels in the face octree, then in

each voxel there are faces from two or more objects. For each voxel, all possible pairs of faces, where the faces

are from different objects, are determined and put into a face pair checklist. However, a face pair is only put

into this face pair checklist if it was not previously put there by examination of another voxel. The face pair

checklist is then passed to the next stage. Note that it is not necessary to allocate memory and actually build

a face octree; faces can simply be checked for intersection with the standard cubes of an octree and checked

recursively for lower-level cubes (thus no memory, beyond the small amount used by the stack during recursion,

for storing octrees is necessary). Also note that a face octree is built for only a very small portion of all the

faces; the previous stage eliminates most faces as not interfering.

3.3.6 Face Pair Interference Check

A pair of faces is checked for intersection at a time instant as follows. First, the bounding boxes of the faces are

computed and checked for overlap; if there is no overlap in the bounding boxes then the faces do not intersect.

Otherwise, the plane equation of the face plane of the first face is computed and the vertices of the second face

are evaluated in this equation; if all vertices lead to the same sign (+ or -) then the second face is completely
on one side of the face plane of the first face and thus there is no intersection. The plane equation of the face

19

Figure 3.2: An overlap region

z

x

Figure 3.3: Faces intersecting the overlap region

plane of the second face is then determined and the vertices of the first face are evaluated in it in the same
way. If neither face is found to be completely on one side of the face plane of the other face, then more detailed
checks are done as follows. For each edge, in turn, of face 1 the intersection point of it with the face plane
of face 2 is found and checked to see if it is inside face 2 (i.e., three-dimensional point-in-polygon check—the
method used is described in [Arv91]); if the point is inside the face then the two faces intersect. The case
when an edge and face plane are coplaner is handled by projecting the edge and face onto the two-dimensional
coordin.ate axis most parallel to the face plane and performing a two-dimensional intersection check between
the projected face and edge. In the same way, the edges of face 2 are checked for intersection with face 1. If

no edges of either face are found to intersect the other face, then the two faces do not intersect.

3.3.7 Efficient Triangular Patch and Axis-Aligned Box Intersection Determina-
tion

To determine whether or not a triangular patch intersects with an axis-aligned box, we perform clipping against
4 of the face planes of the faces that comprise the box; the 4 face planes are the maximum and minimum
extents of two of the three x,y,z dimensions (e.g., in our implementation we arbitrarily chose to clip against
the maximum and minimum x extents and the maximum and minimum y extents). For the final dimension,
it is only necessary to check whether or not the remaining vertices of the clipped triangular patch are either
all greater than the maximum extent or all less than the minimum extent; if either case is true then there is
no intersection, otherwise there is intersection. In addition, it is often not even necessary to clip against four
planes. During clipping, whenever the intersection point of a segment with the current face plane is calculated
this point can be quickly checked to see if it is inside of the face of the face plane; if it is inside, then the

triangular patch and box intersect and no more computation needs to be done. Finally, before performing
any clipping at all, two quick tests are done. As a first step, a quick overlap check between the bounding box

＇

20

Figure 3.4: Face pair intersection test.

of the triangular patch and the axis-aligned box can be done to quickly determine non-intersection in many
cases. Second, the three vertices of the triangular patch can be checked to see if one of them is inside of the

axis-aligned box; if so, then the triangular patch and axis-aligned box intersect.

3.4 Experiments

The algorithm and an experimental environment were implemented and run on a Silicon Graphics Indigo2

(this has an R4400/150 MHZ processor); experiments were done to determine the efficiency of the proposed
algorithm. In all experiments described in this section, face octrees were built to resolution level 6.

3.4.1 Standardized Objects

For performance evaluation, sphere-like objects approximated by differing numbers of triangular patches were
used; spheres were selected for testing because of their orientation invariance. Figure 3.5 shows some of the
spheres which were used in the experiments. The basic experiment done was to have two identical sphere
objects start at different (non-penetrating) positions and have them move towards each other (with both
translation and rotation motion) until they interfere. This basic experiment was done with sphere objects
having respectively 8, 10, 24, 48, 54, 80, 120, 168, 224, 360, 528, 728, 960, and 3968 triangular patches.
Figure 3.6 shows the computation time required at each processing cycle from t = l(cycle), when there is no
interference, until t = 72(cycle), when faces from the two sphere objects are found to be intersecting, for four of
the experimental sphere objects; at the last cycle, 70, 24, 16, and 11 milliseconds of computation are required
to determine the colliding faces for the spheres with 3968, 960, 528, and 168 faces. Finally, figure 3.7 shows the
computation required at the last stage (i.e., when faces from the two objects are found to be interfering— this
requires maximum computation and is the true measure of the efficiency of a collision detection algorithm) of
the proposed collision detection algorithm between two sphere objects against the number of triangular patches
of the sphere objects.

<I;)

鬱

◎

鬱

Figure 3.5: Examples of experimental objects (standardized spheres with different numbers of faces)

21

computation time (milliseconds)

70

60

50

40

30

20

3968 faces

10

゜

I I JJ / Ofaces

~
_), 528 faces

~j
且168faces

..... i, .. ·••,•·/
i ,. _ .. _...

I :""••• ふ..............ヽ．・．．．．．．．．

I ← ~.. L-,__三

゜
20 40 60

t (cycle)

Figure 3.6: Computation time for each processing cycle for two identical sphere objects with 168, 528, 960 and
3968 faces.

3.4.2 Multiple General Objects

An experiment was also done with multiple general (i.e., concave-a real-world type of object) objects. Specif-
ically, 15 identical objects (space shuttles with 528 triangular patches—see figure 3.12) were moved (both
translation and rotation) in the test environment for many processing cycles and the computation time re-
quired at each cycle to perform collision detection was measured. At every cycle, many objects'bounding
boxes were overlapping; thus, many triangular patches had to be tested for intersection with overlap regions
at every cycle. At the 1邸 tcycle of the test, faces from two objects were found to be interfering, taking 31
milliseconds of computation. Figure 3.8 shows the results of this experiment. Also in this figure, in order to
provide a basis for comparison, are the results for when only the two interfering space shuttle objects are in
the test environment; here, the last step, where faces are determined to be colliding, required 16 milliseconds
of computation.

3.4.3 Comparison Against Competing Algorithms

In order to show that our algorithm is truly efficient, we directly compared the performance of our algorithm
against two other competing algorithms. In general, it is difficult to make such direct comparisons because
authors of collision detection papers do not normally give out the code that they used to get experimental
results. Fortunately, however, we found the C language code for the first competing collision detection algorithm
in [Hec94], and the second competing algorithm is a slight modification of the algorithm proposed in this
chapter.

Separating Plane Algorithm

The first competing algorithm is based on ideas from [GJKSS] and [Bar90]. This algorithm can only be used for
convex, rigid objects and it does not return the list of face pairs that are interfering, as ours does. Thus, it is
not completely fair to compare our algorithm against this algorithm because our algorithm is more general and

22

computation time (milliseconds)

70

60

50

40

30

20

10

゜
゜

1000 2000

number of faces

3000 4000

Figure 3.7: Computation time at the last stage of the proposed collision detection between two identical sphere
objects against the number of planar patches of the objects.

gives more complete collision analysis. Even so, however, our algorithm gives better performance for non-trivial
virtual environments.

The details of this competing algorithm are given in [Hec94]. However, briefly, the algorithm works by
initially finding a separating plane between each pair of objects. A separating plane is found for two objects
by finding the two closest vertices on the two objects (using the method in [GJK88]); the vector between these
two points is the normal vector of the plane and the plane passes through one of the two points. Separating
planes are cached between time instants and the previous time instant's separating plane is checked at the
current time instant to see if it still separates the two objects; if it no longer separates then an attempt is made
to find a new separating plane, which is then cached. If no new separating plane can be found then there is
collision. Note that the complexity for this test (for n objects) is O(nり．

We compared our algorithm against this competing algorithm for environments containing differing numbers
of same sphere objects (528 triangular patches). In particular, we tested both algorithms in environments with
10, 20, 30, and 40 moving sphere objects; at the last cycle of the tests two of the sphere objects were interfering.
For 10 sphere objects, our algorithm performed roughly the same as the competing algorithm; in particular,
our algorithm required 16 milliseconds of computation at the last cycle, while the competing algorithm required
approximately 10 milliseconds per cycle. However, for 20, 30, and 40 objects our algorithm performed better.
In particular, for 20, 30, and 40 objects, our algorithm required 21, 22, and 41 milliseconds at the last cycle;
against this, the competing algorithm required approximately 35, 76, and 140 milliseconds per cycle. The
results of these experiments can be seen in figure 3.9 (the competing algorithm's times are drawn with dotted
lines, while the proposed algorithm's are drawn with solid lines).

Octree Update Algorithm

The second competing algorithm is a slight modification of the algorithm proposed in this chapter [KSTK94],
and is representative of the bounding region hierarchy, octree and voxel approaches described in the section
on related work (in fact, it is the algorithm described in more detail in the first chapter). Essentially, the

23

computation time (milliseconds)

30

25

20

15

10

~、
15 shuttles

k

2 shuttles

5

゜
゜

50
I

100 150

t (cycle)

Figure 3.8: Computation time at each processing cycle for 15 space shuttle objects-collision between two objects
is detected at the last cycle.

modification is to precompute complete face octrees for all of the polyhedral objects, and to store a list for
each black node of the faces which intersect that black node. Then, the proposed collision detection algorithm
is modified as follows. Instead of determining the polyhedral faces which intersect with overlap regions, the
octree update algorithm determines the black nodes from the precomputed face octrees which intersect with
the overlap regions; these intersecting black nodes are then put into a "node check list" (as opposed to a "face
check list"). Then, in the next stage (face octree spatial subdivision stage), instead of creating a face octree by
testing for intersections between the polyhedral faces in the face check list and the standard octree nodes, the
octree update algorithm builds an octree by testing for intersections between the transformed (i.e., using the
same transformation matrix as for the polyhedral objects) black nodes of the node check list and the standard
octree nodes. Finally, for each standard octree voxel which was found to contain transformed black nodes from
more than one object, all unique pairs of faces, where the faces are inside a precomputed face list of one of the
transformed black nodes and the faces are from different objects, are enumerated and checked for intersection
(using the method described in the face pair interference check section). Basically, the octree update algorithm
substitutes precomputed face octree black nodes for faces in checking for intersection with overlap regions and
standard octree nodes. Note that this algorithm can be used for concave objects, but that objects must be
rigid; thus, it is not as general as the proposed algorithm.

We tested the proposed algorithm against this competing algorithm for the environment of figure 3.11; this
environment contains a sphere (120 faces), a space shuttle (528 faces), a chair (146 faces), and a Venus head
(1816 faces). The experiment that was performed was to move the venus head and the space shuttle towards
each other (with translation and rotation) until they collided at the last cycle; the other two objects also
translated and rotated slightly (without any collision). The proposed algorithm performed much better than
the competing algorithm for all cycles after cycle 17 (when bounding boxes first overlapped); in particular, at
the last cycle the competing algorithm required 161 milliseconds of computation, while the proposed algorithm
required only 11 milliseconds (roughly 16 times better performance). Figure 3.10 shows the results of this
experiment.

＇

24

computation time (milliseconds)

140

120

100

80

60

competing method
(40 objects)

I

/ ¥八!¥;、八／＼／八八v1I 111¥¥,/'"'/'/ 1↓へ/¥/¥/'、／
competing method
(30 objects)

proposed method
(40 objects)

_j

¥

3

I,’

'，-
＼，＇

、̂ー‘',’ ,、J

八．
ー

｀

゜

＼ゞ

9
,

＇
／
ー
—

2

,
J

＼

ゾ
八＼，＇

."，

／
 .',’

9
,
9
,

□

0

＼

.，＇ ／，
.
,
•
ノ/

0

,
.
,
.
,
.
9
,
-
』

i

_

：99,9゜

0

0

4

2

t (cycle)

Figure 3.9: Computation time for each processing cycle for the proposed algorithm and the separating plane
competing algorithm for 10, 20, 30, and 40 identical sphere objects (528 triangular patches each).

3.5 Discussion

As can be seen from the various graphs given, our collision detection algorithm is quite efficient. A common
definition for "real-time" performance of a computer graphics application is being able to render 10 frames
per second [CMN83]. Using this definition, our algorithm is able to perform real-time collision detection for
objects having up to approximately 5936 faces (extrapolated from figure 3.7). Also important is the fact
that the algorithm takes negligible compute time (rarely more than 10 milliseconds) when no objects in the
environment are interfering. In addition, adding many objects to the environment increases computation time
only slightly (i.e., for the case that only two objects at a time interfere—if more objects interfere at the same
time then computation time will increase, but not greatly).

We did not implement the basic, naive collision detection algorithm in order to compare it to our algo-
rithm (because our algorithm is clearly better―see [KTK94] and [SF91] to see how ludicrously long the naive
algorithm can take for even very simple environments). The important basis of comparison should be with
other authors accurate collision detection algorithms for general, deformable polyhedra; as shown in the sec-
tion on related work, there are very few collision detection algorithms which providerevised this generality. We
were not able to compare directly our algorithm against another competing algorithm which is as general as
ours; however, even against the more restrictive algorithms of the previous section our algorithm gives better
performance.

Based on these experiments, it seems reasonable to conclude that our algorithm would perform quite well
in many applications. Unfortunately, however, we cannot assert, based solely on these experiments, that our
algorithm is the fastest for all possible applications. There has already been much research into efficient collision
detection, and many different efficient approaches have been proposed. We feel that, in addition to exploring
new collision detection approaches, "comparative collision detection" would be a worthy new research topic.
We feel that our proposed algorithm would fare well in such a comparative study, and we have made a start
towards such research with our comparisons against two competing algorithms. However, more comprehensive
research, which does more complete comparisons and which tests variations and combinations of the various

25

computation time (milliseconds)

160

140

120

100

80

60

40

20

゜

octree
update
algorithm

proposed
algorithm

゜
20 40 60 80

t (cycle)

Figure 3.10: Computation time for each processing cycle for the proposed algorithm and the octree update
competing algorithm for the environment of figure 3.11.

algorithms in situations that mimic real ap~lications, is necessary. For the time being, however, we feel that,
considering the generality of our algorithm, its ease of implementation, its small memory requirements, and its
proven efficiency, we have provided a practical solution to the problem of real-time collision detection.

3.6 Conclusion

In this chapter, we have presented an efficient algorithm for accurate collision detection among polyhedral
objects. The algorithm can be used for both convex and concave objects; both types of objects are dealt with
in the same way and there is no performance penalty for concave objects. The algorithm can be used for
objects whose motion is not prespecified, and both translation and rotation motion are allowed. The algorithm
can also be used for objects that deform during motion. Thus, the algorithm is very general. The algorithm is
fairly straightforward and should be easy to implement. The algorithm does not require the precomputation
and update of memory intensive auxiliary data structures, which some collision detection algorithms require
and which can sap the memory resources of an application, making it impossible to perform collision detection
for a large number of objects. And finally and most importantly, even though the algorithm is very general it
is extremely fast; Adding many objects to the environment does not require much more computation and the
algorithm can run in real-time on a graphics workstation for polyhedra containing several thousands of faces.

We are currently exploring various optimizations to this algorithm, such as using face bintrees instead of
face octrees, using a more efficient bounding box check (to reduce the 0(n2) complexity for n objects), and
determining the optimal level for face octree subdivision (the PM-octree [Sam90] might be useful for this). In
addition, we are implementing a parallel version of the algorithm, which should be quite effective because of the
many independent intersection calculations done by the algorithm. The algorithm is already sufficiently fast for
most applications. However, with anticipated speedups from optimization and parallelization, our algorithm
should be suitable for very large, practical virtual environments.

26

Figure 3.11: The experimental environment used to obtain the data for figure 3.10.

Figure 3.12: The space shuttle experimental object (528 triangular patches).

27

Chapter 4

Parallelization of Collision Detection

4.1 Introduction

This chapter describes parallelization strategies for a slightly modified, more accurate version of the collision
detection algorithm described in the previous chapter. The basic algorithm is described in detail in the previous
chapter, but as a brief review the four main steps are as follows:

1. Compute and store the intersections (called overlap regions) between objects'bounding boxes.

2. Determine the faces of objects which intersect with overlap regions.

3. Perform octree-like spatial subdivision on the faces from step 2 (found to be intersecting overlap regions)
to localize possibly colliding faces into small sized (i.e., voxels) volumes of the world.

4. Check all unique pairs of faces, where the faces are from different objects and where the faces intersected
with the same voxel from step 3, for interference.

The slightly modified version of this algorithm differs in the way that it computes the interference between
faces in step 4. The method described in the previous chapter (called simple intersection method) was simply
to determine whether or not the two faces intersect. The method used for the slightly modified version (called
swept-space method) is to determine whether the spaces swept out by the two faces between time instants
intersect. The swept-space method achieves better accuracy over the simple intersection test, because no
collisions are missed between time instants (the simple intersection test only checks for collisions at the end of
the time instant, not during a time instant). Unfortunately, however, this greater accuracy is also accompanied
by a much greater computation time. Thus, in this chapter, we describe two parallelization strategies useful
for enhancing the performance of the collision detection algorithm using the swept-space method; we also give
experimental results showing the efficiency of the parallelization strategies.

4.2 Face Pair Swept-Space Interference Method

Face pairs are checked for interference between time instants as follows. At any time instant t;, in order not to
miss the collisions between time intervals, the possibility of collision between t; and t;+1 is tested by considering
the volume expected to be swept by each face during the interval [t;, t;+i] (see Figure 4.1). To be conservative,
collision is assumed if these volumes intersect even though such intersections are a necessary, but not sufficient,
condition for the occurrence of collisions.

For each moving face A, we compute the convex hulls Vj; of a set of vertex points of At; (i.e. aが， ai;,aぶ．．）
and Aちが (i.e.a;;+i, ai; 十1, a~;+i , ...) (chapter 3 in [PS88)) which are expected to be swept by face A during the

interval [t;, t;+1J. For each face Bt; with which intersection of At; is to be tested during the interval [t;, t;+l),
the convex hulls VJ; of a set of vertex points of Bt; and Bt;+i are computed. Here, face A and face B at time
t=ゎarespecified by At; and B凡respectively.

Then the intersection between Vj; and VJ; is tested. The intersection is detected by testing whether one of
the following positional relationships of all combinations of faces and edges exists: both endpoints of an edge
lie on the same side of the plane containing the face (Edge 1), an edge intersects the outside of the face plane
(Edge 2), or an edge intersects the inside of the face plane (Edge 3). We detect an intersection in the case of
Edge 3.

This identifies all pairs of faces that are expected to collide in the time interval [t;, t;+l) by testing for
collisions between faces in the face pair checklist. Figure 4.1 illustrates this method.

28

ー＋

t
o

a

t

1

a

Figure 4.1: Face pair swept-space interference method.

4.3 Parallelization Strategy Consideration

To determine where parallelization effort should be effected, we measured the computation times of the four
steps of the collision detection algorithm using the swept-space method. First, figure 4.2 shows the total
computation time required at each cycle for two spheres starting at non-interfering positions and moving
towards each other (with translation and rotation) until colliding at t=45 (cycle); this was done for two spheres
with 960 faces and two spheres with 3968 faces. The important measurement is the last stage, when faces are
found to be colliding; at this last stage the spheres with 960 faces required 126 milliseconds to determine that 21
out of 186 checked pairs were colliding, and the spheres with 3968 faces required 434 milliseconds to determine
that 121 out of 1160 face pairs were colliding. Breaking up this computation time required at the last stage for
the case of the spheres with 3968 faces into the time for each step of the algorithm gives the following times:

1. 2 milliseconds (0.5%)

2. 10 milliseconds (2.4%)

3. 58 milliseconds (13.2%)

4. 364 milliseconds (83.9%)

Similar percentages were obtained for the spheres with 960 faces each, and, in general, for other experiments.
Thus, it is clear from these numbers that steps 3 and 4 dominate the total computation and should be the
main focus of parallelization.

4.4 Parallelization of Swept-Space Method

For the swept-space method, steps 1 and 2 take such a small percentage of the computation time that it is best
to do them serially (i.e., the parallelization overhead will probably be too much). Thus, the parallelization of
the swept-space method concentrates on steps 3 and 4.

4.4.1 Single Program, Multiple Data Method

The simplest parallelization method follows the Single Program, Multiple Data (SPMD) [Ala87] abstract model
of parallel computation in parallelizing only step 4; in SPMD, the processors are all running the exact same
program, but on different data. The method is as follows. Perform steps 1, 2 and 3 serially (i.e., using just one
processor). The output of step 3 will be a list of possibly interfering face pairs (i.e., face pairs for which both
faces intersected the same voxel). Step 4 is then easily parallelized by dividing up the possibly interfering face

pairs equally among the available processors; each processor then runs the same code to determine whether
the face pairs assigned to it interfere or not.

29

450
--(.) -
〇

に(/')E 一‘ 400
(1)

E
350

． 一
C:

•゚瓦一 300
コ
a.
E 250
8

200

150

100

50

゜

I

3968I faces

960 faces ．

i

口'.r,~.................... ,
I ..

．． ...
I

゜
20 40 60

t (cycle)

Figure 4.2: Computation required at every cycle for two spheres moving from non-colliding to colliding posi-
tions.

4.4.2 Producer-Consumer Method

The second method follows the Multiple Instruction, Multiple Data (MIMD) abstract model of parallel compu-
tation in parallelizing steps 3 and 4; this method should be faster because it parallelizes both steps 3 and 4. The
method is based on the well-known parallel paradigm known as "producer-consumer" [Bar92]. In this general
paradigm, one processor is the "producer" and produces items which the "consumers" grab and consume (i.e.,
do some computation on).

This second method works as follows. Perform steps 1 and 2 serially. Then, have one processor (producer)
determine the possibly interfering face pairs (step 3); as soon as this processor finds a possibly interfering face
pair it puts it on a list accessible by all the processors. The other processors (consumers) go directly to step 4,
grab the possibly interfering face pairs from the list (as they are added to the list by the first processor), and
check whether or not they interfere. After completing the list of possibly interfering face pairs, the producer
becomes a consumer and helps to check whether any of the remaining face pairs interfere.

4.5 Implementations and Experimental Results

Both of these parallel algorithms were implemented using the shared-memory model of interprocessor commu-
nication; in this model, processors communicate by modifying variables that are accessible by all processors.
The actual implementations were done in the C programming language, on a Silicon Graphics Onyx/Reality
Engine with 24 150 MHZ R4400 RISC processors. The memory architecture of this machine is shared-memory,
where each processor has a 16 Kbyte instruction cache, a 16 Kbyte data cache, and a 1 Mbyte secondary
unified instruction/data cache; the main (shared) memory size is 512 Mbytes, and is 4-way interleaved. The
parallelization was effected by using the Sequent compatible parallel programming primitive library [Bar92].
To effect parallelization using this library, the "m_fork" function is used to create multiple copies of a function
and start them running on multiple processors; each processor then identifies itself by getting its ID using the
"m_get-1I1yid" function and performs unique computation based on this ID. In addition, the system function

30

"sysmp" [Sil94) was used to schedule the processes to always run on the same processor; this was to take
advantage of cache affinity (i.e., the fact that a process quickly fills up its cache with needed data— if the
process is rescheduled to a new processor, it has to refill the cache of the new processor, which requires time
consuming main memory accesses). In addition to being faster than rescheduling, this technique also caused

the programs to run more smoothly (i.e., there were not wild variations in computation time at each step of

the simulation).
The implementation of the first method was done by having the serial portion (i.e., steps 1,2, and 3) write

the possibly interfering face pairs to an array accessible by all processors. Then, in the parallel portion, the
face pairs are distributed evenly among the processors and each processor checks for interference of its face

pairs. Note that the distribution of the face pairs can be done statically (i.e., processor N of P total processors

checks interference for face pairs N, N + P, N + 2P, N + 3P, …) or dynamically (i.e., the processors "grab"
face pairs to check for interference from the array-note that this necessitates mutual exclusion overhead when
grabbing, so that two processors don't grab the same face pair.) In general, dynamic distribution would be

more effective if the time to test for intersection of individual face pairs varied greatly. However, since this is

not the case we implemented the static distribution method. The implementation gave fairly good speedups
and the computation time (at the last cycle, when faces were found to be colliding) versus the number of
processors can be seen in figure 4.3.

The implementation of the second method gave better results, as expected. In this implementation, after
steps 1 and 2 are finished serially, one processor finds the possibly interfering face pairs (step 3) and writes
them to an array accessible by all processors. The other processors go directly to step 4 and wait for this array
to fill up. These other processors grab face pairs as they are added by the first processor, and check them for

interference (thus, the distribution of face pairs to processors is dynamic). The first processor, after creating
the list of possibly intersecting face pairs, then goes on to step 4 and helps the other processors finish checking
for intersection of the face pairs. This implementation gave very good speedups and the computation time (at

the last cycle, when faces were found to be colliding) versus the number of processors can be seen in figure 4.3.
Notice that for all of these data sets, performance doesn't increase greatly for more than about 8 to 10

processors (and in fact, decreases for the producer-consumer method). This is not due to the algorithm, but
is a general problem with shared-memory parallel architectures. Here, when more and more processors are
used, they all compete for access to the shared bus (which only one processor can access at a time), and this
creates considerable overhead. Silicon Graphics literature notes that, for most applications, the largest gains
for parallelization are gotten from using between 4 and 8 procfssors [Sil94).

31

0

0

0

0

5

0

5

5

4

4

3

2

(oas E
)
O
E
l
一u
o
n
e
i
n
d
E
 00

300

200

150

100

50

゜

『¥i.............. .
三．．．．．．

．．．．．

........ H-f・・・ ニ［三『；~)!:;こ）.,
.こ~.....................1 I SPMD l960 faces)

!----r・・ …•竺
・ Producer/Consumer

(960 faces)

1k

゜
2

4

8
number of processors
6

10

Figure 4.3: Computation time required at the I邸 tcycle by the SPMD and producer-consumer parallel methods,
for two spheres moving from non-colliding to colliding positions.

32

Acknowledgements

I would like to thank Dr. K. Rabara, Executive Vice President of ATR International and Chairman of the
Board of ATR Communication Systems Research Laboratories, and Dr. N. Terashima, President of ATR
Communication Systems Research Laboratories, for inviting me to ATR for 1 year. In addition, I would also
like to thank them for allowing me to continue for an additional 2 and 1/2 months after this year so that I
could continue my work, and so that I could present at the IAPR Machine Vision Applications Workshop in
Kawasaki, Japan 1994.

I would like to express my sincere gratitude to Mr. F. Kishino, Head of the Artificial Intelligence De-
partment, who welcomed me in to his department, gave me the opportunity to attend various symposia and
conferences (Info-Tech'93, Multimedia'94, Machine Vision Applications'94), and set up a very interesting
laboratory visit with NTT laboratories in Tokyo.

I would like to thank my advisor Mr. Y. Kitamura, Researcher, for his guidance and support of my work,
and for his very helpful tips and advice about making effective presentations.

Finally, I would like to thank the members of the Planning Division and the Planning Section of ATR
Communication Systems Research Laboratories for having organized such a wonderful stay in Japan for me.

33

Bibliography

(Ala87]

(Arv91]

(Bar90]

[Bar92]

[Boy79]

[BV91]

[CMN83]

[FHA90]

[FK85]

[FPB94]

[GJKSS]

[Gla90]

[GSF94]

[Hah88]

[Hay86]

[Hec94]

[H087]

[Hub93]

[Kir92)

Alan H. Karp. Programming for parallelism. IEEE Computer, pp. 43-57, May 1987.

Arvo, James, editor. Graphics Gems II. Academic Press Professional, 1991.

Baraff, David. Curved surfaces and coherence for non-penetrating rigid body simulation. Computer
Graphics, Vol. 24, No. 4, pp. 19-28, 1990.

Barr E. Bauer, editor. Practical Parallel Programing. Academic Pre~s, Inc., 1992.

Boyse, John W. Interference decision among solids and surfaces. Communications of the A CM,
Vol. 22, No. 1, pp. 3-9, 1979.

Bouma, W. and Vanecek, G. Collision detection and analysis in a physical based simulation. In
Eurographics Workshop on Animation and Simulation, pp. 191-203, September 1991.

Card, S. K., Moran, T. P., and Newell, A. The Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

Foisy, A., Hayward, V., and Aubry, S. The use of awareness in collision prediction. In International
Conference on Robotics and Automation, pp. 338-343. IEEE, 1990.

Fujimura, K. and Kunii, T. A hierarchical space indexing method. In Visual Technology and Art
(Computer Graphics Tokyo), pp. 21-33, 1985.

Fairchild, K. M., Poston, Timothy, and Bricken, William. Efficient virtual collision detection for
multiple users in large virtual spaces. In Virtual Reality Software and Technology, 1994.

Gilbert, Elmer G., Johnson, Daniel W., and Keerth, S. Sathiya. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal of Robotics and
Automation, Vol. 4, No. 2, pp. 193-203, 1988.

Glassner, Andrew S., editor. Graphics Gems. Academic Press Professional, 1990.

Garcia-Alonso, A., Serrano, N ., and Flaquer, J. Solving the collision detection problem. Computer
Graphics and Applications, Vol. 14, No. 3, pp. 36-43, May 1994.

Hahn, James K. Realistic animation of rigid bodies. Computer Graphics, Vol. 22, No. 4, pp.
299-308, 1988.

Hayward, V. Fast collision detection scheme by recursive decomposition of a manipulator workspace.
In International Conference on Robotics and Automation, pp. 1044-1049. IEEE, 1986.

Heckbert, Paul, editor. Graphics Gems IV. Academic Press Professional, 1994.

Hong, T.H. and 0shmeier, M. Rotation and translation of objects represented by octree. In
International Conference on Robotics and Automation, pp. 947-952. IEEE, 1987.

Hubbard, Philip M. Interactive collision decision. In Symposium on Research Frontiers in Virtual
Reality, pp. 24-31. IEEE, 1993.

Kirk, David, editor. Graphics Gems III. Academic Press Professional, 1992.

[KSTK94] Kitamura, Y., Smith, A., Takemura, H., and Kishino, F. Optimization and parallelization of
octree-based collision detection for real-time performance. In IEICE Conference 1994 Autumn.
D-323, 1994. (in Japanese).

34

[KTAK94] Kitamura, Y., Takemura, H., Ahuja, N., and Kishino, F. Efficient collision detection among objects
in arbitrary motion using multiple shape representations. In 12th International Conference on
Pattern Recognition Jerusalem, Israel, 1994.

[KTK94] Kitamura, Y., Takemura, H., and Kishino, F. Coarse-to-fine collision detection for real-time appli-
cations in virtual workspace. In International Conference on Artificial Reality and Tele-Ex、istence,
pp. 147-157, July 1994.

[LMC94] Lin, M. C., Manocha, D., and Canny J. F. Fast contact determination in dynamic environments.
In International Conference on Robotics and Automation, pp. 602-608. IEEE, 1994.

[Man88] Mantyla, Martti. An introduction to solid modeling. Computer science express, 1988.

[Mar72] Maruyama, K. A procedure to determine intersections between polyhedral objects. International
Journal of Computer and Information Sciences, Vol. 1, No. 3, pp. 255-266, 1972.

[MT83] Mantyla, M. and Tamminen, M. Localized set operations for solid modeling. Computer Graphics,
Vol. 17, No. 3, pp. 279-288, July 1983.

[MW88] Moore, M. and Wilhelms, J. Collision detection and response for computer animation. Computer
Graphics, Vol. 22, No. 4, pp. 289-298, 1988.

[Pen90] Pentland, Alex P. Computational complexity versus simulated environments. Computer Graphics,
Vol. 24, No. 2, pp. 185-192, 1990.

[PS88] Preparata, F. P. and Shamos, M. I. Computational geometry, an introduct-ion. Springer-Verlag,
1988.

[Qui94] Q uinlan, Sean. Efficient distance computation between non-convex obJects. In International Con-
ference on Robotics and Automation, pp. 3324-3329. IEEE, 1994.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. Addison-Wesley, 1990.

[SF91] Shinya, M. and Forgue, M. Interference detection through rasterization. The Journal of Visualiza-
tion and Computer Animation, Vol. 2, pp. 132-134, 1991.

[SH92] Shaffer, C. A. and Herb, G. M. A real-time robot arm collision avoidance system. IEEE Transactions
on Robotics and Automation, Vol. 8, No. 2, pp. 149-160, 1992.

[Sil94] Silicon Graphics, Inc., Mountain View, CA USA. Silicon Graphics Online Documentation, 1994.

[SKK94] Smith, A., Kitamura, Y., and Kishino, F. Efficient algorithms for octree motion. In !APR Workshop
on Machine Vision Applications, 1994.

[SKTK95] Smith, Andrew, Kitamura, Yoshifumi, Takemura, Haruo, and Kishino, Fumio. A simple and efficient
method for accurate collision among deformable polyhedral objects in arbitrary motion. In Virtual
Reality Annual International Symposium, North Carolina, USA. IEEE, March 1995.

[Tur89] Turk, Greg. Interactive collision detection for molecular graphics. M.sc. thesis, Department of
Computer Science, University of North Carolina at Chapel Hill, 1989.

[Van94] Vanecek, George. Back-face culling applied to collision detection of polyhedra. Technical report,
Purdue University Department of Computer Science, 1994.

[WA87] Weng, Juyang and Ahuja, Narendra. Octrees of objects in arbitrary motion: Representation and
efficiency. Computer Vision, Graphics, and Image Processing, Vol. 39, No. 2, pp. 167-185, 1987.

[ZPOM93] Zyda, M. J., Pratt, D. R., Osborne, W. D., and Monahan, J. G. NPSNET: Real-time collision
detection and response. The Journal of Visualization and Computer Animation, Vol. 4, No. 1, pp.
13-24, 1993.

35

	001
	002
	003

