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Chapter 1 

Introduction 

Problems involving the control of robot manipulators ("robot arms") typically require 

knowledge of the relationship between the position and orientation ("pose") of the hand 

in space and the settings of the joints of the arm. In general, it is easy to determine the 

pose of the hand given the settings of the joints, but it is difficult to determine how to 

set the joints to achieve a desired pose of the hand. The former relationship is given by 

the kinematic map and the latter by the inverse of the kinematic map, but in some cases 

inversion is not possible, and the inversion computations can be unstable. Approximate 

computations can relieve some of these problems, but they introduce errors of their own. 

However, by introducing a sensor (for example, a camera) that can provide data that 

implicitly captures information about the pose of the hand, it is possible to compensate 

for these errors. 

In earlier work [4, 9] we presented a new method for manipulator control in which 

sensory data (specifically, visual data) are incorporated into a perceptual kinematic map 

(PKM), which expresses the relationship between the settings of the arm joints and 

quantities measured by the sensor. The method assumes virtually no prior information 

about the robot's kinematic behavior and therefore avoids the costly and time-consuming 

calibration required by many existing methods. Instead, it takes advantage of geometric 

properties of the graph of the PKM, a hypersurface that we call the control surface. In 

this way, manipulator pose control can be achieved using measurements made on images 

without the need to explicitly recover the pose itself. 

This document is divided into two sections. In the first, we review the concepts 

behind the PKM and PKM-based control (this section also appeared in [4]). In the 

second, we describe in detail software developed to both simulate a robot manipulator 

with a PKM controller and to control a real manipulator. 
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Chapter 2 

Perceptual Kinematics: Theory 

2.1 Kinematics and Perceptual Kinematics 

We begin with formal definitions of the forward and inverse kinematic maps and of the 

perceptual kinematic map. More comprehensive information about the former can be 

found in numerous sources, including [6] and [8]. For additional details about the latter, 

see (9]. 

2.1.1 Manipulator kinematics 

A robot manipulator can be modeled as a sequence of rigid links connected by either 

revolute (turning) joints or prismatic (sliding) joints. Each link of the manipulator, 

apart from the last, maintains a fixed relationship between the two joints to which it 

is attached. The relationship is described by two parameters, l; and ai, where li is the 

distance between joints i and i + 1 measured along the common normal of their axes 
of rotation or translation (the "length" of the link), and O'i is the angle between the 

axes in a plane perpendicular to the normal (the "twist" between the two joints). Each 

joint may also be described by two parameters, di and /Ji, where di is the distance along 

the joint axis between the two links it connects, and /Ji is the angle between the two 

links in a plane perpendicular to the joint axis. Thus, for a revolute joint, 屈isthe only 
parameter that varies, and for a prismatic joint, only di varies [6]. We will let qi denote 
the joint variable of the ith joint. 

Choosing an appropriate convention, one can systematically associate with each link 

a coordinate system. The relationship between successive links can then be described by 

a coordinate transformation, and the configuration of the end effector with respect to the 

base can be described by a sequence of coordinate system transformations. In practice, 
this involves the product of a sequence of rotation and translation matrices that are 
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Figure 2.1: Coordinate systems and parameters for a generic link 

determined from the parameters l;, a;, d;, and {3;. A common and convenient method 
for the selection of coordinate systems is the one proposed by Denavit and Harten berg [8]. 

Denoting the links as S。(thefixed base) through名 (theend effector) and the joint 
connecting 5;_1 and S; as J;, we associate a coordinate system { O;, X;, 乳乙}with each 
link 5; such that the Z;_1 axis coincides with the axis of joint J;, the X; axis is normal 
to the X;_1 axis (with X。chosenarbitrarily) and points away from it, and the Y; axis 
is chosen in accordance with a right-handed coordinate system (Figure 2.1). 

The transformation from one coordinate system to another is described in terms of 

the parameters l;, a;, d;, and {3;, where且isnow the angle between X;_1 and X; about 
Z;_1, d; is the projection onto Z;_1 of the distance from 0;_1 to the intersection of Z;_1 

with X;, l; is the projection onto X; of the distance from O; to the intersection of Z←1 

with Xi, and a; is the angle between Z;_1 and Z; about X;. 
The homogeneous transformation between the coordinate systems of adjacent links 

5;_1 and S; is given in terms of the Denavit-Hartenberg parameters by the matrix 
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The coordinates of a point Mn on the end effector with respect to the base coordinate 

system can now be obtained using a series of transformations along the kinematic chain 

S。,S1, ... ,Sn: 
M。=A。,nMn =A。,1A1,2・ ・ ・An-1,nMn, 

The signals sent to a manipulator affect the configuration of its joints and thereby 

the position and/or orientation of its end effector in the work space. The forward 
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kinematic map of the manipulator is given by a mapping between the joint space :T of 
the manipulator and the task space K, of the end effector, the former being the space 

of all joint configurations q = (q1, qあ・ ..'qn汀(recallthat q; = /3; for a revolute joint, 
and q; = d; for a prismatic joint), and the latter being the space of possible positions 
and orientations of the end effector, i.e. the set of all pairs (p, w), where p E IR3 is a 

translation vector relative to the origin of the base coordinate frame and w is a three-

dimensional rotation relative to the axes of the base coordinate frame. The (forward) 

加 ematicmap is then the following mapping: 

氏：］ー→ に

q一(p,w).
2.1.2 The perceptual kinematic map 

In the sensorless approach to manipulator control, the first stage is the establishment 

of the kinematic map for the manipulator, as described above. This problem has been 

studied extensively, and numerous models and methods have been proposed for its so-

lution. Moving the end effector to a given position and orientation then involves the 

inversion of the kinematic map. However, because this inversion can be prohibitively 

difficult to compute, involving complex, nonlinear functions of the joint parameters, in-

verse kinematics algorithms generally provide only a fast approximation to the solution. 

The inversion is even more complex, if not impossible, at singular points of the kine-

matic map (though it generally suffices to determine the locations of these singularities 

and to avoid them). 

With the introduction of a sensor, we need to compose the kinematic map with an 

additional mapping that describes the manner in which the configuration of the manip-

ulator affects the sensory data. For a visual sensor, this mapping can be determined 

using the classical pinhole model of a camera, by which the scene is mapped into a 

viewer-based coordinate system defined as follows: the origin O is the optical center of 

the camera; the z axis, the optical axis of the camera, intersects the image plane or-

thogonally at z = J, where f is the focal length of the camera; and the x and y axes are 
parallel to the axes of the image plane and are chosen in accordance with a right-handed 

coordinate system (Figure 2.2). 

Since the kinematic map as defined above specifies the positions of points on the 

end effector in terms of the base coordinate system, the transformation from the base 

frame to the viewer frame is required. This is given conveniently by the homogenous 
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Figure 2.2: Perspective projection of a point onto the image plane 
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where s and c denote sine and cosine, and the position of the camera relative to the 

manipulator's base is given by (xc, Ye, 石） and its orientation is given in terms of Euler 
angles by (cp, 0, 心）. The coordinates of a point Mn on the end effector with respect to 
the viewer coordinate system are then given by 

M=CA。,nMn, 

Finally, to determine the point m in the image plane that corresponds to a point .i¥,f in 

the scene, let M = (X, Y, Z汀bethe vector from O to M and m = (エy,j汀bethe 
vector from O to m; then 

f f 
m=-M=-M,  
Z z•M 

where z is a unit vector in the direction of the z axis. 

Now consider an array of measurable image features s = (s1, s2, ... , sm)T, where each 
Si might, for example, be the x or y coordinate of an image point corresponding to a 

point on the end effector. (If the goal is to control the pose of the end effector, it is 
preferable to derive the image features from portions of the image of the end effector: 

this assumes that the end effector remains in view of the camera at all times.) Evidently 
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s is a function of the joint parameters. If S is the set of such arrays, we call the mapping 
7r : J→ S a perceptual kinematic map (PKM). 
In the class of PKMs defined above, we assumed that the camera is fixed relative 

to the base of the manipulator, and that the camera is able to view the end effector. 

An equally important possibility is the eye-in-hand configuration, in which the camera 

is attached to the end effector and views a set of fixed landmarks in the scene. (Here 

the end effector may still be used for manipulation, or the "end effector" may be the 

camera itself, and the goal may be to position the camera for inspection of an object or 

area in the scene). In this situation, a different sequence of transformations is needed. 

A landmark point, given in the coordinate system of the manipulator's base, is first 

transformed to the coordinate system of the hand: 

Mn = An,oM = An,n-lAn-1,n-2・ ・ ・A1,0M。,
where the A;,;_1 are the inverses of the corresponding Ai-l,i de恥 edearlier. Then, an 

additional, constant transformation expressing the pose of the camera with respect to 

the hand gives the position of the point in the camera coordinate system: 

Mc= C'Mn. 

Finally, perspective transformation again gives the image coordinates of the point: 

f 
m=  -Mc. 
z 

In this configuration, the measurable image features might be coordinates of landmark 
points, or any features derivable from the image of these points. 

2.1.3 Diザerentialperceptual k" 
. 

1nemat1cs 

The PKM involves nonlinear functions of the joint parameters (trigonometric functions 

of the joint angles) and may also involve nonlinear functions of the image data (used 

to compute the image features s.-). However, for a sufficiently small change in q (the 

vector of joint parameters), we have approximately 

△ s = J. △ q, 

where J is the Jacobian matrix, which expresses the differential relation between image 
features and joint parameters: 

邑 年 年

位 位 戸
J=/ 両1 oq2 鉤n

旱 ーa 込
8q1 Bq2 両n
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Once again, to achieve a desired pose of the end effector, we require the inverse relation, 

△ q = j-1. △ s, 

which expresses the joint displacement required to achieve a desired displacement of the 

image features. 

The Jacobian matrix is invertible only if it is a square matrix of full rank, so the 

number of image features should equal the number of joints to be controlled. When 

J is of less than full rank, its determinant, called the Jacobian, is zero and indicates 

a singular point of the PKM. (Later, we will make use of an alternative, geometric 

interpretation of the Jacobian matrix as the orientation of the local tangent hyperplane 

to the hypersurface defined by the PKM.) 

2.2 PKM-Based Control 

As mentioned in Section 1, there is little point in attempting to invert the PKM exactly, 

since the computations are likely to be even more complex than those for the original 

kinematic map, and even small discretization and measurement errors would be likely to 

render the results unreliable. On the other hand, with the availability of sensory data, 

simplifying approximations to the inverse PKM can be made more safely, as sensory 

feedback provides a means to correct the resulting errors. Several methods have been 

used to simplify computation of the inverse PKM under these conditions, including 

differential methods, model reference methods, neurally-inspired methods, and a new 

geometric method that we introduced in [9]. These classes of methods are described in 

the following subsections. 

2.2.1 Related work 

Differential feedback schemes, characterized by [5], employ the inverse Jacobian trans-

formation to convert desired image feature perturbations into required joint parameter 

perturbations. Ideally, the inverse Jacobian matrix must be computed at each cycle of 

the visual feedback control loop, but the computation is prohibitively time-consuming 

for real-time control. In [5], this problem is avoided by using a precomputed, constant 

Jacobian matrix corresponding to the goal configuration of the manipulator; this matrix 

is determined off-line from models of the camera and manipulator. The method fails in 

the neighborhood of a singular point, where the Jacobian matrix is ill-conditioned, so 

the initial configuration must be sufficiently close to the goal configuration. 

Model reference methods generally attempt to approximate the complex, nonlinear 

inverse kinematics by a simplified, linear model with unknown parameters. In the Model 
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Reference Adaptive Control (MRAC) described in [14], control signals to the manipula-

tor's joints are supplied by the model, and an adaptive controller adjusts the unknown 

parameters to force to zero the error between the actual response of the system (as de-

termined by the sensory data) and the predicted response (as determined by the model). 

Similarly, in [13] the unknown parameters of the camera pose are estimated by com-

paring image measurements with predictions derived from a model of the manipulator's 

kinematics, which must be determined beforehand. Both of these approaches have been 

demonstrated only for low-degree-of-freedom (n~3) or planar manipulators; parameter 
estimation for more sophisticated systems may be considerably more difficult. 

Biologically-inspired approaches dispense with explicit inverse kinematics computa-

tions altogether. The Cerebellar Model Articulation Controller (CMAC) described in [1] 

combines sensory data into an input vector that is used to address a hash table mem-

ory where the corresponding joint parameters are stored, and in [10] a neural network 

learns both the PKM and its inverse differential map. Both approaches require extensive 

training and large amounts of memory. 

2.2.2 The g eometnc approach 

In earlier work [9] we examined geometric properties of the graph of the PKM, a hyper-

surface that we call the "control surface." For example, if the manipulator is made to 

rotate joint 11 while holding its other joints stationary, we expect that a given point on 

its end effector will trace an ellipse in the image plane. If we change the settings of the 
remaining joints, the elliptical image trajectory of the point due to rotation of joint ]1 

will also change. Experiments in which we tracked a point on a moving hand show that 

the elliptical trajectory varies slowly and smoothly as the settings of the other joints 

vary. For example, Figure 2.3 shows how the image trajectory due to wrist rotation 

(joint J砂variesfor different settings of the shoulder (jointみ） • Note that the slopes 
vary little from curve to curve, a property we exploit in our control strategy. 

Exploration of the control surface 

Each possible configuration of the manipulator corresponds to a point on the control 

surface; hence in its simplest form, the positioning problem is one of computing a tra-

jectory along the control surface between the two points corresponding to the initial and 

desired configurations of the manipulator. The trajectory is constrained by limits on 

the travel of the joints and the presence of singular points on the control surface. In the 

neighborhood of a nonsingular point, the control surface can be approximated by its tan-

gent hyperplane, facilitating a particularly simple gradient-descent trajectory generation 

strategy, using a cost function that measures the "distance" between the current and 
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Figure 2.3: Experimental results: x coordinate vs. wrist 

goal points. (In the neighborhood of a singular point, the surface can have a complex 

topological structure, and the tangent plane approximation is generally unacceptable.) 

At the beginning of each new positioning task, the robot must explore its neigh-

borhood to estimate the local tangents to the control surface, that is, to estimate the 

Jacobian matrix. The exploration proceeds by perturbing each joint individually by a 

known△ qi and measuring the resulting perturbation△ Sj of each image feature. This 

initial estimate of the Jacobian matrix remains valid, due to the smoothness of the PKM, 

provided that the robot subsequently avoids singular configurations. In practice, either 

because the trajectory generator is ignorant of the global structure of the control sur-

face or because the initial and goal configurations lie on opposite sides of a singularity, 

singular configurations may be unavoidable. Ideally, such configurations are i~entified 
by zeros of the Jacobian, but since we are dealing with discrete images and marnpulator 

displacements, we can rely only on qualitative information. As such, the robot detects 

that it has crossed a singularity by noting a change in the sign of the Jacobian. 

The list of possible types of singularities of a generic IR6→ 記 mappingis well 
known [7]. Singularities of the control surface will typically be folds, which are degen-

erate along one direction of the control surface. The direction of a fold can be directly 

determined from the measurements made, and it qualitatively identifies the singular-

ity. After deciding on which side of the singularity the goal lies, the robot explores 

its neighborhood to recompute the Jacobian matrix and returns to the regular control 

mode. 
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Figure 2.4: Diagram of a PUMA manipulator (redrawn from [6]) 

Ji l. CYj di {3; I 

1 0 mm  -71"/2 0mm qi 
2 431.8 mm  

゜
149.09 mm  q2 

3 -20.32 mm  1r/2 0mm 叶2
4 0mm -1r/2 433.07 mm 

゜5 0 mm  可2 0mm 

゜6 0 mm  

゜
56.25 mm 

゜Table 2.1: Denavit-Hartenberg parameters for a PUMA with joints ,h, ... , ]6 fixed 
(from [6]) 

2.2.3 Examples of PKMs 

In this section we describe the graph of the PKM for two simple hand/ eye systems, 

using simple choices of geometric features. Both of our examples involve a tv:o-degree-

of-freedom manipulator that we obtain by fixing four of the six joints in a six-degree-

of-freedom manipulator. Specifically, we use a PUMA manipulator and describe its 

configuration using the Denavit-Hartenberg parameters, which can be found in [6]. The 

parameters are listed in Table 2.1 and a diagram of the PUMA robot is given in Fig-

ure 2.4. 
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Figure 2.5: Graph of a PKM for a two-degree-of-freedom manipulator viewed by a fixed 
camera 

A fixed camera example 

We first assume that the manipulator is viewed by a camera whose position relative 

to the base of the manipulator is fixed. The camera parameters (四，Ye,今，¢,0, 心） are 
chosen so as to place the camera slightly above and looking down on the robot, and far 

enough away so that the hand cannot intersect the image plane. 

Two image features are required to control the two movable joints of the manipulator 

(see Section 2.1.3); we choose the two coordinates of the image point p corresponding 

to the origin of the coordinate system of link S6 (the point in the "palm" of the hand 

shown in Figure 2.4). As indicated in Section 2.1.2, we must assume that this point is 

visible in the image at all times. 

With joints ]3 through ]6 fixed in the positions shown in Figure 2.4. the reachable 

positions of the hand lie on the surface of an ellipsoid whose axes are the axes of rotation 

of joints 11 and 12. For each fixed setting of 11, the curve traced in the image by the point 
p through one full rotation ofみisan ellipse, as indicated in Section 2.2.2. Thus, in the 
PKM, the curves of intersection of horizontal planes with the surface are ellipses, where 

each horizontal plane corresponds to a fixed setting of 11. Figures 2.5 and 2.6 show two 
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Figure 2.6: Another view of the same PKM 

ql 

views of this surface for the manipulator defined by the parameters in Table 2.1. Note 

that the surface exhibits a crease-like singularity corresponding to a degenerate view of 

the manipulator. That is, for one particular setting of 11, the point p rotates about the 

axis of 12 in a plane perpendicular to the image plane; the curve thus traced in the image 
is a line segment. (This singularity is introduced by the perspective transformation and 

is independent of the kinematics of the manipulator.) If the features had been derived 
from noncoplanar points, this singularity would not have arisen; but for a two-or even 

three-degree-of-freedom manipulator, when we use the coordinates of two or three image 

points as features, the singularity will always arise, since three points in space are always 

coplanar. 

An eye-in-hand example 

We next consider an eye-in-hand configuration, in which the camera is attached to the 

end effector. In this situation, changing the settings of the manipulator's joints controls 

the pose (and hence the field of view) of the camera. 

Control for the eye-in-hand configuration is achieved by positioning and orienting the 
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Figure 2.7: Graph of a PKM for a two-degree-of-freedom manipulator in the eye-in-hand 
configuration 

camera in space relative to one or more恥edlandmarks. The image features used for 

control can be functions of points in the image that correspond to landmark points-for 

example, coordinates of these image points. As before, it is necessary to restrict the 

motion of the manipulator so that there is a landmark within the field of view of the 

camera at all times. 

To illustrate the PKM in this situation, we used the same PUMA manipulator with 

the same joints fixed. We used as features the two coordinates of the image point 

corresponding to a landmark point located approximately ten meters from the base of 

the manipulator along the y0 axis (see Figure 2.4). To insure that this point remained 

within the field of view at all times, 11 and 12 were allowed to rotate only a quarter of 
a revolution. (Figure 2.4 shows the configuration of the manipulator at the midpoint 

of its trajectory). Figures 2.7 and 2.8 show two views of the graph of the resulting 

PKM. In this example, the cross sections of the surface are hyperbolas; the surface is 

not closed as it was in the fixed camera case. This is because the image coordinates 

of the landmark point lie at infinity when the camera is oriented so that the landmark 

point lies in the x-y plane of the camera coordinate system (see Figure :2.2). Note that 

here too the surface exhibits crease-like features. 

13 



y
 

ql 

Figure 2.8: Another view 
of the same PKM 
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Chapter 3 

Perceptual Kinematics: 

Implementation 

We have implemented a software environment in which to experiment with PKM con-

trollers for both real and simulated manipulators. (The simulator currently supports 

six-degree-of-freedom PUMA 560 and Kawasaki Js-10 manipulators, though others can 

be easily added.) The software package comprises approximately 10,000 lines of ANSI 

standard C code and includes facilities for collecting experimental data and a graphical 

interface based on the X Window System. The program code is divided into a number 

of source and header files, which are summarized in Table 3.1. In addition, the X Win-

dow application resource file HandEye. ad and the system preferences file, usually called 

handeyerc, are supplied. 

We begin this chapter with an overview of the system and proceed to describe each 

of its principal components in detail. Finally, we present initial results. 

3.1 Overview 

Figure 3.1 provides an overview of the structure and the flow of control of the ex-

perimental environment. Solid arrows indicate the flow of control, and dashed arrows 

indicate the flow of data. Unshaded boxes represent modules of the main control loop, 

and shaded boxes represent auxiliary modules whose behavior depends on whether the 

system is being used to control a simulated or a real manipulator. 

The system is supplied with an image feature vector sf corresponding to the goal 

configuration of the manipulator. At each iteration of the control loop, the "cost" of 

the current configuration is computed, for example by measuring the Euclidean distance 

[s1-s¥ between the current and goal image feature vectors. Using gradient descent, the 
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Filename Function 

HEMain.c Main event loop (initializes the system and handles 
user m． teract10n) 

HEControl.c Main control loop (also allocates memory for data 

structures) 

HEXWindow.c X Window-specific user interface code 

(also, interface code for the Nexus image processor 

and the Kawasaki Js-10 robot) 

HEGraphics. c Non-X-specific graphics and user interface code 

HERobot.c Generic robot interface code 

HEPrefs.c Code to read the "preferences" file 

HEDutput.c Code to output experimental data from the system 

kinematics.c Kinematic simulation of, a multi-degree-of-freedom 

manipulator 

perception.c Simulation of camera geometry and computation 

of the PKM 

displacernent.c Cost functions used for trajectory generation 

kalrnan. c Kalman filter code 
ananu_lin_alg. c Linear algebra routines 

(mostly taken from [12]) 

ananu_util. c Additional matrix and vector routines 

HEDefs .h System-wide constants and type definitions 

HEProtos.h ANSI function prototypes 

Q_variance .h System noise variance matrix for Iくalman filter 

js-10.h Parameters of the Kawasaki Js-10 robot, for use 

in the kinematics routines 
puma_560. h Parameters of the PUMA 560 robot, for use in 

the kinematics routines. 

Table 3.1: Component files of the software package 

joint displacement required to minimize this cost is given by the relation 

△ q=JT•(s1-s) 

(see [9] for details). 

An initial estimate of the Jacobian matrix is computed by perturbing each of the 

manipulator's joints individually, as described in Section 2.2.2. Then, taking advantage 

of the smoothness of the PKM, a Kalman filter is used to track both the image feature 
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Figure 3.1: Overview of the experimental environment 

vector and the measured Jacobian matrix. The estimate of the Jacobian matrix is 

refined using derivatives measured in the direction of the joint displacement as the 

robot maneuvers on the control surface. 

3.2 System Components 

3.2.1 Cost functions 

One way to obtain a trajectory in the image space S between the current and final 

points s and SJ is to define a cost function C(s) = d(s, SJ) on S that measures some 
"distance" to the goal. We want to minimize this image distance, but we can do so only 

indirectly, by moving in the joint space :J. We therefore define a "global" cost function 
9 = C o 7f', which measures distances in .J, and apply a gradient descent strategy: 

q(k + 1) = q(k) -,u, 
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where , 2 0 is an arbitrary gain and u is a unit vector in the direction of the gradient 

of 9: 

二）＝（賃）T~(二）T (塁）T
For positioning tasks, a simple cost function that measures the Euclidean distance 

Js 1 -si between the current and goal image feature vectors performs well. (Figure 3.2 

illustrates a trajectory on the surface defined by such a cost function for an actual 

two-degree-of-freedom positioning task.) When orientation must be controlled as well, 

a somewhat more complicated strategy is needed. In the sensorless approach, a pose 
control task is typically decomposed into an initial three-degree-of-freedom positioning 

step followed by a six-degree-of-freedom fine pose control step. We cannot directly apply 

this scheme, however, since, in order for our Kalman filter (see the following section) 

to maintain a correct estimate of the Jacobian matrix, the directional derivatives of the 

PKM must not be zero over long sequences of joint motions. Instead, we decompose the 

joint displacement vector into "arm" (position) and "wrist" (orientation) motions: 

△ q=△ qa +Aq山＝咋叫＋加Uw.

The arm motion is determined as above by the gradient of the cost function. Then, using 

the current estimate of the Jacobian matrix, a vector of predicted image measurements 

Sa is computed by applying the arm motion alone: 

叫q十△q) = s(q) + J. △ qa. 

Finally, a wrist motion is chosen so as to minimize the difference between the current and 

desired orientations of the manipulator's hand. This is done by introducing a measure 

of "parallelness" P that is zero when the two orientations are identical and reaches a 

maximum when they are orthogonal. (Exactly how P is defined depends on the nature 
of the image measurements.) Then Uw is chosen so as to minimize 

P[s(q十△q)] = P[s(q) + J・Aqa + ,wJ・U』・

As in any minimization problem, the global cost function may have local minima. 

In order to guarantee that the goal is reached, the point reached during the positioning 

step must lie within the attraction domain of the global minimum. In the event that a 

local minimum is reached, any subsequent joint perturbation will result in a higher-cost 

configuration. Having observed that this is the case, the system can respond by tern-

porarily increasing the gain so as to escape the attraction domain of the local minimum. 

While this approach does not guarantee success (and has not yet been implemented), 
we expect it to give reasonable results in most cases. 
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Figure 3.2: Trajectory on the surface defined by a cost function 

3.2.2 Kalman filter 

In choosing a sensory feedback approach to the manipulator control problem, we are 

trading the static calibration problems faced by sensorless methods, as well as some 
of the methods described in Section 2.2.1, for dynamic visual tracking problems. At 

each iteration of the control loop we need to have both the current values of the image 

measurements and a reasonable estimate of the Jacobian matrix of the PKM at q. We 

can obtain an acceptable initial estimate of J by computing directional derivatives in 

the neighborhood of the initial configuration, as described in Section 2.2.2. However, as 

the robot begins to move, we are able to compute the derivative only in the direction of 

joint displacement u: 

D汀 (q)= J(q). u. 

Using a Kalman filter we can simultaneously track both the image feature vector and 

the Jacobian matrix (at least, given the partial information that is available). For an 

冗-degree-of-freedommanipulator, the state vector x(k) of the Kalman filter at time kT 

is an叫+1) X 1 column vector comprising then image measurements and then x n 
elements of the Jacobian matrix: 

T 

x(k) = [豆凸凸・・・ ~i) fJq) fJq') fJq 
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As noted in Section 2.2.2, we observe that the Jacobian matrix varies little in the 
neighborhood of a regular point q of the joint space (though this is not the case in the 

neighborhood of a singular point). If we therefore assume that J(k + 1)~J(k), then, 
using a first order Taylor expansion of the PKM: 

s(k + 1) = s(k) + ,J(k)・u + h.o.t., 

where w = ,u is the joint displacement at time kT, we can use the following state 
equation: 

x(k + 1) 

n
〈

I
n
o

（

＼

 ｛
 

｛
 
2
 n
 

n
 

n2 

ヘ

:)  x(k) + v, 

Ak・x(k) + vk, 

where vk is the n(n + 1) x 1 disturbance vector, and Wis an n x n2 matrix defined by 

the n x 1 joint displacement vector w: 

W=  [。 WT•.. :T) 
Then image measurements made at each iteration define then x 1 measurement vector 

y(k) (as noted above, we cannot directly measure the remaining elements of the state 

vector). This is expressed in terms of the state vector as follows: 

y(k) 

2 nxn nxn 
ヘ/
(In O)・x(k)+rk 

ck. x(k) + rk, 

where Ck is then x n(n + 1) measurement matrix and rk is then x 1 measurement error 
vector. 

Given the initial mean and variance of the state vector, we seek an unbiased linear 
estimate文(k)of x(k) that minimizes the variance estimate 

P(k) = E[(x(k、)-jえ(k))(x(k)-x(k)f]. 
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If we assume that Vk and rk are white Gaussian noise processes uncorrelated with 
either the initial state or with each other then文(k)can be found by the Kalman-Bucy 

algorithm, described in [2] and elsewhere. 

One problem that commonly arises in Kalman filtering is the determination of the 
variance matrices of the noise sources. Here, it is reasonable to assume that the n image 

measurements are independent, so that we can conveniently choose Var(rk) = aln, with 
a E [O, 1 ]. The variance of the system noise is harder to determine, however. One or 
more of the higher order terms in the Taylor expansion of the state equation can be 

used to approximate the system noise, but this requires an analytical expression of the 

PKM. A reasonable alternative is to acquire these data over the course of a number of 

manipulation tasks. For now, though, we settle for Var(vk) = /3In(n+l), f3 E [O, l]. 

3.2.3 K" 1nematics and perception 

The experimental system incorporates a complete kinematic model of a generic six-

degree-of-freedom manipulator, allowing a wide range of existing manipulators to be 

simulated (Denavit-Hartenberg parameters for PUMA 560 and Kawasaki Js-10 manipu-

lators are included in the package). A pinhole camera, whose desired pose relative to the 

manipulator can be specified in the system preferences file, is also modeled, completing 

the perceptual kinematic map. While these facilities are not needed for controlling a real 

manipulator, they supply the "image measurements" that are made while controlling 

a simulated manipulator (and allow for an animated, graphical display of the manip-

ulator). The details of the kinematic and perceptual kinematic map calculations have 

already been discussed in Section 2.1. Here, we describe the computation of the PKM 

Jacobian matrix, for a恥edcamera configuration. 

Extending the notation of Section 2.1.2, let M。i)i = 1, ... , 叫2,be the coordinates 
of the ith feature point on the end effector with respect to the coordinate system of the 

manipulator's base, and let Mn; = [ぷ乳Zi]be the (日xed)coordinates of the same 
point with respect to the coordinate system of the end effector. Then 

M。i= p+w X Mn, 

for some translation p = [pェ，py,P=]and rotation w = [wc1,,we,w心]determined by the 
current values of the joint parameters via the forward kinematic map. ¥Ve first compute 

the derivatives dM。;/ dq of the kinematic map and then of the full PIGv1: 

dM。
＇ 
dq 

dp d 
=— +-(w x M 
dq dq 

n.) 

- p十心 X Mn, 
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where the antisymmetric matrix Hi corresponds to the linear application心X.
Next, we transform base system coordinates into camera system coordinates by ap-

plication of the appropriate rotation (the Euler matrix E corresponding to the upper 

left 3 x 3 submatrix of the camera system transformation matrix C from Section 2.1.2): 

M;=E•M。r

Finally, in terms of image coordinates, 

m; = i [ l~ 二：l M;, 
and the PKM Jacobian matrix is then x n matrix given by 

J=[血，加，・.., mn;2戸．

(Note that if n is odd, one of the image coordinates of one of the feature points should 

be discarded.) 

3.3 Preliminary Results 

At this point, the system, running in its simulation mode, is producing promising results, 

some of which are reproduced below. We hope to be able to present similar results with 

a real manipulator in the near future. One of the issues that we would like to address is 

camera calibration, so that we can compare the Jacobian matrix measured with the real 

camera with theoretical data produced by the simulator using an accurate perceptual 

kinematic model. 

The six-degree-of-freedom simulated robot performs pose control tasks between ran-

domly or user-selected initial and goal joint configurations. The manipulator is viewed 

by a simulated fixed camera whose pose relative to the manipulator, specified by the 

camera parameters (f, Xe, Ye, ze, <p, 0, VJ), can be selected by the user or chosen at random 

f
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Figure 3.3: Sequences from the simulation of two positioning tasks by a PUMA 560 
manipulator 

(but so as to ensure that the manipulator lies within the camera's field of view). Two 

sequences from the simulation are shown in Figure 3.3 (the gray object in each frame is 

an image of the hand as it should appear in the goal configuration). The two sequences 

were generated using the same camera parameters but different, randomly-selected ini-

tial and goal configurations of the manipulator. 

As the Kalman filter tracks the measured Jacobian matrix, the kinematic and per-

ceptual modules simultaneously compute the exact Jacobian matrix. This allows us 

to compare the two and determine the accuracy of the Kalman filter's estimates. In 
Figure 3.4 we compare estimated and actual local tangents in the direction of joint 

displacement u along the trajectory shown in the first sequence. The plots illustrate 

the exact and measured values of the derivatives dxi/ du, dyif du, and clx2/ du at each 
of the fifty-five iterations of the control loop, where xぃY1,and x2 are three of the six 

measured image features. (Plots for the remaining three features are very similar and 

are therefore omitted here.) Note that, while the estimated values do not always agree 

with the true values, the two curves are qualitatively very similar, indicating that the 

PKM varies slowly as expected. 
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Figure 3.4: Comparison of estimated and actual local tangents (slope vs. iteration) for 

the first sequence in Figure 3.3 
曾
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3.4 Summary and Future Work 

We have demonstrated a new method for sensor-based control of manipulators based 

on the analysis of perceptual kinematic maps and their corresponding control surfaces, 

and we have shown that pose control is possible without costly inverse kinematics com-

putations or time-consuming calibration. 

Our approach can potentially benefit from a learning strategy, in that it is possible to 

sample and record the PKM while "exploring" the control surface by performing many 

manipulation tasks. This knowledge can be used in subsequent tasks to simplify trajec-

tory generation. In contrast to connectionist methods, however, trajectory generation 
can be accomplished without any training whatsoever, simply by relying on the tangent 

plane approximation and on local estimates of directional derivatives. In future, we plan 

to investigate appropriate learning strategies. 
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