
ATRテクニカルレポート表紙

〔非公開〕

TR-C-0099

Perceptual Kinematics:
Vision-based Control of
Manipulators

Robot

」＇

ビーター
Peter

クッカ

CUCKA
大谷淳

Jun OHYA

ー，

，

4 4 ー 8

ATR通信システム研究所

Perceptual Kinematics:

Vision-based Control of Robot Manipulators

＊

Peter CUCKA, Jun OHYA

A TR Communication Systems Research Lab

(* Computer Vision Lab, Center for Automation Research,
University of Maryland, College Park,
Maryland 20742-3411, U.S.A.)

Chapter 1

Introduction

Problems involving the control of robot manipulators ("robot arms") typically require

knowledge of the relationship between the position and orientation ("pose") of the hand

in space and the settings of the joints of the arm. In general, it is easy to determine the

pose of the hand given the settings of the joints, but it is difficult to determine how to

set the joints to achieve a desired pose of the hand. The former relationship is given by

the kinematic map and the latter by the inverse of the kinematic map, but in some cases

inversion is not possible, and the inversion computations can be unstable. Approximate

computations can relieve some of these problems, but they introduce errors of their own.

However, by introducing a sensor (for example, a camera) that can provide data that

implicitly captures information about the pose of the hand, it is possible to compensate

for these errors.

In earlier work [4, 9] we presented a new method for manipulator control in which

sensory data (specifically, visual data) are incorporated into a perceptual kinematic map

(PKM), which expresses the relationship between the settings of the arm joints and

quantities measured by the sensor. The method assumes virtually no prior information

about the robot's kinematic behavior and therefore avoids the costly and time-consuming

calibration required by many existing methods. Instead, it takes advantage of geometric

properties of the graph of the PKM, a hypersurface that we call the control surface. In

this way, manipulator pose control can be achieved using measurements made on images

without the need to explicitly recover the pose itself.

This document is divided into two sections. In the first, we review the concepts

behind the PKM and PKM-based control (this section also appeared in [4]). In the

second, we describe in detail software developed to both simulate a robot manipulator

with a PKM controller and to control a real manipulator.

ー

Chapter 2

Perceptual Kinematics: Theory

2.1 Kinematics and Perceptual Kinematics

We begin with formal definitions of the forward and inverse kinematic maps and of the

perceptual kinematic map. More comprehensive information about the former can be

found in numerous sources, including [6] and [8]. For additional details about the latter,

see (9].

2.1.1 Manipulator kinematics

A robot manipulator can be modeled as a sequence of rigid links connected by either

revolute (turning) joints or prismatic (sliding) joints. Each link of the manipulator,

apart from the last, maintains a fixed relationship between the two joints to which it

is attached. The relationship is described by two parameters, l; and ai, where li is the

distance between joints i and i + 1 measured along the common normal of their axes
of rotation or translation (the "length" of the link), and O'i is the angle between the

axes in a plane perpendicular to the normal (the "twist" between the two joints). Each

joint may also be described by two parameters, di and /Ji, where di is the distance along

the joint axis between the two links it connects, and /Ji is the angle between the two

links in a plane perpendicular to the joint axis. Thus, for a revolute joint, 屈isthe only
parameter that varies, and for a prismatic joint, only di varies [6]. We will let qi denote
the joint variable of the ith joint.

Choosing an appropriate convention, one can systematically associate with each link

a coordinate system. The relationship between successive links can then be described by

a coordinate transformation, and the configuration of the end effector with respect to the

base can be described by a sequence of coordinate system transformations. In practice,
this involves the product of a sequence of rotation and translation matrices that are

2

J ;,2

Y;

Figure 2.1: Coordinate systems and parameters for a generic link

determined from the parameters l;, a;, d;, and {3;. A common and convenient method
for the selection of coordinate systems is the one proposed by Denavit and Harten berg [8].

Denoting the links as S。(thefixed base) through名 (theend effector) and the joint
connecting 5;_1 and S; as J;, we associate a coordinate system { O;, X;, 乳乙}with each
link 5; such that the Z;_1 axis coincides with the axis of joint J;, the X; axis is normal
to the X;_1 axis (with X。chosenarbitrarily) and points away from it, and the Y; axis
is chosen in accordance with a right-handed coordinate system (Figure 2.1).

The transformation from one coordinate system to another is described in terms of

the parameters l;, a;, d;, and {3;, where且isnow the angle between X;_1 and X; about
Z;_1, d; is the projection onto Z;_1 of the distance from 0;_1 to the intersection of Z;_1

with X;, l; is the projection onto X; of the distance from O; to the intersection of Z←1

with Xi, and a; is the angle between Z;_1 and Z; about X;.
The homogeneous transformation between the coordinate systems of adjacent links

5;_1 and S; is given in terms of the Denavit-Hartenberg parameters by the matrix

屈
且
e
o
s
.
s
m
o
o

―

―

――
 ・1
，

ー.1

A

-cos a; sin屈
cos O'.i cos氏
sm a;

゜

sin a; sin Pi
-sin a; cos {3;

cos a1

゜

―

―

凡
j
eos.smdll

i
i
?
“

l

l

The coordinates of a point Mn on the end effector with respect to the base coordinate

system can now be obtained using a series of transformations along the kinematic chain

S。,S1, ... ,Sn:
M。=A。,nMn =A。,1A1,2・ ・ ・An-1,nMn,

The signals sent to a manipulator affect the configuration of its joints and thereby

the position and/or orientation of its end effector in the work space. The forward

3

kinematic map of the manipulator is given by a mapping between the joint space :T of
the manipulator and the task space K, of the end effector, the former being the space

of all joint configurations q = (q1, qあ・ ..'qn汀(recallthat q; = /3; for a revolute joint,
and q; = d; for a prismatic joint), and the latter being the space of possible positions
and orientations of the end effector, i.e. the set of all pairs (p, w), where p E IR3 is a

translation vector relative to the origin of the base coordinate frame and w is a three-

dimensional rotation relative to the axes of the base coordinate frame. The (forward)

加 ematicmap is then the following mapping:

氏：］ー→ に

q一(p,w).
2.1.2 The perceptual kinematic map

In the sensorless approach to manipulator control, the first stage is the establishment

of the kinematic map for the manipulator, as described above. This problem has been

studied extensively, and numerous models and methods have been proposed for its so-

lution. Moving the end effector to a given position and orientation then involves the

inversion of the kinematic map. However, because this inversion can be prohibitively

difficult to compute, involving complex, nonlinear functions of the joint parameters, in-

verse kinematics algorithms generally provide only a fast approximation to the solution.

The inversion is even more complex, if not impossible, at singular points of the kine-

matic map (though it generally suffices to determine the locations of these singularities

and to avoid them).

With the introduction of a sensor, we need to compose the kinematic map with an

additional mapping that describes the manner in which the configuration of the manip-

ulator affects the sensory data. For a visual sensor, this mapping can be determined

using the classical pinhole model of a camera, by which the scene is mapped into a

viewer-based coordinate system defined as follows: the origin O is the optical center of

the camera; the z axis, the optical axis of the camera, intersects the image plane or-

thogonally at z = J, where f is the focal length of the camera; and the x and y axes are
parallel to the axes of the image plane and are chosen in accordance with a right-handed

coordinate system (Figure 2.2).

Since the kinematic map as defined above specifies the positions of points on the

end effector in terms of the base coordinate system, the transformation from the base

frame to the viewer frame is required. This is given conveniently by the homogenous

‘

4

y

x

y

z

M(X, Y, Z)

Figure 2.2: Perspective projection of a point onto the image plane

transformation matrix

ふ
心
osos
c

c

碕
噂
心oso

s

＿
＋

心
ふ
c

c

cepscp

―

―

＝

c

-ccps心ー s¢c0c心
一碕s心+ccpc0c心
s0c心

゜

碕s0
-crps0

c0

゜
，

―

―

xeyeze竺
l

where s and c denote sine and cosine, and the position of the camera relative to the

manipulator's base is given by (xc, Ye, 石） and its orientation is given in terms of Euler
angles by (cp, 0, 心）. The coordinates of a point Mn on the end effector with respect to
the viewer coordinate system are then given by

M=CA。,nMn,

Finally, to determine the point m in the image plane that corresponds to a point .i¥,f in

the scene, let M = (X, Y, Z汀bethe vector from O to M and m = (エy,j汀bethe
vector from O to m; then

f f
m=-M=-M,
Z z•M

where z is a unit vector in the direction of the z axis.

Now consider an array of measurable image features s = (s1, s2, ... , sm)T, where each
Si might, for example, be the x or y coordinate of an image point corresponding to a

point on the end effector. (If the goal is to control the pose of the end effector, it is
preferable to derive the image features from portions of the image of the end effector:

this assumes that the end effector remains in view of the camera at all times.) Evidently

5

s is a function of the joint parameters. If S is the set of such arrays, we call the mapping
7r : J→ S a perceptual kinematic map (PKM).
In the class of PKMs defined above, we assumed that the camera is fixed relative

to the base of the manipulator, and that the camera is able to view the end effector.

An equally important possibility is the eye-in-hand configuration, in which the camera

is attached to the end effector and views a set of fixed landmarks in the scene. (Here

the end effector may still be used for manipulation, or the "end effector" may be the

camera itself, and the goal may be to position the camera for inspection of an object or

area in the scene). In this situation, a different sequence of transformations is needed.

A landmark point, given in the coordinate system of the manipulator's base, is first

transformed to the coordinate system of the hand:

Mn = An,oM = An,n-lAn-1,n-2・ ・ ・A1,0M。,
where the A;,;_1 are the inverses of the corresponding Ai-l,i de恥 edearlier. Then, an

additional, constant transformation expressing the pose of the camera with respect to

the hand gives the position of the point in the camera coordinate system:

Mc= C'Mn.

Finally, perspective transformation again gives the image coordinates of the point:

f
m= -Mc.
z

In this configuration, the measurable image features might be coordinates of landmark
points, or any features derivable from the image of these points.

2.1.3 Diザerentialperceptual k"
.

1nemat1cs

The PKM involves nonlinear functions of the joint parameters (trigonometric functions

of the joint angles) and may also involve nonlinear functions of the image data (used

to compute the image features s.-). However, for a sufficiently small change in q (the

vector of joint parameters), we have approximately

△ s = J. △ q,

where J is the Jacobian matrix, which expresses the differential relation between image
features and joint parameters:

邑 年 年

位 位 戸
J=/ 両1 oq2 鉤n

旱 ーa 込
8q1 Bq2 両n

6

ヽ

Once again, to achieve a desired pose of the end effector, we require the inverse relation,

△ q = j-1. △ s,

which expresses the joint displacement required to achieve a desired displacement of the

image features.

The Jacobian matrix is invertible only if it is a square matrix of full rank, so the

number of image features should equal the number of joints to be controlled. When

J is of less than full rank, its determinant, called the Jacobian, is zero and indicates

a singular point of the PKM. (Later, we will make use of an alternative, geometric

interpretation of the Jacobian matrix as the orientation of the local tangent hyperplane

to the hypersurface defined by the PKM.)

2.2 PKM-Based Control

As mentioned in Section 1, there is little point in attempting to invert the PKM exactly,

since the computations are likely to be even more complex than those for the original

kinematic map, and even small discretization and measurement errors would be likely to

render the results unreliable. On the other hand, with the availability of sensory data,

simplifying approximations to the inverse PKM can be made more safely, as sensory

feedback provides a means to correct the resulting errors. Several methods have been

used to simplify computation of the inverse PKM under these conditions, including

differential methods, model reference methods, neurally-inspired methods, and a new

geometric method that we introduced in [9]. These classes of methods are described in

the following subsections.

2.2.1 Related work

Differential feedback schemes, characterized by [5], employ the inverse Jacobian trans-

formation to convert desired image feature perturbations into required joint parameter

perturbations. Ideally, the inverse Jacobian matrix must be computed at each cycle of

the visual feedback control loop, but the computation is prohibitively time-consuming

for real-time control. In [5], this problem is avoided by using a precomputed, constant

Jacobian matrix corresponding to the goal configuration of the manipulator; this matrix

is determined off-line from models of the camera and manipulator. The method fails in

the neighborhood of a singular point, where the Jacobian matrix is ill-conditioned, so

the initial configuration must be sufficiently close to the goal configuration.

Model reference methods generally attempt to approximate the complex, nonlinear

inverse kinematics by a simplified, linear model with unknown parameters. In the Model

7

Reference Adaptive Control (MRAC) described in [14], control signals to the manipula-

tor's joints are supplied by the model, and an adaptive controller adjusts the unknown

parameters to force to zero the error between the actual response of the system (as de-

termined by the sensory data) and the predicted response (as determined by the model).

Similarly, in [13] the unknown parameters of the camera pose are estimated by com-

paring image measurements with predictions derived from a model of the manipulator's

kinematics, which must be determined beforehand. Both of these approaches have been

demonstrated only for low-degree-of-freedom (n~3) or planar manipulators; parameter
estimation for more sophisticated systems may be considerably more difficult.

Biologically-inspired approaches dispense with explicit inverse kinematics computa-

tions altogether. The Cerebellar Model Articulation Controller (CMAC) described in [1]

combines sensory data into an input vector that is used to address a hash table mem-

ory where the corresponding joint parameters are stored, and in [10] a neural network

learns both the PKM and its inverse differential map. Both approaches require extensive

training and large amounts of memory.

2.2.2 The g eometnc approach

In earlier work [9] we examined geometric properties of the graph of the PKM, a hyper-

surface that we call the "control surface." For example, if the manipulator is made to

rotate joint 11 while holding its other joints stationary, we expect that a given point on

its end effector will trace an ellipse in the image plane. If we change the settings of the
remaining joints, the elliptical image trajectory of the point due to rotation of joint]1

will also change. Experiments in which we tracked a point on a moving hand show that

the elliptical trajectory varies slowly and smoothly as the settings of the other joints

vary. For example, Figure 2.3 shows how the image trajectory due to wrist rotation

(joint J砂variesfor different settings of the shoulder (jointみ） • Note that the slopes
vary little from curve to curve, a property we exploit in our control strategy.

Exploration of the control surface

Each possible configuration of the manipulator corresponds to a point on the control

surface; hence in its simplest form, the positioning problem is one of computing a tra-

jectory along the control surface between the two points corresponding to the initial and

desired configurations of the manipulator. The trajectory is constrained by limits on

the travel of the joints and the presence of singular points on the control surface. In the

neighborhood of a nonsingular point, the control surface can be approximated by its tan-

gent hyperplane, facilitating a particularly simple gradient-descent trajectory generation

strategy, using a cost function that measures the "distance" between the current and

8

400

吾昔 350
2i
8
~

且苦<l 300

250

200
-5

Shoulder -20°

Shoulderー10°

Shoulder 0°

Shoulder 10°

S houkler 20・

-2.5 0 2.5 5
Wrist Angle (degrees)

Figure 2.3: Experimental results: x coordinate vs. wrist

goal points. (In the neighborhood of a singular point, the surface can have a complex

topological structure, and the tangent plane approximation is generally unacceptable.)

At the beginning of each new positioning task, the robot must explore its neigh-

borhood to estimate the local tangents to the control surface, that is, to estimate the

Jacobian matrix. The exploration proceeds by perturbing each joint individually by a

known△ qi and measuring the resulting perturbation△ Sj of each image feature. This

initial estimate of the Jacobian matrix remains valid, due to the smoothness of the PKM,

provided that the robot subsequently avoids singular configurations. In practice, either

because the trajectory generator is ignorant of the global structure of the control sur-

face or because the initial and goal configurations lie on opposite sides of a singularity,

singular configurations may be unavoidable. Ideally, such configurations are i~entified
by zeros of the Jacobian, but since we are dealing with discrete images and marnpulator

displacements, we can rely only on qualitative information. As such, the robot detects

that it has crossed a singularity by noting a change in the sign of the Jacobian.

The list of possible types of singularities of a generic IR6→ 記 mappingis well
known [7]. Singularities of the control surface will typically be folds, which are degen-

erate along one direction of the control surface. The direction of a fold can be directly

determined from the measurements made, and it qualitatively identifies the singular-

ity. After deciding on which side of the singularity the goal lies, the robot explores

its neighborhood to recompute the Jacobian matrix and returns to the regular control

mode.

，

｀`
＾

✓ ヽ

✓'

✓ 12 ✓ /Z1

‘‘
‘’ ・、'

✓ ' ✓ 'ヽ
✓ 、

d・ ✓'
• 4 ,.

”ヽ
鴫,

d、,.,.
e 、
'' ‘’ ,.''
‘ヽ｀` ‘
‘ヽ｀

/
l

、
／

ジ
／

崎
Xs

z

：や
光

Figure 2.4: Diagram of a PUMA manipulator (redrawn from [6])

Ji l. CYj di {3; I

1 0 mm -71"/2 0mm qi
2 431.8 mm

゜
149.09 mm q2

3 -20.32 mm 1r/2 0mm 叶2
4 0mm -1r/2 433.07 mm

゜5 0 mm 可2 0mm

゜6 0 mm

゜
56.25 mm

゜Table 2.1: Denavit-Hartenberg parameters for a PUMA with joints ,h, ... ,]6 fixed
(from [6])

2.2.3 Examples of PKMs

In this section we describe the graph of the PKM for two simple hand/ eye systems,

using simple choices of geometric features. Both of our examples involve a tv:o-degree-

of-freedom manipulator that we obtain by fixing four of the six joints in a six-degree-

of-freedom manipulator. Specifically, we use a PUMA manipulator and describe its

configuration using the Denavit-Hartenberg parameters, which can be found in [6]. The

parameters are listed in Table 2.1 and a diagram of the PUMA robot is given in Fig-

ure 2.4.

10

ql

Figure 2.5: Graph of a PKM for a two-degree-of-freedom manipulator viewed by a fixed
camera

A fixed camera example

We first assume that the manipulator is viewed by a camera whose position relative

to the base of the manipulator is fixed. The camera parameters (四，Ye,今，¢,0, 心） are
chosen so as to place the camera slightly above and looking down on the robot, and far

enough away so that the hand cannot intersect the image plane.

Two image features are required to control the two movable joints of the manipulator

(see Section 2.1.3); we choose the two coordinates of the image point p corresponding

to the origin of the coordinate system of link S6 (the point in the "palm" of the hand

shown in Figure 2.4). As indicated in Section 2.1.2, we must assume that this point is

visible in the image at all times.

With joints]3 through]6 fixed in the positions shown in Figure 2.4. the reachable

positions of the hand lie on the surface of an ellipsoid whose axes are the axes of rotation

of joints 11 and 12. For each fixed setting of 11, the curve traced in the image by the point
p through one full rotation ofみisan ellipse, as indicated in Section 2.2.2. Thus, in the
PKM, the curves of intersection of horizontal planes with the surface are ellipses, where

each horizontal plane corresponds to a fixed setting of 11. Figures 2.5 and 2.6 show two

11

y

Figure 2.6: Another view of the same PKM

ql

views of this surface for the manipulator defined by the parameters in Table 2.1. Note

that the surface exhibits a crease-like singularity corresponding to a degenerate view of

the manipulator. That is, for one particular setting of 11, the point p rotates about the

axis of 12 in a plane perpendicular to the image plane; the curve thus traced in the image
is a line segment. (This singularity is introduced by the perspective transformation and

is independent of the kinematics of the manipulator.) If the features had been derived
from noncoplanar points, this singularity would not have arisen; but for a two-or even

three-degree-of-freedom manipulator, when we use the coordinates of two or three image

points as features, the singularity will always arise, since three points in space are always

coplanar.

An eye-in-hand example

We next consider an eye-in-hand configuration, in which the camera is attached to the

end effector. In this situation, changing the settings of the manipulator's joints controls

the pose (and hence the field of view) of the camera.

Control for the eye-in-hand configuration is achieved by positioning and orienting the

12

ql

Figure 2.7: Graph of a PKM for a two-degree-of-freedom manipulator in the eye-in-hand
configuration

camera in space relative to one or more恥edlandmarks. The image features used for

control can be functions of points in the image that correspond to landmark points-for

example, coordinates of these image points. As before, it is necessary to restrict the

motion of the manipulator so that there is a landmark within the field of view of the

camera at all times.

To illustrate the PKM in this situation, we used the same PUMA manipulator with

the same joints fixed. We used as features the two coordinates of the image point

corresponding to a landmark point located approximately ten meters from the base of

the manipulator along the y0 axis (see Figure 2.4). To insure that this point remained

within the field of view at all times, 11 and 12 were allowed to rotate only a quarter of
a revolution. (Figure 2.4 shows the configuration of the manipulator at the midpoint

of its trajectory). Figures 2.7 and 2.8 show two views of the graph of the resulting

PKM. In this example, the cross sections of the surface are hyperbolas; the surface is

not closed as it was in the fixed camera case. This is because the image coordinates

of the landmark point lie at infinity when the camera is oriented so that the landmark

point lies in the x-y plane of the camera coordinate system (see Figure :2.2). Note that

here too the surface exhibits crease-like features.

13

y

ql

Figure 2.8: Another view
of the same PKM

14

Chapter 3

Perceptual Kinematics:

Implementation

We have implemented a software environment in which to experiment with PKM con-

trollers for both real and simulated manipulators. (The simulator currently supports

six-degree-of-freedom PUMA 560 and Kawasaki Js-10 manipulators, though others can

be easily added.) The software package comprises approximately 10,000 lines of ANSI

standard C code and includes facilities for collecting experimental data and a graphical

interface based on the X Window System. The program code is divided into a number

of source and header files, which are summarized in Table 3.1. In addition, the X Win-

dow application resource file HandEye. ad and the system preferences file, usually called

handeyerc, are supplied.

We begin this chapter with an overview of the system and proceed to describe each

of its principal components in detail. Finally, we present initial results.

3.1 Overview

Figure 3.1 provides an overview of the structure and the flow of control of the ex-

perimental environment. Solid arrows indicate the flow of control, and dashed arrows

indicate the flow of data. Unshaded boxes represent modules of the main control loop,

and shaded boxes represent auxiliary modules whose behavior depends on whether the

system is being used to control a simulated or a real manipulator.

The system is supplied with an image feature vector sf corresponding to the goal

configuration of the manipulator. At each iteration of the control loop, the "cost" of

the current configuration is computed, for example by measuring the Euclidean distance

[s1-s¥ between the current and goal image feature vectors. Using gradient descent, the

15

Filename Function

HEMain.c Main event loop (initializes the system and handles
user m． teract10n)

HEControl.c Main control loop (also allocates memory for data

structures)

HEXWindow.c X Window-specific user interface code

(also, interface code for the Nexus image processor

and the Kawasaki Js-10 robot)

HEGraphics. c Non-X-specific graphics and user interface code

HERobot.c Generic robot interface code

HEPrefs.c Code to read the "preferences" file

HEDutput.c Code to output experimental data from the system

kinematics.c Kinematic simulation of, a multi-degree-of-freedom

manipulator

perception.c Simulation of camera geometry and computation

of the PKM

displacernent.c Cost functions used for trajectory generation

kalrnan. c Kalman filter code
ananu_lin_alg. c Linear algebra routines

(mostly taken from [12])

ananu_util. c Additional matrix and vector routines

HEDefs .h System-wide constants and type definitions

HEProtos.h ANSI function prototypes

Q_variance .h System noise variance matrix for Iくalman filter

js-10.h Parameters of the Kawasaki Js-10 robot, for use

in the kinematics routines
puma_560. h Parameters of the PUMA 560 robot, for use in

the kinematics routines.

Table 3.1: Component files of the software package

joint displacement required to minimize this cost is given by the relation

△ q=JT•(s1-s)

(see [9] for details).

An initial estimate of the Jacobian matrix is computed by perturbing each of the

manipulator's joints individually, as described in Section 2.2.2. Then, taking advantage

of the smoothness of the PKM, a Kalman filter is used to track both the image feature

？＇

｀

16

qt= (qfl,_ qp,•• 巫）
I

compute initial
Jacobian matrix

J。

q = (q1, 但…巫）

＇ ）

朽．s

，

．

•
．

’

n、

ー
↓
冒

's，

ーf

s

‘、,`=-sf

I
I
I
I

△q

--,

ifs = s1 then quit ______ ,
else

compute distance and
direction to goal:

・----... , △ q =J~ ・(s1―s)

s :

measure image
features

一一一一

I
I
I
I
”

s

J

update Jacobian
matrix

move joints:
q'=q +△q

Figure 3.1: Overview of the experimental environment

vector and the measured Jacobian matrix. The estimate of the Jacobian matrix is

refined using derivatives measured in the direction of the joint displacement as the

robot maneuvers on the control surface.

3.2 System Components

3.2.1 Cost functions

One way to obtain a trajectory in the image space S between the current and final

points s and SJ is to define a cost function C(s) = d(s, SJ) on S that measures some
"distance" to the goal. We want to minimize this image distance, but we can do so only

indirectly, by moving in the joint space :J. We therefore define a "global" cost function
9 = C o 7f', which measures distances in .J, and apply a gradient descent strategy:

q(k + 1) = q(k) -,u,

17

where , 2 0 is an arbitrary gain and u is a unit vector in the direction of the gradient

of 9:

二）＝（賃）T~(二）T (塁）T
For positioning tasks, a simple cost function that measures the Euclidean distance

Js 1 -si between the current and goal image feature vectors performs well. (Figure 3.2

illustrates a trajectory on the surface defined by such a cost function for an actual

two-degree-of-freedom positioning task.) When orientation must be controlled as well,

a somewhat more complicated strategy is needed. In the sensorless approach, a pose
control task is typically decomposed into an initial three-degree-of-freedom positioning

step followed by a six-degree-of-freedom fine pose control step. We cannot directly apply

this scheme, however, since, in order for our Kalman filter (see the following section)

to maintain a correct estimate of the Jacobian matrix, the directional derivatives of the

PKM must not be zero over long sequences of joint motions. Instead, we decompose the

joint displacement vector into "arm" (position) and "wrist" (orientation) motions:

△ q=△ qa +Aq山＝咋叫＋加Uw.

The arm motion is determined as above by the gradient of the cost function. Then, using

the current estimate of the Jacobian matrix, a vector of predicted image measurements

Sa is computed by applying the arm motion alone:

叫q十△q) = s(q) + J. △ qa.

Finally, a wrist motion is chosen so as to minimize the difference between the current and

desired orientations of the manipulator's hand. This is done by introducing a measure

of "parallelness" P that is zero when the two orientations are identical and reaches a

maximum when they are orthogonal. (Exactly how P is defined depends on the nature
of the image measurements.) Then Uw is chosen so as to minimize

P[s(q十△q)] = P[s(q) + J・Aqa + ,wJ・U』・

As in any minimization problem, the global cost function may have local minima.

In order to guarantee that the goal is reached, the point reached during the positioning

step must lie within the attraction domain of the global minimum. In the event that a

local minimum is reached, any subsequent joint perturbation will result in a higher-cost

configuration. Having observed that this is the case, the system can respond by tern-

porarily increasing the gain so as to escape the attraction domain of the local minimum.

While this approach does not guarantee success (and has not yet been implemented),
we expect it to give reasonable results in most cases.

18

ーg
g
A
r
t

゜

6

3 屯

゜
Figure 3.2: Trajectory on the surface defined by a cost function

3.2.2 Kalman filter

In choosing a sensory feedback approach to the manipulator control problem, we are

trading the static calibration problems faced by sensorless methods, as well as some
of the methods described in Section 2.2.1, for dynamic visual tracking problems. At

each iteration of the control loop we need to have both the current values of the image

measurements and a reasonable estimate of the Jacobian matrix of the PKM at q. We

can obtain an acceptable initial estimate of J by computing directional derivatives in

the neighborhood of the initial configuration, as described in Section 2.2.2. However, as

the robot begins to move, we are able to compute the derivative only in the direction of

joint displacement u:

D汀 (q)= J(q). u.

Using a Kalman filter we can simultaneously track both the image feature vector and

the Jacobian matrix (at least, given the partial information that is available). For an

冗-degree-of-freedommanipulator, the state vector x(k) of the Kalman filter at time kT

is an叫+1) X 1 column vector comprising then image measurements and then x n
elements of the Jacobian matrix:

T

x(k) = [豆凸凸・・・ ~i) fJq) fJq') fJq

19

As noted in Section 2.2.2, we observe that the Jacobian matrix varies little in the
neighborhood of a regular point q of the joint space (though this is not the case in the

neighborhood of a singular point). If we therefore assume that J(k + 1)~J(k), then,
using a first order Taylor expansion of the PKM:

s(k + 1) = s(k) + ,J(k)・u + h.o.t.,

where w = ,u is the joint displacement at time kT, we can use the following state
equation:

x(k + 1)

n
〈

I
n
o

（

＼

 ｛

｛

2
 n

n

n2

ヘ

:) x(k) + v,

Ak・x(k) + vk,

where vk is the n(n + 1) x 1 disturbance vector, and Wis an n x n2 matrix defined by

the n x 1 joint displacement vector w:

W= [。 WT•.. :T)
Then image measurements made at each iteration define then x 1 measurement vector

y(k) (as noted above, we cannot directly measure the remaining elements of the state

vector). This is expressed in terms of the state vector as follows:

y(k)

2 nxn nxn
ヘ/
(In O)・x(k)+rk

ck. x(k) + rk,

where Ck is then x n(n + 1) measurement matrix and rk is then x 1 measurement error
vector.

Given the initial mean and variance of the state vector, we seek an unbiased linear
estimate文(k)of x(k) that minimizes the variance estimate

P(k) = E[(x(k、)-jえ(k))(x(k)-x(k)f].

20

If we assume that Vk and rk are white Gaussian noise processes uncorrelated with
either the initial state or with each other then文(k)can be found by the Kalman-Bucy

algorithm, described in [2] and elsewhere.

One problem that commonly arises in Kalman filtering is the determination of the
variance matrices of the noise sources. Here, it is reasonable to assume that the n image

measurements are independent, so that we can conveniently choose Var(rk) = aln, with
a E [O, 1]. The variance of the system noise is harder to determine, however. One or
more of the higher order terms in the Taylor expansion of the state equation can be

used to approximate the system noise, but this requires an analytical expression of the

PKM. A reasonable alternative is to acquire these data over the course of a number of

manipulation tasks. For now, though, we settle for Var(vk) = /3In(n+l), f3 E [O, l].

3.2.3 K" 1nematics and perception

The experimental system incorporates a complete kinematic model of a generic six-

degree-of-freedom manipulator, allowing a wide range of existing manipulators to be

simulated (Denavit-Hartenberg parameters for PUMA 560 and Kawasaki Js-10 manipu-

lators are included in the package). A pinhole camera, whose desired pose relative to the

manipulator can be specified in the system preferences file, is also modeled, completing

the perceptual kinematic map. While these facilities are not needed for controlling a real

manipulator, they supply the "image measurements" that are made while controlling

a simulated manipulator (and allow for an animated, graphical display of the manip-

ulator). The details of the kinematic and perceptual kinematic map calculations have

already been discussed in Section 2.1. Here, we describe the computation of the PKM

Jacobian matrix, for a恥edcamera configuration.

Extending the notation of Section 2.1.2, let M。i)i = 1, ... , 叫2,be the coordinates
of the ith feature point on the end effector with respect to the coordinate system of the

manipulator's base, and let Mn; = [ぷ乳Zi]be the (日xed)coordinates of the same
point with respect to the coordinate system of the end effector. Then

M。i= p+w X Mn,

for some translation p = [pェ，py,P=]and rotation w = [wc1,,we,w心]determined by the
current values of the joint parameters via the forward kinematic map. ¥Ve first compute

the derivatives dM。;/ dq of the kinematic map and then of the full PIGv1:

dM。
＇
dq

dp d
=— +-(w x M
dq dq

n.)

- p十心 X Mn,

21

[:::~ 二―ーロ
応十Y;叫ーX心,l
[-~ 乙亨£~
Y; -X; O 0

＝直 l3)[w pf,

、,
T
 割

.
3

．
．

-

l

o
o
l

0

1

0

where the antisymmetric matrix Hi corresponds to the linear application心X.
Next, we transform base system coordinates into camera system coordinates by ap-

plication of the appropriate rotation (the Euler matrix E corresponding to the upper

left 3 x 3 submatrix of the camera system transformation matrix C from Section 2.1.2):

M;=E•M。r

Finally, in terms of image coordinates,

m; = i [l~ 二：l M;,
and the PKM Jacobian matrix is then x n matrix given by

J=[血，加，・.., mn;2戸．

(Note that if n is odd, one of the image coordinates of one of the feature points should

be discarded.)

3.3 Preliminary Results

At this point, the system, running in its simulation mode, is producing promising results,

some of which are reproduced below. We hope to be able to present similar results with

a real manipulator in the near future. One of the issues that we would like to address is

camera calibration, so that we can compare the Jacobian matrix measured with the real

camera with theoretical data produced by the simulator using an accurate perceptual

kinematic model.

The six-degree-of-freedom simulated robot performs pose control tasks between ran-

domly or user-selected initial and goal joint configurations. The manipulator is viewed

by a simulated fixed camera whose pose relative to the manipulator, specified by the

camera parameters (f, Xe, Ye, ze, <p, 0, VJ), can be selected by the user or chosen at random

f

22

＂
~

~ 虎々厭 さ『 ~

Figure 3.3: Sequences from the simulation of two positioning tasks by a PUMA 560
manipulator

(but so as to ensure that the manipulator lies within the camera's field of view). Two

sequences from the simulation are shown in Figure 3.3 (the gray object in each frame is

an image of the hand as it should appear in the goal configuration). The two sequences

were generated using the same camera parameters but different, randomly-selected ini-

tial and goal configurations of the manipulator.

As the Kalman filter tracks the measured Jacobian matrix, the kinematic and per-

ceptual modules simultaneously compute the exact Jacobian matrix. This allows us

to compare the two and determine the accuracy of the Kalman filter's estimates. In
Figure 3.4 we compare estimated and actual local tangents in the direction of joint

displacement u along the trajectory shown in the first sequence. The plots illustrate

the exact and measured values of the derivatives dxi/ du, dyif du, and clx2/ du at each
of the fifty-five iterations of the control loop, where xぃY1,and x2 are three of the six

measured image features. (Plots for the remaining three features are very similar and

are therefore omitted here.) Note that, while the estimated values do not always agree

with the true values, the two curves are qualitatively very similar, indicating that the

PKM varies slowly as expected.

23

r.

dxl/du

゜

3

2

1

0

1

2

3

l-

—
"̀̀
I

',`

゜

4

3

2

1

0

1

2

3

-
l
-

10 20 30

dyl/du

40 50 60

act
Estima~d -

10 20 JO

cLx2/du

40 50 60

3

2

゜

1

0

1

2

3

I

[

-

10 20 30 40 50 60 r
¥

Figure 3.4: Comparison of estimated and actual local tangents (slope vs. iteration) for

the first sequence in Figure 3.3
曾

24

3.4 Summary and Future Work

We have demonstrated a new method for sensor-based control of manipulators based

on the analysis of perceptual kinematic maps and their corresponding control surfaces,

and we have shown that pose control is possible without costly inverse kinematics com-

putations or time-consuming calibration.

Our approach can potentially benefit from a learning strategy, in that it is possible to

sample and record the PKM while "exploring" the control surface by performing many

manipulation tasks. This knowledge can be used in subsequent tasks to simplify trajec-

tory generation. In contrast to connectionist methods, however, trajectory generation
can be accomplished without any training whatsoever, simply by relying on the tangent

plane approximation and on local estimates of directional derivatives. In future, we plan

to investigate appropriate learning strategies.

25

撃
，
＼

Bibliography

[l] J. S. Albus, "A new approach to manipulator control: the cerebellar model ar-
ticulation controller (CMAC)," Journal of Dynamic Systems, Measurement, and

Conirol 97(9), 1975, pp. 220-227.

[2] C. K. Chui and G. Chen, Kalman Filtering with Real-time Applications, Springer-

Verlag, New York, 1987.

[3] P. Cucka, R. Sharma and J-Y Herve, "Grasping goals for visual coordination,"

in Proceedings of the 1991 IEEE International Conference on Systems, Jvfan, and

C砂emetics,Charlottesville, Virginia, 1991, pp. 51-56.

[4] P. Cucka, J. Ohya and F. Kishino, "Perceptual kinematics: vision-based control

of robot manipulators," Technical Report IE93-77 of the Institute of Electronics,

Information and Communication Engineers (IEICE), Tokyo, Japan, 1993.

[5] J. T. Feddema and 0. R. Mitchell, "Vision guided servoing with feature-based
trajectory generation," IEEE Transactions on Robotics and Automation 5(5),

1989, pp. 691-699.

[6] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: Control, Sensing, Visio凡
and Intelligence, McGraw-Hill, New York, 1987.

[7] M. Golubitsky and V. Guillemin, Stable i'v!appings and their Singularities,

Springer-Verlag, New York, 1973.

[8] R. S. Hartenberg and J. Denavit, Kinematic Synthesis of Linkages, McGraw-Hill,
New York, 1964.

[9] J-Y Herve, P. Cucka, and R. Sharma, "Qualitative visual control of a robot ma-

nipulator," in Proceedings of the 1990 DARPA Image Understanding Worksho[!,

Pittsburgh, Pennsylvania, 1990, pp. 895-908.

n
'

會

26

｀ ヽ

[10] B. W. Mel, Connectionist Robot Motion Planning: A Neurally-Inspired Approach

to Visually-Guided Reaching, Academic Press, San Diego, California, 1990.

[11] W. T. Miller, "Sensor-based control of robotic manipulators using a general learn-
ing algorithm," IEEE Journal of Robotics and Automation 3(2), 1987, pp. 157-

165.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes in C, Cambridge University Press, New York, 1988.

[13] S. B. Skaar, W. H. Brockman and W. S. Jang, "Three-dimensional camera space
manipulation," International Journal of Robotics Research 9(4), 1990, pp. 22-39.

[14] _L. E. Weiss, A. C. Sanderson and C. P. Neuman, "Dynamic sensor-based control
of robots with visual feedback," IEEE Journal of Robotics and Av.tomation 3(5),

1987, pp. 404-411.

27

	001
	002
	003

