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1 Introduction

1.1 The subject of my internship.

The purpose of my internship was to evaluate an interpolation method based
on the homotopy between two arcs and to apply it to the representation and
description of three dimensional data taken from images in both a static and a
dynamic approach. My work is related to the field of human representation in
the ATR Artificial Intelligence Department and fits into the global project of
the new teleconferencing system with realistic sensations in a real time process

This real time process requires a special processing because real time com-
puter data representation and animation are limited by computers’ and net-
works’ capabilities. Eventhough many objects may be constructed by assem-
bling geometric shapes like cubes, spheres, or pyramids, most objects have a
free-form shape like human faces. One can use the coordinates of the very high
number of points given by a 3-d digitizer but this is inconvenient in the case of
a computer finite storage at the prospect of a data transmission for a real time
animation. We need methods for developping free-form surfaces easily from a
limited set of data and a model to allow people to visualize and understand
the structure of the modeled entity . Furthermore, this model should provide a
convenient vehicle for experimentation with.

The Homotopy Sweep Method was proposed in 1991 for surface generation
using a set of two-dimensional contours with the interesting ability to control
the transition from one contour to the other. During the five months of my
internship in ATR, I was given the task to evaluate the Homotopy Sweep Tech-
nique for human face representation and to implement it on Silicon Graphics
Workstations using three-dimensional data given by a digitizer. At the same
time, we were thinking about a generalization of this method and , in order
to take advantage of the convenient control of the deformation, I developped
another interpolation formulation based on a dynamic approach. With some
assumptions concerning the muscles and the human morphology, I applied this
dynamic approach to mouth animation using a Lip Tracking Process and data
given by a three-dimensional digitizer. With this method, we can control mouth
continuous deformation just by specifving a few parameters. The animation re-
sults (recorded on VHS tape) were very realistic and the simple interpolation
computations can be considered as a real time process.

In this report, I introduced the Homotopy Sweep Technique and the differ-
ents problems I had to solve for its application in the two approaches. Section 2
contains the basic principles , notions and definitions related to the Homotopy
Sweep Technique. The static approach and the assumptions of our implemen-
tation are developped in Section 3. Section 4 and the VHS tape show the
differents aspects of the dynamic approach for the hunian mouth animation and
the powerful ability to control the deformation.



1.2 ATR presentation

ATR 1s a newly founded group (1986) whose main purpose is basic research
in the telecommunications field. Its mainframe is five independent laboratories
working in different areas. The total research and development funds given to
the five laboratories each year amount to approximately 9 billion vens with 70
% coming from the Key technology center and 30 % coming from a set of private
companies (NTT, KDD, NHK, NEC, Matsushita, etc). The total numbers of
researchers amounts 300 in 1992.

The five laboratories are :

ATR Communication Systems Research Laboratories (full sensory commu-
nications,non linguistic communications, high security networks, automated de-
velopment of communications software) working on a human-oriented intelligent
communication systemn,

ATR Interpreting Telephony Research Laboratories (speech recognition, ma-
chine translation, speech synthesis) developing an interpreting telephone,

ATR Auditory and Visual Perception Research Laboratories (mechanisms
of perception and cognition in the human senses of sight and hearing ) seeking
the ideal human-machine interface,

ATR Optical and Radio Communications Research Laboratories ( commu-
nication devices based on artificially modulated material structure) working on
a network covering from space to the individuals

ATR Human Information Processing Research Laboratories enhancing human-
machine communication technologies.
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2 The Integrated Homotopy Sweep Technique

2.1 The Generalized Cylinders

The generation of three-dmensional solid objects and more generally solid geo-
metric modeling is very useful in computer-aided design (CAD) and computer-
alded engineering (CAE) to create and communicate shape information.

Usually, in the field of solid representations, the most suitable model depends
heavily on the domain. In CAD applications, general sweeps are a quite popular
representation In computer vision , where they go by the name generalized
cylinders and sweeping is frequently used for object modelling : the volume of
the object can be described as a "swept volume” of a two-dimensional set moved
along some three-dimensional space curve called the trajectory.

The simplest sweeping is the translational sweep: a solid can be represented
by a two-dimensional set translated along a space vector. A rotational sweep is
similarly defined by rotating the two-dimensional set around an axis ((Figure 1).
A general sweep is therefore a combination of a translational and a rotational
sweep of a two-dimensional set { or volume in the general case) which may vary
parametrically along the axis space curve (as on Figure 1): a sweep surface is
generated.



translational

sweep
rotation axis
i
a
1
1
! rotational
. sweep
i
2
trajectory
_\ parameterized

closed
cross section

general 3-d sweep

arbitrary
Space curve

Figure 1: A translational, a rotational and a general sweep.

Then, a generalized cylinder is a solid whose axis is a space curve. At any
point on the axis, a closed cross section is defined and called a contour. Usually,
it is easy to think of an axis space curve and a cross section point set function ,
both parametrized by arc length along the axis curve. The usual restriction is
that the axis be normal to the cross section. A generalized cylinder may have a
varying cross section along the axis space curve .
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Let T be a space curve parameterized by a parameter v, v; < v < v;. The
coordinates of T'(v) in a (O,X,Y,X) coordinate system are given by:

T(v) = [Ta(v), Ty (v), T (v)].

Two mathematical functions representing axis 7" and cross section for each
point T'(v) define a unique solid. At each point T(v) of the axis, we have to
choose a local coordinate system whose origin is attached to T(v): the cross
section is then defined in this coordinate system.

Trajectory
parameterized by v

Contour C3

—

b(v)\\x‘_
T(v)jﬂ{\\

—_—

i Contour C2

._ n(v) "'

Contour C1 parameterization by v

o)

Figure 2: Generalized Cylinders and the Frenet Frame.

At each point , the Frenet {rame gives good information about the axis of
the _generalized cylinder by using the following unit vectors:
¢t : unit tangent vector at T'(v) ,



-

Y — L)
) = o e
g . : N v )xT" (v
b: unit binormal vector b(v) = W'_E'u;_xﬁ((_v%ﬂ

n: unit normal vector n(v) = b(v) x t(v)

where T/(v) and T"(v) are respectively the first and second derivatives of
T(v).

However, the Frenet frame is not well defined when the curvature of the axis
1s zero ( in that case, an adapted Frenet frame was defined by Bronsvoort and
Klok 1985 : #{v) is unchanged; b(v) is a chosen fixed unit normal to the plane of
the trajectory and 7 is the vector product of b and t). Anyway, it gives us the
ability to define cross sectional contours at any point of the trajectory T'(v).

Finally, it can be practical to use generalized cylinder representation for a
solid. The axis curve presents no difficulties but a usable representation for
the cross section set is often not so simple. In our case, the representation is
explicitly given by the Cyvberware three-dimensional digitizer.

2.2  The mathematical definition of Homotopy

Here is reviewed the mathematical concept of homotopy, beginning by a couple
of definitions.

2.2.1 Definitions

Definition 1
Let BC R3 and let ay : [0,L] — B be two arcs of B,
ay:[0,L]— B
joining the poinis p = ap(0) = a1(0)
and ¢g=ao(l)=a(Ll).

We say that ag and oy are homolopic if there exisis
a continuous map H : {0, L]+ (0,1] — B
such that:1. H(s,0) = ag(s)

H(s, 1) = ai(s),V¥s€0,L]
2. HOt)=p
H(L,t)=q, Vi e [0,1].

The map H is called a homotopy between ag and «;.

The homotopy is a family of arcs «,, ¢ € [0, 1], which constitutes a continuous
deformation of ag to a; in such a way that the extremities p and ¢ of the arcs
ay remain fixed during the deformation.

The following definition shows a closer analogy with our study .
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Definition 2
Let f,g: X —— Y be maps
where X and Y are lopological spaces.
If there erists a map F :X x [ — Y
such that: F(z,0)=f(x)
Fle,l])=g(z) Ve e X
(where 1=[0,1])

then the map F 1s called a homotopy from f lo g.

For instance,a straight line homotopy is given by : F(x,t) = (1 — t)f(z) +
tg(z) Vte[0,1] and Vz € [27,zf].

F(x,t) for tin [0,1]

arcg

g(x)=F(x,1)
Figure 3: For a given x. a continuous deformation from f{x) to g(x)

As we can see in figure 3,1f f(2) and g(x) denote two cross sectional contours
(or, more generally two space curves) parameterized by the same parameter x .
then the homotopy F' defines a continuous deformation of contour f into contour
g as t varies from 0 to 1 .

Therefore, F represents a bivariate parametric surface connecting the con-
tours (which are space curves) .

11



2.3 The Homotopy Sweep Technique
2.3.1 A new approach

The necessity of representing complex surfaces needs appropriate means . A
good representation of truly generalized cylinders is interesting in all respects
because many complex shapes can be considered as a combination of generalized
cylinders. Of course, such a description is not enough but it covers many cases of
the real world and could be a practical way of three-dimensional data represen-
tation. Truly generalized cylinders can be obtain by defining a set of contours
at some locations along a space curve (Shanna and Ballard 1984). Woodward
(1986) proposed an approach based on a blending of the different contours by
using the B-splines and orthogonal contours to the trajectory. But in this case,
the user can not really control the resulting shape of the generated shape. This
is an important point to take into account since we try to avoid using many
contours for the data representation . Other methods have been proposed but,
generally, the rate of transition of one contour to the other is not controlled.
In 1991, Shinagawa an Kunii proposed the Homotopy Sweep Model for surface
construction from a set of planac contours.

2.3.2 Integrated Homotopy Sweep Technique

Introduction. The Homotopy Sweep Technique which was proposed by Shi-
nagawa and Kunii is an integration of the two notions defined above. The
method was introduced as a model for surface construction by Chiew-Lan Tai,
Kia-Fock Loe and Tosiyasu L. Kunii.

Sweep Technique Homotopy Model

N

Homotopy Sweep Technique

for generating surfaces based on
cross sectional contours

Figure 4: Integration of the two techniques.

A formulation of the Homotopy Sweep Technique. This technique is
a method to reconstruct surfaces from cross-sectional data of objects using a
homotopy to generate surfaces connecting consecutive contours. [t provides a
control of the shape of the cross section between two defined contours.

Here we introduce a formulation which takes into account the shape control
between two defined contours.
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Assumptions. Let T be a space curve parameterized by a parameter v,
v; < v < vy. The coordinates of T'(v) in a (O,X,Y,X) cartesian coordinate
system are given by:

T(v) = [Tz (v), Ty(v), T3 (v))

Let C1 and C2 be two cross sectional contours parameterized by the same
parameter u : C1(u) and C2(u) ,where u; < u < uy (cf Figure 5. ) (We
will see how to make correspondance between contours which have different
parameterizations.)

Trajectory
parameterized by v

Contour C2

parameterized by u

—

parameterization by u

aramelerization by v

=

Contour C1

parameterized by u

Zz

o)

Figure 5: Homotopy Sweep Technique Parameterization.

For a given value v, a point T'(v) is defined on the trajectory; in the cross
sectional plane (defined orthogonally to the tangent vector {(v)) . the planar

13



curve C representing the cross sectional contour is also supposed parameterized
by u, C(u), where u; < u < uy.

A point of the lower contour C1 is represented by : C'1(u).

A point of the upper contour C2 is represented by : C2(u).

A point of the cross sectional contour corresponding to the point T(v) on
the trajectory is represented by : C(u,v).

Let us choose v in [0,1]: C(u,0) défines the point C1(u) and C(u, 1) defines
the point C2(u).

Objective and interest of the technique. The purpose is to choose a
suitable homotopy from C1 to C2 which gives us a convenient control of the
shape of the inbetween reconstructed contours.

The interest of this technique is that we can choose freely the contours to
use and the deformation is controtled by two functions :

a blending function which controls the smooth transition from one contour
to the other,

a scaling function which shapes the outline of the sweep object.

Only one parameter controls the sweeping as well as the homotopic defor-
mation of the cross-sectional shape.

An original formulation. As introduced above, C(ug, vg) represents the
point on the cross- sectional contour at T'(vg) whose parameter on the curve
i1s ug. By using the Frenet frame (or the adapted Frenet frame) at each cross-
sectional contour along the trajectory, each point C(u,v) has two coordinates
in the cross-sectional plane (which is also the plane passing through the point
T(v) and which is orthogonal to the vector #{v)):

Ch(u,v) and Cp(u,v)

such that :

T(v)é(u, v) = Cplu, u)n(-';)) + Cb(u,v)l)(—l.z)
or, more simply:

Clu,v) = T(v) + Cp(u, v)n{v) + Colu, v)b(v)

In the work of [1], the following form of homotopy has been proposed by
analogy with the straight line homotopy:
for given values w and v |

Clu,v) = [(1 = Rp(v))C1{u) + Ru(v)C2(w)]{ ]2 + S('U)] 0<v<l

where C1{u) = [C,(u), C15(u)]
C2u) = [Can(), Cap(u)]



sw= (%" )

and C(u, v) represents the coordinates of the point C'(w, v) in the local
Frenet frame.

The blending function R,(v) is a scalar-valued function which controls the
transition from C1 to C2 thanks to a parameter n. S{v) i1s the scaling function
where S; and S, are two scalar-valued functions that scale a blended inbet ween
cross section in two perpendicular directions.

The boundary conditions of the homotopy definition, 1.e.

C(u,0) = C1(u) and C(u, 1) = C2(u) Yu € [u;, uy]

implies the following conditions on the blending function R, and the scaling
function S:

S(0) = S(

R,(0)=0

Rﬂ(l) =1

Since R, blends the two contours C'l and C2 as v varies (by attributing a
weight to each of the given contours in the inbetween contour), it may satisfy
the condition 0 < R,(v) < 1 at any v values.

1) =

The reparametrization and linear trajectory hypotheses In order
to simplify the technique , knowing that the data we have to manipulate are
parallel contours given by the Cyberware digitizer, we assume a reparameter-
ization is performed such that the correspondance between the parameters of
C1 and C2 is simply chosen as follows:

T(1)6'2(u) and T(O)é’l(u) are, for all u , collinear vectors (cf. Figure 6 ).

Since we have chosen a linear trajectory, we will use indifferently the notation
(x,y) for the axes or (n,b) for the same axes; moreover, we can choose at any
moment a couple of {(x,y) axes for the representation.



T

. C(u,0)=C1(u)

-for a given value u,
the vectors T(0)C1(u) and T(1)C2(u) are colinear .

-the trajectory T is linear.

Figure 8: Assumptions on the trajectory and the correspondances between pa-
rameters of planar contours.

The choice of the blending function This is a suitable rational poly-
nomial function proposed by (Tai):

_ (Lt nj

Ru(v) = . Svs

and
-1 <n

Figure 7 shows the graph of R, for different values of n. The lowest curve
corresponds to n = —0.9.
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Blending function Rn

Figure 7: First example for R, at n=-0.9, -0.7, -0.5, 0, 2, 5 and 9.

As we will see further, another form for the blending function is the following
which has null derivatives at v=0 and v=1:

(1 +n)v?
(1 +n)v*+ (1l —-v)?
0<v <!
~-1<n

Rn(v)

(1)



Second Blending function Rn

0.8

0.6 F

Figure 8: Second example for R, at n=-0.9, -0.7,-0.5, 0, 2, 5 and 9.

The lowest curve corresponds to n = —0.9. v

By using this second blending function and the formulation for homotopy de-
scribed above, we can obtain objects like in two following figures with differents
values of n:

Figure (9) : n=0;

Figure (10) : n=9;



Figure 9: Object created by the homotopy technique with n=0 and
(end contours: a square and a circle).
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Figure 10: object created from the same end contours (square and circle) with
n=9 and Sx=Sy=0.

The scaling functions have been affected the value 0. The end contours are
circles : the smaller one is contour €2 .

We can interpret the two axes as components of the end contours. For
instance. when we interpolate from the contour C1 at v=0 to the contour C2 at
v=1 (C2 is the upper and smallest contour) , the value R, (v) at a given v is a
blending between contour Cl and contour C2: the greatest the value R, (v), the
greatest the component of contour Cl, the smallest the component of contour
C2 in the generated inbetween contour , namely the blended contour is closer
than the contour C1 than contour C2.

Obviously, more complex contours could be used as inputs.

2.4 Continuity control at joint contours

In order to allow users to model arbitrary cross-sectional shape objects, it is
necessary to envisage using more than two contours to reconstruct an object.
First,we begin by exposing the definition of the geometric continuity.



2.4.1 Geometric continuity

If two curve segments join together, the curve has G° geometric continuity. 1f
the directions but not necessarily the magnitudes of the two segments’ tangent
vectors are equal at a join point, the curve has G! geometric continuity. In
computer-aided design of objects , G' continuity between curves is often re-
quired. G! continuity means that the geometric slopes (tangent lines) are equal
at the join point : there is a continuity in the tangent , but not necessarily
neither in normal curvature as we can see in Figure 11 nor in the magnitude of
the tangent vectors (Figure 12 ).

join point tangent line

segment S2

segment S1

02

Figure 11: Gy geometric continuity : the osculating circles.
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tangent vector of curve C2: TV2

tangent vector of curve C1: TV1

curve C2

joint point

curve C1

Figure 12: G| geometric continuity : the tangent vectors at the joint point.

The motivation for the definition of geometric continuity.  Two curves
that have identical plots can have differents tangents vectors (it depends on the
parametrization of the curve) but still have the same tangent line at each point.
We therefore restrict ourselves to the geometric continuity to have smoothness
at a joint point between two curves.

2.4.2 Formulation of homotopy with G, geometric continuity.

Two contours allow us to construct by homotopy a surface. Let us think about
having more given contours. Conditions of continuity appear therefore at the
joint contour.

Let D, be the generated surface between two contours C'1 and C2, and
Dpg between the two other contours C2 and C'3. We assume that the linear
trajectory lies on the z-axis and the three contours are at the locations zy, 21
and :3, respectively. We choose two other axes x and y such that (x,v,z) is an
orthogonal coordinate system.

The constructed surfaces are given by:

Da(u,v) = (C'f(u., 'u),C';(u, v), (1 —v)xz; +v*z2)

Dp(u,v) = (CB(u,v),CP

y
0<v<t, u <u<guy

(12,0),(1 —v) % 29 + v * z3)

where:

< CHu,v) ) B ( (14 SHHN( = Ru(v))Crelu) )+( (1 + SHv)) Ry (v)Car(u)
CHuv) )~ L+ S3w))( )

(1+ S5 (v)) Rn(v)Cay(u)



< CP (u,v) ) _ < (1+S2(0)(1 = R (v))Cr(u) )+< (1+S2(0)) Run(v)Cou(u)
(1+ 57 (v)) Rn (v)C2y (u)

CJ (u,v) (1+ 57 (1)1 = Rm(v))Cry(u)

For the values v = 0 and v = 1, the derivative vector relative to u is clearly
in the plane of the contour going through T(v). With respect to the defini-
tion of geometric continuity, having the same direction for the cross boundary
derivative vectors ( derivative vectors relative to v for a given ug ) is the neces-
sary condition for achieving G! geometric continuity at the boundary between
the two generated surfaces D and DZ.It is also a condition of tangent plane
continuity at the boundary.

Figure 13 shows ( in the plane P22 which is defined by the linear trajectory
and the parameter u) a case on non-G; continuity at the boundary of the two
generated surfaces.

G! geometric continuity is achieved if we have colinear cross-boundary vec-
tors at every point of the boundary; that is:

9D (u,v) ADB(u,v) ‘ .
——8U—Iv:1 - ATILI=O Yu € [U.i, Ll.j}. (2)

where k is a shape parameter called the bias at the joint.
This condition has a very simple formulation.
As written in (Tai), the sufficient conditions for achieving G continuity are:

LAUTNI )
Ry, = o a
L)), o 5)
AL )

sm = k(s — m)Vu € [un ) (7)

If we do not care of the continuity at the joint contour hetween two gener-
ated surfaces, we may create an object like in Figure ( 13) where the surfaces
are generated separately with two different scaling functions and the same pa-
rameter n=0 (using the second form blending function). The lowest contour is
a square, the middle one is a circle and the third one is a wavy contour.
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Figure 13: A generated object without Gy-continuity at the joint contour from
a wavy contour, a circle and a square {with 5, =5, = 0) .

These conditions at the limits can be satisfied easily if we choose the following
blending function which verifies (3) and (4):

(14 n)v®
(1+n)v?+ (1 —v)?
0<v <l
—-1<n

Rn(v) =

This function still allows us to control the transition between the two con-
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tours thanks to parameter n.
By calculating the first derivatives at the boundaries, we have the following
tangent vectors:

(')D as ds "

Iu 1—(Col lu 1, Cay . Lle=t, 22— 1)
oDB . dsB , dsB
—a_;""u_() = (C?I'EL‘_,U:OYC.?y 7 lv=0, 23 — 22)

z2-21

X-axis

Figure 14: Generated Path from Homotopy Sweep Technique.
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3 The Static Approach

3.1 The assumptions in our implementation
3.1.1 Caracteristics of the scaling and blending functions

The two scaling functions Sx and Sy allow us to choose a path from M1 to
M2, thanks to the transitions which are different along x-axis and y-axis. At
the same time , the blending function Rn gives an intuitive way to control the
transition : at a given value v0, we can choose a transition which remains close
to the contour C1 rather than to the contour C2 (and vice versa).

We can see (Figure (9) and (10) ) that the curve of the blending function
Rn shows the component of contour Cl or contour C2 when the trajectory
parameter v changes . By specifying a parameter value n, we can obtain a
curve for Rn which remains close to one of the two contours.

The method. For an implementation of the homotopy method, we must
select a path from M1 to M2 on the real object to be reconstructed. By using
the scaling function S and the blending function, we obtain an infinite set of
possible paths from M1 to M2. The problem is therefore to give the path
selection procedure from M1 to M2 and the criterions to take into account to
this end.

We could choose to follow a path which goes through interesting points of
the human face ( like some features points ). But to select feature points is itself
a complex and difficult problem and needs appropriate methods. Generally ,
the feature points are taken manually by some human operator to obtain a
wireframe of human face. In image synthesis, the ability to follow a chosen path
by using a scaling funct ton S is powerful to create some unreal object or to
deform a real one.

However, in the representation of a real object, we are faced to the problem
of the extraction of significant points from the original object and their addition
to the model we use. This means that in our case, the expression of the scaling
function must be specified for each pair of contours according to interesting
feature points i.e a path must be chosen for each pair of contours. A method
for path search is needed, and some spline technique could be used to join the
known values of the scaling function at the key points which corresponds to
particular feature points or to spectfic paths.

Figure (15) shows an example of object obtained by a homotopy sweep in-
terpolation in which Sy=0 and Sx=1: the effect of the scaling function is to
deform the contours independently in the x-direction and the y-direction.
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Figure 15: Effect of the Scaling Function.

For a human face representation (i.e an existing object to represent ) , the
problem is more arduous seeing that there is no particular axis for the interpo-
lation (one could argue that there is a symetry axis in human faces and that
we could use the homotopic deformation for a special interpolation in the nose
direction; but not all the points can be generated by using such a deformation
in the direction of the nose: for instance , the cheeks do not have this same
orientation ! We must bear in mind that the deformation is the same for all
values of u between two given contours)

As we do not make use of any feature point search method, or any particular
axis for the interpolation, we have implemented a particular case of homotopy
sweep Interpolation technique: it is the case when the path joining the points
on the two contours is located in the plane defined below.

Let us simplify our representation by assuming that the path from M1 to M2
is in the plane Pu=(0O,M1,2)=(0O,M2,z) In other words, there is no particular
direction: contrary to figure {figure de | objet bizarre ) the deformation is the
same in all directions.

S(v) = Sz(v) = Sy(v)

Yu
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That is:
C;(U,U) = (l + 5)[(1 - Rn)c'lr + Rnc'l.r
Cy(uvv) =(1+ S)[(l - Rn)cly + R, Cay

Since these vectors are in the plane Ptjw, it is more suitable to use a cylin-
drical coordinate system (u,r,z) in which the z-axis remains the same as before

(For more details , see Figure 16.

. M(ut,rt,z1)

e -
/’— radius’?\
/axis u=u,

Figure 16: The (u,r.z) cylindrical coordinate system.

In this new system, the generated surfaces have the following expression:
Dalu,v) = (u,rq(u,v), (1 —v)*z; +v*z2)

Dp(u,v) = (u,rp(,v), (1 — v) * 29 + v * z3)

0<v<l,yy fu<uy

wliere :

ralu,v) = (1+ S(v)) *((1 — Ry(v)) = ri(u) + Ry(v) * ra(u))

ra(u,v) = (1 +S(v)) * ((1 = Ru(v) * 7a(u) + Ru(v) * r3(u))



r;{u) for i=1,2,3 represents the radius of the contour i for the parameter u;

z;(v) for i=1,2,3 represents the z-coordinate of the point corresponding to
the value v on the trajectory.

Similarly to the Cartesian coordinates, we have the following values for the
derivative at the boundaries:

in cylindrical coordinates,

dr ds
Z}'Ib"‘ 1 = 7’QEIL =1 (9)
dr ds
a;lb_ = 7‘121—)1[?— (]0)

and the tangent line (relatively to the variable v) at the point C(u,vg) has
the direction of vector: (-:—’1;|u = vg, 22 — 21)

Therefore, at the boundaries | the tangent lines (relatively to variable v)
correspond to vectors:

( m(w)Ele=1, -1) (11)
( rl(-u.)%%hzzo, 20— 2q) (12)

3.2 The implementation

The three dimensional data acquired by the digitizer are used as points of the
contours.

3.2.1 Digitizer operation

A helium-neon laser is used by the digitizer to detect the shape of the object be-
ing scanned. The laser shines out of the digitizer as a vertical plane of light.The
digitizer moves in a circle that is 2.2 meters in diameter. The digitizer oper-
ates on the principle that light in a straight line, reflected off an object, can be
viewed at a different angle to reveal a profile on the surface.

Ata given point in the digitizer’s travel, 256 data samiples are taken vertically
along the reflection of the line, each stored as the radius of that point from the
center of rotation. As the digitizer makes a comiplete circle , 512 sets of these
data samples are made and sent to the host computer to be stored as a grid of
radius values.

If at a given point the digitizer receives no reflection (or too weak to detect) or
the surface is out of the allowable range (center of rotation to a point 20 cm closer
to the digitizer) , a special radius value is stored and called void. Void values
can be replaced in the Echo software by using some kind of interpolation using
non void values. During the digitizing operation, all operations are controlled
remotely by the host computer (which is an Iris graphic workstation).

After the digitizing is complete, we use the Echo commands to display , mod-
ify and save the image.The Cyberware Echo software supports the acquisition ,
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processing and output of 3D images obtained by the Cyberware 3D Digitizers.
The software is intended to handle the images of 3D surfaces acquired by the
Cyberware digitizers.The digitizer acquires 3D surface information as a series
of profiles.

These profiles are defined as a series of coordinate values at regular intervals
on the z-axis (used above; it is the axis which goes through all the contours).
Typically , each profile (which lies on the z-axis) is divided into 512 intervals
(512 intervals along z-axis) , each assigned a radius value . Portions of this
profile may contain no value at all: these are places described as void points.
Consequently, each profile is a two-dimensional ob ject.

To define a three-dimensional surlace, these profiles are digitized side-by-side
across the subject surface with different angles : at each angle 8 (512 angles
regularly spaced between 0 and 27 ), a profile is acquired as a set of 512 radius
values along the z-axis . This forms a perfectly regular grid of radius values
called a range map. Tor a given value zg on the z-axis, the set of 512 radius
values taken at the 512 different angles (from 0 to 27) is called a contour as in
the definitions concerning generalized cylinders and homotopy sweep technique.

3.2.2 Polygon meshes for the output image

A polygon mesh is a set of connected polygonnally bounded planar surfaces. The
representation is only approximate . The obvious errors in the representation
can be made arbitrarily small by using more and more polygons. But this
increases space requirements and the execution time of algorithms processing
the representation . In our case, we used triangular patches for the displayed
image on the screen of Silicon Graphics Iris workstations. t the same time,
we used the Wavefront format of images and the Silicon Graphics Library for
output images.

3.2.3 Planar Paths

As announced before, the implementations we have performed deal with homo-
topy sweep interpolation using planar paths between the corresponding points
on two contours: the scaling functions S, and S are therelore equal (S; = S, =
S}, that is, the deformation is the same in all directions ( isotropic deformation

The implementations are made on digitized human faces and use different
values for the scaling functions. Here are the different cases we have tackled.

3.2.4  Null scaling function

The first implementation uses the value 0 for the scaling function:

Se(v) = Sy(v) = S(v) = 0
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Figure 18: The selection of input contours among 512 digitized contours.

Scaling functions integrating the computed derivatives In expressions
(11) and (12), the tangent lines on the given contours have the following direc-
tion:

at M{v=1)
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at M(v = 0)
ds
{r1{u) —Iu 29— 1p)

dv

Let us normalise the value on the z-direction.Therefore, tangent line directions
become:

at M(v=1)
|v.—lv 1)

Zn — Iy (lu
at M (v = 0)
ri(u) dS

i Yl
o — 5 dv 7o lv=o )

Let us define the direction coefficient ¢ (u0)|,=,0 corresponding to surface
A as the r-coordinate value of the tangent vector (relatively to v) at the point
C{ug, vo) of the generated surface when its z-coordinate is normalised to 1. In
the case above,

Apoyl . Talw) dS

c (U)|u—1 = T — o du |v_l
r(u) dS

CA(”’)IU:O = ](_‘) -J—IUZO
-1 dy

The G! continuity conditions at a join point M between two generated sur-
faces A and B , can be expressed in the cylindrical coordinate system by the
equality of the two direction coefficients corresponding to each surface | namely

Vu, cMu)lo=r = eB(u)v=o (13)
le.
ra(u) cISl _ rafu) clﬁ'l
I — 2 dv v=t = I3 — 29 dv v=0

which is finally the same condition as in equation (7):

ds dS
Iv:l =k |v
dv

=0
dr

where k& = =-‘—-L and S§; =5, =S.

In our 1mplementat10n \\e have calculated separately the two direction coef-
ficients Cdsz cer()]v=1 and B {u)|y=0 using the data given by Cyberware
digitizer.

Along the z-axis, 512 contours are represented. One contour is chosen among
ten contours from the range map given by the digitizer: the contour 0 is chosen,
9 other contours are skipped, contour 10 is chosen, etc. To obtain the direc-

tion coefficients from the digitized face data , for instance for a chosen contour

digitizer
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Cfﬁgi“:e" (0 <7< 511), we compute the tangent values from the adjacent

digit digitizer S .
digitized contours C{*%**°™ and C%"**". The two direction coefficients are
computed between the fol]owing digitized contours:

digitizer digitizer
for the surface A between CZ4""" and ¢/
A ,
cdigili:er(u){v=l

computed from the points CF9¢" (u) and CHYH " (u);

digitizer d tize
cle and Clgeer

for the surface B between i+l .

B
Cdigiti.: er(“’)'u =0

computed from the points CF¥*'*"(«) and C:ig]””e'( )i
The tangent vector coefficient is computed by using the direction of the

digitis digitizer
straight line joining on one hand, the points C{%%***" (u) and C#¥***¢"(u), and

digitiz digitiz
, on the other hand, CH9H2" (y) and CFH2¢7 (y).

1adzus(C’“9‘“"e’ (1)) — 1.ad,ius(cgigliti:er)

-
cdlgztl..e: (u)‘v=1 =

I Fi-l

s 'dzyztz.er . . Wdigitizer
B radius(CiL (u)) — radius(C; )

Cdigiti:er'(‘u)lll:() =

Zig — 21
After the computation of ¢, ;.. (4)|v=1 and cﬁg“i”r(u)[uzg these values

are affected to ¢ (u)]y= and eB(u)],=0o:

A A

¢ (‘u')|l'=l = C(ligiti:er(“')lv=1

B B

¢ (U)}U=U = C([igili:er(u)lv=0
and the direction coeflicients are defined by:
r; ( u) dS g

Mozt = ———~——1i2y
T | dv

ri(u) dSB

———}s=0
Zig1 — 3 dv

CB(‘u')ll):ﬂ =

so the conditions become:

o ri(w) dsA

A ,
(‘diyiti:er(u')luzl - 5 — i) dv |v=l

and
ri(u) dSP

Sigl — 2 dv

B
Cdigitizer (u |1'—0 v=0
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where 7;(u) and z; are respectively the radius and the z-coordinate of the point
digitizer
C; (u).
For each surface A generated between two adjacent digitized contours, the
scaling function S (which is equal to S; = S,) must satisfy conditions at v = 0
andv=1:

S(0) = S(1)=0

ds4 2 — Zi—-1 7

dv fo=1 = t1"('u) Cdigilizer(u)lv=1
i

ds4 Zi — Ziol

A

v=0 = Chigirizer(U)|v=0——F—
dv ] digitizer )lv 7'i—l(u)

Result:

We generated the surfaces using the same number of contours as before (one
selected contour among ten digitized ones) . The scaling functions we choose
depend now on the parameter u (and not only v) because we use direction coef-
ficients which are related to the angle ( namely the vartable u): they are simple
polynomial functions which satisfies the constraints on the first derivatives at
v=0 and v=1 .

S(v) = Sx(v) = Sy(v) = P(v)

where
P(v) = v.(v = 1).({(po + P1)-2 — po)

po and p; are the first derivatives in 0 and 1 respectively.
In Figure (18), the dotted contours are adjacent to the selected ones: they
are used for the computation of the direction coefficients.






by calculating the average of the two direction coefficients on both sides of a
contour.

Figure (19) shows that tangent planes on both sides of a selected contour
are different: the triangular patches on which is based the generated surface
in our implementation are visible but the surfaces created on both sides of
the input contours are much more distinguishable. Conversely,Figure (20) uses
the average value of the computed direction coefficients on both sides of input
contours.

The difference value in the case of a smooth cheek is certainly due to ap-
proximations made by the machine during the computations.

3.3 Conclusion
3.3.1 The results

The scaling functions are very important to perform an accurate homotopy
sweep interpolation from a set of input contours. This means it is absolutely
necessary to provide the model the data concerning the tangents on the object
being represented.

In the above example, we used one contour among ten input contours ( that
15 10 % of data ) and for each of the selected contours, we needed two additional
contours to extract the direction coefficients : consequently, it was necessary to
have 30 % of the digitized data to be able to reconstruct main features of the
digitized human face or at least a generalized cylinder which is an approximation
of the human face.

The scaling and blending fuunction The scaling functions we have taken
are polynomial functions with constraints on the first derivatives corresponding
to the tangents at the boundaries. As we have an infinite set of possible scaling
functions, we could use more sophiticated functions to fit closely the real object.
But, obviously, it is easier to give explicitely the inbetween points than to try to
give a scaling function jJoining these points. In that sense, 1t is more judicious to
choose a simple scaling function which satisfies some first derivative conditions
and to try by some method ( for instance least square method) to adjust the
parameter 1 of the blending function to the real inbetween points of real object
contours.

The difficulty is due to the blending function which depends exclusively on
the variable v and not on the variable u. This means that we have very similarly
generated profiles at all values of v between two given contours : although the
scaling functions are changing around the object, the transition from one contour
to the other (which is represented by the blending function) is the same for all
the angles ( which correspond to the variable u). Actually, there is no reason
to have such a symetry in the object to be represented.



If we use different parameters for each profile (i.e for each angle around the
object), we make independent interpolations which are , in fact, t wo-dimensional
interpolations at each angle (i.e. each profile) between two points with given
tangents at these points. In that case, it is necessary to compare the homotopy
sweep interpolation with other classical methods such as the spline technique.

Comparison with the spline technique Two kinds of splines are very
popular: interpolating splines with C! continuity at knots and approximating
splines with C? continuity at knots. The interpolating splines are divided into
two distinct groups: the global cubic-spline interpolation for which any change
made locally will be interpolated over the entire curve ; and the local cubic
interpolation splines for which the curve at anyone point is dependent on at
most five points, two ahead and two beliind.

The homotopy sweep technique is typically a local interpolation method :
the curve is dependent on one point ahead ., one point behind and the two
given tangents at these points. We can control the transition by changing the
parameter n of the blending function and we can choose the suitable scaling
function from one point to the other.

Some splines can be controlled along the trajectory by using tension param-
eters which allow the user to tighten the spline curve like in the case of v-splines,
cardinal splines or Catimull-Rom splines.

Therefore , there are many similarities .Nevertlieless, the homotopy sweep
interpolation needs a reference point (or axis) for each given point: that is, the
homotopy sweep in our implementation allows us to interpolate real values such
as radii but not geometric positions in a two or three dimensionnal space ; as
we applied the particular case of homotopy, we need to provide the axis along
which the radii are measured and interpolated. However, in the local spline
Interpolation techniques , only points in a two dimensional space are given: the
interpolation does not depend on any reference point ( or axis).

The discontinuities The free-form curves like human faces , clothes, noutains
contain a certain number of discontinuities. Obviously, we can create these dis-
continuies if we try not to satisfy G' coutinuity conditions but the generated
surfaces are absolutely continuous by definition of homotopy.This can also be
considered as a disadvantage when discontinuities are wanted.However , spline
methods also can not create discontinuities between control points . Anyway, it
would be interesting to handle these discontinuities and to reconstruct them.

A too simplified model  We adapted the general homotopy sweep technique
to the example of human face representation but because of the particular case of
a linear trajectory , and the planar path between two end points due to the lack
of data concerning the location of important featuve points, the model is very
simplified . It could be improved by adapting the parameter n of the blending
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function according to some optimization method. The tangents at these given
points are necessary .

Other approaches During the implementation of the homotopy sweep tech-
nique , we were thinking about the generalization of this technique ,for example
in the deformation of a surface to another surface with known correspondances
between the points of the contours assuming that the surfaces are bounded by
identical contours. This example looks like the animation from a surface to
another by interpolating with time. We tried to add some physical constraints
to this homotopy but we had to solve some equations which were general differ-
ential equations and for which it was more adapted to apply numerical analysis.
In order to take advantage of the intuitive and convenient control of the defor-
mation by using the homotopy sweep technique , we applied this model to an
example of dynamic approach : the animation of the human mouth.
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4 The Dynamic Approach

4.1 Introduction

In a real time process, only relatively simple calculations can be made because
the image must be displayed in less than 1/15 seconds : otherwise, the illusion
of continuous movement breaks down at slower speeds.

The formulation of the homotopy sweep technique is very simple and pro-
vides a control of the transition from one point to another with some conditions
on the first derivatives at the end points. This is very interesting in the case of
animation because the formulation we will see is inspired by the one we applied
to the surface generation: the conditions on velocities are analogous to the G!
continuity conditions and the generated trajectories for a point are similar to
the generated surfaces in the case of three-dimensionnal representation.

Our purpose is to apply the homotopy sweep technique in a real time process
to the movement of the lips for the global project of the new teleconferencing
system with realistic sensations.

It would be very interesting to control the continuous mouth deformation
just by specifying the coordinates of a few points and their velocities and to
deduce the motion of all the other points.

We have tested this dynamic approach by applying a homotopy technique
to the human mouth. The input was a set of two frames for which the two-
dimensional locations and velocities of the markers were acquired and the out-
put was the generation of inbetween frames which appeared like an animation
sequence between the two selected frames.

The principal interest of this technique is that we can control the deformation
between the two keyframes.

4.1.1 The General Sclieme

Figure (21) shows the different processes of our dynamic approach. The input
is given by the Lip Tracking Process , the Cyberware Digitizing Process and the
manually entered wireframe.



Lip Tracking Process Cyberware Digitizing Process
250 frames 3-d images:
16 markers 4 main frames (corresponding to "a", "o", "1" and "u").
—
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[ . ] ( 3-d Wireframe
Selection of 2 keyframes 3
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Velocity computation z-displacements to perform 3-d Adapted Wireframe
a complete 3-d animation.

Blending Function Rn: a parameter n.
Scaling Functions

Y ¥

Interpolation Technique

[

(] \ |

Mouth animation: generation of inbetween frames.

Figure 21: The Mouth Animation General Scheme.

A set of 250 {rames was obtained thanks to the Lip Tracking Device with 16
markers on the mouth of a subject. 2 frames are taken from this set and , for
each marker, velocity is computed by using adjacent frames (like in the above
Static Approach).

A pre-existing three-dimensional wireframe is manually adapted to the loca-
tion of the markers on the mouth. The three-dimensional animation is applied
to the human mouth by only moving the points of the wireframe : the texture
is also deformed in this motion. Therefore, a computed displacement is applied
to each point on the wireframe to perform the animation.

The three-dimensional animation is completed by adding the displacement
in the z-coordinate taken thanks to the Cyberware Digitizing Process.

Finally, we computed the wireframe points displacement by a Homotopic
Interpolation for each marker with Blending Functions controlled by the pa-
rameters n, m and p, two scaling function : mbetween frames were generated
from the two end key-frames.

The animation is therefore realized with some morphological assumptions
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concerning the mouth muscles. The animation was recorded on a VHS tape
with different configurations and parameters.

4.2 The Lip Tracking Device

The Lip Tracking Process has been performed thanks to Mr. Yoshifumi Kita-
mura, Researcher in the Articial Intelligence Department.

In order to obtain data relative to the lip movement , a lip traking system
is available : a micro-camera and a helmet are interdependent and a system
recognizing markers on the lips gives the locations of these points after each
period of approximately one second. When tracking the motion of eight markers
, the period is 0.8 second , and 1.2 seconds when we track 16 points.

The Lip Tracking System provides the coordinates of the points which are
tracked in a two-dimensional space. The markers are set around the mouth, on
the lips.

In the first experiments, we used 8 markers on the lips of an experimentator

" n

who moved his mouth according to the articulation of some letters like "a", "o”,

71" and Tu”.

8 points
Figure 22: Lip Tracking: 8 markers.

After realizing 8 markers are not sufficient for mouth motion description, we
added 8 more markers on another contour of the mouth which will be called the
outter contour.



oulter contour

inner contour

Figure 23: Lip Tracking: 16 markers.

We recorded the movement of 16 markers (for the same articulation of let-
ters ) which is sampled each 1.2 seconds: 250 samples from the Lip Tracking
measurements were available for our interpolation. Moreover,thanks to the Cy-
berware three-dimensional digitizer , we scanned the experimentator’s face to
keep the exact locations of the markers on his face (in fact, four images were
taken for the four main positions of his mouth among the 250 frames).

4.3 The interpolation

We assume having two frames with given point cootrdinates and velocities. The
interpolation is made between these two end positions: therefore . we choose
two samples among the ones taken by the Lip Tracking Device .

Let O be a point.in the two-dimensional space , A a marker on the lip and
B the corresponding point in the second frame.

A local cylindrical coordinate system ( O, U, ( ), L -(.
initial point A and depends on the angle # between (O A4
24 ).

The correspondances between the points are supposed to be given. The time
for the two keyframes is normalised to ¢ = 0 and ¢ = 1. At an instant t and for
the angle # , a point A (0,1) is generated between A and B.

In (O, U.(0), Up(0) ), M(0.1) is defined by :

#) ) is attached to the
) and (Ox) { cf Figure

OM0,t) = (0, 0)T(0) + w(0,0)T4(8).
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Figure 24: Coordinate System and Interpolation.
The conditions at the limits are imposed as following:
M(8,0)=4

AM(8,1)= B

(l.r’-\"/[ .
— = v
dl t=0 Uy
dMI L
dr "t o2

The velocities are also expressed in this coordinate system:

0 = 01, U,(0) + v1sUs(0)

~

Sl

= v, [7,(0) + v2 U5 (6)
OA = rU,(0)
OB = U (0) + w:Uy(0)
The constraints on velocities are given by:

dr

|t:U = Uyr
dt
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dr

d_iitzl = Uap
dw
IIz:o = Uy
dw
Wltzl = Uag

By analogy with the application of the Homotopy Sweep Technique in the
static approach, we propose the following interpolations for each of the r and w
components.

4.3.1 The r-component
The interpolation for r is done hetween the two values v and r:
r(0,1) = (1 = Ra(O)(1 + S1(8)r + Ra(t)(1+ Sa(t))r

Therefore, the first derivative is :

dr  dR, ds,
— T p— > » S 'r, - .o ")
7 = e (~(U S+ (L Sp)ra) + (1= Ru)ri—= + Ra(tiry

ds,
dt

Let us choose the second form for the blending function R,. The velocity
conditions are expressed by:

([S] _ vVip
([ﬂ =07 ™
dS, Vo

—li=1 =
dt 1"y

These velocity conditions can be satisfied easily by using some scaling functions
St and S» with velocity conditions at { =0 or{ = 1.

Finally, we can choose any parameter n for the blending function R, ( to
control the transition from r; to 9 ) and the scaling functions S; and Sa.

4.3.2 The w-component

The interpolation is performed as above for the w-component from 0 to ws. In
our implementation, we made the following interpolation :

w(f@, 1) = (1 = R (8L + ScINA + Rn (01 + Sa())(wa + A) ~ A

where m is the parameter for the second form of the blending function and A
is an offset value which translates the interpolation from the interval [0, w»] to
[A,wa + A] . The velocity constraints are given by:

dw
'—]z:() = Urs

dt
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dw
—lt=1 = Vg

dt
w(#,0) =0
w(f,1) = w»

As for the interpolation for r, the conditions at { = 0 and ¢ = 1 are given by

ds) _ Vi

k=
dS, T
71— = wa + A

The examples of scaling functions are in the Appendix L.

4.3.3 The reference point

In the homotopy technique, it is necessary to choose a reference point because
the interpolation is achieved between two values. Since mouth has a vertical
symetrical axis, we choosed the reference point on that axis. It is clear that
we can choose a reference point for each point to be moved but we made the
implementation by using the same reference point for all the markers.

4.3.4 The z-coordinate for animation

The animation was first made by using the displacements in a two-dimensional
space . Actually, we first implemented the motion using this two dimensional
displacement. to check the validity of our experiment and our implementation.
Then we added the z-compounent for mouth animation thanks to the 3-d images
we saved during the Cyberware Digitizing Process. For four main {rames corre-
sponding to the articulation of four letters, we had the 3-d coordinate of each
marker. The interpolation we developped considers the velocity constraints as
limit conditions, but actually, we only had 2-dimensional velocities because we
used only one camera for Lip Tracking. This is the reason why we chose the
very simple following formulation:

) = (1= Ry(0))z1 + Rp(0)z

where z; and z» are the z-coordinates of two face expressions for the same
marker. We chose the closest main frame (which correspond to one of the
s m o win "

articulations "a”, "o”, "i" or "u”) to the selected key-frame (among the 250
possible {rames }.
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4.4 The velocity computation

Since 250 samples were available, we simply computed the velocity for each
marker thanks to the adjacent frames, for example by computing the average
displacement between this frame and & frames before {or after). This is accept-
able because only 2 choosed key-frames (among the 250 available samples) were
considered as the end frames in our interpolation.

4.5 The wireframe
4.5.1 The initial wireframe

In order to perform a human face animation, it is common to handle a wire-
frame which contains the coordinates of distinguishable three-dimensional points
Joined by straight lines: the information concerning the shape and the texture
are therefore represented by the polygons defined in the wireframe.

Usually, a wireframe of the human face which was marked in the Lip Tracking
Process already exists (in our case, the subject’s wireframe had been taken
manually from the three-dimensional images using some software to handle this
kind of images) .

In the first attemipt to apply this interpolation to the mouth animation,
the wireframe was fixed a priori and did not correspond to the locations of the
markers during the Lip Tracking measurements . The results of the interpolation
were not very satisfying.

However, it was possible to adapt manually the wireframe to the Lip Tracking
markers: we made some of the wireframe points correspond to the markers by
using the Cyberware three-dimensional images taken immediately after the Lip
Tracking process .
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contour C3
contour C2

Figure 25: The wireframe is adapted to the 16 markers.

4.5.2 The adapted wireframe

Since we had 3-d images of the subject, we adapted manually some points of
the wireframe to our markers and we made the wireframe contours correspond
to the circular muscle around the mouth.

Figure (25) shows 4 contours in the wireframe . The extreme contours Cy and
C3 correspond to our inner and outter contours and we know the displacement
of only 8 points on each contour: the markers are the biggest circles.

For a given pair of adjacent markers on the same contour, let us call p0 the
location of the markers on that contour and pl, p2, p3 and p4 the four inbetween
points on the wireframe; the node sequence on the wireframe is therefore p0
{=marker), pl, p2, p3, p4, p0 (=marker) (Figure 25).

4.5.3 The inbetween contours ¢; and C»

Hypotheses. We assume that we know the velocities and locations at ¢ = 0
and ¢ = | of the markers: this enables us to calculate the displacement for that
markers at any instant t ({ € [0, 1] ) thanks to the previous interpolation.

Our problem is to deduce the displacement of the points on the inbetween
contours Cy and Cs.



Dilatation and compression of the circular muscle. A muscle is com-
pressed and dilated according to its fiber constitution . Our assumption is to
consider the same deformation for all the fibers of a circular muscle (cf Figure
26).

Let Ay and A3 be the markers on the outter and inner contours and A; , A»
the points on the inbetween contours C| and Chs.

marker
A3 Pt

pl

marker

marker

Figure 26: Mouth muscle fibers.

The proportionality assumption for dilatation and compression can be ex-
pressed as follows:
dodi pd ‘:“‘4" are constant V¢ € [0, 1].

AOAJ UA:\
In our implementation, the first expression is taken equal to 313- and the second
9
one to 3.

Let us call the wireframe points 4} and A, the first stage points.

4.5.4 The inbetween points on the same contour (pl to p4)

Hypotheses. The location of all points p0 (=matker) and their velocities are
known at ¢ = 0 and t = 1. The interpolation technique let us control the
displacements from ¢t =0 to t = 1 of the markers.

The displacement of the first stage points A} and As on inbetween contours
C) and C, 15 also supposed to be known.

The problem is to deduce the displacement of the inbetween points from
the markers displacement {for the points on the outter and inner contours) and
from the first stage points displacement (for the inbetween contours).

Linear homotopy. Since we do not have a priori any constraint at the limits
(for velocity or displacement) and we do not know the shape of the curve joining
the markers (or the first stage points) , we first just apply a linear homotopy to
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find the displacement of the inbetween points. It is clear that this interpolation
can be improved.

4.6 The Texture Mapping

I first made animations on Silicon Graphics workstations and, when [ obtained
the promising first results with animation examples using simple geometrical
objects, we decided to realize a complete demonstration with real texture map-
ping of my animation model. I was proposed to work in collaboration with a
progranumer who would adapt his graphics software (called live”) to the data
I would give him in real time {via a unix pipeline).

4.7 Conclusion

[ introduced a formulation for the mouth animation in analogy with the Static
Approach and I showed how we can easily control the deformation during the
interpolation by using a few parameters. Eventhough I made a few assumptions
relative to circular fibers, the animation was very realistic without using anyv
physical constraints.

After the implementation of the dynamic approach, [ realized it was possible
to make a realistic animation without any complex physical constraints on the
model and I understood the texture mapping deformation is more important
than the volume deformation in human face animation.

The animation does not need time consuming computation and can be used
in real time. For a future work, the parameters of the scaling functions can
be improved easily and the method can be applied to wrinckles anumation, for
instance.

The VHS animation tape [ realized in collaboration with Mr. Yoshifumi
Kitamura is one of the demonstrations showed to ATR’s visitors.
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5 Conclusion

5.0.1 The technical experieuce in ATR

During the five months of my stay in ATR, I learned very much about the
techniques used in computer vision and computer graphics thanks to the doc-
umentation I read and to the tools I used . I got acquainted with the Silicon
Graphics workstations and with the three-dimensional Cyberware Digitizer ; [
dealt with many image format problems ; I used many differents tools and I had
to make all these tools communicate to achieve my goal. [ think this is a good
engineer experience.

I also had very theoretical discussions with Prof. Narendra Ahuja and Dr.
Tanaka to try to generalize the Homotopy Sweep Model to a global model for
three-dimensional surface deformation but five months were very short to obtain
such a general formulation. However, | had a very good contact with research
fields and researchers in general which makes me intend to work later in these

fields.

5.0.2 The technical results of my internship

I was first proposed the Homotopy Sweep technique as a possible data repre-
sentation model for human face (or other parts of the human body like arms).
I studied this method and the particular case of planar paths, and tried to
generalize this interpolation to three-dimensional surfaces in very interesting
discussions with my supervisor, Dr. Hiromi Tanaka and the Professor Narendra
Ahuja.

After the implementation of this Static Approach, [ evaluated this method in
comparison with otlier methods and showed the problems I encountered such as
the discontinuities on the human face: when using Generalized Cylinders, all the
discontinuities of the human face become continuous because the masterword
of the Homotopy Sweep Technique is continuity everywhere. Obviously, we can
just avoid applying G' — continuity for surface generation between contours to
obtain the desired discontinuities but this can not be used for all the existing
discontinuities in the human face.

This leaded me to think about using this homotopy in human face animation
because in this case, we can easily fix the velocity constraints as we fixed the G —
continuity constraints for the static approach. I therefore wrote an interpolation
formulation in analogy with the Static Approach formulation.] first obtained
some results with geometrical objects which are deformed into other objects
smoothly. After realizing these deformations can be very efficient in animation
techniques, my supervisor proposed me that a programmer in my laboratory
could write a special program for the output image: I therefore computed the
animation patameters and the deformation of each point of the wireframe and
[ used his special program to animate the image.



The result is impressive and the deformation looks realistic as we can see on
the videotape. I believe this Dynamic Approach can be improved in many ways
in order to be applied to other parts of the human face, such as the wrinkles,
for instance. After my internship, [ am still in contact with ATR and with Dr.
Hiromi Tanaka and [ intend to write a paper for an international conference on
image processing to be hold in the end of 1993.

5.0.3 My personal experience

During my internship in ATR, [ acquired experiences and skills from a metho-
logical and technical point of view as well as from a human point of view.

First of all, the ATR research laboratories are a priviledged environment
for performing researches with important facilities at the disposition of the re-
searchers.

From a techuical point of view, I could perform a lot of experimentations
in the field of image processing and data representation and 1 got acquainted
to many techniques and problems encountered in the field of computer vision.
The excellent computing tools in my laboratory and the kindness of all the
researchers helped me constantly. I was lead to attend to talks of many fa-
mous researchers from other international research centers and to read a lot of
documentation on image processing, animation techniques and representation
models.

From a methodological point of view, the subject of my research was limited
in goal but not in the ways to reach this goal, because [ had to define the main
steps of my work by myself, under the supervision of Dr. Hiromi Tanaka and
not just to implement given algorithms . I therefore had an experience of real
research in the computer vision and graphics field, including experimentations ,
implementation and problem solving. After the first two weeks of my internship
, I introduced the general principle of the Homotopy Sweep Method and how
[ could use it in the case of human face representation. [ am very grateful to
my superiors ( Dr. Hiromi Tanaka and Dr. Fumio Kishino) who were confident
enough in me to give me such a responsability from the start of my internship.

I was very much interested in observing japanese methods of work. In my
laboratory , the researchers are working in many different fields (artificial intelli-
gence , man-machine interfaces, differents areas of image processing, networks)
and it is customary to hold a regular meeting every week where several re-
searchers explain the progress in their research. Thanks to these discussions ,
everyone is aware of problems or difficulties of the other researchers and can give
advice. Unfortunately, these meetings were held in japanese and of course, were
not as profitable as if they were in english eventhough people tried to switch
to english as soon as possible. At least once a week |, visitors (Japanese and
foreigners) were demonstrated research results: this kind of policy is fruitful in
the long ruun because it is a source of exchange of knowledge and can lead to
further cooperation, or more prosaically to financial supports.
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From the human relationship point of view, | feel that being employed in
a japanese company is certainly a good way to discover Japan and its people.
Moreover, the Kansai area is a splendid region interesting at the touristical and
cultural point of view.

Japanese companies are often spoken of as big families. In fact, as far as
I could see, the relationships in my laboratory were very much according to
fact. When I arrived, I was greeted very kindly and everybody tried to make
me feel comfortable and at ease. In everyday life, the masterword seems to be
harmony and everyone avoids any direct clash or remark. ”Laboratory parties”
are held one or twice a month and everyone has a good time and can get to
know the others better. This creates a very good ambiance of work into which
the newcomer is integrated veyr quickly.

In fact, after having spent eight months in a japanese environment, [ feel
I have some general ideas about japanese behavior although I would not dare
saying [ understood all of it. Anyhow, I could go through the cliches in use in
Europe to get to know better the japanese people and appreciate them a lot.
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A Appendix I: Scaling functions.

In our implementation, we used the following second form for the Blending
Function:

float Rn(n,v)

float v;
float n;
{
float value;
value=( ((1+n)*v+*v)/ ( (2+n)*vkv-2*v+1 ) );
return value;
¥

In file "hpy.c”, we first used the following formulation for the r and w-
component:

float Sx(v,tA)

float v;
float tA4;
{
float value;
float Cte;
Cte= tA;
value= (0.25-( (v-0.5)*(v-0.5) ) )*Cte ;
return value ;
3}
float Sy(v,tB)
float v;
float tB;
{
float value;
float Cte;
Cte= -tB;
value= (0.25-( (v-0.8)*(v-0.5) ) )*Cte ;
return value ;
¥

float r{(n,rA,rB,VrA,VrB,t)
float n,rA,rB,VrA,VrB,t;

{

float value,tan_in_OQ,tan_in_1;
tan_in_0=VrA/ri;
tan_in_1=VrB/rB;

o
o



value=(1.-Rn(n,t))*(1.+Sx(t,tan_in_0))*rA + Rn(n,t)*(1.+Sy(t,tan_in_1))*rB ;
return value;

}

w(m,wB,VthetaA,VthetaB,t)

float m,wB,VthetaA,VthetaB,t;

{

float value,tan_in_O,tan_in_1;
tan_in_O0=VthetaA/Trans_value;
tan_in_1=VthetaB/(wB+Trans_value);

value=(1.-Rn(m,t))*(1.+Sx(t,tan_in_0))*(Trans_value)+Rn(m,t)*(1.+Sy(t,tan_in_1))
*(wB+Trans_value)-Trans_value;
return value;

}

We changed this formulation by adding parameters alpha, beta, gamma and
delta for each component to control the scaling functions defined as following:

float Sx(x,tA,alpha,beta)
float x,tA,alpha,beta;
{
float value,a,b;
a=((beta/(alpha*(alpha-1)))+tA)/alpha;
b=~tA;
value=x*(x-1)*(a*x+b);
return value;
/*polynome passant par (0,0) (alpha,beta) (1,0) ayant pour pente tA en O*/
}

float Sy(v,tB,gamma,delta)
/* polynome passant par (0,0) (gamma,delta) (1,0) ayant pour pente tB en 1 */
float v,tB,gamma,delta;

{

float value,a,b,alpha,beta,ti;
alpha=l-gamma; beta=delta; tA=-tB;
value= Sx{ (1-v),tA,alpha,beta);
return value;

}

/*la hauteur de la scaling function correspondante est:



beta_mult_pente*(la hauteur precedente)
avec la hauteur precedente= pente en O ou en 1 divisee par 4

mm chose pour delta_mult_pente.

*/

float r(n,rA,rB,VrA,VrB,t,

alpha, beta_mult_pente,

gamma, delta_mult_pente)
float n,rA,rB,VrA,VrB,t,alpha,beta_mult_pente,gamma,delta_mult_pente;
{
float value,tan_in_O,tan_in_1,scalingX,scalingy;
tan_in_O=VrA/rA;
tan_in_1=VrB/rB;
scalingX=Sx(t,tan_in_0,alpha,beta_mult_pente*tan_in_0/4.);
scalingY¥=Sy(t,tan_in_1,gamma,delta_mult_pente*tan_in_1/4.);

value=(1.~-Rn(n,t))*(1.+scalingX)*rA + Rn(n,t)*(1.+scalingY)*rB ;
return value;

}

w(m,wB,VthetaA,VthetaB,t,

alpha, beta_mult_pente,

gamma, delta_mult_pente)
float m,wB,VthetaA,VthetaB,t,alpha,beta_mult_pente,gamma,delta_mult_pente;
{
float value,tan_in_0,tan_in_1,scalingX,scalingy;
tan_in_0=VthetaA/Trans_value;
tan_in_1=VthetaB/(wB+Trans_value);
scalingX=Sx(t,tan_in_0,alpha,beta_mult_pente*tan_in_0/4.);
scalingY=Sy(t,tan_in_1,gamma,delta_mult_pente*tan_in_1/4.);

value=(1.-Rn(m,t))*(1.+scalingX)*(Trans_value)+Rn(m,t)*(1.+scalingY)*(wB+Trans_v
alue)-Trans_value;
return value;

by

Here 1s the main function of the animation:

void hpy(4,B,Xorigin,Yorigin,Interpecl,n,m,R_alpha,R_beta_mult_pente,R_gamma,R_de
lta_mult_pente,W_alpha,W_beta_mult_pente,W_gamma,W_delta_mult_pente)

float A[N][4], BIN][4];

float Xorigin,Yorigin;

o



float Interpol[N] [frequency][3];

float n,m,R_alpha,R_beta_mult_pente,R_gamma,R_delta_mult_pente,W_alpha,W_beta_mu
lt_pente,W_gamma,W_delta_mult_pente;

{

float XA,XB,YA,YB,VXA,VXB,VYA,VYB,rA,rB,Urx,Ury,Uthetax,Uthetay,wB,rt,wt;

int i,k;

/* INITIALISATION OF Interpol with given points A & B */
for (i=0;i<N;i++) {
Interpol[i] (0] [0]=A(i](0];
Interpol(i] (0] [1]=4(i](1];
Interpol[i] [0][2]=0;
Interpol[i] [frequency-1][0]=B[i][0];
Interpol(i] (frequency-1][11=B[i][1];
Interpol[i] [frequency-1][2]=0;
¥
/* COMPUTATION OF remaining values for curves between A-curve & B-curve */
for (i=0;i<N;i++) {
float VrA ,VrB,Vthetad,VthetaB;
/* initialisation of variables */
XA=A[i1[0]-Xorigin; YA=A[i]J[1]-Yorigin;
XB=B[i] [0]-Xorigin; YB=B[i]([1]-Yorigin;
vXA=A(i](2]; vya=A[i1(3];
vxB=B(i](2]; vyB=B[ilI[3];
rA=fsqrt( XA*XA+YA*YA );
rB=fsqrt( XB*XB+YB*YB );
Urx=XA/rA; Ury=YA/rA;
Uthetax=-Ury ; Uthetay=Urx ;
wB= XB*Uthetax + YB*Uthetay;
VrA=VXA*Urx + VYA*Ury,; /#*produit scal.=*/
VthetaA=VXA*Uthetax + VYA*Uthetay;

VrB=VXB*Urx +VYB=*Ury;
VthetaB=VXB*Uthetax + VYB*Uthetay;

/* Computation for k=0 (point A) until k=frequency-1 (pointB) =/

for (k=0; k <= frequency-1; k++) {
float t;
t=k/( (float) frequency);
/*USing HoOmOtOPY ###*%kkkk kkkakkkk k¥ Kok kKF ¥ kk rk KAk kA kKA ARk F KAk
rt=r(n,rd,rB,VrA,VrB,t,R_alpha,R_beta_mult_pente,R_gamma,R_delta_mult_pente);
wt=w(m,wB,Vthetad,VthetaB,t,W_alpha,W_beta_mult_pente,W_gamma,W_delta_mult_pente
Y;

o2
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Interpolli] (k] [0]=rt#Urx + wt*Uthetax +Xorigin;
Interpol[il [k][1]=rt*Ury + wt*Uthetay +Yorigin;
Interpolli] [k][2]1=0;

}
}

1
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