
ATRテクニカルレポート表紙

〔公開〕

TR-C-0069

Software Design and its

Automation Final Report

Timothy J. Gleeson

ー

1 9 9 1 l 0 l 9

ATR通信システム研究所

Software Design and its Automation
Final Report

Tim Gleeson

October 199:

， 戸

"

＇ '

"

Contents

1 Introduction ー

2 Philosophy of design 3

2.1 What is design? . 3

2.2 Definitions of terms . 4

2.3 Design activities . • . . . 6
2.4 Abstraction and design . 7
2.5 Future research -. 10

3 Psychology of design 11

3.1 Design behaviour . 11
3.2 -Basic mechanisms . 12

3.3 Information sources . 13
3.4 Design control ．． 15
3.5 Expl . anation of behaviour 16
3.6 Future research . 17

4 Notations 18

4.1 Introduct10n to external media 18

4.2 Building a supersystem . 21
4.3 Solutions . 23

4.4 Formal specifications . 23
4.5 Future research . 24

5
．．
Dec1s10ns 26

5.1 Properties of design decisions . 26
5.2 Information control . 27

5.3 Implementation . 28
5.4 p arametensat10n: automat10n of decisions 30
5.5 Future research . 31

6 Future 32
6.1 A utomat10n research ... 32

6.2 Future research . 33

A Writings 35
A.1 Papers 35
A.2 Notes. 35
A.3 Survey 35
A.4 Abstract 36

叫

A.5 Conference Reports 36
A.6 Paper Reviews 36

Bibliography 37

11

Chapter 1

Introduction

This report summarises and reviews a year's research into software system design
and its automation.

One of the goals of the ATR Communication Systems Research Laboratories is

the development of technologies for the automatic generation of communications

software, for example, tools to assist in the storage and reuse of aspects of software

design.
The success of a tool depends on a thorough understanding of the problem it seeks

to tackle. Thus it is imperative that we gain a better understanding of the design
process. This requires both wide research, to gain an understanding of the basic

problems involved, and deep research, to ground the research and to demonstrate
feasibility. Much of the research reported here comes into the first category.
We summarise the research under the following chapters:

Philosophy First, design philosophy and theories of design in general and design
for software in particular are discussed.

Psychology Next, we discuss design psychology. This includes: general psychology,
as related to design; psychological activities involved in design; psychological

problems and limitations; and knowledge structures and information sources
used in design.

Notations One particular information structure we discuss is design notations, and

the relationship between internal and external methods of information storage

and their relationship.

Decisions The nature of design decisions, making them and recording them are
covered.

Future Finally, we discuss the opportunities for design automation and some in-
teresting areas which need more investigation.

These domains are somewhat orthogonal. For example, the issue of design control

can be mainly seen in the area of psychological investigation of human designers,
but it also has philosophical aspects in the study of design methods and automation
aspects when we have to prove these ideas in practice.

ー

A listing of all the papers, notes, surveys, abstracts, reports and reviews that I

have produced over the year appear in Appendix A. Throughout this :final report

these documents are referred to.

There is also a large annotated bibliography, listing all the papers and books

that I have read over the year. For many entries there is a short review.
山

,f
<

2

Chapter 2

Philosophy of design

What is design? How do we do design? What are the basic problems of design?
These questions all come under the heading of design philosophy. In this chapter, we

try to outline some design philosophy and theories of design in general and design

for software in particular are discussed.

2.1 What is design?

Design requires the proposal of a function to be achieved, resources with which to

achieve it and the production of an artifact (the description of an assembly of those
resources) that implements it. Typically, a design task arises in some social setting
where a function has already been proposed (this is the requirements) and a design

process must be undertaken to produce the required artifact. A theory of design
demands a more detailed analysis of all these terms.

"Requirements" or "function" must be interpreted liberally: "goal" or "desire"

are other terms. It is certainly wider than the "functional requirements" of a com-
puter system. e.g. "Write some music which pleases me."

Software design tasks tend to be at the hard end of design, i.e. innovative and
creative rather than routine [70]. They certainly fall into Simon's [186] class of

ill-structured problems.

Some other factors in design are:

• Design is carried out in a large space ([28])

• Constraints may be explicit or implicit ([163, 143])

• Constraints come from several domains ([186, 143, 79])

• Requirements may be incomplete, ambiguous and contradictory ([186, 167,
79])

• Evaluation criteria are not well defined ([79])

• Novelty is often involved, so there is no predetermined solution path ([186, 78])

3

• Design is an exploration process: what is relevant only appears as design
proceeds ([70])

• Trade-offs between constraints -relaxing, modifying or rejecting some - may
be needed [39].

2.2 Definitions of terms

There are many terms used in studies of design. Here we provide a short list of
those terms which are not further e:-:plained in this document. This list is adapted
from "Survey of Design, Design Processes and Information Structures for Design".

2.2.1
．

constraints

Limits on the valid regions of a design space. Requirements are often given as a set
of constraints. For systems design, many constraints may be implicit.

Constraints may be of the form "how a system is built" rather than "what the

system does", for example, bottom-up requirements.

2.2.2 design history & rationale

A design history is a record of the activities and products of a design project. These

histories are records of the external aspects of design experiences, so they can be at
various levels of detail. The least detailed, and most usual, is simply the final product

of the project: a program. More detail may be added in the form of requirements
documents and intermediate design steps. A significant step is to include details of

design decisions (5) relating intermediate design stages. These decisions represent
relatively logical and presentable summaries of internal (rather less logical) decision

processes.
A design rationale is an idealized version of design history documenting only its

current state. This fo且owsthe argument of [157] for a document which represents
the current state of the design, not the path followed to reach that state. It should
represent _the design as if it had been produced in an idealised, syst~matic way. As
such, it may be useful for learning about a desig:n.

2.2.3 design methods & tools

A design method is set of guidelines for selecting and sequencing the use of design

techniques and design tools in order to construct an artifact. As such, we can
regard them as well-structured, high-level design control (3.4) strategies. Examples

methods are JSD, VDM and stepwise re恥ement.The following references discuss

design methods: [6, 99, 122, 90, 27].

[67] indicates that different design methods are more or less algorithmic "from

precise algorithms on the one hand to loose collections on the other". Software
design methods tend to be more heuristic.

、戻

h

4

Design tools include design notations (4) and clerical aids to support a design
method and its design techniques.

Some problems, or subproblems of a general problem, can be seen as search prob-

lems. For these, design heuristics and weak problem solving methods are sometimes

employed. These are domain independent, but may be very inefficient. They are
typically used either when the domain is small, or there is no alternative.

2.2.4 domain

A domain is a space, a part of the world isolated from the rest for separate treatment.
The need to divide the world up this way arises from both natural and intentional
acts of abstraction.
Examples of domains include:

• distributed systems

• databases

• resource allocation systems

• elevators

• libraries

A domain model is a representation of features of a domain. It may describes
its relations伍pto other domains, possibly refinement. There is much more to a
domain than just its definition. There are -three important questions to be asked

about domains:

• what does the domain do

• how is the domain implemented

● what higher level structures can be built using this domain

2.2.5
．

・evaluation

Evaluation occurs in different forms at different stages during the design process:

critiquing is a diagnostic activity, mapping from undesirable behaviour to the

structures which generate that behaviour.

simulation is the activity of exercising a model on some data and comparing the

results with another model. Thus it is an eval叫 ionexercise. The differ-
ences can drive diagnostic and corrective actions to alter the faulty model.

Simulation can be purely symbolic or can use scenarios.

verification involves ensuring that a design proposal meets its requirements. One
method is simulation.

5

2.2.6
.

requirements

Requirements define the goals of a system. They form the starting point of~design
task.
Early requirements for software systems may be incomplete, ambiguous and con-

tradictory. Because of this, we need to elaborate requirements [78] by inference of

implicit requirements and addition of new ones. Inferred requirements are implicit in

the requirements and real-world knowledge, but must be deduced and made explicit.

Added requirements are desirable additions.
The requirements can be stated in a number of ways, including [24]: specification,
constraints (2.2.1) and scenarios. Evaluation (2.2.5) criteria are an implicit form of

requirement.

,,

2.2.7
．

scenario

A scenario describes a sequence of events that a system performs. Scenarios can
be given explicitly as problem requirements or may be retrieved from experience

(usually about the problem domain) as implicit requirements. Scenarios can aid the
understanding of a system specification because retrieval and simulation of them

can add new requirements or help to structure requirements. See, for example, [79].

2.3 Design activities

There are an enormous number of different activities involved in software design,
many interconnected, many overlapping and with an inconsistent nomenclature.

Based on the work [129] we have developed a four point classification of these ac-

ti vi ties:

formulation - defining the problem

requirements acquisition, understanding, specification, structuring, problem

selection

synthesis - identifying solutions consistent with requirements

kernel solution generation, synthesis, program叫 ng,integration, documenta-

tion

evaluation - checking a design description for conformance with requirements
evaluation, testing, validation, verification, criticism, review, consistency and

conformance checking

feedback - (re)defining the problem and proposed solution

refinement, elaboration, maintenance, evolution, debugging, adjustment, re-
design

Formulation is both the main entry point for problems, and a recursive entry

point for subproblems. Feedback can be taken either iteratively over a single, evolv-
ing problem and solution or recursively on subproblems.

．

I,;

6

2.4 Abstraction and design

When we design and build large systems we must consider both the nature of large

systems and of the human element in design. Tools to help users design systems
must take into account basic ideas of complexity. Also, the intellectual complexity

of construction depends as much on the psychology of the constructor as on the

physical size of the problem. Abstraction is a tool to help us in this process.
A number of issues arise when we try to apply the idea of abstraction to the

design of large systems. Here we summarise some of those issues, and then expand

a little upon them:

• An abstraction depends on both the application requirements and the imple-
mentation possibilities.

• Abstraction is a compromise process between the pressures from these two
domains.

• We need to understand the interactions between the two domains.

• Implementing and using an abstraction gain us a great deal of understanding.

• Some pressures (from either domain) are more important than others.

• Current specification mechanisms cannot describe many of these characteris-
tics.

• Some non-functional requirements may be more important than other func-
tional requirements.

• Critical issues depend on the interactions that occur.

• Critic~l issues cannot be abstracted: they must be made visible.

• It is hard to move an abstraction to a new environment because new interac-
tions will make different issues critical.

• Overengineering ensures issues do not become critical.

• Abstraction is a post-hoc explanation mechanism for an already-made choice
[157].

2.4.1 S ome characteristics more important than others.

An abstraction is an agreement between two parties about what they both consider

to be most important. Both parties will have many other considerations in mind and
these will come into play when negotiating the abstraction. Each party is able to

offer tradeoffs to the other. Each may be prepared to accept non-ideal characteristics
of the other so long as they get something more valuable in turn. This negotiating

process requires a detailed understanding of tradeoffs.

7

2.4.2
. .
Cr1t1cal issues depend on interaction.

An issue is not critical if it can be dismissed from consideration by a simple, general

or overengineering argument. Examples of issues and arguments for their non-

criticality are illustrated:

• Is loss of power critical to this abstraction?
No. If we lose power then the whole program dies so it's not an important

issue here.

• Is concurrent access a critical issue?
No. This module is only used in a sequential environment.

• Is the order of computation a critical issue?
No. We never need to sort more than 10 items, so order of computation is not

critical.

Some issues might be critical:

• Is the speed of the abstraction critical?
This depends partly on the abstraction itself, but mostly upon the environment

in which the abstraction sits. We should

It is genuinely hard to determine if an issue is critical or not. However, it is this
determination which is at the core of design and abstraction.
It is well known that it is very hard to predict which part of a program will cost

the most execution time. This illustrates the fact that frequently designers do no_t

understand much of the interaction involved in a program. An implementation is
sometimes the only way to establish the relative importance of parts of a program.

~

2.4.3 Current specifications are inadequate

There is a strong belief in the formal methods community that many of the problems
of software production ensue from inadequate specifications. This is surely true. But
it is also surely a fantasy that the writing of a specification can be completely di-

vorced from considerations of the implementation of that specification; writing a

specification teaches us about the requirements, but not about the implementation.
Unless a specification results from an interaction of requirements and capabilities,

we will be incapable of implementing it. A good specification will have hidden most
implementation considerations, but only because the specifier has the experience to

:fi nd a clean abstraction in the messy space of interactions. A poor specifier may pro-
duce an implementation which appears to be free from implementation concerns, but
this is illusory. A specification must describe all important aspects of the behaviour

of a system. Unless a specifier has great experience in the domains of requirements
and capabilities he will be unable to predict which aspects of the behaviour of a sys-

tern will be important. The only way then to remove implementation considerations
from a specification will be to over-simplify.

巴

8

Frequently, specifications only document these ideal, oversimpli丑edcharacteris-
tics. They should also document all characteristics which occur in the negotiation
process between application and implementation domains.

Sometimes hard non-functional requirements, such as execution speed, may take
precedence over soft functional requirements, for example when a tradeo:ff between
32 and 31 bit integers makes a significant speed and space saving.

2.4.4 Only .. uncr1t1cal issues can be abstracted

Some abstractional decisions can be made which are almost invisible. For example,
it is almost impossible to tell that my integers are represented in two's complement

form. Looking at the range of values available and just possibly the timing behaviour
under different problems may give us hints. We could X-ray the machine while

operating and find more information. However, these are all insignificant aspects of
the behaviour of the representation.

If the property concerned is not significant, then we can abstract from it. As we
have noted, an abstraction depends on its environment. Thus whether something is

invisible or not depends on the kinds of glasses we wear. If we wear X-ray glasses,
then new things may become visible.

However, I can tell that the integers I declare occupy something called "memory".
If I use lots of integers then my system will fail to work in rather unpredictable ways.

2.4.5
．．

Overeng1neer1ng

Let us return to our example of modeling the memory required by integers.
A very naive model would say that I can use 10,000 integers before I have any

trouble with memory. I wouldn't even bother counting them in my program because
I'm sure I have several orders of magnitude less than this. Overengineering requires

us having an order of magnitude of leeway in the characteristics we are considering

so that a simple model can be built. If we get any closer to our resource limits than
this we wi且haveto start building more detailed models. When we can overengineer,
we get simple but adequate models of important (?) behaviour.
This kind of overengineering is a vital concern in many other disciplines, such
as civil engineering and cooking. It is vital to know which issues are important
and/or significant and which are not. If we do not make these distinctions then
the morass of details will drown us. The conventional model of rigorous system

formal specification and formal development does not allow for this. This kind of
overengineering is a special case of what has been called rigorous rather than formal

development [101]. In this case, we use simplistic models and a wide margin to

convince ourselves that a formal treatment would be possible.

Overengineering gives protection from change, it makes issues non-critical. As
an example, we usually use a 32 bit integer where an 8 bit integer would do.

Another way of looking at this is to say that if I have lots of memory and few

integers, I can pretend that memory doesn't exist. If our representation of integers
has lots of bits (32, say) and I use few, then I can pretend that overflow is impossible.

，

2.5 Future research

What this suggests is that it should be possible to build abstract models of the

tradeoffs between the characteristics in a domain. It should be possible to do this
without explicitly considering the range of implementations which lead to those

tradeoffs.
Overengineering seems to be a vital, but understudied, issue.
Much of the material in this chapter was developed for "Survey of Design, Design

Processes and Information Structures for Design" and "Decisions in Abstraction and
Implementation".

10

＇ a

Chapter 3

Psychology of design

Design psychology research concerns:

observation of the behaviour of problem solvers, designers and design teams

explanation of that behaviour by the proposal of systems which can exhibit it

We wi且lookat both of these areas.

3.1 Design behaviour

There are many aspects of design behaviour which are important, but we will con-

centrate on just three:

• Opportunistic versus balanced design behaviour

• Novice versus expert differences

• Cognitive problems in design

3.1.1 Opportunistic versus balanced behaviour

Many researchers匹stulatean idealized top-down, breadth-first strategy for design

problem decomposition, e.g. [171, Section 2.2]. This is called systematic expansion

by [2] and balanced development by [78] when subproblems are explored to roughly

the same depth.

Deviations from systematic expansion have been observed by: [35, 96, 2, 80, 78]

[78] explain oppo廿unisticdesign behaviour:

In terms of its behavioural manifestations, opportunistic design is design

in which interim decisions can lead to subsequent decisions at various

levels of abstraction in the solution decomposition.

Opportunistic design is characterised by on-line changes in high-level

goals and plans as a result of inferences and additions of new require→

ments.

11

3.1.2 Novice versus expert differences

Expertise manifests itself in the differences between expert and novice designers,

and this is a particularly fertile field for psychological experimentation.

3.1.3 Cognitive level problems

It is useful to study the problems and di伍cultieswe have in design, because this
allows us to direct our work to compensating for these problems. This is done both

in work on notations, for example external notes, and in automation.
We can break knowledge sources into two big classes:

a priori knowledge either explicit or implicit. This includes previous knowledge

and knowledge of the problem specification and environment.

working knowledge for example that used to store partial solutions.

Concerning a priori structures, [80, Section 8] say the main cause of design errors
are:

• lack of specialised design schemas

• lack of (or poor) design meta-schema

• lack of problem-domain (i.e., problem-environment) knowledge

Concerning working structures, one major source of breakdown is due to cognitive
limitations whereby the designer cannot keep all the design constraints in mind at

once, or forgets to come back and deal with them.

[2] suggested that concerns arise during simulation (2.2.5) which are at the wrong
level of detail; this sometimes cause tasks to be repeated. Some aspects of oppor-

tunistic design (3.1.1) can be explained by misremembering or forgetting deferred
goals.

＾

3.2 Basic mechanisms

The basic mechanisms hypothesised to produce general design behaviour are:

• Cognitive processes based on mental models

• A multi-level design mechanism

3.2.1 Mental models

Most psychological research on design assumes that humans build and manipulate

mental models (also: co nee亙tualmodels or conceptualisations) which represent the

problem and proposed solut10ns. These are models because they support some form

of simulation.

A description of the human design process from [80] is summarized here:

12

戸＇

• Mental models are formed of the problem and solution. Often a kernel idea is
rapidly adopted.

• These are refined during design:

-The accuracy of the models (mental and external)

-Their relationship

3.2.2 Design as a multi-level activity

Several authors have noted that the design process appears to be carried out at a

number of levels. For example, [150, (unread)], cited in [121, 78] and [170] who also
cite [149, (unread)]. The following levels are illustrative:

• very short term - explicable at the neural processing level.

● short-term - explicable by "conventional psychology".

• longer-term - explicable by bounded rationality

• very long-term - explicable by social and organisational theory.

At each level we find:

• Different problems

• Different processes

• Different sources of information

• Different models (and structures)

• Different goals and different forms of learning

For example, a "design team" is an entity which needs to learn just like a "designer"
does. There is also activity between levels.

3.3 Information sources

Memory systems are conventionally split into semantic memo,y, which records gen-

eral facts, and episodic memo内， whichrecords specific events or experiences. They

are clearly related and Schank [175] has proposed an integrated model.
There are many models of knowledge storage, but several of them are based on

having a rough outline, or schema, of a particular domain:

plans are short, stereotypical program fragments [203, 126, 54]. They are low level,

but general.

cases can be episodic (if representing a specific design experience) or semantic (if

representing abstracted experiences) [39].

13

schemas are generalised, abstract knowledge structures [5, 77].

The way we should discriminate between these and other knowledge structures con-

cerns how they are used. Are they used implicitly, data-driven using pattern match-

ing or explicitly, goal-directed and perhaps interpreted?
We have argued (Chapter 2) that the important characteristics that domain mod-

els carry into the design process is their models of tradeoffs between behaviours. We

have also more narrowly suggested the value of additional requirements behaviour
(e.g. scenarios) in synthesis, and implementation options in specification is their con-

tribution to the evaluation of the relative importance of abstraction characteristics.
Domain knowledge can occur at varying levels of detail. It can be declarative or
procedural and may be stored in various ways, for example, in books as definitions

and discussions, as general knowledge in humans as design schemas, and in machines
as domain models (2.2.4), or as exemplars or episodes.

Many authors conject at how domain knowledge is stored in experts and novices:

[58] citing [42, 178] and [2] cite [1, (unread)] .. The general view is that novices only

have structures of low-level, concrete, surface features, while experts have structures

involving both abstract and concrete features.

3.3.1 L earning

The study of learning is relevant to design because it shows us how knowledge sources

are generated.
There are several classes of learning relevant to design. We can distinguish modes
of learning by whether they apply to working or a priori knowledge:

working Learning relevant to the current design project, in particular the discovery
of new knowledge and the creation of solutions.

a priori Learning relevant to later design projects including:

• generalisations, e.g. the development of design schemas (3.3)

• specific episodes

Knowledge discovery includes:

• Domain analysis, done in early stages by experts [116, 117, 58], generates
domain information only implicit in the requirements.

• Simulation of solutions can lead to recognition of a solution from another part
of the problem.

• A requirement can lead to the recognition of a low-level partial solution before
solution decomposition.

• Simulation in the problem domain can lead to recognition of a partial solution
in another part of the problem.

14

？

ぬ

[58] say:

Two very general learning mechanisms - generalization and discrimi-

nation - are part of most skill acquisition systems.

3.4 Design control

Control of the design process is a multi-level process. Most significantly we can see:

high-level goal driven behaviour

low-level data driven behaviour

as well as behaviour at higher (social) and lower (neural) levels. These two levels

can be used to explain some of the observed behaviour of designers.

Design control includes:

, focusing of the designer's attention: choice of strategy and tactics

• re':ource (e.g. time and cognitive load) management including monitoring pro-
gress to a solution (e.g. how long a given strategy sh叫 dbe used for).

for this it has to

• represent goals and alternatives

• prioritise these

and it operates at every level. The interaction of different levels of control accounts

for some of the observed behaviour of designers.

Now we will look at control mechanisms at different levels.

3.4.1 High-level control

High-level design control involves the setting of deliberate goals and strategies with

which to solve them. Many of the strategies are design methods (2.2.3), for example,

decomposition and case-based reasoning.

However, there are limitations [78]:

I且-structuredproblems, because of their ill-specified goals, prevent the

determination of a single and stable high-level goal and of a correspond-

ing initial hierarchical plan of actions to be executed throughout the

design process. Ill→ structured problems make a goal-directed, top-down

process difficult.

15

3.4.2 Low-level control

The data-driven application of rules is one of the basic, unconscious, low-level pro-

cesses used in design [148, 153]. It is important because the use of data-driven rules
has little cognitive cost, compared with goal-directed behaviour [9].

[78]:

The interaction of the ill structuredness of a problem with data-driven

processing by experts is likely to induce the recognition of partial solu-
tions at various levels of abstraction prior to an overall solution decom-

position.

Information that become the focus of attention-partial solutions, prob-

lem domain scenarios, requirements and external representations - can

trigger knowledge rules.

The rapid shift in design control activities accompanying discovery of partial

solutions, rather than making a note and deferring it, can be accounted for [78] by

the fact that partial solutions can be easily retrieved and reused and immediately

add additional constraints to the problem.
[80] partial solutions are recognised at different levels of abstraction.

3.5 Explanation of behaviour

3.5.1 Opportunistic versus balanced behaviour

[78] thinks unbalanced development can occur when experienced designers already
have a good model of a system and when

• there is novelty

• multiple knowledge sources are involved

• when a subproblem appears critical, difficult or has a known solution

3.5.2 Novice versus expert differences

A number of statements are made about what expertise involves:

[79] the application of data-driven knowledge rules ([58] report that [ll8] empiri-
cally investigated novices and experts solving difficult problems. Novices did

use means-end analysis but experts never did.)

[58] having the appropriate domain-specific knowledge (citing [134, (unread)])

[80] requires detailed knowledge of the many different domains and techniques in-
volved in design

[80] a sophisticated control of the design process

16

[80] the ability to consider multiple alternatives before adopting an initial solution

kernel

[115] not so much the ability to solve problems but rather the ability to devise (or
revise) problems that fit the solutions they already have (citing [180, (unread)])

[96] experts engage in more thorough decompositions

3.6 Future research

We have looked at some cognitive level problems (3.1.3) and we have noted how

design is a multi-level activity (3.2.2). We should study the problems of design at

levels other than the cognitive, for example, the social level, see e.g. [52].

We looked at cognitive structure problems (3.1.3). We should also look at cog-

nitive process problems, for example, non-logical reasoning.

Design control at different level was examined (3.4), but the interaction of these

deserves much closer study.

17

Chapter 4

Notations

Notations form an important information structure for design. They allow for the

external manipulation and communication of design information. We will examine

the nature of external design media, how they interact with internal, mental infor-
mation storage and formal notations in particular. The most important observation

is that we must consider the relationships between different models of a problem

and its solution.

4.1 Introduction to external media

Humans already use general purpose tools in design, for example, computer editors,

:fi lesystems, pencil, paper and且braries.A better understanding of the use of external
media will allow us to construct much more useful computer tools to assist in software

design.
We will look at the following areas:

• The characteristics of the systems involved in the design process, i.e. internal
and external memory and the design process itself.

• How and why external design media are used and problems with their use.

4.1.1 System properties

There are several significant characteristics that external media possess:

capacity often unlimited

shareability by a group or team

structure paper has pages which effect latency and indexability; hypertext has less

structure

bandwith this is really a function of the communication channel between internal

memory and external design media consists of our eyes and ears, paper and
pencil, keyboard, mouse and screen.

18

Green, Bellamy and Parker [76] have made some more detailed observations
about the properties of external design media:

access window This is the "width" of information that can be accessed at any

time. For human short-term memory, this is small. Paper is almost completely
accessible (it is very easy to move the eyes to a particular part of a page, or

to turn the page). For a machine, for example an editor, the access window is
an area surrounding the cursor.

viscosity How hard is it to make local changes in the stored material?

role expressiveness How well does the medium express the purpose of the stored
data? Many programming languages do not do this well - much text must
be read and then "de-programmed" to understand the intention of the pro-

gramrner.

4.1.2 Exploitation of external design media

At a certain level of abstraction we can equate storage of information on paper and

storage of information in a computer: they are both external to the user. At this

level, questions about user interfaces become meaningless and we can concentrate
on the basic use of externally stored information.

Data organisation

To be useful, externally stored information has to be accessible and this means

organising it. For paper, there are many different kinds of organisations, including

desks, filing systems, libraries etc. In finding information we use search processes

and various forms of indices. Many of these forms of organisation include indices at
different levels of detail.
Of particular interest is how this media is accessed as an extension of the human

mind. The root (or the roots) to the information stored externally must exist in the

human mind, and perhaps a number of levels of indices and other primary access

mechanisms exist there.

Data use

External media are used for a variety of purposes including:

• short-term and long-term storage

• searching

• learning

• reference

• visualisation

19

• simulation

We use external design media because they have different properties from our minds

which we wish to exploit. For example:

dimensionality 2D diagrams, 3D models

ammation films

We can consider the differences between paper storage of information and com-

puter storage of information. Some of the capabilities of computers merely advance

what could already be done with paper and some of them create entirely new op-
portunities. In some cases the computer is a worse tool than pencil and paper, for

example, in reading experiments [84]. For inferencing, [87] argue external sources
are weaker than internal ones.

These new capabilities of computers can considerably change the habits of users.

Computers have made the medium of text far more manipulable. They allow the

rapid movement of large quantities of text, something which could not be easily

done with pencil and paper. But this may not be a good thing; blocks of text cari.

be seen as the realisation of ideas; it is the ideas that we wish to move around, but

to do this we must mentally translate the blocks of text back to ideas, and this can

be seen as reverse engineering.
This can also be seen in fields other than that of authoring: syntax-directed
editors and interactive debuggers have made the medium of programs much easier

to manipulate. It is now very easy to write the text of programs but these systems
do not encourage programmers to design programs.
[80] and others observe that the early adoption of kernel solutions to problems

seems almost universal. The urge to generate code as soon as possible can be seen as
an attempt to shift the storage of solution issues from limited memory to an external

medium. However, a programming language is not a good medium for the expression
of high-level solution designs and there will certainly be a lot of "decompiling" up

from the language to the high-level issues. See e.g. [76]

4.1.3 Channel and cognitive capacity

-We must examine the problems and difficulties associated with using external media
and the communication channel which links them with the human memory and

human design process.

The channels carrying information from the external world to the internal world

are strictly limited in capacity as is the human ability to use that information. This

means we cannot observe all the external information all of the time. Thus we must

multiplex these channels. Hypertext systems can be said to multiplex information if
they allow it to be overlaid or rapidly swapped. These tools can potentially provide

rapid access to large information bases, but by failing to appreciate limitations in
cognitive ability and the channels of communication, they may be nearly useless.

The tradeoff between volume of information, and speed of access to it via nar-

row communication channels has been recognised [88, 36, 192]. There are two key
cognitive observations:

20

，，

1. Speed of access to information decreases rapidly with the volume of informa-
tion.

2. Locality of reference to information when performing a particular task.

They notice that, like paging in virtual memory systems, human design activity

seems to be centered for long periods around tasks, with occasional switches between

tasks. When performing a task, the user wi且concentrateon only a small fraction of
all the information available. This locality of reference to information can be used to

speed up task switching if large segments of task context (perhaps several windows)

can be switched together.

4.2 Building a supersystem

One of the reasons for using external design media is that they can potentially store
a large volume of information. However, it needs to be integrated with internal

structures to be useful. In Section 3.2.2 we concentrated on the ve,tical nature
of multi-level design. Here we are more concerned with the ho,izontal interaction
between the different parts of a multi-agent design system. The agents may be

humans, computers, papers, pencils etc.

4.2.1 Example: Using a library

It may be profitable to take a "systems" view of the use of external media.
Let's look at problem solving. There are a number of problems I can solve with

no access to external media. However, cognitive limitations mean that the class of

such problems is very small.
However, if I am given pencil and paper, some of these problems vanish and the

range of problems I can solve increases.
If I am also given a well-stocked library, with a pencil and paper, then the class

of problems I can solve expands enormously. I have not changed. The library has
not changed. The combined system of me and the library, however, has far more
potential than either of us alone.

If we just examine the human-subsystem, we see that the human-design-process

can only work on the human-memory system. However, some new, higher-level

design process emerges when we build the human-external-media supersystem. This
super-design-process must be distinguished from the human-design-process: it works

on the joint memory system. Of course, it is entirely dependent on the human-
design-process in much the same way that a Fortran system is entirely dependent

on a machine-code system to execute it. It is obvious how to make the distinction in
this computing example; we must do the same with the design example. As another

example, a "design team" is a system working on "group documents".

21

4.2.2 Knowledge acquisition and learning

Here we are interested in the acquisition of knowledge by the joint computer-

external-media system and not just by the human or just by the computer. This is
particularly interesting because the facts themselves may already be in the external-

media part of the system, for example, in a dictionary, textbook or encyclopedia.

However, this knowledge may not be in the system as a whole.
As a system is used, external indices (for example, those in a book or hypertext

system) are exchanged for internal indices. This is a dynamic process. As a system

is used, it becomes more and more familiar to the user, i.e., more and more of the

information (including indices) is internalised.
The dynamic nature of the interaction between people and paper can be seen not
just in the long-term assimilation of information by the user, but also as a medium-

term interaction whereby paper can act as a bu仔erfor the short-term memory for
ideas which may never become assimilated in long-term memory, for example, a list

of tasks which must be completed.

4.2.3 Common knowledge

Common knowledge is vital for communication between the elements of a multi-

agent design system. [203] in the context of the Programmer's Apprentice (PA) and

KBEmacs systems, says:

The key to cooperation between the programmer and the assistant is
effective two-way communication - whose key in turn is shared knowl-

edge. It would be impossibly tedious for the programmer to explain each
decision to the assistant from first principles. Rather, the programmer

needs to be able to rely on a body of intermediate-level shared knowledge

in order to communicate decisions easily.

Let us examine group-design, as a special case of multi-agent design. The setting

of goals and the realization of those goals in a software design project are usua且y

performed by different people. Sometimes many people are involved. Sometimes
many groups are involved.
The common knowle-dge that these people share is an external source of infor-

mation, since it is created by a group. It is beneficial because it can be used to

abbreviate, and more easily communicate, requirements and ideas. It is problematic

because people may think they share the same common knowledge when this is in
fact not true: they have different internal models of what this common knowledge

is. This can lead to confusion, ambiguity, lack of or excess of communication. Thus
the internal model of the external model is as important as the external model itself.

There is no reason why an external system should reflect what is going on or

being represented in the human mind, a property sometimes looked for in hypertext
systems. The external system should complement the human mind producing a

new, joint supersystem which is more powerful than either of its components.

22

4.3 Solutions

One of the most important uses for external media is for recording solutions and

partial solutions. The internal and external representations have many things in
common. The representation of solutions and partial solutions should record:

• issues considered

• resolutions of issues

• open concerns

The solution representation must support various activities:

• simulation, both mental (internal) and external

• evaluation

• alteration

• the notation should provide operators for developing solutions

The mechanisms which decompose a problem into p紅 tialsolutions are related

to the solution storage mechanisms:

cognitive A design schema (3.3) helps to decompose a problem and can also be

used to organise the storage of solutions.

external An external notation, for example a formal one, is used both to represent

a solution and, by its operators, to develop that solution.

4.4 Formal specifications

Incomplete and ambiguous problem requirements are inherent to system design.

Two fundamental parts of the design process are understanding and elaborating

these requirements (79]. From the psychological viewpoint of the study of the de-

sign process, the writing of formal specifications provides a valuable tool because
it enables us to largely separate the activities of problem elaboration from problem

understanding.

4.4.1 Value of formal specifications

Understanding partly involves the construction of an internal model which reflects

the external problem. It is difficult to build such an internal model because of certain

cognitive limitations.

Constructing a formal specification can help, particularly if the formal notation

has a calculus of properties, as illustrated by the work of Hoare et al. [89]. It is
the existence of such a calculus that not only allows us to ask questions about the

23

problem (and get objective answers) which increases our understanding, but can

also suggest those questions.
Another benefit of formality is the constructive externalisation of information.

Externalisation is important because it relieves many of the cognitive problems

involved in design. Many non-formal methods also encourage externalisation, but
formal methods are particularly constructive in that they have objective criteria for
what must be externalised. In addition, of course, the externalisation allows for the

use of the formal calculi.

4.4.2 Interaction of internal and external models

A designer still needs to understand a formal specification, even though it may be
complete and unambiguous. The internal model that the designer constructs will

itself be incomplete and ambiguous. Thus we need a psychological study of the

relationship between internal and external models and how they interact. This will
be easier if the external model is formal, complete and unambiguous.

One way in which the internal and external models interact is by the process

of testing, or comparison (2.2.5), where the internal model is exercised against the

external one. When writing formal specifications, a calculus of properties within
the specification was one of the advantages of formal specifications mentioned. In
the case of using formal specifications, this can be done with both a calculus of

properties and a calculus of refinement. The designer can use the internal model to
suggest refinement steps, but will always be able to check these against the external

model when the formal steps must be made. This is a self correcting system: the

external, formal refinement step is necessarily correct, but it leads to the correction

of internal model errors. Thus we get the best of both worlds: external formality
and rigour and internal non-logical, creative reasoning which is corrected. We must

build systems which promote this synergy.

4.5 Future research

The following issues must be addressed:

• We need a wider survey of the current uses of external design media.

• ¥tVe need a more complete listing and comparison of the various characteristics
of internal and external memory systems. This would be both fascinating and

useful.

• From these two we must develop a better understanding of external device use.
Throughout this chapter, we have seen many examples of internal and external

models. The fundamental point we must consider is the relationship between
these models. There is one rather basic account of this, [76]. However, they do

not consider the extension of indices and access mechanisms out of the human

system into the external design media, thus creating a supersystem.

24

，

Formal refinement, as practiced in Z [190] and VDM [101], will become more and
more important. We can learn from this more about both human design psychology

and what parts of the design process need automating.

25

Chapter 5

Decisions

A study of the nature of design decisions is important in a number of areas:

reverse engineering applications, e.g. [26, 21, 173], which requires the rediscovery

of possibly age-old and implicit decisions in existing code;

maintenance which relies on the review of recorded or retrieved decisions; and in

the original

design process itself, where design decisions are initially made [160] but which, at

best, can only be tentative. -

We regard the construction of a design as the progressive addition of interacting

decisions. Structuring mechanisms are required to control both the static scope
and dynamic extent of this set of decisions. Programming languages only provide

mechanisms for structuring low-level decisions.

5.1 Properties of design decisions

A design decision is a tentatative commitment to a smaller design space1. It is often
made by choosing one space from a set of alternatives. They have several properties:

• Design decisions occur at all levels of design.

• They apply to design products, "let's use quicksort", and also to design pro-
cesses and in particular design control, "let's try functional decomposition".

• Design decisions are the product of the interaction of design control (3 .4) and
a particular problem (or subproblem).

• Design decisions, once taken, can later be revoked. Our commitment to them
is limited.

• Design decisions and solutions are a form of working rather than a priori
knowledge (3.1.3).

1This definition is entirely inadequate.

26

[95] lists other properties by which different decisions can be compared.
Since design decisions are tentatative, we must record them to make it easier to

revoke them later [160].
A justification explains why a particular decision was made. In order to make

decisions comprehensible, justifications must also be recorded. In order to make

decisions easily revokable, rejected alternatives should also be recorded.

5 .2 Information control

Abstraction, as a process of design decision hiding [156], has a clear role in computer
systems development [124]. We will look at both design decision hiding and design

decision revelation.

5.2.1 Scope and extent of design decisions

One way to control complexity is by limiting the scope of design decisions. Scoping

is a mechanism for statically enforcing abstraction boundaries. Scoping allows us to

defer making design decisions without affecting the rest of the design.
Building a complex system involves making a large number of design decisions
where later decisions may depend on earlier decisions. However, we know that

decisions are only tentatatively made. The dependence between decisions is what
we mean by extent: when does this decision have to be reviewed?
Both scope and extent find expression in programming (and linker, and software

environment) languages.
When designing systems we regard it as important to be able to easily change

decisions: for this we must increase the extent of design decisions by reducing their
dependencies. In order to easily make design decisions, we need to limit their scope.

5.2.2 Revelation of design decisions

As a program is transformed from its high-level description to a low-level implemen-

tation, some design decisions must be revealed, or transferred out of their original

scope. We suggest that, at appropriate levels of this transformation, such informa→
tion can be legitimately employed.

For example, the Modula-2 [213] concept of opaque types allows a type name,
and its associated operations, to be exported and used, by importing modules, with

no knowledge of its implementation.
However, the implementation of an importing module needs to know more about

the representation of the opaque type T, let's call it T;. This is because the importing
module's implementation must allocate space for冗objects.This information has
nothing to do with T's semantics and certainly doesn't appear in the definition

module. This information is needed at compile time, when Ii is produced fromエ．
The compromise adopted by Modula-2 is not relevant here, but is discussed in

"Revealing Design Decisions". The fact that some information must be revealed is
relevant.

27

So, during the vertical transformation (compilation) process, some information

must be passed horizontally (between modules).

5.3 Implementation

We will examine a number of issues related to design decisions in implementation:

what knowledge is needed, what tradeo:ffs are involved and what the effect of opti-
misations is.

5.3.1 Knowledge required

How much do you really need to know about a domain to make intelligent design

decisions? For example, we have given a formal specification of sorting (in "All You

Ever Wanted to Know About Sorting") but this does not contain the information

which is important.

There are a very large number of factors which contribute pressure to an ab-

straction for sorting. Here we list some of them.

• operations available on input and output data structures and the element type

• number of elements, N, to be sorted (expected maximum and absolute maxi-
mum)

• key value range, frequency distribution and location distribution

• cost of comparing keys and moving records

• variability in length of records

• additional internal data structures available

• stability of sort with respect to equal keys (for sequential input structures)

• orderings on the client's use of operations

• simplicity and size of mechanism

• interaction with virtual memory

• extra memory needed by the mechanism, both how much and when

• average-case and worst-case behaviour

Any engineer well versed in sorting mechanisms will recognise these key issues (most

of them were extracted by a simple scan of [llO]), and will probably have a detailed
mental model of how they relate to particular implementation algorithms, data

structures and tricks. However, it should be clear that we don't need to understand
the details of any implementations in order to use an appropriate abstraction but

we do need to understand the range of possible behaviours and how these can be

/

r

28

traded off against application pressures. Making these tradeoffs is the process of

using an abstraction.
Sometimes, an application requirement will be most important and will force

us to compromise on other solution behaviours. Sometimes, an aspect of solution

behaviour will be most important and will force us to compromise on, or even change,

our application level requirements.
Designing an abstraction is a difficult process which involves the interaction of
knowledge from two domains: the application domain and the solution domain. The

process is one of compromise between flexible behaviours from both domains.
Abstraction has a vital role in designing complex computer systems. When

~esigni~g an abstraction, for example for sorting, it is not initially clear which
mteract10ns will be most critical. Design can be seen as a process of predicting and
discovering critical interactions, which must then become part of the interface.

So how much do we need to know about sorting to produce a suitable abstraction
for a given application? The answer is: we need to understand tradeoffs in behaviour,

and not necessarily anything about particular implementation data structures and

algorithms.

5.3.2 The generality/ efficiency tradeoff

One way of overcoming the problems of software reuse is to write generic packages,

for example, for Sets, or Stacks or double-ended queues, Deques. These packages
are generic because instead of hard-wiring element types, we can parameterise the

packages by them. This encourages reuse of the package in different contexts and also

serves to make explicit the nature of the dependence of a package on its parameter

type.
A package must make clear what characteristics it requires from its parameter
types, the package is then free to exploit those characteristics. The less a package
demands from its parameters, the more generally applicable that package will be.

However, the less a package demands to know of its parameters, the less opportunity

it will have to exploit their characteristics and produce efficient implementations.
There is thus a tradeoff between writing general purpose packages and writing effi-
cient packages.

In their discussion of design decisions, [173] note that generalisation and spe-
cialisation decisions have some implications in that it is easier to reuse or adapt
generalised components though they may be less efficient and harder to test. The

point made here is different: the design decisions to use a particular component has
implications for the rest of the program, not just that component.

5.3.3 Optimisation

There are two, well-known, opposing forces in design:

• to abstract, modularize and hide design decisions to increase a system's com-
prehensibility and maintainability

29

• to reveal, open up, collapse levels and globally view systems to increase their
efficiency. A major part of the design process is in making such e缶ciency

inducing, but global and complicating design decisions.

We should seek to understand and control the interaction of these activities.
There are several kinds of optimizations which we can apply to a system. Some

of these are familiar from compiler optimisers. These are illustrated in greater detail

in "Scope and Extent of Design Decisions".

• Remove generality

• Remove duplicates

• Multiple use

The potential for these kinds of optimisations leads skilled designers to antici-

patory design.
Overengineered constraints are ideal candidates for tightening up (putting into
the bargaining process) when there is strong pressure from other (maybe non-

functional) requirements. The availability of optimisations feeds back and affects

requirements, for example, integers in CLU [123] and some Standard ML [138, 137]

implementations.
Another lesson that we learn is that the relationship of design abstractions to
code (or high-level abstractions to low-level abstractions) will not be at a且simple.

The clean structures we find in text books are not the ones we will find in the final
code - they may be deliberately complicated. Parnas [156] noted that a clean mod-

ule structure may not be evident in the final code. Software engineering in general
and "design recovery" research [26], relying on the identification of abstractions in
code, must carefully consider this phase of the design process.

5.4 Parameterisation: automation of decisions

The difficulties we saw in designing a sort package arise because there is a large

mismatch between the general abstraction of sorting and the specific instances of
it. The price we pay for generality is mor~than loss of speed: it is undetermined
behaviour for all those "non-functional" characteristics. The only way to bridge this

gap is by making design decisions.
A parameterised abstraction is simply an abstraction where we have chosen to

limit our degree of variation of a particular characteristic to a well defined, and ex-

plicitly stated, set of values. Some design decisions can be effectively parameterised.
For example, in the formal specification for sorting, the element type to be sorted,

X, and its ordering operation, ゴ， areeffectively parameters of the specification.
Fortunately, it is also very easy to parameterise such things in implementations.

However, the linguistic mechanisms we currently have available, for example,

generic types are relatively rigid and weak in the manner in which they can be pa-
rameterised. It is possible to parameterise a sorting mechanism by the input and

30

output selector and constructor operations available, but it is not easy. Conventional
parameteris;1tion mechanisms produce an implementation which is a simple compo-

sition of base type and parameter type implementations; this may be inadequate if,

for example, we want to parameterise by additional operators on the element type,

producing a substantially different result.

5.5 Future research

Other areas for further research are the extension of current parameterisation mech-
anisms and an understanding of why some behavioural characteristics are critical

while others are not.
The decisions made dynamically by a human and resulting in hardwired, less

general, less maintainable implementations, can in some cases be transferred to

the computer. vVe need to design languages where both manual and automatic

optimisation by controlled revelation of design decisions is~ossible.
We gave an example of where design decision informat10n is passed out of its

original scope, during compilation of a module. We need to examine what kinds of
design information are useful to other modules.

31

Chapter 6

Future

What kind of design decisions are automateable? Automation requires having an

operational representation of:

• the alternatives available (generated both from user requirements and domain
options)

• evaluation criteria

• an optimisation procedure

Decisions are made both by humans and by language systems. As we automate
design decisions, we tend not to call them design decisions any more. Instead they
become "obvious" or "basic techniques". For example, compilation as an automated

activity is no longer regarded as a decision making one, but before compilers existed,
it was.

6.1 Automation research

Automated support for design activities depends on the kind of behaviour we want
to support. In Section 3.2.2 we considered the various levels at which design occurs.
We need to indjcate what the most significant problem for design is at each level.

We have noted in (3.6) the need for research on design problems, for example at

the social level. Work is already proceeding on attempts to compensate for these,
e.g.

cognitive level IBIS

group level groupware

[33] suggest that design proceeds by the cooperation of several more specific
problem solvers (or subprocesses or subtasks). [39] discusses propose-critique-modify

(PCM) methods. He discusses 3 groups of methods for solution proposal:

• problem decomposition/ solution composition

32

r-

-~

• retrieval of cases from memory

• constraint satisfaction ([191]) (only useful on small, well-defined spaces)

A special case of decomposition knowledge is a design plan which specifies a

sequence of steps to produce a design - it is a precompiled partial solution to a、

design goal [68, 166, 97, 140, 33, 39]. Knowledge of how to use a domain is very
important when trying to understand a problem involving that domain. The Draco

system [151] attempts to ease programming by providing models of domains, such as
basic algebra, along with tools for manipulating expressions in that domain. [77] also

suggest the use of a library of reusable design schemas (3.3) which model problem
decomposition and merging.
These domain models are certainly needed, but example or skeleton solutions

only indirectly contribute to problem understanding and problem/solution require-
ments/behaviour interaction understanding. We can potentially build tools, how-

ever, which could indicate and possibly animate the interaction of solution domain

properties and constraints.

6.2 Future research

A number of issues arise when considering how we should provide assistance for

designers. These need much more research:

• We must make it easier to delay commitment to a decision. For this we must
record and allow reevaluation of alternatives. See Section 5.1.

• We must build our computer support systems so they provide more space
for human data-driven processing (3.4), while performing more of the goal-
directed work themselves. Woods [214] considers a related idea.

6.2.1 Generic packages

It seems possible to make the implementation of a generic package dependent on
aspects of the implementatiQil of its parameters. This implies no loss of abstraction

at the abstract level. This has not been done, I believe, for several reasons:

• The extra dependence may increase the compilation/link cost associated with
making changes and rebuilding the system

• It is rather hard to express the characteristics of an implementation which
another implementation might be interested in.

The distinction between the work of a "compiler" and the work of a "linker"

seems to rest at the point where local transformations have finished and global

transformations have been adopted. I don't wish to challenge this division, merely

to suggest that we could try getting the linker to do more, firstly by revealing design
decisions which may be useful over a more global context and secondly by removing

33

decisions which have been bound in at an early stage, for example, that opaque
types are restricted to pointers and, more radically, stack structures.

One possible criticism of such an approach is that it will lead to systems which

are riddled with dependencies. The contrary argument is that if our systems aren't
riddled with dependencies, then they can't be very :flexible. Explicitly representing

our design decisions in this way will ultimately be helpful.

6.2.2 Tools

Current design tools, such as gIBIS [4 7], allow designers to record their ideas and
understanding of a problem, and how these are elaborated and altered as the design
progresses. Such tools can also be used to help design solutions, but the problem

elaboration issues may be mixed up with solution design issues. We should attempt

to separate the two because they are very different activities and need different kinds

of support.

34

r

v<

Appendix A

Writings

This chapter lists all the papers, notes, surveys, abstracts, reports and reviews that

I have produced over the year.

A.1 Papers

• Tim Gleeson and Toyofurni Takenaka. The Roles of Formal Specification in the
System Design Process. In Information Processing Society of Japan: Spring

Conference, 1991.

• Tim Gleeson and Toyofumi Takenaka. All You Ever Wanted to Know About
Sorting. In Information Processing Society of Japan: Autumn Conference,

1991.

A.2 Notes

• Notes About Automating Software Design. August 30th 1990.

• Research into Automating Software Design: External Design Media. October
3rd 1990.

• The Z Notation and Software Design. December-11th 1990.

• Scratch Proposal. April 1st 1991.

• Scope and Extent of Design Decisions. May 1991.

• Decisions in Abstraction and Implementation. May 1991.

• Revealing Design Decisions. September 1991.

A.3 Survey

• Survey of Design, Design Processes and Information Structures for Design.
August 1991.

35

A.4 Abstract

• Generic Module Implementation Selection Based on Parameter Type. May
1991.

A.5 Conference Reports

• First Japanese Knowledge Acquisition for Knowledge-Based Systems Work-
shop (JKA W'90).
Kyoto, October 25-26 1990.

• 3rd International Symposium on Future Software Environment (ISFSE3).
Hikone, Shiga-ken, June 12-14 1991.

A.6 Paper Reviews

参 PM:A System to Support the Automatic Acquisition of Programming Knowl-
edge. R. G. Reynolds, J. I. Maletic and S. E. Porvin. IEEE Transactions on
Knowledge and Data Engineering, 2(3):273-282, September 1990.

• Philosophy and Psychology of Design: Two Papers:

-Herbert A. Simon. The architecture of Complexity. Proceedings of the
American Philosophical Society, 106(6):467-482, December 1962.

-Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive
processes in software design: An analysis of breakdown in early design
activities by individuals. Technical Report STP-283-87, MCC, Austin,

Texas, 1987.

36

Bibliography

[1] Beth Adelson. Problem solving and the development of abstract categories in

programming languages. Memory and Cognition, 9(4):422-433, July 1981.

[2] B. Adelson and E. Soloway. The role of domain experience in software de-

sign. IEEE Transactions on Software Engineering, 11(11):1351-1360, Novem-

ber 1985.

A design experiment involving: familiar domain, unfamiliar object;

unfamiliar domain, unfamiliar object; familiar domain, familiar ob-
ject. A number of behaviours were observed and contrasted: 1) for-

mation of mental. models; 2) simulation; 3) systematic expansion;
4) representing constraints; 5) retrieving labels for plans; 6) note

making.

[3] William W. Agresti, editor. New Paradigms for Software Development. IEEE
Computer Society Press, 1986.

[4] Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A dis-

tributed hypermedia system for managing knowledge in organizations. Com-

munications of the ACM, 31(7):820-835, July 1988.

[5] Joseph W. Alba and Lynn Hasher. Is memory schematic? Psychological
Bulletin, 93(2):203-231, 1983.

"It is widely agreed that the term schema has no fixed definition. It
is most often. used to refer to the general know ledge a person pos-

sesses about a particular domain. A schema allows for the encoding,
storage, and retrieval of information related to that domain." Frame

theory and script theory from AI are related. "A frame [139] is a
schema that contains general knowledge about the structure of a

particular event ... A script [177] is very similar to a frame ... [but]
also contains more specific information about the contents of the

event." This paper is a review of research results into remembering.

"Schema driven encoding of complex information is characterized

by four basic processes: selection, abstraction, interpretation, and
integration."

[6] C. Alexander. Notes on the Synthesis of Form. Harvard University Press,
1967.

37

[7] Fernando Alonso, Jose Luis Mate, and Juan Pazos. Knowledge engineering
versus software engineering. Data 8 J; 〈nowledgeEngineering, 5(2):79-91, July

1990.
尺

'

Flowery introduction quoting from Bacon and Carlyle on the use of
tools. The review of software engineering history is excellent.

[8] J. R. Anderson. Language Memo内 andThought. Erlbaum, 1976.

[9] J. R. Anderson. TんeArchitecture of Cognition. Harvard University Press,
1983.

[10] J. R. Anderson. Skill acquisition: Compilation of weak-method problem solu-
tions. Psychological Review, 94:192-210, 1987.

[11] John R. Anderson. Acquisition of cognitive skill. Psychological Review,
89(4):369-406, July 1982.

A framework for skill acquisition is proposed that includes two major

stages in the development of a cognitive skill: a declarative stage in
which facts about the s虻11domain are interpreted and a procedural
stage in which the domain knowledge is directly embodied in proce-

dures for performing the skill. Knowledge compilation is the process
by which the skill transits from the declarative stage to the proce-

dural stage. Once proceduralized, further learning processes operate
on the函 11to make the productions more selective in their range of
applications. These processes include generalization, discrimination,

and strengthening of productions. General interpretive procedures
with no domain-specific knowledge can be applied to some facts

about the domain and produce coherent and domain-appropriate

behaviour. The process is slow because interpretation requires re-
trievals of declarative information from long-term memory and be-

cause the individual production steps of an interpreter are sma且
in order to achieve generality. The interpretive productions require

that the declarative information be represented in working memory

and this can place a heavy burden on working memory capacity.

The knowledge compilation process in ACT can be divided into two

subprocesses. One, which is called composition, takes sequences of
productions .that follow each other in solving a particular problem

and collapses them into a single production that has the effect of

the sequence. The second process, proceduralization, builds versions

of the productions that no longer require the domain specific declar-

ative information to be retrieved from working memory.

[12] Robert S. Arnold, editor. Tutorial on Software Restructuring. IEEE Computer
Society Press, 1986.

”

38

[13] Robert Balzer. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering, 11(11):1257-1268, November 1985.

Excellent survey of the field. Probably a first read. Discusses SAFE,
Gist, Popart, Paddle and Glitter. They have now reached the fol-

lowing notion of automated compilation: "1) the specifications have

to be acquired and validated; 2) this validation requires an opera-

tional semantics; 3) an interactive translation facility is needed to
obtain the lower-level specification that can be automatically com-

piled; 4) the decisions employed in that interactive translation mus~
be documented and recorded in a formal structure; 5) this formal
development is the basis for a replay facility which enables imple→

mentations to be retrieved from the revised specification on each

maintenance cycle."

[14] Phil Barnard. Research on human-computer interaction at the MRC applied

psychology unit. In Proceedings of the CHI'90 Conference on Human Factors
切 ComputingSystems, pages 379-380. ACM.

[15] D. Barstow, H. Shrobe, and E. Sandwall, editors. Interactive Programming
Environments. McGraw-Hill, 1984.

[16] D. R. Barstow. An experiment in knowledge-based automatic programming.
Artificial Intelligence, 12(2):73-119, August 1979.

[17] David Barstow. Automatic programming for streams. In Proceedings of the

9th International Joint Conference on Artificial Intelligence, pages 232-237,

1985.

Most automatic programming focuses on terminating programs but
stream programs may not terminate. Stream operators are specified.

Stream programs are specified in a simple predicate language. There
are 3 types of transformations from this to code: algorithm instan-

tiation (basically, pattern match an operator and replace it with a
lump of code which is a new process); problem reduction (splitting a

postcondition); stream elimination. The instantiations given in the
paper may be useful.

[18] David Barstow. Artificial intelligence and software engineering. In Proceedings

of the 9th International Conference on Software Engineering, pages 200-211,

1987.

Waffie, but with a good bibliography.

[19] David R. Barstow. Domain specific automatic programming. IEEE Transac-

tions on Software Engineering, 11(11):1321-1336, November 1985.

39

A long description of some examples from the domain of oil-
exploration system programming. An unexciting model of the inter-

action of programming knowledge and domain specific knowledge

is introduced. Programming is modeled as formalisation and imple-

mentation, both of which are transformational activities.

[20] Friedrich L. Bauer. From specification to machine code: Program construction
through formal reasoning. In Prnceedings of the 6th International Conference

on Software Engineering, pages 84-91, 1982. Reprinted in [3].

Arguments for formal methods.

[21] David G. Belanger, Ronald J. Brachman, Yih-Farn Chen, Prekumar T. De-
vanbu, and Peter G. Selfridge. Towards a software information system. AT包T

Technical Journal, 62(2):22-39, March/ April 1990.

Problems are: size, distributed documentation, evolution (which

cause structure degradation), structure often invisible. Software in-
formation systems have four aspects: acquisition, representation,

accessibility, applications. "All the projects are driven ... from infor-
mation about the source code of a software system." CIA extracts
(limited) information from C programs and allo・. s access via a rela-

tional DB. This may help in restructuring. One interesting metric is
weight: the number of entities that an entity depends on and thus

the effort required to understand it. Also: cross-coupling, binding
strength. In understanding a system, four views are used: archi-

tectural, customer, code (files, functions) and domain. LaSSIE is
a KBS which attempts to integrate and allow queries of these. As

a downstream, reverse-engineering system the three tools all look
useful.

[22] I. D. Benest, G. Morgan, and M. D. Srnithurst. A humanised interface to an
electronic library. In Bullinger and Shackel [34], pages 905-910.

When humans acquire factual knowledge, they tend to store the

knowledge together with cues that aid its later retrieval. Finding

a book in a library involves four characteristics: (a) the ability to

browse quickly through indexes and along bookshelves (b) the abil-
ity to handle information in alphabetical order (c) the ability to

remember geographically the position of specific items (d) to allow

a book's cover design to stimulate reco且ectionor assumption of its
contents.

[23] G. D. Bergland. Structured design methodologies. In Prnceedings of the 15th

Annual Design Automation Conference, pages 475-493, June 1978. Reprinted
in [25].

40

~

Very amusing and instructive. This is an introduction to the ideas of
design structuring. In particular, it introduces and compares Fune-
tional Decomposition, Data Flow Design Method and Data Struc-

ture Design Method (JSP). He cites Jackson [94] as saying: the most
critical factor in determining the life cycle cost of a program is the
degree to which it faithfully models the program environment. He

also says: "Once an optimisation has been cast in code it is like
concrete. It is very di缶cultto undo." Law of continuing change: a

system that is used undergoes continuing change until it is judged
more cost effective to freeze and recreate it. Law of increasing un-

structuredness: the entropy (disorder) of a system increases with
time unless specific work is executed to maintain or reduce it.

[24] G. David Bergland, Geoffrey H. Krader, D. Paul Smith, and Paul M. Zislis.
Improving the front end of the software-development process for large-scale

systems. AT&T Technical Journal, 69(2):7-21, March/ April 1990.

A model must: support multiple views, multiple levels of abstrac-
tion, be machine processable. Three views could be: speci丑cation,
scenarios, constraints. The paper discusses some vapourware - in-

tegrating a number of existing (and some non-existing) CASE tools.
It purports to cover front-end design and emphasizes formal speci-
丑cations,but the support for deliberation is not discussed.

[25] Glenn D. Bergland and Ronald D. Gordon, editors. Tutorial: Software Design
Strategies. IEEE Computer Society Press, 1981.

[26] T. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer,

22(7):36-49, July 1989.

Design recovery is more general than reverse engineering and needs

a domain model. This paper mentions the Desire system, but at the
time it had no concept of a data model.

[27] Din~s Bjりrner.On the use of formal methods in software development. In Pro-
ceedings of the 9th International Conference on Software Engineering, pages
17-29, 1987.

"We use formalisms: (1) because they appear to help structure

more finely the development; (2) because they are the primary

means we know of to help guarantee correctness of software; (3) be-
cause developments that have used formalisms have been far more

productive ... ; (4) because it is fun." The idea of a graph of de-
velopment structure is strongly emphasized. "Method" is a set of

guidelines for selecting and sequencing the use of "techniques" and
"tools" in order to construct an artifact. "Tools" are such things as

languages and clerical aids to support a method and its techniques.

41

"Techniques" are principles used to e.g. (1) specify abstract defini-
tions; (2) transform these into designs and designs into code; (3)
prove such transformations correct; (4) discharge proof obligations.

[28] John H. Boose. Knowledge acquisition tools, methods and mediating repre-

sentations. In Motoda et al. [145], pages 25-62.

[29] Edward M. Bowden, Sarah A. Douglas, and Cathryn A. Stanford. Testing the
principle of orthogonality in language design. Human-Computer Interaction,

4(2):95-120, 1989.

This paper validates what you already knew about learnability of

languages and language design.

[30] Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic

Press, 1979.

[31] R. Brooks. Towards a theory of cognitive processes in computer programming.
International Journal of Man Machine Studies, 9(6):737-751, November 1977.

This article discusses a cognitive model based on Newell and Si-
mon's and implemented with rules. He suggests tens or hundreds

of thousands of rules may be needed to represent a programmer's
knowledge. There are three cognitive processes in design: under-

standing, method-finding and coding.

[32] Ruven Brooks. Categories of programming knowledge and their application.
International Journal of Man Machine Studies, 33(3):241-246, September

1990.

The range of knowledg戸， fromprogramming environment specific
to application specific 1s noted. The following areas are touched
on: application domain knowledge, program structure knowledge,
interpersonal knowledge, problem-solving strategy knowledge. The

article is oriented towards coding. Short.

[33] David C. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge
Structures and Control Strategies. Morgan Kaufmann, 1989.

A useful introduction to the ideas of "generic tasks". The particular

system described is a routine design system. The basic design prin-

ciple is hierarchical plan selection and detailing. The generic com-
ponents involved are: specialists, plans, tasks, steps, constraints,

failure handlers, redesigners, sponsors and selectors. A language,

DSPL (Design Specialists and Plans Language), allows knowledge
to be expressed in a problem-solving-type dependent but design―
domain independent manner. Failures in design and redesign are

given a lot of attention. An example of an air-cylinder designer is

42

presented. The design database used is pretty simple: each compo-
nent is represented by a frame which contains attribute-value pairs.
There are no component/subcomponent records but there is an ex-

tremely simple "kind-of" hierarchy which allows defaults and update

triggerable constraints to be represented. Changes are placed on a

stack and checkpoints can be made, confirmed and discarded.

[34] H. J. Bullinger and B. Shackel, editors. Human-Computer Interaction

INTERACT'87. Elsevier, 1987.

[35] J. M. Carroll, J. C. Thomas, and A. Malhotra. Clinical-experimental analysis
of design problem solving. Design Studies, 1:84-92, 1979.

[36] S. Card and A. Henderson. A multiple, virtual workspace interface to support

user task switching. In Proceedings of the CHI+Gl'81 Conference on Human
Factors in Computing Systems and Graphical Interfaces, pages 53-59.

The authors state a number of properties they want from a system

to aid task switching. In VM systems, paging is clustered. They have
some evidence that this is also the case for user tasks. (However, I
wonder if this is something fundamental about human task working,

or whether it is an artifact of current tools, e.g. paper and Macs).
Thus they set up independent workspaces (Rooms) which users can
switch between. To help navigation, they have a pop-up list of all

room names and also an overview. Their thesis is that there is a

tradeoff between volume of information (the desk fills up) and ac-
cess time to that information (it become harder to find things); the
tradeoff can be (partly) broken by observing the locality of informa-

tion access.

[37] S. K. Card, M. Pavel, and J. E. Farrell. Window-based computer dialogues.

In Shackel [183], pages 239-244.

A window taxonomy is given: time-multiplexed (scrollable, frame

at a time); space-multiplexed (lD, 2D, 2 l/2D); non-homogeneous
(icons, bifocals, fisheyes). The functions that windows can serve are:
1) more information; 2) access to multiple information sources; 3)

combining of multiple sources of information; 4) independent control

of multiple programs; 5) re血nding;6) context (for connnands); 7)

multiple representations. The computer acts as an external memory
and communications medium "Of course, notes on paper scattered

about a desk can serve a similar function, but they are not dynamic

as with a computer display." Working sets, from VM systems are
introduced. Some boring statistics of window working sets are pre-

sented.

[38] J.M. Carroll, J.C. Thomas, and A. Malhotra. Presentation and representation
in design problem solving. British Journal of Psychology, 71:143-153, 1980.

43

Discusses programming as an example of nonstructured problem

solving, which cannot be explained by existing theories.

[39] B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine,

11(4):59-71, Winter 1990.

Design has a general structure, consisting of tasks, methods and sub-
task. This general notion is i且ustratedon PCM (propose.:critique-

modify) methods. Design problems in different domains differ in the
mixture of subtasks and methods. Most subtasks are not really spe-

cific to design.

[40] Thomas E. Cheatham Jr., Glenn H. Holloway, and Judy A. Townley. Pro-
gram refinement by transformation. In Proceedings of the 5th International

Co玖fere冗ceon Software Enginee五ng,pages 430-437, 1981. Reprinted in [3].

A few syntactic program transformations are give. A little bit more

than syntactic sugar.

[41] Patricia W. Cheng and Keith J. Holyoak. Pragmatic reasoning schemas. Cog-

nitive Psychology, 17:391-416, 1985.

"The view that people typically reason in accord with formal logic
has been overwhelmingly refuted by evidence based on experiments

in conditional memory. In its place two major views have been pro-
posed: the specific-experience view and the natural-logic view ... We

propose that people often reason using neither syntactic, context-
free rules of inference, nor memory of specific experiences. Rather,
they reason using abstract knowledge structures induced from or-

dinary life experiences, such as "permissions", "obligations", and
"causations". Such knowledge structures are termed pragmatic rea-
saning schemas. A pragmatic reasoning schema consists of a set

of generalised, context-sensitive rules which, unlike purely syntactic

rules, are defined in terms of classes of goals (such as taking desirable
actions or making predictjons about possible future events) and re-

lationships to those goals (such as cause and effect or preconditions
and allowable action).

[42] M. T. H. Chi, P. J. Feltovich, and R. Glaser. Categorization and representation

of physics knowledge by experts and novices. Cognitive Science, 5:121-152,
1981.

[43] Mark H. Chignell. A taxonomy of user interface terminology. ACiVI SIGCHI
Bulletin, 21(4):27-34, April 1990.

The four main branches are: 1) The Basic Interface Model (the

what); 2) Cognitive Engineering; 3) User Interface Engineering (the

44

how); 4) Applications. Cognitive engineering is split into: 2.1) Cog-
nitive Science; 2.2) Normative Models and・2.3) Descriptive models.
The taxonomy is very arguable, but at least it is somewhere to argue

from.

[44] Ian A. Clark. Designing a human interface by minimising cognitive complexity.

In Bullinger and Shackel [34], pages 101-108.

A graphical notation for user-interfaces is presented. A UI is complex
if a "state dependent" transition appears in it.

[45] Lynne Colgan, Paul Rankin, and Maddy Brouwer-Janse. User models of the
circuit design process. ACivI SIGCHI Bulletin, 22(1):33-35, July 1990.

A very short article on some observations of analogue circuit de-

signers using a simple tool. They used a blackboard model from
[Whitefield84]. A chunking process was noted. Concerning optimiza-

tion: "Users had problems thinking in more than two dimensions at

once.

[46] A. M. Collins and E. F. Loftus. A spreading activation theory of semantic

processing. Psychological Review, 82:407-428, 1975.

[47] Jeff Conklin and Michael L. Begeman. gIBIS: A hypertext tool for exploratory

policy discussion. Transactions on Office Information Systems, 6(4):303-331,

October 1988.

[48] Neal s・. Coulter. Software science and cognitive psychology. IEEE Transactions
on Software Engineering, 9(2):166-171, March 1983.

The psychological basis of "software science" is pulled from under

its feet.

[49] R. D. Coyne. Design reasoning without explanation. AI Magazine, 11(4):72-
80, Winter 1990.

This is a short (but a little too longr contrast of the classical cog-

nitive and connectionist models of design. Connectionism can offer

innovative design using the method by which it does recollection.

Connectionism also o:ff ers an ine入叫licablemode of reasoning.

[50] Bill Curtis. Fifteen years of psychology in software engineering: Individual

differences and cognitive science. In Proceedings of the 1th International Con-

ference on Software Engineering, pages 97-106, March 1984.

A sound survey. The article surveys psychological research in pro-

gramming from the two points of individual differences and cognitive

science. The former is pretty poor (the work, rather than the arti-

cle). The latter mentions 7 +/-2, programmer knowledge bases and

45

some interesting work that asserts that solving unstructured prob-

lerns (in this instance computer ones) is very different from solving
structured ones. He also asserts that there has been too much work

on coding and not enough on design. A good list of references.

[51] Bill Curtis. Imp]jcations from empirical studies of the software design process.

In Info Japan'90, pages 127-134, 1990.

The paper mainly consider group and organizational issues, and
coins the term organizational cognition for the joint activity carried

out by an organization, rather than just by its members.

[52] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design

process for large systems. Communications of the ACM, 31(11):1268-1287,

November 1988.

Software engineering technologies only marginally improve produc-

tion - we must instead understand how human and organisational
factors effect software development. "The volume of application do-

main knowledge and lack of good domain models are serious ob-
stacles in current automatic programming systems." "There aren't
enough system level thinkers to go around."'ヽTheratio of unresolved

issues to the number of issues recorded may be a valuable indica-
tor of design stability and actual progress in the design phase."
"Specification should not be forma]jsed any faster than the rate of

uncertainty about technical decisions is reduced." "In the dynam-

ics of the team there is only one way [to communicate] - verbal."
"Documentation ... was often the main source of communication be-

tween successive teams." "Customers often generated ... scenarios
in determining their requirements but did not record them and
abstracted them out of the requirements document." There are

three views of the requirements problem: how they are understood,

how their instabiMy affects design and how they are communicated

throughout a _project. Three capabilities that we believe must be

supported in a software development environmenf are knowledge
sharing and integration, change facilitation and broad communica-
tion and coordination.

[53] Norman M. Delisle and Mayer D. Schwartz. Contexts - a partitioning con-

cept for hypertext. Transactions on Office Information Systems, 5(2):168-186,
April 1987.

[54] Francoise Detienne and Elliot Soloway. An empirically-derived control struc-

ture for the process of program understanding. International Journal of JVf an
Machine Studies, 33(3):323-342, September 1990.

46

E “ ^

A schema is a data structure that represents concepts stored in mem-

ory. Program plans are program fragments that represent stereotypic
action sequences in programming.

[55] Edsger W. Dijkstra. On the cruelty of really teaching computing science.
Communications of the AC1Vl, 32(12):1397-1414, December 1989.

Another sarcastic Dijkstra Diatribe. He argues that computing

should be regarded as radically different from anything encountered
before. The two radical novelties are: the complexity of computation

and the digital nature of computation (making analogue reasoning

useless). He argues that this has not been accepted by industry,
academia or even mathematics. "We construct our mechanical sym-
bol manipulators by means of human symbol manipulation." He

argues for a radical change in education. There are replies by Par-

nas, Scherlis, van Emden, Cohen, Hamming, Karp and Winograd.

Scherlis says that formal methods must be integrated into software
engineering: "The effect is of proving small theorems about large

systems rather than large theorems about (inevitably) small sys-
terns." Postscript: there are a number of very witty and enormously
entertaining replies in the letters page of the March 1990 edition of

CACM.

[56] Andrew Dillon. A psychological view of "user-friendliness". In Bullinger and

Shackel [34], pages 157-163.

Interesting discussion and survey of the nature of mental models,
knowledge acquisition and failures in knowledge acquisition. Then
the results of some trashy experiment.

[57] Dennis E. Egan, Joel R. Remde, Louis M. Gomez, Thomas K. Landauer,
Jennifer Eberhardt, and Carol C. Lochbaum. Formative design-evaluation of
SuperBook. Transactions on Information Systems, 7(1):30-57, January 1989.

SuperBook is unimpressive, but the first, general part of this article
is quite good. Super Book was (a bit) better than paper when search-

ing for particular items in text but was pretty bad when searching

for vaguer, more gener~l ideas.

[58] RenもeElio and Peternela B. Scharf. Modeling novice-to→ expert shifts in

problem-solving strategy and knowledge organization. Cognitive Science,

14(4):579-639, October-December 1990.

An excellent short survey of novice-expert work and representation
schemes. EUREKA has 3 components: unorganized textbook knowl-

edge, a means-end problem solver and a P-MOP (Problem Memory
Organization Packet) network. Complete problem solving experi→
ences are stored in the P-MOP and problem-type schemas evolve

47

there. The problem representation is organized around objects, fea-
tures of objects, and relations between objects. A P-MOP network
contains specific problem solving experiences (also called enhanced

problem representation) and P-MOPs which represent a collection

of common features (domain inference rules, solution methods, and
problem features). A P-MOP has a set of norms which represent

commonalities of the knowledge it organizes. Each difference from a』
norm is called an index which is a predicate-value pair that points

to the representation of a specific problem-solving experience, or
another P-MOP. The fact that a whole problem solving experience

is stored, and not just the problem, is important because this al-
lows the space of descriptors (norms and indices) to be redefined. A

P-MOP network is very different from a more conventional model

which has a complete, general schema pattern matched to solve each

problem(i.e. each schema is a complete cognitive unit). Instead, the

pathway of indices from the top node to some terminal node in the
network can be regarded as a pattern match, and the knowledge

in the P-MOPs themselves (solution trees, inferences, features as
norms) along the path can be regarded as the action or conclusion

side. A complete top to tip path does not have to be traversed, this
means that it is much easier to alter, add and remove MOPs than it
is to do similar operations with conventional schemas. Some of the

restructuring mechanisms are related to those of [174] and [10]. "We
think it is important that the qualitative shift in solution methods

comes not from retrieving past solution trees, but from remembering
and recalling relevant inferences about the problem scenarios which

triggers principles, which in turn have associated contexts that spec-
ify conditions of applicability and further tests." EUREKA does no
failure driven learning.

[59] C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: Some issues and experi-
ences. Communications of the ACJ.vf, 34(1):38-58, January 1991.

This is an excellent survey article, with many references. Groupware
is "Computer-based systems that support groups of people engaged

in a common task (or goal) and that provide an interface to a shared

environment." The key words here are goal and shared environment.

Communication, collaboration and coordination are vital.

[60] David W. Embley and Scott N. vVood:field. A knowledge structure for reusing
abstract data types. In Proceedings of the 9th International Conference on
Software Engineering, pages 360-368, 1987.

Abstract Data Types (ADTs) are strongly annotated and linked in

their system. Some notes on searching for the right ADT.

48

[61] M. S. Feather. Reuse in the context of a transformation based methodology.
In REUSE83 [164], pages 50-58. Reprinted in [66].

Gist is a semi-formal behaviour specification language based on re-

lations, historical reference, constraints and daemons. They describe
mechanisms for transforming some of these constructs into (some-

what) lower-level constructs. The transformation process must rely

on human guidance. This paper reports on the features of Gist which

support reuse (and alteration) of speci且cationsand their translation.

[62] Martin S. Feather. The evolution of composite system specifications. In

IWSSD4 [93], pages 52-57.

Recording the evolution of the specification enhances comprehensi-
bility and maintainability.

[63] Stephen Fickas. Automating the analysis process: An example. In IWSSD4
[93], pages 58-67.

"Our interest is in acquiring a problem description from a user, stor-
ing it in a form that allows us to reason about it, doing our best

to find problems with it before design and coding starts, and finally
mapping our representation to a language from which implementa-
tion may proceed." A domain representation of resource manage-

ment systems is constructed including concepts: resources, resource
depositories, resource managers, resource users, resource operations,

usage scenarios, security operations, resource constraints, resource
constraint management, queries, environmental aspects, policies.
Policies include "keep a sufficient stock on shelves" and "maintain a

user's privacy". "A major goal in our work. .. is to avoid requiring a
user to generate tedious listings of the common objects, actions, and
constraints of a domain ... a problem description should be able to

make use of shared knowledge of the domain to reduce the amount
of detail provided."

[64] Gerhard Fischer. Cognitive view of reuse and redesign. IEEE Software,
4(4):60-72, July 1987.

Waffle and nothing much about cognitive issues.

[65] Gerhard Fischer and Andreas C. Lemk~. Construction kits and design envi-
ronments: Steps towards human problem-domain communication. Human-

Computer Interaction, 3(3):179-222, 1987-1988.

This paper describes construction kits and design environments. The
former is a set of building blocks for a domain: examples are a pinball

machine creation program and a music construction program. The
latter, in addition, contains general knowledge about design for a
domain.

49

[66] P. Freeman, editor. Tutorial: Software Reusability. IEEE Computer Society

Press, 1987.

[67] Peter Freeman. Fundamentals of design. In Peter Freeman and Anthony I.
Wasserman, editors, Software Design Techniques, pages 2-22. IEEE, 4th edi-

tion, 1983.

A little design philosophy, then more specific software design. This

would be a good early article to read.

[68] P. Friedland. Knowledge based experimental design in molecular genetics. In

Proceedings of the 6th International Joint Conference on A廿ificialIntelligence,

pages 285-287, 1979.

[69] Susan L. Gerhart. Applications of formal methods: Developing virtuoso soft-

ware. IEEE Software, 7(5):7-10, September 1990.

Most of the examples were slanted toward hardware and fixed-
function systems, rather than the softer upstream areas where trade-

offs and ambiguities reside. It may be intrinsically difficult to por~
tray any significant use of formal methods in the always confusing

process of requirements analysis for systems at the user level.

[70] John S. Gero. Design prototypes: A knowledge representation schema for

design. AI Magazine, 11(4):26-36, Winter 1990.

The description of the relation between function (goals), behaviour
and structure is interesting, but design prototypes themselves are

not terribly novel or well worked out.

[71] Monika Gerstendorfer and Gabriele Rohr. Which task in which representation
on what kind of interface. In Bullinger and Shackel [34], pages 513-518.

Tasks involving complex structural relations with differing views and

few sequential operations are best suited for visual spatial encoding

and thus pictorial presentations. Procedural operations with strong

time dependencies are best suited for natural language presentation

i.e. linguistic encoding.

[72] D. J. Gilmore and T. R. G. Green. Are'programming plans'psychologica且y
real - outside Pascal? In Bullinger and Shackel [34], pages 497-503.

The'programming plan'is a good description of the knowledge of an

expert Pascal programmer, but Basic programmers seem unable to
benefit from cues to plan structures. Abstracting the plan structure

from a program is important, but other structures, e.g. control are

also important. Some languages are'role expressive'allowing plans

to be easily represented.

50

[73] Allen Goldberg. Reusing software developments. In Richard N. Taylor, editor,
Proceedings of the Fourth ACM SIGSOFT Symposium on Software Develop-
ment Environments, pages 107-119, Irvine, CA, December 1990. Appears as

SIGSOFT Software Engineering Notes 15(6) December 1990.

Component reuse is contrasted with design reuse. To achieve design

reuse, designs must be captured and represented. Software devel-

opment is formalised as transformations to an annotated abstract
syntax tree. Design decisions are made by selecting from amongst a

set of applicable transformations. "The transformational methodol-
ogy supports design reuse in two interesting ways. First the creation
of transformations and tactics formalizes general design knowledge

in a highly reusable way. Second replay uses design decisions made
for related specifications." Commons software development struc-
tures are: virtual machines, decomposition, set of rewrite rules, case

analysis. Basic operators are composed using the above composition

mechanisms to produce composite operators (tactics). This is the

approach taken in LCF. It seems to me that derivations and pro-
grams are separated a bit too much in this approach. A form of

design recovery is used to relate them.

[74] Richard E. Granda, Richard Halstead-Nussloch, and Joan M. Winters. The
perceived usefulness of computer information sources: A field study. A Clvf

SIG CHI Bulletin, 21(4):35-43, April 1990.

This study asked users about their computer problems and the in-
formation sources they used to solve them. The critical observation

was that users were in one of three states: (learning) where they
are acquiring new concepts and domain building, (solving) where

they know critical concepts but still need to build new cognitive
structures to solve the specific problem and (refreshing) where dor-
mant cognitive structures need to be activated. The kind of help

these users needs varies enormously. This kind of learning is very
goal directed, and users will rate the likelihood of finding what they

want from the various sources. Refreshers tend to know exactly what
they want and where to find it. Humans are highly rated informa-

tion sources because they: are interactive; are selective; can engage
in queries at multiple levels of dialogue and can make assessments.

[75] C. Green and D. R. Barstow. On program synthesis knowledge. Artificial
Intelligence, 10:241-279, 1978.

(Fragment read). A set of rules for array operations, divide and
conquer and recursive to iterative transformation are given and il-
lustrated by developing sorting algorithms.

[76] T. R. G. Green, R. K. E. Bellamy, and J. M. Parker. Parsing and gnisrap: A
model of device use. In Bullinger and Shackel [34], pages 65-70.

51

A problem is expressed in a "task language", but aspects of it can

be expressed (and solved) in a "device language". Problem solving
concerns building structures in the task domain by performing ac-

tions in the device domain. A simple model of IO to a device is

given "Make use of the external medium as a temporary store or

as a dump when overload threatens them". Gnisrap is the process
of creating the external structure and parsing of retrieving it. The

strategy used is determined by several factors including: "access

window" - head (small), paper (total), machine (cursor centered);

"viscosity" - resistance of device language to local change; "role
expressiveness" - need for "de-programming" to infer what comes

next.

[77] R. Guindon and B. Curtis. Control of cognitive processes during design: .. What
tools would support software design. In Proceedings of the CHl188 Conference

on Human Factors in Computing Systems, pages 263-268. ACM, 1988.

An example design schema, for asynchronous service, is given. This
paper seems to be a much abbreviated version of [80].

[78] Raymonde Guindon. Designing the design process: Exploiting opportunistic
thoughts. Human-Computer Interaction, 5(2 & 3):305-344, 1990.

This paper provides a long elaboration on the evidence for and the
nature of opportunism in design. She contrast two models of cog-

nitive processes: Hayes-Roth who suggests a blackboardish model

and Anderson who suggest a more planned model. However, they
can both exhibit opportunistic behaviour. Excellent reading. Sug-

gestion for a computer design environment are: 1) It should not

prescribe a fixed order of activities; 2) It should support rapid shifts
between tools which represent and manipulate different kinds of ob-

jects; 3) It should provide easy navigation between these objects; 4)
Informal and formal requirements should be representable; 5) Easy

reorganisation of requirements, issues and decisions; 6) The origin
of requirements・should be supported; 7) Interim and partial design
objects should be representable.

[79] Raymonde Guindon. Knowledge exploited by experts during software sys-
tem design. International Journal of Man Machine Studies, 33(3):279-304,
September 1990.

I thought this article was going to be very good, but it turned out
to be just good. There are one or two new elements, but mostly it

is a continuation of her ear且erwork. The knowledge domains iden→

tified and discussed are: problem domain; requirements and their

elaboration; design solutions, their representations, simulations and

52

evaluations; design strategies, methods and notations; problem solv-

ing and software design schemas; problem solving and design heuris-
tics; preferred evaluation criteria. The fo且owingare all quotes. Sys-

tern design involves the integration of multiple problem domains.

Incomplete and ambiguous system requirements (or goals) are in-
trinsic to system design. As a consequence, system design has two

features of ill-structured problems: poorly defined goals and no well-
defined criteria to evaluate the solution. Design tasks involve exten-

sive problem structuring. Problem structuring is the process of un-
covering missing information and using it to define a problem space.

Therefore the design process should encompass the discovery of new
knowledge, in particular, discovery of unstated goals and evaluation
criteria. The application ... of data-driven rules is considered to be

automatic and to impose little cognitive cost, in contrast to goal-

directed behaviours. Experts organize their knowledge in terms of
functional categories in their domains of expertise, whereas novices

organize their knowledge in terms of surface features of the prob-

lem. Experts are expected to retrieve knowledge rules and the more
complex design schemas in a data-driven manner. However, because

design problems are ill-structured, the design process cannot be just

the retrieval of known solutions, even in experts. The novelty in de-
sign and the incompletely specified requirements force even expert
designers to punctuate the retrieval of known solutions with the in-

ference of new requirements, the recognition of partial solutions at

various levels of abstraction, and the creation of new solutions. The

complexity of the design process also forces designers to use~esign
methods and heuristics in a goal-directed manner to constram the
search for a design solution.

[80] Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive
processes in software design: An analysis of breakdown in early design ac-

tivities by individuals. Technical Report STP-283-87, Microelectronics and

Compute: Technology Corporation (MCC), Austin, Texas, 1987.

[81] Christina Haas. Does the medium make a difference? two studies of writ-
ing with pen and paper and with computers. Human-Computer Interaction,

4(2):149-169, 1989.

The two experiments were the composition of persuasive letters and

the revising of letters. The three media were pen and paper, PC

and workstation. The rates of composition were similar, but the

time (and thus length) for workstations was longer than for pen and
paper. The quality of workstation and pen and paper composition

were better than for PC work. In revision, more planning occurred

with pen and paper, but the text was reread more with computers.

Two theories for the lack of planning with computers were presented:

53

users cut short planning time because there is no distraction element
(pen chewing) available; second, the medium of more malleable, so
writers can begin writing sooner. The extra rereading with comput-

ers may be explained by the reading problem with computers, and

the lack of "sense of text".

[82] Frank G. Halasz. Reflections on Notecards: Seven issues for the next gener-

ation of hypermedia systems. Communications of the AC!v'I, 31(7):836-852,

July 1988.

This article has an extensive hypermedia bibliography. It also dis-
cusses the distinction between ref ere nee and composition in links

and cards.

[83] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19,

September 1990.

[84] Wilfred J. Hansen and Christina Haas. Reading and writing with computers:

A framework for explaining differences in performance. Communications of

the ACM, 31(9):1080-1089, September 1988.

Experiments showed that paper was superior for reading to either
PCs or workstations. For writing, workstations and paper were
about the same but better than PCs. The results were explained by

seven factors, four primary and three secondary. The primary fac-
tors were: page size, legibility, responsiveness and tangibility. The

secondary factors, determined by the primary factors, were: sense
of directness, sense of engagement and sense of text.

[85] Douglas E. Harms and Bruce W. Weide. Copying and swapping: In丑uenceson
the design of reusable software components. IEEE Transactions on Software

Engineering, 17(5):424-435, May 1991.

An implicit operation in many languages is that of replicating a

value, e.g. when assigning. This, coupled with the frequent need to
use references leaせsto aliasing and other problems. These can be

reduced if we encourage programmers to use swapping primitives
and make ADTs provide explicit replicate() operations.

[86] Barbara Hayes-Roth and Perry W. Thorndyke. Integration of knowledge from

text. Journal of Verbal Learning and Verbal Behaviour, 18(1):91-108, 1979.

[87] Barbara Hayes-Roth and Carol vValker. Configural effects in human memory:

The superiority of memory over external information sources as a basis for

inference verification. Cognitive Science, 3(2):119-140, April-June 1979.

"The ability to integrate information from diverse texts and to de-

tect logical implications of the integrated information is fundamen―
tal to the understanding process ... Detection of logical implications

54

requires that temporally and spatially separate facts be configured
together and related according to deductive rules ... Peoples'ability
to detect and use logical configurations of related facts apparently

derives from highly developed memory mechanisms." An integrated
memory representation is hypothesised [86]. "It is extremely difficult
for people to detect configural information in an external informa-

tion source, such as a text. It is much easier for people to detect
configural information if the source information has been commit-

ted to memory. The model proposed to account for these effects
assumes that: (a) Subjects use search procedures that are inade-
quate to detect configural information; and (b) Automatic memory

mechanisms organize acquired facts in memory structures that make
configural information salient and highly accessible."

[88] D. A. Henderson and S. K. Card. Ro.ams: The use of multiple virtual
workspaces to reduce space contention in a window-based graphical user in—

terface. Technical report, Xerox PARC Intelligent Systems Laboratory, July

1986.

[89] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W.
Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. The laws of pro-
grarnrning. Communications of the ACM, 30(8):672-687, August 1987. See

C orrirrenda in Communications o

゜
f the ACNI, 30(9):770.

[90] A. Holgate. The A仕切 StructuralDesign. Oxford University Press, 1986.

[91] E. Hollnagel and D. Woods. Cognitive systems engineering: New wine in new
bottles. International Journal of Man JYlachine Studies, 18(6):583-600, June

1983.

[92] E且isHorowitz and John B. Munson. An expansive view of reusable software.

IEEE Transactions on Software Eng切eering,10(5):477-487, September 1984.

Reprinted in [66].

OK. They identify: A) Reusable code; B) VHL program produc-

ing systems 1) Reusable design (e.g. Draco) 2) Reusable processor

(MODEL language) 3) Reusing transformations 4) Application gen-
era tors (business) 5) Prototyping; C) PL support (AD Ts)

[93] 4th International Workshop on Software Specification and Design, 1987.

[94] M. A. Jackson. Principles of Program Design. Academic Press, 1975.

[95] M. Jackson. System Development. Prentice-Hall, 1983.

[96] Robin Jeffries, Athea A. Turner, Peter G. Polson, and Michael E. Atwood. The
processes involved in designing software. In J. R. Anderson, editor, Cognitive
Skills and their Acquisition, pages 255-283. Erlbaum, 1981.

55

The authors do some experiments on getting people to design pro-

grams and the differences between different skilled subjects is as-
sessed. Their theory says that general design work is embodied in

a "design schema", but they do not elaborate how the "decompose

problem into subproblem" bit works.

[97] L. Johnson and E. Soloway. PROUST: Knowledge based program under-
・standing. IEEE Tmnsactions on Softwa,e Engineering, 11(3):267-275, 1985.

Biggerstaff gives the authors in the other order.

[98] P. N. Johnson-Laird. Mental Models. Cambridge University Press, 1983.

The general thesis is that a particular structure, the mental model,
provides an explanation of many psychological questions such as

inference, meaning and understanding.

[99] J. C. Jones. Design Methods. Wiley, 1980.

[100] Capers Jones, editor. Tuto: 戌al:Progrnmming Productivity: Issues for the
Eighties. IEEE Computer Society Press, second edition, 1986.

[101] C. B. Jones. Systematic Software Development Using VDM Prentice-Hall,
1986.

[102] W. P. Jones.'As we may think'?: Psychological considerations in the design of
a personal filing system. In Raymonde Guindon, editor, Cognitive Science and

its Applications Jo, Human-Computer Interaction, pages 235-287. Erlbaum,
1988.

The ME system is designed to improve the user interface to a

personal database by actively modeling the user's own memory
for files and for the context within which these files are used. A
strong ... argument asserts that the basic nature of an information

retrieval task does much to determine the design of any system that

would accomplish this task - whether the system is realized in the

human brain or in a digital computer. It is quite possible that funda—

mental limitations in the use of electronic storage may be psycholog-
ical rather than economic. In part, we use a filing system as an exter-

nal memory that serves to extend, complement, and overcome the

limitations of our own internal memories. Electronic stora,ge ... has

an initial property of imp,essibility permitting the rapid transcrip-
tion of detailed information and a subsequent property of indelibility

promoting the preservation of this information, in its exact form, for

long periods of time. Since all links involving a file object are bidi-
rectional, a file's in-links and out-links are one and the same ... This

is not true for context objects. A context object. .. has a representa-
tion (it has out-links leading to terms) but no indexing (no in-links).

In models of human memory, there has been an evolution away from

56

feature set models towards associated network models (e.g. [8, 9],
[46]). The decay is a continuous version of displacement theories of
forgetting in human short-term memory. The decay mechanisms of

the current ME system produce an exponential forgetting function.

While such a function produces a good approximation of short-term
forgetting in people ... long-term forgetting is better described by the

power-law function. The spreading activation mechanism of the ME

system is a limited, more primitive version of a spreading activation

retrieval mechanism used in the ACT model of human information

processing, [8, 9].

[103] William P. Jones. On the applied use of human memory models: The mem-

ory extender personal filing system. International Journal of Man Machine
Studies, 25(2):191-228, August 1986.

The Memory Extender (ME) is based on the ideas of multiterm in-

dexing of objects. This is bidirectional allowing greater recallability

and recognizability. A context models that of the human; this is a set
of weighted terms and effectively specifies a worbng set of objects;
this can be rapidly shifted by adding and deleting terms. It can be
seen to generalise the idea of a current working directory. Files are

both found and stored by context. The current context is partially
defined by the files a user has recently used, and thus gradually wan-

ders. A file's representation is also gradually altered by the contexts
in which it has been accessed. A context decay mechanism keeps
the context's strength constant as new terms are added. A global

decay mechanism periodically operates so file strengths average to
a common value. Files are deleted, after notifying the user, if they

drop below a threshold. A spreading activation matching process is
used. Single-term input from the user is processed in 1-2 secs. This

proceeds in two stages: from query to terms and from terms to files.
This can be extended to four stages: from found files back to more

terms an from them back to more files. Information regard,ing term
similarities (and sjnonomy) is thus inferred from usage patterns. In

use, only 1 to 3 terms are generally needed to get any file from a
600m file UNIX system into the top 10 list. The system uses implicit

psychological knowledge: where you go and what you do (and where

you don't go and what you don't do) says something about what

the files mean to you and how they relate to each other.

[104] William P. Jones. How do we distinguish the hyper from the hype in non-linear

text? In Bullinger and Shackel [34], pages 1107-1113.

Snappy title, but this is just a brief survey of selection techniques

[105] Elaine Kant. Understanding and automating algorithm design. In Proceed-
ings of the 9th International Joint Conference on Artificial Intelligence, pages

57

1243-1253, 1985. A paper with same title appears in IEEE Transactions on

Software Engineering, 11(11), November 1985.

The convex hull problem. The processes involved in design observed

were: 1) understand the problem; 2) select a problem to work on; 3)

plan a solution around a kernel idea and refine or elaborate the ker-

nel structure; 4) execute the partially specified algorithm; 5) notice

and formulate any difficulties or opportunities; 6) verify that the
structure is a solution; 7) evaluate the solution (e.g. for e缶ciency).
Execution can use scenarios or be symbolic. It can be viewed as a
technique for selectively propagating constraints by moving them
around in the order in which steps of the algorithm are automated.

Designers work in multiple spaces.

[106] Elaine Kant and David Barstow. The refinement paradigm: The interaction

of coding and efficiency knowledge in program synthesis. IEEE Transactions

on Software Engineering, 7(5):458-471, September 1981. Reprinted in: [15]

and [3].

A refinement tree is built and two cost-estimates (space-time prod-
uct) are associated with each node: a lower bound (optimistic) and

an upper bound (achievable) cost. Coding rules cover: representa-
tion techniques for collections, enumeration techniques for collec-
tions, representation techniques for mappings. Sma且treesof collec-

tion and mapping representations ,".re shown. The internal program
representation format is discussed-in [16]

[107] Shmuel Katz, Charles A. Richter, and Khe-Sing The. PARIS: A system for

reusing partially interpreted schemas. In Proceedings of the 9th International

Conference on Software Engineering, pages 377-385, 1987.

"A partially interpreted program schema is syntactically a program

or independent module in some programming language, but contains
abstract entities such as abstract functions, predicates, constant

symbols, unspecified domains or unrealized program parts, each rep-
resented by free variables in the abstract entities set. Each schema

is accompanied by its specification, which includes: 1) Applicability

conditions ... 2) Section conditions [on free variables] ... 3) Result as-
sertions." The system has only been demonstrated for CSP. PARIS

uses the Boyer Moore theorem prover [30] as a subsystem but this is

not completely integrated. Finding schemas is not completely solved
yet, a keyword mechanism related to the prover is envisaged, but

the prover must always act as a final check. "An extension in which

the Theorem Prover could be restricted, called "problem statement

by interrogation," can be incorporated into later versions of PARIS.
In that mode, once a potential schema has been selected by a few

58

basic criteria, the system would interrogate the user in order to in-
ternally construct a problem statement similar in form to the schema

specification." "A problem statement consists of three components:

an entity list, applicability conditions, and result assertions. These
three components look si両 larto, and have the same syntax as the

first three components of a schema entry in the library, except that

they contam no abstract entitles. "

[108] Mark T. Keane. Analogical Problem Solving. E且isHorwood, 1988.

This seems to be just a discussion of Holyoak's model of induction,
though it's not bad for that. Lots of references.

[109] Charles Kellogg, Robert A. Gargan Jr., William Mark, James G. McGuire,

Michael Pontecorvo, Jon L. Schlossberg, Joseph W. Sullivan, Michael R. Gene-

sereth, and N arinder Singh. The acquisition, verification, and explanation of
design knowledge. ACM SIGART Newsletter, (108):163-165, April 1989. Spe-

cial issue on Knowledge Acquisition.

This is a very short report on work involving the Stanford HELIOS
system. Design constraints, rationale and success or failure of veri-

fication are used to explain parts of a design.

[llO] Donald E. Knuth. Sorting. In The Art of Computer Programming, chapter 5.
Addison-Wesley, second edition, 1973.

[111] Janet L. Kolodner and Christopher K. Reisbeck, editors. Experience) Memory)

and Reasoning. Erlbaum, 1986.

[112] Janet L. Kolodner and Robert L. Simpson Jr. Problem solving and dyna血c
memory. In Kolodner and Reisbeck [lll].

Experience has 2 roles in problem solving: refinement and modifi-

cation of the reasoning process (using both positive and negative

results); provides a set of exemplars (analogies to previous cases
guide and focus later decision making). MOPs are discussed. These
are generalized episodes compiled from individual experiences. Indi-

vidual experiences are indexed within these structures by features
which differentiate them. When two experiences differ from a gen-

eralized episode in the same way, reminding occurs. Analogy occurs
when predictions based on the first episode are・used to analyze a new

one. Generalization occurs when siヰlaritiesbetween two episodes

are compiled to form a new schema. A "problem solving with fol-

lowup" model is introduced. (1) The problem is classified (2) a plan
for resolution is generated and consequences predicted (3) results
are compared with prediction; whatever the outcome, knowledge is

updated, but when a failure occurs (4) results must be explained

59

and (5) failure corrected. Previous experience can aid in (1) classi-

fication (2) planning (3) explanation and recovery. A previous case
can (1) predict additional features to be investigated (2) can suggest
alternate classifications.

[113] Seiichi Komiya. Automatic programming by composing program components

and its realisation method. Future Generation Computer Systems, 5(1):151-

161, August 1989.

"A well-defined target domain does not require large numbers of

standard program components". The PAPS system uses the "com-
posing components" model of automatic program generation. The

differences between code generation (from specifications) and code
libraries (searched by specifications) are noted.

[114] Richard J. Koubek, Gavriel Salvendy, Hubert E. Dunsmore, and William K.
LeBold. Cognitive issues in the process of software development: Review and

reappraisal. International Journal of Man Machine Studies, 30(2):171-191,

February 1989.

A bit thin, but lots of good references. There is a review of a few
different models of different areas of software development. Pro-

gramming subtasks include: requirements interpretation, solution
design, coding, comprehension, testing, debugging, documentation,
modifications. "Experts form a mental representation of the solu-

tion program while novices concentrate on specific functions of the

problem."

[115] Marianne LaFrance. The quality of expertise: Implications of expert-novice

differences for knowledge acquisition. ACM SIGART Newsletter, 108:6-14,
April 1989. Special issue on Knowledge Acquisition.

"Experts not only know more quantitatively than those with less

expertise but ... they know what they know in qualitatively dif-
ferent ways from those possessing less knowledge." Six differences

are noted: 1) experts categorize problems in terms of known types,

while novices use surface object and syntactic pattern matching sim-
ilarities; 2) experts focus on goals rather than effects; 3) experts'

knowledge is more functional than that of novices; 4) experts can

recognise larger chunks and their chunks are structurally related; 5)

experts'knowledge is more complex than novices'knowledge;・6) ex-

perts'knowledge is more often used unconsciously; 7) experts have
greater episodic memory than novices.

[116] J. H. Larkin. Processing information for effective problem solving. Engineering

Education, 70:285-288, 1979.

60

[117] J. H. Larkin, J. McDermott, D. P. Simon, and H. A. Simon. Models of com-
petence in solving physics problems. Cognitive Science, 4:317-345, 1980.

[118] J. H. Larkin. The role of problem representation in physics. In Dedre Gentrer
and Albert L. Stevens, editors, Mental Models, pages 75-98. Erlbaum, 1981.

[119] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science, 11(1):65-100, January-March 1987.

A "sentential" representation is a seque1二，iallyindexed data struc-
ture. A "diagrammatic" representation indexes information by lo-

cation in a plane, allowing colocation and numerous "adjacencies".
A diagram can be superior to a verbal description for solving prob-
lems because: "* Diagrams can group together all information that

is used together, thus avoiding large amounts of search for the el-
ements needed to make a problem solving inference. * Diagrams
typically use location to group information about a single element,
avoiding the need to match symbolic labels. * Diagrams automat-
ically support a large number of perceptual inferences, which are

extremely easy for humans." "The advantages of diagrams, in our
view, are computational. .. because the indexing of this information
can support extremely useful and efficient computational processes."

[120] M. M. Lehman. Process models, process programs, programming support.
In Proceedings of the 9th International Conference on Software Engineering,
pages 14-16, 1987. Response to an ICSE9 keynote address by L. Osterweil

[155].

[121] Clayton H. Lewis. A research agenda for the nineties in human-computer

interaction. Human-Computer Interaction, 5(2 & 3):125-143, 1990.

A survey of different ideas on the central goals of HCI research.
Excellent introduction.

[122] T. Y. Lin and S. D. Stotesbury. Structural Concepts and Systems for Architects
and Engineers. Wiley, 1981.

[123] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, and
A. Snyder. CLU Reference !vfonual, volume 114 of Lecture Notes in Computer

Science. Springer-Verlag, 1981.

The language CL U is based on abstractions. The three abstraction

mechanisms provided are procedures (for procedural abstraction),
iterators (for control abstraction) and clusters (for data abstraction).
Objects are of fundamental importance, and in this respect a且the

above mechanisms produce objects which can be manipulated like

the more familiar integers and bools etc. Variables denote objects;
assignment cause a variable to denote a new object; the old object

61

may be garbage collected if it is no longer referenceable. Parameters
are passed by assigning actual to formal parameters. Because of

this mechanism, there can be a huge amount of aliasing and it is

important to be aware of any side e仔ectsyou have on objects.

[124] B. Liskov and J. Guttag. Abstraction and Specification in Program Develop-
ment. MIT Press, 1986.

This is very much a book about programming; how you can specify
bits of program, how you can decide on program abstractions, and

how you can prove your program correct. The formal methods is
rather toned down, but the whole book is clearly strongly influenced
by them. The most interesting part is the semi-formal discussion of

abstraction functions and representation invariants.

[125] Ralph L. London and Kathleen R. Milsted. Specifying reusable components

using Z: Realistic sets and dictionaries. ACM SIGSOFT Software Engineeた

切gNotes, 14(3):120-127, May 1989. This also appears in the Proceedings
of the Fifth International Workshop on Software Specification and Design,

Pittsburgh, Pennsylvania, May 19-20, 1989.

The Smalltalk implementation of sets and dictionaries is specified

and one or two interesting things appear.

[126] M. T. Lubars and M. T. Harandi. Knowledge-based software design using

design schemas. In Proceedings of the 9th International Conference on Software
Engineering, pages 253-262, 1987.

Unexciting arguments about how good the idea of design schemas
is. Some ideas on schema library searching.

[127] Mitchell D. Lubars. Schematic techniques for high level support of software

specification and design. In IWSSD4 [93], pages 68-75.

Vague and wa缶y."Useful software designs can be abstracted into
reusable design schemas [Harandi1ubars85] that apply to related

classes of design problems". The particular example discussed is a

library system, considered as an in.-:tance of an inventory control
system.

[128] B. Maher and D. H. Sleeman. Automatic program improvement: Variable

usage transformations. ACM Transactions on Programming Languages and
Systems, 5(2):236-264, April 1983. Reprinted in [12].

The Leeds Transformation System is a simple source code improver.

It is data driven, having both a set of transformations and BNF for
a few languages.

62

[129] Mary Lou Maher. Process models for design synthesis. AI Magazine, 11(4):49-
58, Winter 1990.

She discusses: decomposition, case-based reasoning and transforma-

tion and gives some references to AI work.

[130] Ashok Malhotra, John C. Thomas, John M. Carroll, and Lance A. Miller.
Cognitive processes in design. International Journal of Man Machine Studies,
12(2):119-140, February 1980.

Some rather disparate experiments lead to a simple 3 subprocess
model of the design process and the suggestion of tools, particu-
larly a domain-specific design information system. "The important
reasons for the premature introduction of solution [by a designer,

during a client-designer dialogue] seems to have to do with the de-
signer helping the client articulate and elaborate his goals." The

design process consists of 3 subprocesses: * goal elaboration, leading
to functional requirements, alternating with * design generation; a
component of which is * design evaluation, which may uncover new

requirements. A suitable representation is important for design gen-
eration, perhaps by allowing the important features of the design
to be represented. "A better method of communicating goals from

the ultimate users or buyers of programs and the designer could very
significantly impact the cost of software." "In many cases a user will

be able to tell whether or not a design is acceptable even though he
may or may not be able to articulate the basis on which he makes
the decision."

[131] S. Marcus, J. McDermott, and T. Wang. Knowledge acquisition for construe-
tive systems. In Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 637-639, 1985.

[132] Daniel D. McCracken and Michael A. Jackson. A両noritydissenting view. In
W.W. Cotterman et al., editors, Systems Analysis and Design - A Founda-

tion for the 1980's, pages 551-553. Elsevier, 1981. Also appears in [3].

Life cycle bashing

[133] John McDermott, Geoffrey Dallemagne, Georg Klinker, David Marques, and
David Tung. Explorations in how to make application programming easier. In
Motoda et al. [145], pages 134-14 7.

[134] K. B. McKeithen, J. S. Reitman, H. H. Reuter, and S. C. Hirtle. Knowl-
edge organization and skill differences in computer programmers. Cognitive
Psychology, 13:307-325, 1981.

[135] William Mettrey. A comparison of expert system tools. IEEE Computer,
24(2):19-31, February 1991.

63

A review and comparison of: ART-IM, CLIPS, KES, Level 5, and
VAX OPS5. There is a performance comparison, but the technical,

documentation and support provided are also compared.

[136] James R. Miler, William C. Hill, Jean McKendree, Michael E. J. Masson, Brad
Blumenthal, Loren Terveen, and Jay Zaback. The role of the system image in

intelligent user assistance. In Bullinger and Shackel [34], pages 885-890.

Graphical interfaces may be especially sensitive to misconceptions
for exactly the reason that they are often easier to learn and use

—.:... their ability to activate different kinds of prior knowledge, and
thereby suggest conceptual models and instruction techniques to the

user.

[137] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,

1991.

[138] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. MIT Press, 1990.

[139] M. Minsky. A framework for representing knowledge. In P.H. Winston, editor,

The Psychology of Computer Vision. McGraw-Hi且， 1975.

[140] S. Mittal, C. Dym, and M. Morjaria. PRIDE: An expert system for the
handling of paper systems. IEEE Computer, 19(7), 1986.

[141] Naomi Miyako. Constructive interaction and the iterative process of under-

standing. Cognitive Science, 10:151-177, 1986.

A Function/Mechanism hierarchy, giving more and more details
about a sewing machine, is proposed. In understanding (analysis),

a person wi且movedown the hierarchy with the following activi-

ties: (1) F identified (2) F questioned (3) M searched for (4) M
proposed (5) M confirmed. Within this process the person is said to

be in a state off "understanding" or "non-understanding" of the sys-
tern. It was_ suggested that people do not skip levels as they proceed
down. The conceptual point of view (CPOV), a spatial viewpoint, is
introduced. This appeared to be stable during points of understand-

ing and to shift frequently at points of non-understanding. Pairs of
people interactively tried to understand the sewing machine, but it
seemed they still had different understandings.'、Intwo→ person con-
structive interactions, the person who has more to say about the
current topic takes the task doer's role, while the other becomes

an observer, monitoring the situation. The observer can contribute

by criticizing and giving topic-divergent motions, which are not the
primary role of the task-doer."

[142] Carroll Morgan. Procedures, parameters and abstraction: Separate concerns.
Science of Computer Programming, 11:17-27, 1988.

64

This is an excellent article. Abstraction identifies a coherent algo-
rithmic activity that can be split from the main development pro-
cess; conventionally, a procedure call is left at the point of abstrac-

tion, and its necessary properties become the speci:fication of the pro-
cedure body. Instead, we leave the specification itself at the point

of abstraction, with no a priori con血 tmentto a procedure call.
Procedure call is treated as Algol60 text substitution, not caring

whether we substitute programming language code (as we would in

the final program) or a specification (as we would in a high-level de-

sign). Parameterisation is treated as a substitution mechanism that
can be applied uniformly to specifications or to program language
code, whether or not a procedure call occurs there.

[143] J. Mostow. Toward better models of the design process. AI Magazine, pages

44-57, 1985.

[144] Jack Mostow and Donald Cohen. Automating program speedup by deciding
what to cache. In Proceedings of the 9th International Joint Conference on

A吋ificialIntelligence, pages 165-172, 1985.

Automatically inserting caches into lisp code isn't easy because of
things like side-effects. There is a small complexity model.

[145] H. Motoda, R. Mizoguchi, J. Boose, and B. Gaines, editors. Proceedings of the
First Japanese }〈nowledgeAcquisition for Knowledge-Based Systems Work-
shop - J}〈AvV'90, 1990.

[146] Barbee T. Mynatt and Katherine N. Macfarlane. Advanced organizers in

computer instruction manuals: Are they effective? In Bullinger and Shackel

[34], pages 917-921.

When semantic information is presented prior to procedural infor-
mation, the semantic information is called an advanced organizer.

[147] Robert Neches, Bob Balzer.; Neil Goldman, and David Wile. Transferring
users'responsibilities to a system: The information management computing

environment. In Shackel [183], pages 421-426.

The IM system is built on a uniform database model, accessing
objects by description but with rules to allow the computer to do

some things automatically. The practice is a bit wet, but they do
consider the human model of a problem, how it is acquired, how it

is applied and how some of it can be transferred to a system.

[148] A. Newell. Heuristic programming: Ill structured problems. In J. Arorofsky,

editor, Volume 3 in Prag. Oper. Res., pages 360-414. Wiley, 1969.

[149] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

65

[150] A. Newell and S. K. Card. The prospects for psychological science in human-
computer interaction. Human-Computer Interaction, 1:209-242, 1985.

[151] J.M. Neighbors. The Draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, 10(5):564-574,

September 1984. Reprinted in [100] and [66].

The basic idea seems interesting, but this is a rather boring paper.

Draco is a system based on having an (extensible number of) well-
defined domains. Domains capture the result of a domain analysis

and consist of: 1) Parser 2) Prettyprinter 3) in-domain transforma-
tions 4) refinements to other domains 5) domain specific procedures.

[152] Jakob Nielsen. The art of navigating through hypertext. Communications of

the ACM, 33(3):296-310, March 1990.

A two-level map navigation system was employed. This is a pleas-

ant, illustrative overview of the application of a hypertext system
and some of the problems which still need to be tackled. Good bib-

liography.

[153] H. P. Nii. Blackboard systems: Blackboard application systems, blackboard

systems from a knowledge engineering perspective. Al Nlagazine, pages 82-

106, Summer 1986.

[154] Judith Reitman Olson and Gary M. Olson. The growth of cognitive modeling
in human-computer interaction since GOMS. Human-Computer Interaction,

5(2 & 3):221-265, 1990.

Scanned. A review of the GOMS model of HCI: its strengths and

weaknesses and how it has been extended.

[155] Leon Osterweil. Software processes are software too. In Proceedings of the 9th

International Conference on Software Engineering, pages 2-13, 1987.

p rocess programrmng.

[156] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053-1058, December 1972.

There is no doubt that modularity of systems is a good thing, but
how to achieve it is another problem. Traditionally, systems are split

up according to program steps, the order in which processing is to

take place. Parnas argues that such systems will only be compre-

hensible as a whole, and will have to respond in whole to changes in
requirements and representations. Instead, systems should be split
up along "information hiding" lines where every module is charac-

terised by its knowledge of a design decision which it hides from

66

others. He finishes by a discussion of hierarchical structure and con-
eludes that hierarchical structure and "clean" decomposition are two

desirable but independent properties of a system structure.

[157] David Lorge Parnas and Paul C. Clements. A rational design process: How
and why to fake it. IEEE Transactions on Software Engineering, 12(2):251-

257, February 1986.

Though we will never succeed in rigidly following a design process

that will lead us to an ideal solution, along with appropriate doc-

umentation, we should produce our documentation as if that had
been the case. The authors do give their own design process and
reasons why it can never be rigidly followed (poorly understood
requirements, difficulties in modularising it, changing requirements,
preconceived ideas etc.), but they argue that documentation is vital:

"The documentation is our medium of design and no design decisions

are considered to be made until their incorporation into the docu-
ments". They make some analogies with mathematical proofs which

may start of tortuously difficult and eventually be reworked: "The
simpler proofs are published because the readers are interested in

the truth of the theorem, not the process of discovering it". Though

they note that design alternatives must be documented, their insis-
tence on "the" document representing the current best state seems

a bit Stalinist.

(158] H. Partsch and R. Steinbruggen. Program transformation systems. ACM
Computing Surveys, 15(3):199-236, September 1983. Reprinted in [12].

Excellent.

[159] Stephen J. Payne. Complex problem spaces: Modeling the knowledge needed
to use interactive devices. In Bullinger and Shackel [34], pages 203-208.

The yoked state space hypothesis: The user of any input devices
must construct and maintain two separate sta誌 spaces:the goal

space, and the device space, and a mapping between the two.

[160] Colin Potts and Glen Bruns. Recording the reasons for design decisions. IEEE

Transactions on Software Engineering, 10(418-427), 1988.

This paper argues the need for design decisions to be recorded, looks

at the Liskov and Guttag text formatter. They describe a rather thin

system which proposes to join a Prolog "type" checker to a hypertext

system.

[161] D. J. Pullinger, T. I. Maude, and J. Parker. Software for reading text on
screen. In Bullinger and Shackel (34], pages 899-904.

67

Previously used media, for example stone, papyri and paper, have
shared one thing in common; it is apparent what one does with

them. The media carries the general operational message.

[162] Brian J. Reiser. Knowledge-directed retrieval of autobiographical memories.
In Kolodner and Reisbeck [111].

To retrieve episodic memory, one must guess the mental context used

to encode the event, for example, constructing a plausible scenario
for an occurrence of that type of event. Processing is not purely

automatic, but requires strategic reasoning mechanisms to direct

the search. "Activities" seem to be the best cues and strategies rely

on causal reasoning.

[163] W. R. Reitman. Cognition and Thought. Wiley, 1965.

[164] ITT Proceedings of the Workshop on Reusability in Programming, September

1983.

[165] R. G. Reynolds, J. I. Maletic, and S. E. Porvin. PM: A system to support
the automatic acquisition of programming knowledge. IEEE Transactions on
Knowledge and Data Engineering, 2(3):273-282, September 1990.

[166] C. Rich. A formal representation for plans in the programmer's apprentice. In
Proceedings of the 1th International Joint Conference on A屯ificialIntelligence,
pages 1044-1052, 1981.

[167] Charles Rich, Richard C. Waters, and Howard B. Reubenstein. Toward a

requirements apprentice. In IWSSD4 [93], pages 79-86.

The Requirements Apprentice (RA) is an idea for an upstream tool
to help in writing requirements. Early requirements are: incomplete,
ambiguous and contradictory. "The RA ... will contain an extensive

library of knowledge about the particular domain of the require-

ment to be constructed." A list of general features of informal re-

quirernents communication (extending Balzer's work): abbreviation,

ambiguity, poor ordering, incompleteness, contradiction, inaccuracy.
Engineers use: "their previous experience, in the form of knowledge

of the commonly occurring structures (combinations of primitives)

in the domain. The term cliche is used here to refer to these com-

monly occurring structures Formally a cliche consists of a set_ of
roles embedded in an underlying substrate. The roles of a cliche are

the parts which vary from one use of the clichもtothe next. The sub-

strate of the cliche contains both fixed elements of structure (~arts
that re present in every occurrence) and constraints." Similar ideas

to clichもsare found in several other places. "A central underpinning
of the RA will be an extensive library of cliches in the particular

domain of the requirement to be constructed." Example cliches are:

68

repository, information system, tracking system. The requirements
evolve using information from 3 sources: explicit statements, cliches
and inferences. The RA is useful because of its: support for cliches,

propagation of information and contradiction detection.

[168] Lance J. Rips. Mental muddles. In Myles Brand and Robert M. Harnish,
editors, The Representation of Knowledge and Belief University of Arizona

Press, 1986.

The author differentiates "figurative mental models" from "literal

mental models" and "more faヰliarformats (e.g., networks and

propositions)." Rather unconstructive.

[169] Robert S. Rist. Variability in program design: The interaction of process with
knowledge. International Journal of Man Machine Studies, 33(3):305-322,

September 1990.

Unexciting. ・・ ・

[170] Paul S. Rosenbloom, John E. Laird, Allen Newell, and Robert McCarl. A
preliminary analysis of the Soar architecture as a basis for general intelligence.

Artificial Intelligence, 47(1-3):289-325, January 1991.

Soar is split into a number of levels. Level 1 is memory. Items are re-
trieved from production-memory into working-memory. Knowledge

can be coded into production-memory in any way desired. Level 2
is the decision level which has a fixed decision procedure. It oper-
ates in an elaborate-decide cycle. Elaboration consists of repeatedly

accessing memory until the system stabilises. After quiesence, the
decision procedure selects one of the retrieved actions based on ac-

ceptability and preference information also retrieved from memory.

Level 3 is the goal level. Whenever an impasse in decision ma恥ng
is reached, the architecture generates a subgoal of resolving the 1m→

passe. This leads to a subgoal stack. Learning can occur by chunking
of subgoals. An example of multi-column subtraction is presented.

Soar has a uniform architecture: it has only one memory structure,

allowing learning to be general; it has only one task representation
(goals) allowing smooth shifts from search to procedural behaviour;

it has only one type of decision procedure. Excellent article.

[171] Mary Beth Rosson and Sherman R. Alpert. The cognitive consequences of
object-oriented design. Human-Computer Interaction, 5(4):345-379, 1990.

An introduction to design. An introduction to 00. Speculation. Not
very exciting.

[172] Winston vV. Royce. Managing the development of large software systems.
In Proceedings of IEEE WESCON, pages 1-9, August 1970. Reprinted in
Proceedings of the 9th International Conference on Software Engineering.

69

This is the original waterfall model article (though he doesn't men-
tion the word waterfall). It is short, well written and well dia-

grammed. His 5 key points are: 1) complete program design before
analysis and coding begins; 2) documentation must be current and

complete; 3) do the job twice if possible; 4) testing must be planned,

controlled and monitored; 5) involve the customer.

[173] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeBlanc, Jr. Recog-
nizing design decisions in programs. IEEE Software, pages 46-53, January

1990.

Nothing exciting. A few good references.

[174] D. E. Rumelhart and D. A. Norman. Accretion, tuning and restructuring:

Three modes of learning. In J. W. Cotton and R. Klatzley, editors, Semantic
Factors i'T} Cognition. Erlbaum, 1978.

[175] R. C. Schank. Language and memory. In D. A. Norman, editor, Perspectives

on Cognitive Science. Erlbaum, 1981.

[176] Roger C. Schank. Explanation: A first pass. In Kolodner and Reisbeck [111].

Original and refreshing. Explanation is a much more pervasive phe-
nomenon than either reminding or learning. "People want to un-

derstand the world - personnaly, socially and physically. They do
this by constantly creating and modifying explanations and indexing

memories by the explanations they caused to be formed."

[177] R. C. Schank and R. Abelson. Scripts1 Plans) Goals and Understanding. Erl-
baum, 1977.

[178] A. H. Schoenfeld and D. J. Herrmann. Problem perception and knowledge
structure in expert and novice mathematical problem solver. Journal of Eか
perimental Psychology: Learning, Memory) and Cognition, 8:484-494, 1982.

[179] Wolfgang Schonp:flug. Internal representation of externally stored informa-

tion. In F. Klix and H. Wandke, editors, Man-Computer Interaction Research:
lvIACINTER-I, pages 125-130. Elsevier, 1986.

"Retrieval from internal memory is mostly an automatic process ...

Retrieval from an external store is not automatic ... The user has to
build up an internal representation of the information stored exter-

nally, the storage device used, and the relations between informa-

tion and device." Source knowledge refers to focal knowledge. "E:ffec-

tive use of source knowledge requires both internal representation of

external sources, and internal representation of the information to
which the source refers."

70

[180] S. Scribner. Thinking in action: Some characteristics of practical thought. In
Practical Intelligence: Origins of Competence in the Eve内dayWorld. Cam-

bridge University Press, 1985.

[181] Mau:q_g K. Sein, Robert P. Bostrom, and Lorne Olfman. Conceptual models

in training novice users. In Bullinger and Shackel [34], pages 861-867.

Mental models are internal conceptual representations of a given sys-
tern with which a user is interacting. They aid the user in: making

inferences about the system; reasoning about it; guiding his actions.
Opinion is divided on whether users spontaneously build (useful)
mental models. The consensus is that users should be provided with

(external) conceptual (primitive) model that will help them build
mental models. Support for the efficacy of analogical conceptual

models is weak. The role of conceptual models is to act as advance
organizers. In their experiment, for "near transfer" tasks analog-
ical conceptual models proved superior. For "far transfer" (more

complex) tasks, abstract conceptual models proved superior. Also,

subjects with low visual ability (to create and manipulate images)

were handicapped by the abstract model.

[182] V. Sembugamoorthy and B. Chandrasekaran. Functional representation of
devices and compilation of diagnostic problem→ solving systems. In Kolodner

and Reisbeck [111].

Device functionality can be represented in many dimensions, includ-
ing: causal, temporal, interaction. A hierarchical structure records

five significant aspects at each level: structure, function, behaviour,
generic knowledge, assumptions. Understanding devices involves un-
derstanding the function-structure relation and the ability to use

this in problem solving e.g. troubleshooting and prediction of the
results of changes (what will happen if - WWHI).

[183] B. Shackel, editor. Human-Computer Interaction - INTERACT富.Elsevier,

1984. .

[184] Mary Shaw. Toward higher-level abstractions for software systems. Data f3
Knowledge Engineering, 5(2):119-128, July 1990.

Thin.

[185] J. I. A. Siddiqui and B. Ratcliff. Specification influences in program design.
International Journal of Man Machine Studies, 31(4):393-404, October 1989.

Keywords in a problem specification (informal) affect the structure

of the solution. Unexciting.

[186] H. A. Simon. The structure of ill-structured problems. Artificial Intelligence,

4:145-180, 1973.

71

(187] Stephen Slade. Case-based reasoning: A research paradigm. AI Magazine,

12(1):42-55, Spring 1991.

Case-based reasoning developed out of psychological models of

episodic memory and the technological impetus of AI. This paper

has a good bibliography and a reasonable introduction to the mem-

ory research.

[188] J. G. Snodgrass and D. Y. Y. Yun. Software requirements specification from
a cognitive psychology perspective. In Proceedings of the 1988 International

Conference on Computer Languages, pages 422-430, Miami Beach, Florida,

October 1988. IEEE.

The authors assert that the reuse of standard designs and scenario
execution are fundamental cognitive processes in design. Writing re-

quirements does not make use of these underlying knowledge struc-

ture, so designers don't want to write requirements. Many references.

(189] Elliot Soloway, Jea~nine Pinto, Stan Letovsky, David Littman, and Robin
Lampert. Designing documentation to compensate for delocalized plans. Com-

munications of the ACM, 31(11):1259-1267, November 1988.

In reading documentation, subjects use micro-and macro-strate-

gies. Micro-strategies consist of Read, Question, Conjecture, Search
and Answer episodes. Such inquiry episodes are triggered by un-

fulfilled expectations. Macro-strategies can either be systematic or

as-needed, but the systematic approach only works for small prob-
lems. The as-needed strategy is problematic because it fails to detect

delocalized plans (long range interactions). In design reviews, 34 %
of time is spent attempting to reconstruct design rationales, 37%
is spent ensuring code-spec consistency. Problems with delocalized

plans arise because of lack of expectations.

[190] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[191] M. Stefik. Planning with constraints. A吋ificialIntelligence, 16:111-140, 1981.

[192] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. vVYSI¥VIS
revised: Early experiences with multiuser interfaces. Transactions on Office

Information Systems, 5(2):147-167, April 1987.

[193] David Steier. Creating a scientific community at the interface between engi-
neering design and AI.・AI Magazine, pages 18-22, Winter 1990.

Report of a workshop held at EDRC Engineering Design Research

Center at CMU. Short, but a good summary of some current ideas.

[194] Louis I. Steinberg. Design as refinement plus constraint propagation: The
VEXED experience. In Proceedings of the 6th AAAI, pages 830-835, 1987.

72

A VLSI design tool is described. It has a complete functional model
of the system behaviour and a number of refinement rules hardwired
in. At each stage it suggests applicable refinements and the user

chooses. Limited domain.

[195] P. David Stotts and Richard Furuta. Petri-net-based hypertext: Document

structure with browsing semantics. Transactions on Information Systems,

7(1):3-29, January 1989.

The authors use petri nets rather than DAGs to model a hypertext

system. While I'm slightly dubious about petri nets, their ideas do
seem useful. Petri nets allow the author to put much more structural
and control information into a network. For example, a button. can
make several windows appear or several disappear. Access control

can also be fitted in.

[196] A. G. Sutcliffe and A. C. Old. Do users know they have user models? some
experiences in the practice of user modeling. In Bullinger and Shackel [34],

pages 35-40.

Taxonomy of user models is given

[197] Bill Swartout. The GIST behaviour explainer. In Proceedings of the 3rd AAAI,

pages 402-407, 1983.

"Two of the major impediments to understandability are the un-
familiar syntactic constructs of the language and non-local interac-
tions between parts of the specification". This system allows sce-

narios to be simulated and the trace behaviour of the system sum-

marised and justified.

[198] W. Swartout and R. Balzer. On the inevitable intertwining of specification
and implementation. Communications of the ACM, 25(7):438-440, 1982. Also

appears in [3].

Short and unconvincing. One point is noteworthy: the systeIIlS we

specify and build are complex and we cannot forsee all the implica-

tions until we implement it and then those realisations can be fed

back up to alter the specification. They confuse "low level require-
ments" with "implementation decisions".

[199] Hideaki Takeda, Paul Veerkamp, Tetsuo Tomiyama, and Hiroyuki Yoshikawa.
Mode且ingdesign processes. AI Magazine, 11(4), Winter 1990.

Several models of the design process are possible: descriptive, cogni-
tive, prescriptive and computable. They propose a very heavy math-

ematical descriptive model. Then there is a small cognitive model
based on the idea of design cycles which consist of 5 stages: 1)

73

Become aware of a problem; 2) Suggest concepts needed to solve
it; 3) Develop candidate solutions; 4) Evaluate the candidates and
5) Adopt a solution. At stages 3 and 4 new problems may emerge.

Two "levels" of design are observed: the object level and the action

(meta) level. They then merge the two models to produce a com-
putable model which uses deduction, abduction and circumscription

at the object level and simple deduction based on rules at the action

level.

[200] Perry W. Thorndyke and Barbara Hayes-Roth. The use of schemata in the

acquisition and transfer of knowledge. Cognitive Psychology, 11 (1):82-106,

January 1979.

"A memory schema ... is a cluster of knowledge (a set of concepts and

associations amorig the concepts) that defines a more complex and

frequently encountered concept." Interest in memory schemata has
been promoted by AI work which seeks representations of knowledge

which involve knowledge clustering, such as frames [139] and scripts
[177]. It has also been promoted by psychological research into mem-

ory for discourse. Some common features of the many models pre-

sented are: "(1) A schema represents a prototypical abstraction of

the complex concept it represents ... (2) Schemata are induced from
past experience with numerous exemplars of the complex concept it
represents ... (3) A schema can guide the organization of incoming
information into clusters of knowledge that are "instantiations" of

the schema. This represents a goal-directed focusing of processing by

active memory elements ... (4) When one of the constituent concepts

of a schema is missing in the input, its features can be inferred from
"default values" in the schema ... " Attempts to formulate general

schema theories of memory have: (1) been vague and general and fit
any data (2) poorly specified and cannot be used predictively. The

schema must be retrieved in order to retrieve a detail that instan-

tiates it. This paper details the costs and benefits associated with
-the use of schemata in memory.

[201] Kenneth Utting and Nicole Yankelovich. Context and orientation in hyper-

media networks. Transactions on Information Systems, 7(1):58-84, January

1989.

This article describes Web View, an addition to Intermedia to help

in reducing disorientation. The first part is・a good introduction to
the problems of using hypertext: disorientation and cognitive over-

load of which the major factors are: determining where a link leads;

estimating the size of the web and returning to a previous state. The
way other systems help to overcome problems of spatial and tern-

poral context are reviewed. They tried a map with fixed positions,

奮

74

but it didn't work, and in fact gave up on trying to automatically
produce any sort of global map "essentially, the link structure of

the web has no inherent correlation with the user's concept of how

documents are related." Such maps may have to be created with

human intervention. The system they came up with is a graphical
display which: (TEMPORAL) lists documents recently visited and

(SPATIAL) lists documents connected to the current one. This is a
good paper, but the results aren't earth shattering.

[202] Willemien Visser. More or less following a plan during design: Opportunistic
deviations in specification. International Journal of Nfan Machine Studies,
33(3):247-278, September 1990.

"Design consists in transforming a problem representation into an-
other: it always starts with'requirements'and produces'specifica-

tions'". "The plan which guides the activity is used in an oppor-

tunistic way, that is, only when no more opportune actions arise".

Actions are selected first by cognitive cost (e.g. schemas are che~p,
easy to access information) and also by importance (e.g. 恥ingonus-

sions, importance of object). Processing of a component X may lead

to the activation of a component Y because of a relationship between
the components: analogy, prerequisite, interaction, opposites. "Act-

ing according to a plan is a concept-driven activity. Starting from a
goal imposed by the plan, the engineering will look for the informa-

tion needed to achieve this .;oal. However, most deviations observed
stem from data-driven processing, such as starting from information

which the engineer has at his disposal and which allows a goal not
imposed by the plan to be achieved." "If the design activity is op-
portunistically organized, a system which support - and therefore
imposes - a hierarchically structured design process will at the very

least constrain the designer and will possibly even handicap him".

[203] Richard C. Waters. The prograrmner's apprentice: A session with KBEmacs.
IEEE Tmnsacti四 son Software Engineering, 11(11):1296-1320, November

1985.

The most important aspects of machine assistance is "shared knowl-

edge" with the human: in KBEmacs this takes the form of a set of

"cliches". KBEmacs does simple program reasoning, for Lisp and
Ada, and cliche combinations. A "plan" is used to represent the

structure of a program and knowledge about cliches. Cliches are op-
erated on using a primitive, informal mix of Larch-ish keywords and

Z schema calculus operators. The system has "constraints" iri. the

form of Ada functions (an interpreter is used, I think) which work
directly on the internal plan representation. The user can edit the
resultant code, but the systems has to analyse this and generally

75

loses track of the cliches that was used. The implementation is a
40K Lisp monster. KBEmacs has been used to construct programs

more than 100 lines long. It seems to me that upstream design does
not have such a set of cliches. Upstream design is a process of coin-
ing cliches, and then seeing if they are useful. Future versions of

KBEmacs will replace the "plan formalism" with the "plan calcu-

lus" allowing general purpose automated deduction.

[204] Richard C. Waters. Program translation via abstraction and reimplementa-
tion. IEEE Transactions on Software Engineering, 14(8):1207-1228, August
1988.

A translator from Cobol to Hibol (Satch) and from Pascal to PDPll
(Cobbler) are discussed. Both produce abstract program descrip-

tions before doing translation. Satch is limited and Cobbler does

not exist. In Cobbler, design decision inferred from the program are

represented in terms of transformations. The KBEmacs plan repre-

sentation, and not the plan calculus, is used.

[205] Richard C. Waters. Automatic transformation of series expressions into loops.
ACM Transactions on Programming Languages and Systems, 13(1):52-98,

January 1991.

Waters considers the restrictions necessary on the language of

streams to allow transformation into efficient looping constructs,
considering both Lisp and Pascal. A sequence expression is opt血iz-

able if and only if: (1) It is a straight-line computation; and (2)
It is statically analyzable; and (3) Every procedure called by it is
preorder; and (4) Every non-directed data丑owcycle in it is on-line.

Series functions can be divide into three categories: collectors, which
compute non-series values from series; scanners, compute series from
non-series values; and transducers, which computer series from se-

ries. "In situations where optimization is impossible, it is usually

better to represent a sequence as a vector or list than as a series."

In the transformation process, loop fragments must be represented
and then combined. The representation has the following parts: in-

puts, outputs, local variables, labels, loop prologue, loop body, loop
epilogue.

[206] Dallas E. Webster. Mapping the design information representation terrain.
IEEE Computer, pages 8-23, December 1988.

Downstream software development (code, documentation) is rather

formal and stylised, whereas upstream development is informal and

fuzzy. "It is not enough to capture data; one must capture it effec-
tively so it can be interpreted and used." Good bibliography.

76

[207] Peter Wegner. Varieties of reusabi且ty. In REUSE83 [164], pages 30-44.

Reprinted in [66].

Broad but shallow survey of reusability

[208] Mark Wesier and Ben Shneiderman. Human factors of computer programming.

In Gavriel Salvendy, editor, Handbook of Human Factors, pages 1392-1416.
Wiley, 1982.

Unexciting.

[209] Charles Wiecha and Max Henrion. Linking multiple program views using a
visual cache. In INTERACT81, pages 689-694.

A visual cache is a pop-up panel which displays a limited amount

of information for a short time. The cache reduces the number of
times attention must be shifted between windows. The number of

windows in a cluster is reduced by eliminating those that provide
only the information now in the cache. As a result, disorientation is

reduced by allowing attention to focus on the task at hand rather
than on the details of navigating through a complex set of displays.

[210] David S. Wile. Program developments: Formal explanations of implementa-
tions. Communications of the ACM, 26(11):902-911, November 1983. Also

appears in [3].

Transforma~ions accomplish two tasks: implementation and opti証
sation. Current problems with the transformational approach are: *
building a library of transformations * indexing transformations *
validating transformations * verifying enabling conditions for trans-
formations * automation * describing design decisions * scaling up.
A development structure is built simultaneously with program trans-
formations. This is done in the POPART system. The development

structure has its own language, independent of the program itself,
and is built using the Paddle languag..e. The development structure

must record both decisions and motivations (goals). Goals must be
structures, either a priori or a posteriori, with structures such as
"divide and conquer". The system is manually driven.

[211] Jeannette M. Wing. A specifier's introduction to formal methods. IEEE

Computer, 23(9):8-24, September 1990.

A formal method should possess a set of guidelines or a "style sheet"
that tells users the circumstances under which the method can and

should be applied as well as how it can be applied most effectively.

Formal meth9ds provide frameworks within which people can spec-
ify, develop and verify systems in a systematic, rather than ad
hoc, manner. In practice, you must usually deal with incomplete

77

spe:ifications ... any incompleteness in the specification should be
an mtentional incompleteness ... any intentional incompleteness can

be captured succinctly as a parameter in the interface.

[212] Terry Winograd and Fernando Flores. Understanding Computers and Cogni-
tion: A New Foundation for Design. Ablex, 1986.

Knowledge is always the result of interpretation, which depends on

the entire previous experience of the interpreter and on situated-
ness in a tradition. If we begin with the implicit or explicit goal
of producing an objective, background-free language for interacting
with a computer system, then we must limit our domain to those
areas in which the articulation can be complete (for the given pur-

poses). A design constitutes an interpretation of breakdown and a
committed attempt to anticipate future breakdowns. For a typical

complex computer program, there is no intelligible correspondence

between operations at different levels ... Furthermore, in going from

level to level there is no preservation of modularity. There remains
the logical possibility that a computer could end up operating suc-

cessfu且ywithin a domain totally unintended by its designers or the

programmers who constructed its programs. The key to design lies
in understanding the readiness-to-hand of the tools being built, and

in anticipating the breakdowns that will occur in their use. A sys-
tem that provides a limited imitation of human facilities will intrude

with apparently irregular and incomprehensible breakdowns. There
are surprisingly few basic conversational building-blocks (such as re-

quest/promise, offer/acceptance, and report/acknowledgment) that
frequently recur in conversations for action. A systematic domain is
a structured formal representation that deals with things the pro-

fessional already knows how to work with, providing for precise and
unambiguous description and manipulation. The critical issue is its

correspondence to a domain that is ready-to-hand for those who will

use it. The computer is ultimately a structured dynamic communica-
tion medium that is qualitatively different from earlier media such as

print and telephones. Communication is not a process of transmit-

ting information or symbols, but one of commitment and interpre-

tation. A human society opera逹sthrough the expression of requests

and promises among its members. There is a systematic domain rel-
evant to the structure of this network of commitments, a domain

of'conversation for action'that can be represented and manipu-
lated in the computer. In all situations where・systematic domains

are applicable, a central (and often difficult) task is to character-

ize the precise form and relevance of the domain within a broader
orientation.

[213] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

78

[214] D. D. Woods. Visual momentum: A concept to improve the cognitive cou-
plingぐ,fperson and computer. International Journal of Man Machine Studies,

21:229-244, 1984.

The "getting lost" and "keyhole" phenomena ... do not represent

human limitations ... Across-display processing di缶cultiesare the

result of a failure to consider man and computer together as a cog-
nitive system [91]. The advantage attributed to parallel over serial

data presentation is based on the characteristics of human percep-
tion and attention, rather than the mode of data presentation. When

dis?lay system structure provides a visual frame of reference that de-
scribes the relationships among data points as well as the data points

themselves, the viewer's attentional mechanisms can identify highly
"informative" areas (high visual momentum). When no perceptual
clues are available ... the user must rely on other mental processes,

of more limited capacity. Memory problems are not the cause of per-

formance di缶cultieslike "getting lost" phenomena; instead they are

symptomatic of the mismatch in the man-machine cognitive system

represented by low visual momentum. Consequence of low visual mo-

rnentum can include: (a) cognitive tunnel vision; (b) impaired abil-
ity to locate "important" data; (c) getting lost in display networks;
(d) memory bottlenecks due to increase in mental workload; (e) de-

creases in problem-solving performance. Visual momentum can be

increased by using perceptual conte泣 tohelp the user construct
and maintain a cognitive map, or schema of the data structure -
the spatial framework reflects the semantic structure. Mechanisms

are: long shot (overview), perceptual landmarks, display overlap

(physical and functional), spatial representation, spatial cognition.
The latter uses maps, i.e. analogical representations where all points

are simultaneously available. This equiavailability principle is shown
by (a) the ability to generate specific routes (b) the ability to tra-

verse new routes (c) orientation abilities. Route knowledge becomes
available in parallel, not because it's simultaneously available in tJ:te

user's short term memory (a catalog of itineries) but because ana-
logical representation supports a route generation process (in the

sense of a mental skill). Memory bottlenecks occur when there are
problems in the route generation mechanism; for example, because

the user has no perceptual or internal map. Ergonomic guidelines on

the design of computer displays generally attempt to ensure that hu-
man sensory limits are not strained. However, human performance

problems in display systems such as the getting lost phenomena and
cognitive tunnel vision demonstrate that the potential to see/read

data does not guarantee successful user information extraction.

79

崖

Notes about automating software design

Tim Gleeson

Aug 30th 1990

1 Basic terms

There seem to be two fundamentally separate issues:

• develop a cognitive model of the design process・(perhaps just in a limited
domain) by analysing design histories;

• provide machine support for this cognitive process.

The former seems to be a far larger problem than the latter.
I think "Automated method of extracting design strategies from recorded design

histories" is an even harder problem. It presupposes:

• design strategies have a particular form

• we know that form

• features of that form can be readily identified in recorded design histories.

The tractability of the problem will depend on the size of the domain we are

going to consider. We may be able to automate some work in small domains but

not in large ones. In very small domains, of course, it is easy; for example, in the
world of regular expre~sions it is trivial to automate the translation to finite state
machmes:

Tactics and strategies

A distinction between design tactics and strategies has to be made, as they fulfill
different tasks. Guindon's model of design identifies "design meta-schemas", which

are strategies and control the overall design process, and tactics based on specific

knowledge and experience which he calls "design schemas". Design schemas are
keyed by specific design situations but meta-schemas are relatively independent of
the domain.

Perhaps design schemas can be identified, stored in some sort of database and

keyed for reuse. However, I'm unsure that these are the most important elements in

design. Perhaps meta-schemas, procedural aspects of design, are more important,

ー

for example, meta-control: I've worked long enough on subproblem A, its time to

do some work on subproblem B. These could be stored but they are really aspects

of design that are used (all the time) rather than reused.

Domain specific knowledge may be amenable to storage and reuse, noting that

this is probably only possible for small domains. However, we know that we can

solve problems even if we know little about the domain. Of course, it takes us longer

because we have tq discover for ourselves much about the problem and domain.

Meta-schemas

Guindon[8.l and elsewhere] emphasises that two fundamental problems in design

are:

• lack of specialised design schema

• lack of, or poor, meta-schema

The latter is a planning problem. Machi五ehelp could be provided by a system
which encourages users to separate issues, prioritise them (according to importance),

allows them to explore multiple-levels of the problem, reminds them of outstanding
issues etc.

Design schemas

For the former, we need a better understanding of how specialised design schemas

are employed, i.e. what makes a design schema useful? It is unclear to me how
much of this could be automated. (Guin.don suggest automation in 8.3) Stored
design schemas could be keyed and matched on an abstract description of their

applicability. However, suppose the design schema retrieved is new to the designer:
the designer now has 3 things .to understand: ・ ・ ・ ・ ・ ・ ヽ，

• the original problem

• the retrieved design schema

• how the above two can be related to each other

If the designer can understand all these, and express the relationship in a machine
processable way, then the machine can use the design schema to suggest a solution

plan to the designer. An essential aspect of reusability is parameterisation: what

this means here is that the designer must parameterise the design schema with the

particular details of the problem. However, part of the power of a design s!=hema
is that it is internalised (in the designer) and provides an essential framework in

which the designer can hang tentative, intermediate solutions and ideas at a low
cognitive cost. It is well known that experts-in a field can perceive and remember
far more than novices, because they have an internalised structure on which to hang
the new information; novices have to build that structure. In order to make machine

.'

2

assistance useful, the machine would have to perform this function for a designer

not familiar with the design schema.
How do we identify design schemas? Observing programmers may give us more

information about meta-schemas than about design schemas. In order to find design
schemas we should perhaps look in "Collected Algorithms from the ACM" or IEEE

SAC.It血ghtbe interesting research to ?ee how we can convert an algorithm or a
data structure (in general, an abstraction) into a design schema and eventually a

machine usable design schema.

At・what level in a design should an attempt be made to pattern match in a
database of・existing design schemas? Probably at the highest, fuzziest, most up-

stream point possible; then previous ideas and experience can be immediately used
(perhaps by analogy) both to further understand the problem and also to start work
on solutions.

How good does a match for a design schema have to be? Finding even a roughly

si両larproblem in the database would be useful because it is always easier to adapt
and edit an existing design than to start a new one from scratch. (Question: does
anybody write a "makefile" completely from scratch?)

2 Understanding the problem

What does "understanding and elaborating requirements" mean? The former means

building a mental model, structuring information, generalising. The latter means
specialising, filling in omitted, elided or "obvious" information.

Understanding the problem is very important. It consists of forming mental
models. This can be aided by simulation of the model, finding difficulties with them

and revising the mental model.・However, tools to aid the understanding process can
be independent of any attempted solutions: i.e. we can simulate the problem.

Stored design strategies could be used as templates to encourage designers to

think about the problems involved.・For example, we have a problem, we see an
analogy to "scheduling systems" then our stored knowledge of scheduling systems

encourages us to ask specific questions about the problem: is real-time behaviour
important, what is the fairness crit~rion?
We have a large LTM (long term memory) model of the problem, and we use
STM (short term memory) to focus on a portion of it. Potentially a machine can

store and focus on the whole, or much more, of the problem. We must elaborate
our LTM model to the machine.

Guindon asserts that designers move frequently between different levels of ab-

straction. Why? One possible answer is that people are using the various_ desig~
schemas that they know, which will be at various levels of abstraction, to mvest1-

gate any area of the problem or solution. This is not so much top-down-design,
bottom-up-design or middle-out-design. but familiar-unfamiliar-design.

Guindon[S.l] says that a crucial part of design is the simulation of aspects of the
problem and solution. However, this is both mentally taxing and not well supported
by pencil and paper. Two solutions are possible:

3

• provide better simulation tools, particularly those which display temporal and
d ynam1c ISsues

• help users to better design "aspects" which are easier to mentally manipulate

. .、
3 L1m1tat1ons 1n cogn1t1ve ability

Because of limitations in working-memory (S'TM), only a fraction of the internal
model of a problem can be focussed on at any time. A goal of a software support
system must be to encourage users to:

• . built mental m~dels that can be easily split for focusing purposes

• focus on appropriate (easy? cruci~l?) fr叩gments.

gIBIS (TOO IS 6(4):303-331 odober 19_88) forces a~t;on:g separatio~ ~f issues
Can a system be built which forces st_r?:;ig separation of levels of abstraction? . Such
a system would be based on information limitation. Some of the metrics produced
by the CIA system (Belanger et al 1990) might be useful: for example, the ideas of
weight and cross-coupling between nodes. Th_ese indicate how connected (or con-
versely, how separate) nodes are, and thus how complicated they are to understand.
A "weight trigger" might be invoked if a node got sufficiently heavy, i.e. complicated.
In the KMS hypermedia system (CACM 31(7):820-835 July 1988) they have a
fixed size for a "frame" (1132 x・305 pixels).・The system allows for the・display of
either a whole framff or two half size frames; but never more・t_han two. They _state
that scrolling _of large frames is an inefficient -way・of moving through a database
and that. navigating through・・a hierarchy• of smaller・units is better. :. HyperCard,
for the Mac, is also a card-per-screen system:::This shows that a system built on
information limitation can work. On the other :hand, many systems are being built
with the explicit goal of displaying more information.
It might be useful to perform a literature survey exploring the facilities for ab-
straction and information limitation in existing如sign:tools;-·Th~s·would-also k>ok
at systems whose goals are to expand information display.・This might take the same
form as the article ,"Mapping the design information repres~~iatiori. terrain" but be_
called "Mapping the design abstraction terrain".: ・:: ・

Severalsystems, e:g. gIBIS (TOOIS 6(4):303-331 October 1988) and NoteCards
(CACM 31(7):836-852 July 1988), have discussed the need for filtering, i.e. dis-
playing an interesting subset of the information in a database. gIBIS uses "primary
and secondary" -links and NoteCards suggests embedding a search/ query mechanism
more deeply into the interface to allow specification of what is interesting. These
two approaches differ in that gIBIS is relatively static arid NoteCards is relatively
dynamic. Neptune (TOOIS 5(2):168-186 Apr 87) seems・also to have link types and
a link filtering mechanism.

Much computing research can. be seen as identifying dynamic structures (e.g.
GOTOs and labels) and replacing them with static structures (e.g. WHILE loops)
which can be reasoned about more easily. Two interesting issues arise from these

4

observations: first, can we find a mechanism to statically specify all interesting

structures; second, at different times, different subsets of the information will be
interesting, thus multiple views need to be supported. The idea of multiple views

is probably an extension of that found in databases which I believe, though I'm
very ignorant about this, is concerned with record subsetting and intersection. It is
an extension because it concerns alternative structural views rather than alternative

data views. For example, when the X window system is installed, there is a directory
"X" under which is found the three subdirectories "bin", "lib" and "include". Under

the directory "/local" is also found directories "bin", "lib" and "include". The

contents of "X/bin" must appear in "/local/bin" and so on. When I am primarily
interested in binaries, I will look in "/local/bin" and when I am primarily interested

in X, I will look in "X". The. strict UNIX filesystem hierarchy cannot express this
change in interest and links must be used. A directed acyclic graph (DAG) could

be used.

When we develop an upstream system, a lot of our work is in understanding
that system.>We .build mental structures and structures on paper to represent it.

Periodically we identify more fundamental constructs than we were previously aware
of. These constructs pr?vide simpler explanations of what we already knew and are
more useful for predictive purposes.・These changes in understanding structure are

what a lot of science is all about. , A computerised design-aid must support this

activity. Simple restructuring takes place when we identify a repeated idea; we
can abstract a principle from this, and then instantiate it when needed. It may

be that we can identify such patterns by the linkages and clusterings in a machine
representation. The, machine could . then prompt the user to investigate further.

The ideas of weights and clustering from CIA are useful and other work is Hutchins
and Basili ("System structure analysis: clustering with data bindings", IEEESE
ll:749-757'Aug 1985Y. ・ ~. ・. . . パ

4 Miscellaneous notes

Versions are like refinements

Potts and Bruns ("Recording the reasons for design decisions;; SElO 1988 418-427)
noted the need for the "documentation of the design process" i.e. refinements. This
vertical design structure must also be supported by a horizontal design structure
which records'.design changes. Individual versions can be supported in the same

way as individual design results, but just as important are the reasons for and the

descriptions of (deHas) the design changes.

Working sets

An analogy has been drawn between working sets in a VM system and windows

on a desk (e.g. WYSIWIS (Stefik et al TOOIS 5(2):147-167 Apr 1987) who cites
Rooms (Henderson and Card, Xerox PARC ISL TR, Jul 1986)). This idea needs
more exploration than the simple treatment it has been given. Though reducing the

5

number of window faults, as suggested in WYSIWIS, may be useful, we really need
to explore the relationship between STM, LTM and the window working set. Does
a window working set act as a cache, or as an intermediate level of storage between

STM and LTM? What are its properties? Perhaps it has better store and delete
access than LTM, but retrieval is much slower? We should start by examining why

pencil and paper are useful.
Systems which seek to expand the window working set are:

WYSIWIS

N oteCards with its Browser and FileBox cards

Nephme (TOOIS 5(2):168-186) with its Graph Browser

gIBIS with its text index and "zoomed out" global view

KMS claims it supports "time multiplexing", rather. than the conventional "space
multiplexing" . (lots of windows),. because it can quickly switch between nodes. The
terms are due to Card (Card et al, "Window Based Computer Dialogues", Proc. 1st
IFIP Con£.'on Human-Computer Interaction (Interact'84) 1984). These approaches
seem psychologically very different. Can we investigate their characteristics?

Hypertext

Hypertext・is like machine-code: it is a low-level, efficient, completely flexible mech-

anism for structuring text. However, like machine-code it_ is too flexible; application

specific constraints need to be added to make it. more comprehensible: These・con-
straints are domain specific policies. [Reference to policy-mechanism:separation).
Ordinary text can be compared to a programming language with no branching
structures. Adding links and nodes enormously increases the flexibility of a text
system, just as GOTOs and labels add to the flexibility of a programming language.
However, we soon see the need to restrict ourselves to more controlled structures
such as LOOPs and procedures. In a hypertext. system/ . .the structures we add
will depend on the domain of use. For authoring we_ would tise0chapters, sections, .•
footnotes, marginal notes, diagrams etc. In a .program d~ve_lopment systeni ,i,e•would
need specifications, refinements, updates, documen~ation etc.
The notion of typing in hypertext systems needs_ investigating. This is・the same
old programming language, operating system argument, e.g. LISP for flexibility or
PASCAL for security. Delisle and Schwartz ("Contexts" TOOIS 5 2 :168-186 Apr ''()
1987) note that smce many documents are tree structured, many hypertext systems
give special support to this kind of organisation.
The discussions of where links should be allowed to point to is very similar to

discussions held long ago about where labels can be placed and jumps can be made
(out of loops? into loops? into procedures?). The answer lies in a better definition
of the semantics of the domain in which the system is going to be used.

6

Research into automating software
Media External Design

design:

Tim Gleeson

Oct 3rd 1990

Contents

ー Introduction

1.1 Documen~purpose ... ・・ ・・・．・・.・ ..•.. .•.. ••..

1.2 . Document structure :

1

2

2

2

System properties
2.1 Internal memory systems
2.2 External media ．．
2.3 Communication channel

2.4 Design process .

3

Exploitation of external design media

3.1 Data storage
3.2 Data use

3.3 Problems . . .

4

5

6

7

Cognitive issues

4.1 Building a supersystem _ -~..... _ •.. -・
4 .2 Learning .

Related fields

2
3
3
3
3

Proposal for research

Notes on sources

4

4

4

6

8

8

O

O

0

1

1

1

1

1

ー Introduction

A goal of the ATR Communication Systems Research Laboratories is to develop

technologies for the automatic generation of communications software, for example,
tools to assist in the storage and reuse of aspects of software design.

ー

The success of a tool depends on a thorough understanding of the problem it
seeks to tackle. Thus it is imperative that we gain a better understanding of the

design process. There have been experimental psychological investigations of many

aspects of human design, for example [GCK87, GC88]. Humans already use general

purpose tools in design, for example, computer editors and filesystems. The tools of
pencil and paper and libraries have been used for thousands of years so we should

also look at how the various aspects of the human design process interacts with
external media. A better understanding of the use of external media will allow us

to construct much more useful. computer tools to assist in software design.

1.1 Document purpose

The purpose of this document is twofold.

Firstly, to sketch out some of the domain of external design media. Many of the

notes here are poorly structured and incomplete, but I hope they will indicate the
bounds of the domain. There are many references given which remain to be read.

Secondly, this document provides a proposal for further work. There are many

section headings which have no text and others which are very short or lack detail.

These are left to indicate the need for work in that area.

1.2 Document structure

This document looks at the following areas:

• The characteristics of the systems involved in the design process, i.e. internal
and external memory and the design pro~ess_ itself.

• How and why external design media are used and problems with their use.

• Other cognitive issues.

2 System properties

w e must examine the basic charactenst1cs of the various systems that interact when
a design is being rriade. These include:

• The internal memory systems of the designer

• External media, e.g. paper and computer

• The communication channel between the above

• The design process itself

Green, Bellamy and Parker [GBP87] identified a number of properties of external

design media ("device language") that have an impact on design strategy. These

properties can also be applied to internal memory:

2

access window This is the "width" of information that can be accessed at any

time. For human short-term memory, this is small. Paper is almost completely
accessible (it is very easy to move the eyes to a particular part of a page, or

to turn the page). For a machine, for example an editor, the access window is
an area surrounding the cursor.

viscosity How hard is it to make local changes in what has been stored?

role expressiveness How well does the medium express the purpose of the stored

data? Many programming languages do not do this well - much text must

be read and then "de-programmed" to infer the intent.

2 .1 Internal memory syste_ms

2.2 External media

There are several significant characteristics that external media posses:

• They have an almost unbounded storage capacity

• They are shareable between designers

Paper-based systems have a certain degree of structure that cannot be avoided

— the paper must be rolled or cut into pages - this also imposes some constraints
on use such as the kind of indexes possible and how rapid it is to access particular

items (latency). Computer-based systems are almost completely structure-free, as
can be seen in hypertext systems. A structure-free system has penalties as well as

gains, however.

2.3 Communication channel

The communication channel-between internal memory and external design media

consists of the screen, our eyes and ears, the keyboard and the mouse. This channel

has limited bandwidth. Much work on human-computer interaction (HOI) has fo-

cussed on interfaces, for example, the structure of menus, whether scrolling a large
text is better than paging through it or the wording of error messages. Though this

work is useful, it is rather shallow; we need a much deeper understanding of the
basic possibilities of interaction with external media.

2.4 Design process

There have been experimental psychological investigations of many aspects of human

design, such as the use of design schemas (domain knowledge) and meta-schemas

(design strategies), for example [GCK87, GC88] and also the different processes used
by novices and experts.

3

3 Exploitation of external design media

We will look at the following issues related to the use of external design media:

• data storage (kind of data and its structuring)

• use of the data

• problems in use of the data

At a certain level of abstraction we can equate storage of information on paper

and storage of information in a computer: they are both external to the user. At this

level, questions about user interfaces become meaningless. Though computers can
do much more than pencil and paper can, we still don't know what we can do with

pencil and paper. Thus instead of starting our investigations with human-computer

interactions, we can start by investigating human-paper interactions. This has a

number of advantages:

• Paper is a very simple technology

• It is very well developed, having been used for thousand.s of years

3.1・Data storage

3.Ll. Kinds of data stored

3.1.2・H ow we access 1nformat10n

To be useful, externally stored information has to be accessible and this means

organising it. For paper, there are many different kinds of organisations, including
desks, filing systems, libraries, little sticky pieces of yellow paper glued in seemingly

random profusion around an office. In finding information we use search processes
and various forms of indices1. Many of these forms of organisation include indices

at different levels of detail.

Of particular interest is how this media is accessed as an extension of the human

mind, for exa:mple, we know in thでdesignof computer filing systems that the idea of
a root or origin is very important. Here, the root (or the roots) to the information
stored. externally must exist in the human mind, and perhaps a number of levels

of indices and other primary access mechanisms exist there. This issue is discussed

more in Section 4.1.

3.2 Data use

External media are used for a variety of purposes including:

• short-term and long-term storage

1 I seem to use the word "index" for all access mechanisms.

4

● searching

• learning

• reference

• visualisation

• simulation

We can say that the properties of the media are being exploited. For example,
in visualisation we exploit the two-dimensional character of paper (a characteristic
not found in our heads) to explore aspects of a system. We could also build three-

dimensional models and make films (animation), again exploiting the characteristics

of the external media.

We can consider the differences between paper storage of information and com-
puter storage of information. Some of the capabilities of computers merely advance

what could already be done with paper and some of them create entirely new op-
portunities. In some cases the computer is a worse tool than pencil and paper, for
example, in reading experiments [HH88]2. These new capabilities of computers can
considerably change the habits of users.

For example, in the field of authoring, computers allow the rapid movement of
large quantities of text, something which could not be easily done with pencil and

paper. This meant that pencil and paper users had to:

• org~nise their ideas

• express those ideas as blocks of text.

The text-shifting capabilities of computers has meant that this order of working

is not so necessary now; computers have made the medium of text far more ma—

nipulable. But this may not be a good thing汽blocksof text can be seen as the
realisation of ideas;・it is the ideas that we wish to move around, but to do this

we must mentally translate the blocks of text back to ideas, and this can be seen
as reverse engineering, which I think should be avoided. However, computers have

completely changed my mode of wo~king and I now find it hard to write without
the aid of one.

This can also be seen in fields other than that of authoring: syntax-directed
editors and interactive・debuggers have made the medium of programs much easier

to manipulate. It is now very easy to write the text of programs but these systems
do not encourage programmers to design programs. A friend close to Apple asserted

that the Macintosh operating system was not designed, rather, it was "debugged

into existence .

2Why d o programmers contmue to use printed listings of their programs unless they have some
properties which are better than VDU listings?

3[Haa87] cited in [HH88] discusses this issue.

5

There is something about the almost limitless flexibility of such systems that

gives their users a sense of unease and a craving to get something expressed, some-
thing stable and concrete, as soon as possible. This effect has also been observed

within the design process itself; [GCK87]4 observe that the early adoption of kernel

solutions to problems seems almost universal. They conject that sophisticated soft-

ware tools might allow this to be delayed and the problem space to be investigated
more. I also hope this is the case, but it will require a different kind of software from

that which we have at the moment, which seems to encourage premature decision

making.

3.3・Problems

We must examine the problems and difficulties associated with using external media

and the communication channel which links them with the human memory and

human design process.

3.3.1 . Channel and cognitive capacity

The channels carrying information from the external world to the internal world are

strictly limited in capacity as is the human ability to use that information. This
means we cannot observe all the external information all of the time. Thus we must

multiplex these channels. For example, a desk is a reusable resource: today it holds
information about subject X, tomorrow it will hold information about subject Y.

Computerised "information tools" take varying viewpoints on ho-.:v much infor-

mation to display and what information to display. These polices can be summarised
d d as: ran om unconsc10us an consc10us.

Many hypertext systems try to present as much information as possible to the

user, and this means more screens and bigger screens. The KMS hypermedia system
[AMY88] provides (basically) two cards per screen, thus a limited amount of informa-

tion. However, they assert that their system supports time multiplexing, [CPF84],

of information (because cards can be accessed rapidly) rather than the more con~
ventional space multiplexing (where many cards can be simult~neously displayed).
These are completely different ways of interfacing the ext~rnal design medium to
the user and this interaction deserves investigation. However, neither of these ap-

preaches makes any policy decision on what information to present to the user, or
provides tools for the 1;1ser to~ ゆlic~tly make such choices.・These tools can poten-
tially provide rapid access to large mformation bases, but by failing to appreciate

limitations in cognitive ability and the channels of communication, they may be
nearly useless.

The tradeoff between volume of information, and speed of access to it via nar-

row communication channels has been recognised [HC86, CH, SBF唸7].They notice
that, like paging in virtual memory system.s, human design activity seems to be cen-

tered for long periods around tasks, with occasional switches between tasks. When

4 And other papers as well.

6

performing a task, the user will concentrate on only a small fraction of all the infor-

mation available. This locality of reference to information can be used to speed up
task switching if large segments of task context (perhaps several windows) can be

switched together.
In a virtual memory system, we would like to switch between the working set of
pages of different tasks, here we wish to switch between the window working sets
of tasks. They call these segments rooms, [HC86], each room holds the context for
a given task. However, this approach only helps to tackle the problem of access

to large volumes of information, it does not solve it. It is a two-tiered approach:
windows within rooms; the EMS system5 has pages in hierarchical chapters.
This approach is based on two simple cognitive observations:

1. Speed of access to information decreases rapidly with the volume of informa-

tion.

2. Locality of reference to information when performing a pacrticular task.

It is unclear whether this principle of task organisation is basic to human・activity
or is an artifact of current tools, as, for example, are the current modes of authoring

and system construction described in Section 3.2.
Another view is that the only way to tackle the problem of rapid access to large
information base is by a careful and rigorous discipline of conscious, constructive

abstraction of the information. Each abstraction should be small enough to be
comprehensible. However, we must be careful here, the exercise should be to reduce

cognitive complexity and not necessarily system complexity, though the two are of

course related.

3.3.2・Context

When moving through a large base of information, the question "where am I?"
often appears. Poor structuring of the information within a design tool, or poor

indexes into it lead to the problem which has been called "disorientation". and "lost

in hyperspace", [Ber88]. This problem seems to be specific to hypertext systems

and does n~t appear in paper systems to any great extent. Perhaps this-is because
we cannot travel very fast within paper systems, or・perhaps it is related to the kind

of structures found in paper systems. Why do we not get lost in the inner-space of
our own memory systems, which must be far more complex than hypertext systems,

and which we can navigate through much faster? Again, we must examine the
relationship between internal and external design media if we are to build better

tools.
More fundamentally, we must ask why we want to know where we are. I think

knowing where you are means knowing where you are near to, and how the place

you are at relates to those other nearby places. Getting lost is symptomatic of

not understanding the regio:g. you are in and its relations to nearby regions. This is
particularly the case when the region is densely connected. The problem here is poor

5 According to [UY89), but see [Fei88, FNvD82)

7

abstraction - we should only ever need a small context to work in, i.e. we should

build systems which are tightly compartmentalised and loosely connected. The only
connections we should need to understand are those of abstraction (what function

is this system implementing?), refinement (how is this system implemented?) and

perhaps change (how did this system get to be like it is?)
[UY89] have identified spatial and temporal context. We refine and extend their

ideas of context as follows:

where we are, our current position (spatial)

how we got there, and where else we could have gone (spatio-temporal)

why we wanted to get there, a higher-level plan

The idea of "task" can be seen as incorporating the context we need to work

in. The unconscious locality of reference to information, as seen in infrequent task

switches, must be supplemented by a consciously structured world. However, we

don't want to structure the world too much because this will prevent serendipitous

work which requires looser, ad-hoc, vague connections.

3.3.3 Moving through information

There are several ways of moving through a large information base. The conventional

model of paper books with linearly arranged pages is obviously extremely profitable.
An even older model, recently revived, is that of linear scrolling. Node jumping

has been made popular by hypertext systems and folding editors provide another

metaphor.
There are arguments about which of these are the most effective, but I think these
are really issues of user-interface and are not deeply significant from a psychological

viewpoint.

4
．．

Cogn1t1ve issues ,

4.1 Building .a supersystem

One of the reasons for using external design media is that they can potentially
store a large volume of information. However, there are problems with how this

is structured, how it can be displayed, and covering both of these, how it can be
integrated with internal structures.

4.1.1 Me and my library

It may be profitable to take a "systems" view of the use of external media.
Let's look at problem solving. There are a number of problems I can solve if
locked up in a room with no e:>,._'i;emal media. However, limitations in my

• cogmtive ab山ty

8

• knowledge of the problem domain

• general problem solving skills

• memory (for the solution)

mean that the class of such problems is very small.
However, if I am given pencil and paper, some of these problems6 vanish and the

range of problems I can solve increases. ,.
If I am further locked up in a well-stocked library, with a pencil and paper, then
the class of problems I can solve expands enormously. I have not changed. The
library has not changed. The combined system of me and the library, however, has
far more potential than either of us alone.

When we discuss systems, we must carefully identify their boundaries. We must

carefully avoid associating the behaviour of a system merely with the behaviour of

its components. Thus I would thus like to consider "me-and-my-pencil-and-paper"

and "me-and-my-library" as being new systems. The latter is constructed out of the
components "me" and "my library'!, but it is an entirely distinct and new system.
It deserves study in its own right. -
This study must explore a number of issues:

• the nature of the component~ubsystems, both-the human (is he an expert or
a novice?) and the external component

• the nature of the supersystem we are going to build・

• how the properties and connection of the former lead to・the latter - an issue
of refinement

~~、

I have suggested thinking about a new, combined system, a supersystem, where

"me" is one of the components. The other component could be "pencil and paper"
or'、library"or "hypertext". In all these cases, the other system is external to the
human. Part of this study must be to discover the way the human component
interacts with the external component. When we understand more about this, we
will be able to design better external components, better than libraries and hypertext
systems.

There is no reason why an external system should reflect what is _going on or
being represented in the human mind, a property sometimes looked for in hypertext

systems. The external system should complement the human mind producing a
new, joint supersystem which is more powerful than either of its components.

We discussed the design process in Section 2.4. ff we. just examine the human-
subsystem, we see that the human-design-process can only work on the human-

memory system. However, some new, higher-level design process emerges when we
build the human-external-media supersystem. This super-design-process must be

distinguished from the human-design-process: it works on the joint memory system.

Of course, it is entirely dependent on the human-design-process in much the same

6 And others such as difficulties in visualisation and simulation

，

way that a Fortran system is entirely dependent on a machine-code system to execute

it. It is obvious how to make the distinction in this computing example; we must

do the same with the design example.

4.2 Learning

As a system is used, external indices (for example, those in a book or hypertext

system) are exchanged for internal indices. This is a dynamic process. As a system

is used, it becomes more and more familiar to the user, i.e., more and more of the
information (including indices) is internalised. For example, when I first started to

use秘TEXI had to refer almost constantly to the contents page and the index of

the manual to locate the information I needed. Now, in many cases, I know the

information I want, or if not, I know almost exactly which part of the manual to
turn to.

The dynamic nature of the interaction between people and paper can be seen not

just in the long-term assimilation of information by the user, but also as a medium-

term interaction whereby paper can act as a buffer for the short-term memory for
ideas which may never become assimilated in long-term memory, for example, a list
of tasks which must be completed. A study of the relative characteristics of human

memory systems and paper storage systems would prove both fascinating and useful.

5 Related fields

This work is related to several other fields.

Knowledge acquisition

Here . we are interested in the acquisition of knowledge by the joint computer-
external-media system and not just by the human or just by the computer. This is

particularly interesting because the facts themselves may already be in the external-

media part of the system, for example, if the whole of the Encyclopaedia Britannica
was on-line. However, this knowledge may not be in the system as a whole. Knowl-

edge acquisition will thus involve investigating (reading, browsing, studying) the
external-media and building indices, which may be both internal and external. As

an analogy, we can gain new information from existing facts by thinking.

Miscellaneous

[ERG+sgJ report on some work [Fur, FLGD83, GL84] which discusses indexing

schemes, though mostly keyword based. The idea of latent semantic analysis can be

found in [D FL咋

6 Proposal for research

The following issues must be addressed:

10

• We need a more complete characterisation and comparison of the character-
istics of internal and external memory systems. Computing metaphors such
as multi-level memory systems, caches and virtual memory systems should be

considered.

• We need a more complete description of the current uses of external design
media.

• From these two we must develop a better model of external device use. There
is one very primitive model that I am aware of, [GBP87], but this simply
models human memory as dumping to external memory when it overloads

and concentrates on the decoding (parsing) and encoding (gnisrapりofthe
information stored externally. They do not consider the extension of indices
and access mechanisms out of the human system into the external design

media, thus creating a supersystem.

There are many other important questions we must ask. Who are we trying to

help, experts or novices or both? What tasks are we trying to help them with?
What problems are we trying to solve? We cannot yet make firm decisions on these
issues, but must w叫tuntil we understand the domain better.

Finally, this research would benefit greatly from having contact with a concrete
project, perhaps the writing of a program.

7 .. Notes on sources

The United Kingdom (UK) Medical Research Council (MRC) Applied Psychology
Unit (APU) in .Cambridge does research into memory and reasoning. In particular
they are looking into the interaction of humans and real world objects, including

documents [Bar).
The following journals exist at'ATR, though many of the collections are incom-

plete:

• ACM SIGCHI

• Cognition

• Cognition and Emotion

• Cognitive Psychology

• Cognitive Science

• International Journal ofMan Machine Studies

• Journal of Experimental Psychology: Learning, Memory and Recognition

• Memory and Cognition

7 gnisrap is parsing spelled backwards al'Algol68.

11

References

[AMY88] Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A
distributed hypermedia system for managing knowledge in organizations.
Communications of the ACM, 31(7):820-835, July 1988.

[Bar] Phil Barnard. Research on human-computer interaction at the MRC
applied psychology unit. In Proceedings of .the CHI'90 Conference on
H~man Factors in _Computing Systems, pages 379-380. AC_M.

[Ber88] M: Bernstein. The bookmark and the compass: Orientation tools for
hypertext users.・ACM SIG I OS Bul_letin{ 9(4):34-45, October 1988.

[CH]

[CHI] : ・

S. Card and A. Henderson. A'multiple, virtual workspace interface to
support user task switching. In Proceedings of the CHI+GI'81 Confer-

ence on Human Factors_ in Co_TTlp_71:ting Sys,tems an~Graphical Interfaces,
pages 53-59.

on erence on・Human Factors in・Coin--・.・ACM. Proceedings of the CHI'88 C f
puting Systems.

[CPF84] S. K. Card, M. Pavel, and J. E. Farrell._ Window-based computer dia-
logues. In Shackel [Sha84], pages 239-244.

[DFい] S. T. Dumais, G. W. Furnas, T. K. -Landa11er, S. 恥erwester,・・・and
R. Harshman. Using latent semantic analysis to improve access to textual
information. In CHI88 [CHn, pages 281-285.

[ERG唸9]Dennis E. 芦g~n, Joel R. -Remde; Louis M. -Gomez,. Thomas K. Lan-
dauer, Jenmfer Eberhardt, and Carol C. Lochbaum. Formative design-

[Fei88]

If . evaluation of SuperBook. Transactions on n ormation Systems, 7 1):30-
・← ← ● 雪、ヽ—.'.. ・- - (-

57, January 1989.

S. Feiner. Seeing the forest for the trees: Hierarchical display of hyp~rtext
structure. In Proc. Conf on Office In/07:111,a.tion Systems, pages 205-212.
ACM, 1988. (EMS). ・

[FLGD83] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais; Sta-
tistical semantics: Analysis of the potential performance of key-word
information systems. Bell Systems Technical Journal, 62(6):1753-1806,
1983.

[FNvD82] S. Feiner, S. Nagy, and A . van Dam. An expenmental system for creatmg
and presenting interactive graphical documents. ACM Transactions on
Graphics, 1(1):59-77, January 1982.

[Fur] G. W. Furnas. Experience with and adaptive indexing scheme. In Pro-
ceedings of the CHI'85 Conference on Human Factors in Computing Sys-
tems, pages 131-135. ACM.

12

[GBP87] T. R. G. Green, R. K. E. Bellamy, and J.M. Parker. Parsing and gnisrap:
A model of device use. In H.J. Bullinger and B. Shackel, editors, Human-
Computer Interaction - INTERACT'81, pages 65-70. Elsevier, 1987.

[GCSS] R. Guindon and B. Curtis. Control of cognitive processes during design:
What tools would support software design. In CHI88 [CHI], pages 263-
268. .

[GCK87] Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive
processes in software design: An analysis of breakdown in early design
activities by individuals. Technical Report STP-283-87, Microelectronics
and Computer Technology Corporation (MCC), Austin, Texas, 1987.

[GL84] L. M. G・om.ez and c: c: Lockbaum. People can retrieve more objects
with enriched key-word vocabularies. but is there a human performance

[Haa87]

[HC86)

[HH88]

cost. In ShJckel [S]1,a81],_pages 257:-:-~61. . ・, --身

C. Haas. How the Writing Medium Shapes the Writing Process: Studies
of W泊 ers・Composingwith Pen・and_ Paper and with Word Pro~essing.
PliD thesis, CMU; 1987. .,-

D. A. Henderson and S. K. Card. Rooms: The use of multiple virtual
workspaces to reduce space contention in a window-based graphical user
interface. Technical report, Xerox PARC Intelligent Systems Laboratory,
July 1986.

Wilfred J.-Hansen・a丘d.Christi~a Haas. .Reading and writi_ng. with com-
puters: A framework for・explaining differences in performance .. Commu-
nications of the ACM, 31(9):1080-1089, September 1988.

[SBF+S7)~M. Stefik; D. G. Bobrow; G. Foster, S. Lanning, and D. Tatar. WYSIWIS
revised: Early experiences with multiuser interfaces.・Transactions on
Office Information Systems, 5(2):147-167, April 1987,

'・・--- '-_,'、'•,,:·、, -:c.-,_

[Sha84] .. B. Shackel, editor. Human-Computer Interaction - INTERACT'84.
・Elsevier, 1984.

'_., ・., .. ,_;:,.,., ,::.・;, ---

[UY89) Kenneth Utting and Nicole Yankelovich: Context and_ orientation in
hypermedia networks. Transactions on Information Systems, 7(1):58-
-84, January 1989.

13

The Z Notation and Softw紅 eDesign

Tim Gleeson

December 11th 1990

Introduction

Z is a formal specification notation developed at the Programming Research Group (PRG), Oxford
University. This document summarises Z work which is relevant to the design of software and the
storage and retrieval of designs. It is a selection of references from:

[Z:Bowe90] Jonathan P. Bowen. Z bibliography. Oxford University Computing Laboratory,
April 1990.

available from the PRG archive server: archive-servercprg. oxford. ac. uk. The PRG Z bibli-
ography currently contains more than 300 references, so this document is a very small selection
of Z work. The [Z: Bowe90] is the認T松 citekey which can be used to refer to the above article
from the P_RG Z bibliography.

General

The following references are general introductions to Z and a related formal method, VDM. There
are also some references to refinement which is (or at least was) still actively uncle~theoretical
research, rather than development. Refinement is particularly relevant because it formally encodes
design decisions; , •

[Z:VDM90] D. Bj¢rner, C.A.R. Hoare, and H. Langmaack, editors. VDM and Z -Formal Methods
in Software Development, volume 428 of Lecture Notes in Computer Science, Kiel, Germany,
1990. Springer-Verlag.

[Z: Haye87] Ian J. Hayes, editor. Specification Case Studies. International Series in Computer
Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1987.

[Z:King90b] Steve King. Zand the refinement calculus. In D. Bj¢rner, C.A.R. Hoare, and
H. Langmaack, editors, VDM and Z -Formal Methods in Software Development, volume 428
of Lecture Notes in Computer Science, pages 164-188, Kiel, Germany, 1990. VDM-Europe,
Springer-Verlag.

[Z: King90] Steve King. Z and the refinement calculus. Technical Monograph PRG-79, Oxford
University Computing Laboratory, 11 Keble Road, Oxford, UK, February 1990.

[Z:McDe89b] John A. McDermid. Special section on Z. Software Engineering Journal, 4(1):25-
72, January 1989.

[Z:McDe89] John A. McDermid, editor. The Theory and Practice of Refinement: Approaches
to the Formal Development of Large-Scale Software Systems. Butterworths, London, UK,
1989.

[Z :Morg88d] C. Carroll Morgan. Procedures, parameters, and abstraction: Separate concerns.
Science of Computer Programming, 11(1), October 1988.

ー

[Z:Morg88e] C. Carroll Morgan, Ken A. Robinson, and Paul H.B. Gardiner. On the refinement
calculus. Technical Monograph PRG-70, Oxford University Computing Laboratory, 11 Keble
Road, Oxford, UK, October 1988.

[Z: Reed90] Joy N. Reed and Jane E. Sinclair. An algorithm for type-checking Z: AZ specification.
Technical Monograph PRG-81, Oxford University Computing Laboratory, 11 Keble Road,
Oxford, UK, March 1990. ,

[Z: Spi v89] J. Michael Spivey. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1989.

[Z: Spi v90] J. Michael Spivey and Bernard A. Sufrin. Type inference in Z. In D. Bj¢rner, C.A.R.
Hoare, and H. Langmaack, editors, VDM and Z -Formal Methods in Software Development,
volume 428 of Lecture Notes in Computer Science, pages 426-438, Kiel, Germany, 1990.
VDM-Europe,.Springer-Verlag.

[Z:Spiv90c] J. Michael Spivey and Bernard A. Sufrin. Type inference in Z. In John E. Nicholls,
editor, Z User Workshop, Oxford 1989, pages 6-31, Oxford, UK, 1990. Springer-Verlag.

Methods r::: ; ,ヽ:.'; -

Z and other formal methods can be used for desi即anddocumentation. The following all describe
methods of using Z. This section also contains references to structuring and reuse of specifications.

[Z:Bera88] s: Bera.-, Structuring for'the VDM specification language. In G. Goos and J. Hart-
manis, editors, VDM -The Way Ahead. Proc. 2nd VDM-Europe Symposium, volume 328
of Lecture Notes in Computer Science, pages 2-25, Dublin, Ireland, 1988. VDM-Europe,
Springer-Verlag. _

[Z: Bowe88c] Jonathan P. Bowen. Formal specification in Z as a design and documentation tool.
In Proc. Second IEE/BCS Conference on Software Engineering, volume 290, pages 164-168,
Liverpool, UK, July 1988. IEE/BCS.

[Z :Brya90) T. Bryant. Structured methodologies and formal notations: Developing a framework
for synthesis and investigation. In John E. Nicholls, editor, Z User Workshop, Oxford 1989,
pages 229-241, Oxford, UK, 1990. Springer-Verlag.

[Z:Garl90) David Garlan and Norman Delisle.・. Formal specifications as reusable frameworks.
In D. Bj¢rner, C.A.R. Hoare, and H. Langmaack, editors, VDM and Z -Formal Methods
in Software Development, volume 428 of Lecture Notes in Computer Science, pages 150-163,
Kiel, Germany, 1990. VDM-Europe, Springer-Verlag.

[Z :Lond89] Ralph L. London and Kathleen R: Milsted. Specifying reusable components using Z:
Realistic sets and dictionaries. ACM SIGSOFT Software Engineering Notes, 14(3):120-127,
May 1989.

[Z:Nich89) John E. Nicholls, editor. Zin the Development Process, Oxford, UK, June 1989.
Oxford University Computing Laboratory.

[Z:Wood89] James C.P. Woodcock. Calculating properties of Z specifications. ACM SIGSOFT
Software Engineering Notes, 15(4):43-54, 1989.

[Z: Wood89d] James C.P. Woodcock. -. Structuring specifications in Z. Software Engineering
Journal, 4(1):51-66, JanuaryJ989.

2

Tools, CASE and PSE

Z has been used in the specification and design of many tools to aid in the construction of large
systems. Many of these tools are designed to aid the use of Z itself. The most significant of these

are Z type checkers.

[Z: Albu85] Harold Albuquerque. Dynamic cross-referencing for Z design documents. Master's
thesis, Oxford University Computing Laboratory, 11 Keble Road, Oxford, UK, 1985.

[Z:Bro'1i'90] D. Brownbridge. Using Z to develop a CASE toolset. In John E. Nicholls, editor,
Z User Workshop, Oxford 1989, pages 142-149, Oxford, UK, 1990. Springer-Verlag.

[Z: Flyn90] Mike Flynn, Tim Hoverd, and David Brazier .. Formaliser. -an interactive support
tool for Z. In John E. Nicholls, editor, Z User Workshop,. Oxford 1989, pages 128-141,
Oxford, UK, 1990. Springer-Verlag.

[Z: Fox87] Catriona Jane Fox. The implementation of a type-checker for Z in a rule-based
programming language. Master's thesis, Oxford University Computing Laboratory, 11 Keble
Road, Oxford, UK, September 1987.

[Z: Kand84] Javed S. Kandloosi. Formal specification and implementation of a version control
database. Master's thesis, Oxford University Computing Laboratory, 11 Keble Road, Ox-
ford, UK, 1984.

[Z :Kary84] Ioannis Karydas. Formal specification and implementation of a compilation manager.
Master's thesis, Oxford University Computing Laboratory, 11 Keble Road,-Oxford, UK,
September 1984.

[Z :King84b] Steve King. Specification and implementation of a Z-schema manipulation tool.
Master's thesis, Oxford University Computing Laboratory, 11 Keble Road, Oxford, UK, 1984.

[Z:Reed88] Joy N. Reed. Semantics-based tools for a specification support environment. In
Mathematical Foundations of Programming Language Semantics, volume 298 of Lecture Notes
in Computer Science. Springer-Verlag, 1988.

[Z:Spiv87] J. Michael Spivey. Printing Z with診T妍.Oxford University Computing Laboratory,
January 1987.

[Z: Spiv88] J. Michael Spivey. The fuzz Manual. Computing Science Consultancy, 2 Willowベ
Close, Garsington, Oxford OX9 9AN, UK, 1988.

[Z: Sufr86c Bernard Sufrin, James Woodcock, Pavel .Grossman, Patick Marriott, and David ］
McGlade. Towards the formal specification of a simple programming support environment.
In Darrell C. Ince, editor, Software Engineering: The Decade of Change, volume 8 of IEE
Computing Series, pages 100-114. Peter Peregrinus, 1986.

[Z:Sufr87c] Bernard A. Sufrin and James C.P. Woodcock. Towards the formal specification
of a simple programming support environment. Software Engineering Journal, 2(4):86-94,
July 1987.

[Z: Sufr89] Bernard A. Sufrin. Using the Hippo system. Oxford University Computing Labo-

ratory, 1989.

[Z: Wool87] Simon G. Woo比ouse.AZ specification database and support tool. Master's thesis,
Oxford University Computing Laboratory, 11 Keble Road, Oxford, UK, September 1987.

3

Prototyping and execution

Z specifications need not be constructive, thus in general some effort has to be made to execute

them.

[Z: Batt86] Peter Batty. The implementation of Z specifications in Orwell. Master's thesis,

Oxford University Computing Laboratory, 11 Keble Road, Oxford, UK, September 1986.

[Z :Baxt88] S. Baxter. Executing Z speci:fications. Research and Technology memorandum
RT31/009/88, British Telecom Research Laboratories, Martlesham Heath, Ipswich, Suffolk,

UK, 1988.

[Z:Dick90] A.J.J. Dick, P.J. Krause, and J. Cozens. Computer aided transformation ofZ into
Prolog. In John E. Nicholls, editor, Z User Workshop, Oxford 1989, pages 71-85, Oxford,
UK, 1990. Springer-Verlag.

[Z: Faza87] Pauline Fazackerley. The development of a system for solving sets of constraints.

Master's thesis, Oxford University Computing Laboratory, 11 Keble Road, Oxford, UK,
September 1987. ・ ・:

[Z: Grif88・] Jacqueline S. Griffin.·Fo~rrial specification of a prototyper interface. Master's thesis,
Oxford University Computin、gLaboratory, 11 Keble Road, Oxford, UK, September 1988.

[Z: John90] M. Johnson and P. Sanders. From Z specifications to functional implementations.
In John E. Nicholls, editor, Z User Workshop, Oxford 1989, pages 86-112, Oxford, UK, 1990.
Springer-Verlag.

[Z:McNe87] Iain R. McNeil. Rapid prototyping of Z specifications in standard ML. Master's

thesis, Oxford. University C。mputingLaboratory, 11 Keble Road, Oxford, UK, September
1987.

4

Scratch proposal

Tim Gleeson

October 29, 1991

1 Introduction

This note proposes the construction of a design-assistant system, Scratch, for the

generation of circular-queue modules. It will investigate the storage of circular-queue
designs and the design decisions that need to be made when choosing a particular

implementation.

1.1 Background

It has been said, [Wat85], that the most significant advance made in programming
was the creation of high-level languages with compilers and interpreters. They are

useful for two reasons:

• They remove many machine details and idiosyncrasies and provide a higher
level of abstraction making programs more comprehensible by delegating low-

level decisions 1 to a compiler (or interpreter). ・

• They generate nearly optimal code2.

The work on optimizing compilers seeks to both make such code more nearly

optimal, and to extend the range of source language constructs which can be opti-

mally translated. For example, [Wat91] shows how (a subset of) the very expressive

language of series expressions (also known as streams or sequences) can be automa(・

ically translated into more efficient, but less expressive, loop constructs.

We can broadly consider programming language design and compiler work as

encompassing three tasks:

Relationship Rigorously defining the relationship between two languages: source

and target.

1 Lots of scope for enumerating these.

2This depends very much on how you define "optimal". It could be relative to some abso-
lute machine time and space definition of optimal, or relative to what a human could produce.
That different compilers produce code varying in efficiency by a factor of 10 I don't consider very
significant.

ー

Operationality Making this relationship operational, i.e. the system can actually

translate from source to target.

Optimality Understanding optimality of translation.

If we remove both constraints of optimality and operationality, then we have

a textbook defining the relationship between languages. An example of such a

book is Knuth who defines, for example, the relationship between the abstract idea

("notation" or "language") of sorting and many concrete implementations of it.

If we just relax the optimality constraint: that the system must understand the

optimal translation path叫butinstead provide a map indicating what paths are,
where they lead, and how constraints and functions are balanced and traded off at

each turning point, then we reach human assisted compilers, or machine assisted

coding assistants if you prefer. We may describe this as an automated Knuth.

Returning to Waters's work on series [Wat91), the theme of this project is not

automatic optimizat10n. However, Waters says:

In situations where optimization is impossible, it is usually better to
represent a sequence as a vector or list than as a series.

This is the theme of this project: how to decide when and whether to change

algorithm or representation when automatic optimization is not possible.

1.2 Examples

Here we give some examples of how design decisions will affect the code that Scratch

produces. 、

If we specify that the element type in the circular-queue is small, then the system

produced should directly allocate storage for the elements4. If we specify that the

element type is large, or if we don't specify it at all, the system produced must use

a pointer implementation and call upon a storage mechanism associated with the

element type to allocate and free storage for elements.

If we specify that we need a circular queue with a small, bounded number of

entries, and that the element type・is small, then the system should produce an

_ array implementation - otherwise known as a bounded buffer.

1.3. D ・es1gn

This text has been deliberately written to indicate that the use of computer design

assistants is a special case of the use of any kind of design assistant. Thus, for exam-

, 3This relaxation may be because our definition of optimal becomes more blurred, rather than
because it is not possible to calculate. Such blurring may occur if we introduce more and more
unstated, external evaluation functions which must be simultaneously balanced.

4Though at the abstract level of describing circular queues we need to know very little about
the element type (basically, that it has assign and dereference operations) when we build an
implementation we can make use of much more information about it. We are breaking abstraction
principles here, but in a controlled way and only after we have used abstraction to design a clean
and comprehensible system; then we can relax abstraction for efficiency.

2

ple, the phrase "man-machine" communication is avoided, communication "between

designers" is used instead.
This project falls into the class of group design: a number of active entities

cooperatively engaged in a design task. these entities may be humans or computer

design assistants. The designers may be functionally specialised. We can stretch the
definition a little and even consider libraries and pencils and paper to be special,

passive design assistants, because they share many of the same properties of active

design assistants.

2 Goals

This project has many goals, but most of them are concerned with investigating and

understanding parts of the design process:

I. The nature of design decisions in general, and software system design decisions
in particular, and the communication of design decisions between a human and

a design assistant.

II. The nature of the knowledge shared by a huinan and a design assistant.

III. The representation and processing of a d~tailed, model of a narrow domain.

IV. The nature of implicit, unstated and non-functional requirements, their rep-

resentation, communication and processing.

The central theme of the project is the construction of a design assistant, Scratch.

・This has a number of additional, well-defined functional goals:

V. The generation of implementations into a number of programming languages.

VI. The abT 1 1ty to mcrementally change the reqmr,ements mput to Scratch.

VII. The ability to operate at, make decisions at and freely move between any level
of abstraction in the domain.

VIII. The r~cording of a design history, but the production of a design rationale
(including justification of decisions made), an ,abstract specification of the

software including all non-functional requirements, the software itself and con-

straint and dependency information. for its use in a wider context.

The functional goals require direct mechanisms to-implement them, but there
are other indirect mechanisms needed:

IX. An operational representation of the many specifications and relations involved
in the domain.

X. Parameterisation and transformation between specifications at many levels.

3

XI. Property and refinement calculi; simulators5 and program proving.

XII. Search, lookup and pattern matching of specifications.

XIII. Propogation of constraints within and across levels. No "reverse engineering"

solutions should be needed.

There are some long-term future possibilities:

XIV. Domain database ,input and update facilities回

3 Discussion

3.1 Goals

Goal I

Communicating design decisions between designers is a major problem in group
design, particularly upstre~m design where these decisions may be vague and tent a-
tive. We need to understand more about how design decisions can be communicated
across the man-machine barrier and how we can best encourage humans to record
design decisions.

Goal II

For cooperation, designers must have some shared knowledge. We need to investigate
the shared knowledge that designers have about a domain. A computer design

assistant will certainly have to represent shared knowledge.
Computers have precise representations. Humans have vague, unelaborable eval-

uation criteria. Thus a profitable division of labour would be to have a computer
teach it to the client to convince him it is the right thing for the job 7

Goal III

When designing an abstract data type (ADT), we should design a human readable

representation for the ADT, arid associated procedures for conversion, which will be
useful for debugging. Similarly, Scratch will be dealing with a single domain. We

should provide domain specific exploration, particularly animation, facilities.

Goal IV

Scratch may be considered as the middle levels of a very high-level language com-
piler. For this to work, the system needs sensible defaults and most critically a range

5 A spreadsheet can be considered halfway between a simulator and a constraint propagation.

6In the same way that the literature on container systems gradually gets improved and patched.

7 Computer as salesperson.

4

of module parameters (which must be well specified) to control non-functional re-

quirements such as time and space tradeoffs (and inter-operation tradeoffs e.g. for

read-mostly systems). Use of this could be in stages:

1. Just accept the default implementation the system gives8.

2. Observe or predict usage and set parameters.

3. If this module is a bottleneck, use an interactive or off-line session with Scratch
to add more and more design decisions to get it to come up with a carefully

tailored, fine-tuned implementation.

Many of the "goals" and "evaluation" functions will be constant across a project

or even an organisation9. For example, the full generality of a circular queue will

not be needed in every enterprise. In fact it is rarely needed, except as an abstract

exercise. Most enterprises will already have narrowed the range of types they wish

to store in it, the range of operations and the frequency ratio of operations and the

language they are going to use. With just this default information, and no human

assistance, a much more specific and efficient _system can _be built. <We must factor
these out and make them globally accessible to・use as system defaults10.

As well as non-functional requirements, we also need to investigate design given

different levels of details of requirements.

Goal V

When does domain knowledge move frC>m 1?eing programming language independent

to being programming language dependent? This question .is examined in [Gle91).

Goal VI

Design ~and programming are iterative activities. It is important that we support
redesign while reusing as much of our previous work as possible, e.g., to allow radical

shift of high-level objectives while preserving low-level decisions which have not been

invalidated.

Suppose our higher-level goals and constraints、changea{te~we have produced a
package. Vj{!-want. to~dit (incremen"'tally c~ange) the e沿stingdesign_ rationale and,
much more cheaply than the first ti"me, get a program. We do not want to have to

enter all of the design decisions again. For example, we made the (big) decision to

use a hash table. We then made many little decisions. We then changed our (high

level) decision and decided to use a binary tree. We want to salvage as many low

level decisions as possible.

8Presumably after having given it some primitive decisions, such邸 thefact that your using
C. Also, site and project specific decisions (use gcc, calling conventions, when storage is allocated
(static, dynamic)) could be recorded and accessed from a datab~e.
, This would be a very rich and fertile area for research. When are significant design decisions
taken. Many of these high level decisions are taken implicitly and never explicitly. When we choose
an algorithm from Knuth we have already made a huge number of decisions which affect our choice.

10Maybe like default X resources in .Xdefaults?

5

Goal VII

Display and movement between any level of abstraction in the domain. Editing11

should always be performed at the appropriate level. Therefore no reverse engineer-

ing. Ease of movement between levels needs a sophisticated editor, like a folding

editor, but at a much finer grain. We must be able to move up from the result of

a constraint, e.g. 64, to its expression and then out to its subexpressions. Perhaps

we can highlight (colour) expandable (and contractible?) text.

Goal VIII

A design or programming assistant will never be able to do everything, except in

trivial domains. It will always be embedded in a larger enterprise. It will never

create a whole program so it will have to both produce packages and dump all its

information, such as dependencies.

Goal XIII

This mechanism is needed to_ support functional goal VII.

The interaction of constraints at different levels of detail includes upward propa-

gation of low-level constraints and the propagation of constraints within and across

type boundaries.
It is necessary for the domain, and all possible decisions, to be completely elab-

orated if we want to prevent users from feeling the need to alter the output code,

and thereby prevent subsequent operability within Scratch.

In such a・system we must have access at every level of detail, but we should be

given help at that level and understand the repercussions of our decisions (constraint

propagation) at higher and lower levels. We must12 be able to specify a low-level

constraint and see its effects at higher levels.

3.2 Other discussion

One of the criticisms of very high level languages is that although they relieve

the programmer of much work, the e缶ciencyof the constructs they generate is

not transparent13 It is always important that a programmer be able to think about

嘩 ciencyissues if he wants to. Scratch offers this ability in that efficiency arguments,

tradeoffs and balances are essential elements of the domain model. Many of the

design decisions represented in the domain model are of this form.

11 We ought to be able to ban this word. The only activity should be deciding, and maybe
revoking decisions. ・

12Do this邸 anexample.

13Hoare makes a comment on the need for this somewhere.

6

4 Justification

It is not yet clear how we can structure, access and use design information in a
thoroughly understood domain (such as circular queues) let alone in a new, volatile,

upstream design situation. The problems and goals we have set in the well under-

stood domain of circular queues are probably too big, but would become impossible

in a fuzzy, upstream domain.
Scratch is clearly more restrictive than even a routine design system.

5 Problems avoided

• ・Machine learning. Computer assisted teaching is difficult, but machine learn-
ing is very much harder. Thus we should preprogram the machine with a large
database about a field of computing that we do understand well, rather than

building a system which tries infer things about domains we don't understand
well.

• Deciding what constitutes a "useful" subroutine, cliche or abstraction. This is
a non-trivial problem for both high-level (e.g. an inventory system) and low-

level (e.g: a hash table) abstractions. We avoid this by choosing an existing,
well defined, useful abstraction to model. Some work14 [Der81] and [Der85,

(unread)] exists on generalizing from specific instances to abstractions, but it

is still very limited.
ご

• Searching in an ill-defined space, for example in upstream design. The space
in Scratch is very well defined, but still large enough to be interesting.

• By choosing a small, well understood domain we can ignore flexibility in the do-
main database. Though innovations in well understood domains like circular-

queues will continue to appear, the domain database will be read-mostly.

• Failure handling. Scratch always has the most gener~l solution available which
will meet the given problem constraints -unless those constraints are logically
contradictory and・unsatisfiable. There are no design _failnres and no need for

redesign.

6 C ompar1son to other systems

Scratch takes ideasfrom many areas. Here we list and discuss its relation to some
of them.

14Maybe this stuff would be useful in DIG?

7

6.1 KBEmacs and the Programmer's Apprentice (PA)

KBEmacs, [Wat85], is part of the Programmer's Apprentice project.'It is a semi-

expert system, embedded in Emacs, which helps programmers by allowing them to
compose chunks of programs, cliches from a database.

• The principal role of KBEmacs is the "construction of a program by combin-
ing algorithmic cliches". The principal role of scratch is "the construction of

module plans by decision making". Scratch does not have a library of cliches;
only one very thoroughly understood and described domain.

• KBEmacs has a rather limited form of cliche instantiation. Scratch will ex-
amine more general issues of parameterisation and transformation.

• KBEmacs works at two fixed levels: plans and text. Instantiation occurs on
plans. We will allow multiple levels and instantiation at any level, repercus-

sions to be propagated up and down.

• Cliches are represented in a language dependent form. The majority of Scratch
will be programming language in_dependent

• KBEmacs only handles [Wat85] "basic design decisions which underly the
program". Scratch focuses on design decisions at multiple levels. Scratch
will have to indicate subpart, implementation and other relationships between

design fragments. The plan formalism of KBEmacs does not represent any
information about specifications of programs or cliches. It also does not repre-

sent anything about the relationships between cliches or between cliches and

design decisions. Both these, [Wat85] cites [Ric81], will be fixed by using the

plan calculus.

• KBEmacs [Wat85] stresses the need for access at the code level as well as at the
cliche level. The problem is that there is no strong relation between the two.

Scratch emphasises the strong semantic relation between levels - a change
at any level is automatically propagated to all levels15. In KBEmacs, editing

text makes it subsequently harder to work at the plan level. Scratch has as
one of its principles the ability to move smoothly between levels. [Wat85] says
the next PA will be able to recognise cliches in a text. Scratch, however, as a

principle, avoids all reverse engineering.

6.2 PARIS

PARIS,[KT85, (unread)] and [KRT87], is a system which allows for the formally
verifiable instantiation .of program schemas from a library.

• PARIS uses schema instantiation. Scratch has a more general model of trans-
formation.

15 An interesting categorisation of design decisions thus emerges: some are local to a level, others
cross levels.

8

• 1: ARIS has a simple library of schemas. Scratch has a detailed,, richly inter-
connected model of a specific domain. •

• PARIS focuses on formal proof of instantiation validity. Scratch will work with
a lower degree of formality.

• PARIS requires as input a formal specification of the problem and outputs
some code. Scratch focuses on the decisions made while deciding what is

needed. Scratch outputs both code and a specification - which should be a
summary of all decisions especially including non-functional ones.

6.3 DIG

• DIG is a much larger system than Scratch.

• DIG operates at a much earlier stage of design.

• DIG is concer五edwith knowledge growth.

• DIG operates over a much wider range of design areas than Scratch.

6.4 Other systems

Other related systems include:

• Program transformation

• More general program generation from formal specifications.

• Formal refinement.

• Libraries of modules, particularly formal libraries, abstr~ct data type (ADT)
libraries, and object-oriented libraries.

• Software module interconnection mechanisms.

• Algorithm design systems.

• Languages which allow relations between modules to be stated.

7 Schedule

• Exploration and definition of the domain

• Development of a domain representation

• Exploration of the nature of design decisions

• Development of a decision representation

，

8 Tough cookies

What if we want a container system that can be concurrently accessed?

References

[DerSl] N achum Dershowitz. The evolution of programs: Program abstraction and
instantiation. Technical Report UIUCDCS-R-81-1011, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, June 1981.

[Der85] Nachum Dershowitz. Program abstraction and instatiation. ACM Trans-
actions on Programming Languages and Systems, 7:446-4 77, July 1985.

[Gle91] Tim Gleeson. Programming languages as categories of design decisions.
Working notes, 1991.

[KRT87] Shmuel Katz, Charles A. 応chter,and Khe-Sing The. PARIS: A system
for reusing partially interpreted schemas. In Proceedings of the 9th Inter-
national Conference on Software Engineering, pages 377-385, 1987.

[KT85] S. Katz and K. The. A preliminary report on the PARIS system: An
implementation of software reusability concepts. Technical Report STP-
114-85, MCC, October 1985.

［応c81]・C.応ch.A formal representation for plans in the programmer's appren-
tice. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence, pages 1044-1052, 1981.

[Wat85] Richard C. Waters: The programmer's apprentice: A session with KBE-
macs. IEEE Transactions on Software Engineering, 11(11):1296-1320,
November 1985.

[Wat91] Richard C. Waters. Automatic transformation of series expressions into
loops. A CM Transactions on Programming Languages and Systems,
13(1):52-98, January 1991.

10

The Scope and Extent of Design Decisions

Tim Gleeson

May 1991

Revision : 1.11

Keywords: abstraction, refinement, information hi1ing, efficiency, design deci-
sions, software reuse, modularisation, module selection, module dependence

1・Introd4-ction:・

A study _of the nature of design decisions is important in a" number of areas: for
"reverse engineering" applications, e.g: [Big89, BBC+9o, ROL90], which requires
the rediscovery of possibly age-old and implicit decisions in existing code; in main-
tenance, which relies on the review of recorded or retrieved decisions; and in the
original design process itself, where design decisions are initially, made [PB88] but

which, a.t~est, can only be tentative. ・
Here we examine some of the more basic properties that design decisions have,
their scope (visibility) and extent (lifetime), and the affects these have Oil _program
design and redesign.
We'regard the construction of a desig~as the progressive additiohof int;;racting
decisions. Structuring mechanisms are required to control both the・static scope

and dynamic extent of this s~t of d~cisions .. ProgrammiI1g }anguages_._o_n,ly pr~yide
mechanisms for structuring.low-level decisions. • , ●ー・ ；

The intent of this paper is not to produce a notatic,n for th~exp!e~~~011 of design
decisions and their rationale, but fo explore their.basic characteristicsむndthereby
to suggest what needs to be recorded.
One of the aims of this paper is to promote discussion on the nature of design
decisions and thereby to stimulate the production of programming languages which
take conscious consideration of them.
This paper is organised as follows: in Section 2 we introduce the idea of the scope

and extent of design decisions and illustrate them with some examples. These are
cases of abstraction. However, in Section 3 we show the need to break this principle
when selecting an implementation of a generic module. This is explained in terms of
the scope and extent of design decisions. More general optimisations are discussed
later.

ー

2 Nature of d
．
es1gn decisions

[ROL90] have identified some categories of design decisions based on an analysis of

programming constructs. These include:

• composition and decomposition

• encapsulation and interleaving

• generalisation and specialisation

• representation selection

Here we try to step back a little and identify some general properties of design
decisions which lead to these particular categories. We are particularly interested
in the scope (visibility) and extent (lifetime) of design decisions.

Decisions are made both by humans and by language systems .. As we automate

design decisions, we tend not to call them design decisions any more .. Instead~hey
become "obvious" or "basic techniques". For example, compilation as an automated
activity is no longer regarded as a dycis.ion making one, but before compilers existed,
it was.

，こ._. ・

2.1 Scope of d ・es1gn dec1s1ons

The biggest challenge we face in computer systems design is dealing with the nee-
essary complexity of these systems. We can only design systems if we can fully

appreciate the context in which our design decisions are made, that is, the relevance

of previous design decisions. What we call "complex"・is, a system where there are
many interdependencies, where each decision we make depends on an unmanageable

number of previous decisions. We need to structure our design decisions, and thus
the system that we build, so that their interdependence is minimized. This is an

exercise in controlled ignorance, we purposefully limit what we. need to __~now to
perform a task, and is called abstraction. ・ ・ ・・ ・ ・ ・'、.・,•.• • ―‘ヽ．

One way to achieve this is by limiting t~e scope of design decisions. Scoping is a
form of conceptual,・and in its representation, spatial, sep,aration or hiding of design
decisions. Scoping is a form of structuring. Scoping allows us to defer making design
decisions without affecting the rest of the design.

2.2 Extent of d ・es1gn. dec1s1ons

Building a complex system clearly mvolves the making of a large number of design
dec1s10ns. Later decisions may depend on earlier decisions. There is some sort of or-
qering involved. Decision making is a form of commitment. However, commitment

is a relative term. As humans we demand the right to change our minds. If commit-
ment means anything, we must interpret it as bounded commitment. Subsequent,
dependent decisions must appreciate this. This is what we mean by the extent of a
design decision: when does this decision have to be reviewed?

2

Extent expresses the degree and nature of the interdependence (or independence)
of design decisions. It finds expression in programming (and linker, and software
environment) languages.
When designing systems we regard it as important to be able to easily change

decisions: for this we must increase the extent of design decisions by reducing their

dependencies. In order to easily make design decisions, we need to limit their scope.

2.3 Examples of design decisions

We will examine a few small examples to illustrate these ideas.

To implement a new type U ID for Unique IDentifiers:

decision: use types Integer and Set

category: representation decision

made by: programmer

scope: textually_ abstracted to this type: invisible outside

extent:・until the UID implementation is next edited

To implement type Integer

decision: use two's complement, 32 bit words on a 68000 architecture

category representation decision

made by: compiler

scope: abstracted within the compiler: invisible outside (it may appear in Ap-
pendix F of the local guide to the compiler)

extent: until the compiler is changed

2.4 Decision making activities

Can we explain some of the programming language based categories of design deci-'-

sions identified by [ROL90] in terms of scope and extent.
Encapsulation is not a post-hoc clean-up activity, as suggested when it is de-

scribed邸 "collectingtogether components", but is one facet of decision making. At
least this is the case in an "idealised" [PC86] development. Encapsulation follows

from the premise that the context in which the original (to-be-implemented) con-

struct sits in is satisfied by its operation. Subsequent implementation decisions do
not need to be revealed to a wider context.

Reinterpretation. How do actual decisions become transformed when we sub-

sequently reinterpret the development in an idealised form? This is certainly an
important question because we can only record the actual development, but are

encouraged to present an idealised [PC86] development.
Generalisation may be seen as a cleanup activity, later reinterpreted as oracular
encapsulation and subsequent instantiation.

3

3 Generic module selection

One way of overcoming the problems of software reuse is to write generic packages,

for example, for Sets, or Stacks or double-ended queues, Deques. These packages

are generic because instead of hard-wiring element types, we can parameterise the
packages by them. This encourages reuse of the package in different contexts and also

serves to make explicit the nature of the dependence of a package on its parameter

type.

3.1 Dependence of a generic package on its parameter

A package must make clear what characteristics it requires from its parameter types,

the package is then free to exploit those characteristics to the hilt. The less a package
demands from its parameters, the more generally applicable it will be. However, the

less a package demands to know of its parameters, the less opportunity it will have
to exploit their characteristics and produce efficient implementations. There is thus

a tension between writing general purpose packages and writing efficient packages.
The representation we choose for a generic type, fo;r example a Set type, can
depend on the charaderistics of the parameter type: If we know nothing about
the parameter type, except that it has an equality test, then we will probably have

to build an implementation which stores pointers to elements. If we know that

parameter values can fit in a word, or that there are only four values, for example
from an enumerated type1, then we may store the value representations directly.

This is a more efficient implementation.
As another example, of algorithm choice, if we have a list of element types to be

sorted汽thenknowing nothing about the element types except a simple comparison
operation, then we cannot do better than an 0(n log n) sort, for example Quicksort

or a heap sort. If we know about the structure of the element type, we may be able
to use a potentially faster radix sort.・ ・-

Some languages allow some operations on parameter types, for example or-
dering relations, to be required, e.g. CLU [LAB+s1), Alphard [Sha81) and Clear

[BG81, Gog84). However, the expression of these dependencies should not primarily

be to promote and aid separate compilation; this is only a fringe benefit, albeit a

considerable・one. The mcLin reason is that a program is fundamentallY: incompre-
hensible without them. The nature of a unit in a program is only explicable in terms
of the forces that created it - the needs it must fulfill and the restrictions under

which it must operate. If these change, the unit must change or be replaced.

1This is an extremely interesting example. The external representation may use a whole word,
but our internal representation may be completely different, using only two bits. Reference [Whi83]
for coexisting implementations.

2The sort operation comes, implicitly or explicitly, with any generic list type which demands
an ordering operation from its elements.

4

3.2 The generality/ efficiency tradeoff

The choice a designer needs to make when designing or choosing a package can be

characterised as follows:

• Choose a more general implementation. This may be less efficient than pos-
sible, but it means that it is much easier to revoke preceding design decisions

upon which this package is dependent.

• Choose a more specific implementation. This will be a more efficient imple-
mentation, but it makes it harder to change our minds.

In their discussion of design decisions, [ROL90] note that generalisation and
specialisation decisions have some implications in that it is easier to reuse or adapt

generalised components though they may be less e缶cientand harder to test.

The point made here is different: the design decisions to use a particular com-
ponent has implications for the rest of the program, not just that component.

3.3 Design decisions in package choice

There already exist "implementation module choice" systems, such as_ PSI/SYN
[KB81] and the "type-dependent transformations" of [CHTSl], but these use a very

different source of information on which to base their choice. For example, PSI/SYN

may consider expected usage of the module to determine that, for example, a hash-
table representation of a mapping will be more efficient than a property list. This

information may _ be informal and non-functional but it is in the scope of the de-
cision. --"Type dependent transformations" use visible parameter type information

to transform implementations. Our concern is with extending the scope of existing・

decisions so_.that future ones can be affected.
Suppose we are parameterising a Stack module with type Wombat. ・At some

point, a decision is made on the representation for type Wombat. This decision may
be made by:

• the user, who programs the implementation;

• the user, who selects the implementation from a library;

! ,! _-''

:

• . the compiler. : ・

Once this decision is made, why cannot users of type Wombat, in this case Stack,

have access to it? In particular, why cannot the stack module itself exploit Wombat's
representation decision in order to produce a better implementation?

The design decision, about the representation of type Wombat, is usually hidden

by lexical scoping to prevent dependencies forming on it. If this decision is changed
then it affects nobody.

Here we have the key. The Stack module can use information about the repre-

sentation of type Wombat so long as it does not become dependent on it in a way

which requires human intervention.

5

Generic packages are not an idle example. One of the major obstacles to software

reuse is the identification of an appropriate library module色Aswe have seen, this
choice affects the modifiability of the rest of the system.

The decisions made dynamically by a human and resulting in hardwired, less
general, less maintainable implementations, . can. in some cases be transferred to

the computer. We need to design languages where both manual and automatic
optimisation by controlled revelation of design decisions is possible.

If we regard compilation as a process of automated design decision commital,

then we can see that a careful ordering or compilations, and pushy brinkmanship by

later modules, will allow them to exploit the decisions revealed by.earlier commitals

as they themselves comrmt.

4 Optimisation

In his landmark paper [Par72], Parnas encouraged us to modularize'our systems
based up 03: . hid~ng design decisions・. within mod_ules ... H:owever, he also noted the
potential inefficiency of direct imple~entations.
He gave two examples of a KWIC index system: the first based on a standard

control fl.ow decomposition and the second b~sed on design decision hiding principles.
A direct implementation of the former appeared to be more effi. ℃ ient, because of lower

procedure call overhead.
We can account for this by noting that the control fl.ow decomposition has ex-

plicitly used cost of control fl.ow in its design. The second modularisation, based

on decision hiding, explicitly avoided making such decisions globally visible: Parnas

[Par72] says:

To successfully and efficiently make use of the second type of decomposi-

tion will require a tool by means of which programs may be written as if
the functions were subroutines, but assembled by whatever implementa-

tion is appropriate. If such a technique is used, the separation between

modules may not be clear in the final code.

We are constantly and explicitly encouraged to abstract, modularize and hide

design decisions to increase a system's comprehensibility and mairi.t<:inabi且ty.We
are also implicitly・encouraged to reveal, open up, collapse levels・a五dglobally view
systems to increase their efficiency. A major part of the design process is in making

such efficiency inducing, but global and complicating4 design decisions. We should
not try to suppress either activity. We should seek to understand and control their

mteract1on.
Compilers can directly only scratch the surface of this need: Languages must
be designed which allow both for decision hiding in design and controlled decision

revelation for optimisation.

3Cite?

4Structure destroying?

6

Another lesson that we learn is that the relationship of design abstractions to
code (or high-level abstractions to low-level abstractions) will not be at all simple.

The clean structures we find in textbooks are not the ones we will find in the final

code - they may be deliberately complicated. Software engineering in general and

"design recovery" research [Big89) relying on the identification of abstractions in

code must carefully consider this phase of the design process.

4.1 Applic~ble optimisations

There are several kinds of optimizations which we can apply to a system. Some of
these are familiar from compiler optimisers. We illustrate them here with examples

of how they apply to both car design and computer systems design. We have already
seen a specific instance of the first one in the form of module selection.

Remove generality

• Because we have a gearbox, the engine only _needs to turn← in one direction.

• Some applications never remove elements f;om a s・et. H~weve:r, a general
Set data type implementation includes a delete or remove operation. We

should be. able to get a more efficient implementati,on that does not have
such operations.

Remove duplicates

• One battery can be used for all the lights in the・car.

• Though an application uses instances of Set of Integer and Set of String
it may be possible to satisfy them with one instance of the code of the

Set data type.

Multiple use

• The shell keeps the rain off. It can also support the engine, so we don't
need a chassis.

• We use a whole 32 bit word in representing an Integer, but we only need
a limited range of values. We can use the top bit as a garbage collection
flag, and then don't _need a separate flag.

Some of these optimisations may seem so profoundly obvious_ that to even con-

sider mentioning them, let alone omitting them, would be considered the mark of

a seriously deranged programmer. But because they are so obvious, it is both hard

and necessary to elaborate them. Dijkstra makes si血larobservations in [Dij 72).

7

4.2 Removing duplicates

Duplication is not a problem in the abstract world of ideas, but it is a problem in

real computer systems. However, it usually only manifests itself in non-functional
ways. Reasoning about non-functional behaviour at design time is difficult, yet every

decision we make has such an effect.
Dijkstra5 urges limits on the desire to seal off levels to avoid duplication. This

is one of _the lowest-level, and most essential, kinds of optimizations where global

views are necessary.
The somewhat more general problem of removing redundancy can be problematic

because different applications have different requirements. These may be satisfied
by a single general solution, but two・specialised solutions may be more applicable.

Complex tradeoffs are咋quired.-

The need to remove duplicates is satisfied by virtual systems, such as virtual

memory and virtual machines. Code sharing is an implementation mechanism.
Of course, removal of redundancy does not always follow design, it can lead it.

Though the gai~s of redundancy removal may be non-functional they can be very
significant. In the example of car design, one approach would be to design the lights,
the radio and the starter motor entirely independently; this may lead them to require

different voltage sources. -But we don't normally design this way. In anticipation

of removal of redundancy we design our components to use the same power source;
this may mean the voltage is lower thari optimal for the starter motor, and higher
than we would want for the radio, but the benefits we get from redundancy removal

are far more significant, and thus drive the design process.

A complex feedback of design decisions is needed. This can either be done
iteratively, or with foresite in the case of skilled engineers. It poses problems both
for design and redesign: This inay make later justifications of idealised developrnen~
harder unless we have some・abstract rriodel of the low-level behaviour.

5 Building flexible _systems

5.1 Modifiability

Design decisions are not cast in stone, or at least if we want easily modifiable systems
they're not. Obviously the .modifiability of a system depends on how well set a

decision is: if many subsequent decisions depend upon it, then it is well set. A

good design will emphasize separability of decisions, but we are often called upon to

entangle them, usually in the name of efficiency and in the form of the opti血sations
just discussed. In these cases we should attempt to automate these opti血sations
so that earlier decisions do not become too set in. . . <
It is clear that we need to make explicit representations of as much as possible
of the implicit, conceptual information that we possess about software systems. As
a minimum, we need to express the code of a solution. We can also record the

5In [Dij72], I think.

8

specification of a system and the intermediate stages of its development. We should
further try to record design decisions (including rejected ones) made between these

stages and also the reasons for design decisions [PB88). We can proceed further and

record the alternative generation methods and evaluation criteria that we use.

Writing down the design decisions themselves and the "reasons" for design decisions6

is not enough in these cases. For example, it is not enough to build systems which

merely encode design decision dependencies, such as utilities like "make" [Fel79).
If human intervention is required, then not enough information has been provided.
Complete decision making procedures need to be encoded.

These optimisations themselves can be localised, and thus understood easily, but
their effect on the structure of the visible code is complicating. It is better to try

to understand the original structure and the complicating decision than to consider

the resultant code.

5.2. Example: Stack structure

Decisions appear at every level of a system. For example, can you mix Fortran and

C in your system? This depends on link-level decisions made by your operating

system, linker and the compilers, e.g. how are functions and data named at this

level? what are the stack building conventions? This is an example of a globally
implicit decision: all compilers will compile all modules with the same call block
layout and with their stacks growing in the same direction. This allows a significant
optimisation in that all stacks can be built together on one common stack, and not

use a less efficient heap.

However, this decision is made very early, at the time of the compiler's construe-

tion, and is very hard to revoke. Since this decision has globaJ significance, if we are
going・to have flexibility, it should be one of the last design decisions that is made.

This is probably only possible using a sophisticated linking mechanism.

6 Current and future support

It is difficult, using cu!r~nt languages, to design a generic package with a variety
of selectable implementations. This can be because the language does not give the

package programmer access to the right information at the right time: the package

implementation choice needs to・be made dependent on the information about the
types of arguments, but this information is usually not available to the package and

cannot be manipulated.

How do current generic package systems produce code at the end of the day?
Some of them effectively use a macro-substitution process: the generic package

is maecro expanded with its parameter just before compilation. This can lead to

multiple copies of nearly identical code for, for example, Stack of Wombat and Stack
of Wigit. Another method is to make the connection at link time by establishing

pointers to the parameter specific code. Another mechanism is to force objects of

6Refs?

，

the parameter type to carry around, at run time, indications of their type and the
locations of their type specific operations.

However, all these methods rely on the abstract composite behaviour of a pa-

rameterised module being realised by a corresponding composition of the separate
concrete implementations of module and parameter 7. A viable alternative is to have

different module implementations composed in different ways, with and depending
on the parameter, but still achieving the same abstract behaviour.

In contrast, run-time decisions, for example the value of a parameter, can be ma-
nipulated, e.g. with IF and WHILE statements. However, the only common method
of selection before compile-time is with the primitive mechanism of Conditional com-

pilation. Conditional compilation can be seen as a very crude and restricted form
of generic module parameterisatiori: the parameter is the conditional compilation

flag, e.g. "SYSV" or "BSD". This is the kind of mechanism we are interested in,

generic module implementation selection based on parameter type, but its linguis-

tic expression is very limited. The distinction between these two kinds of decision
making needs to be blurred,・but we・also・need sound "semantics for expressing these

decisions at all levels.
In the future, a package will be truly generic if it: can. pro~ess and use all the
design decisions ".17hich precede it. For example, a sorting package will know about

quick sorts and radix sorts and will know the information it needs to decide on the
most specific implementation. The client should be able to inform it that he does
not require stable sorting.
The "package language" needs to be able to say things like:

IF the parameter type can fit in.a pointer

TH EN use an inline implementation u'

ELSE use pointer indirection

ENDIF

Ideally, the THEN and ELSE implementations should come from a more general
implementation which is either paranieterised・by or transformed by that design
d .. ec1s10n.
One reason why"such constructs have not appeared in programming languages is

because they add nothing to, functional, "algorithmic_ success". A~-an engineering
discipline, software engineering must be concerned with non-functional issues such as
efficiency and maintainability. When_ designing systems, we do ask these questions,

but only implicitly and not on paper let alone computer. We need to express these
decisions in an operational form if we are to achieve software reusability -・this

is because these questions arise every time we do an implementation and must be

answered e~ery time. We should encode these decisions and their answers for reuse.

7 As soon邸 wegive up the idea of any abstraction having an (i.e., one) implementation, we
must give up this simple idea of composition. A language system should be able to choose between
the set of implementations possible.

10

7 Miscellaneous

• If we use automatic module selection, then we need some pretty detailed NFRs
specifying the behaviour. My module selection is different (I think) from
algorithm synthesis because it is driven by the level of knowledge, c.f. Mostow

caches.

• The degree of "globality" of information flow differs between each optimisation.

• Generic~ackages in C are hard.

• Arguments about transparency of cost of constructs: Hoare.~

• Effect of top-down arid bottom-up pressures: We need to store 1000000 items;
discs behave very differently from main store.

__ ; __

• The transition from stru← ctured to flat _is important.

• Some programmer design decisions are "globally implicit".

• Other work: Need a'Pa:inas quote on・postponement [PS75, Par76). Maybe
also a Lampson "don't hide power" [La:i:n83) and maybe a Fabry [Fab76).

• The kind of structure-destroying transformations here are potentially glob-
ally complicating, unlike other transformations which might be locally scoped

[MC85).

• This paper seeks to explain the concepts of・level collapsing and information
retrieval in term.s of changes in the scope and extent of design decisions.

• More on behaviour and subtyping.

A linker has no respect for the abstract structure we have carefully created.・By
the time it is set to work, it sees only a flat terrain of procedures and procedure
references. Our careful structure has collapsed 8. The linker only indudes one copy of

a library routine even if it is required many times .. This decision is nearly transparent
to the .user~. "Nearly" because it makes the. system, smaller than it would otherwise
be, _and this.is visible to the user.
Why _is abstraction inefficient9? How does this manifest itself・;s'"duplication"

or "excess generality". vVhy are these problems?

8In this light, the attempts to use hardware mechanisms of virtuai'mernory and virtual machines
at the program level can be seen as attempts to preserve the abstract program structure within the
machine. However, even here the use of "shared libraries" can be seen as level collapsing. Maybe
get a H¥TJ)RA reference in here.
，
It isn't conceptually inefficient.

11

Revelation and revocation: what, when, to whom

What kinds of "design decisions" are useful to another module? Presumably read-

only information. How about "the sequence is ordered"? As another example, a
coordinate transformation system can be made much more e缶cientif it can assume

that all its arguments will be normalised before it is given them. 加 endoes a
programmer make this decisions, if at all?

The kinds of design decisions that programmers make when constructing a mod-

ule may not be the kinds of decisions that a package needs to know. The latter
information may only be implicit in the former. An example might be a change of
representation for enumerated types which we introduced earlier.

At the level at which a design decision is hidden, the package must be prepared
for the revocation of that decision. The package must be prepared for revocation over

some well-defined10 time-span. E.g. "until I am next compiled, I guarantee that type
Wombat will fit in 64 bits." This is a very useful timescale: in particular, it allows

the compiler-system of the using module to select just one of the implementations
that it has.

The compile-time mechanisms needed to deal with this are the same as the run-
time mechanisms needed to deal with tagged unions.

These ideas require us to be prepared to make dynamic shifts in our view of
what a system is. "Dynamic" can apply over a number of timescales, for example,

compile-time, where we are choosing an implementation, and run time, where we
inspect union tags.

Delocalising plans

The delocalised plans investigated in [SPL +ss] are illustrative of the effects of the
delocalising optimisations such as we have discussed. However, it is not enough to
document these tricky systems, we must show how they were developed. Delocalised

plans arise for very good reasons, so we should not attempt to banish them, but
rather understand both the nature of the cognitive problems involved in their use
and the forces that generate them. It is not so much delocalised plans which need
to be recorded, but delocalising planning which needs to be studied.

Related work

This work can be seen as related to replay systems [Gol90] which record design

decisions which may be reusable after other changes in the system. The difference
we are proposing is that such autornisation should:

• be in the source code

• be more generally applicable, especially for library modules, by being param-
eterised

10How defined?

12

References

[Agr86] William W. Agresti, editor. New Paradigms for Software Development.
IEEE Computer Society Press, 1986.

[BBC+goJ David G. Belanger, Ronald J. Brachman, Yih-Farn Chen, Prekumar T.
Devanbu, and Peter G. Selfridge. Towards a software information system.

AT&T Technical Journal, 62(2):22-39~March/ April 1990.

[BG81] R. M. Burstall and J. A. Goguen. An informal introduction to specifi-
cations using Clear. In Robert S. Boyer and J. Strother Moore, editors,
The Correctness Problem in Computer Science, pages 185-213. Academic
Press, 1981.

[Big89] T. Biggerstaff. Design recovery for maintenance and reuse. IEEE Com-
puter, 22(7):36-49, July 1989.

[BSS84] D. Barstow, H. Shrobe, and E. Sandwall, editors. Interactive Program-
ming Environments. McGraw-Hill, 1984.

[CHTSl] Thomas E. Cheatham Jr., Glenn H. Ho且oway,and Judy A. Townley.
Program refinement by transformation. In Proceedings of the 5th In-

ternational Conference on Software Engineering, pages 430-437, 1981.
Reprinted in [Agr86].

[Dij72] E.W. Dijkstra. Notes on structured programming. In 0. -J. Dahl, E.W.
Dijkstra, and C. A. R. Hoare, editors, Structured Programming. Academic
Press, 1972.

[Fab76] R. S. Fabry. How to design a system in which modules can be changed on

the fly. In Proceedings of the 2nd International Conference on Software
Eng切eering,pages 4 70-4 76, October 1976.

[Fel79] S. Feldman. Make - a program for maintaining computer programs.
Software Practice and Experience, 9(4):255-265, April 1979.

[Gog84] Joseph A. Goguen. Parameterized programming. IEEE Transactions on

Software Engineering, 10(5):528-543, September 1984.

[Go190] Allen Goldberg. Reusing software developments. In Richard N. Taylor,
editor, Proceedings of the Fourth ACJ11 SIGSOFT Symposium on Soft-
ware Development Environments, pages 107-119, Irvine, CA, December
1990. Appears as SIGSOFT Software Engineering Notes 15(6) December
1990.

[KB81] Elaine Kant and David Barstow. The refinement paradigm: The inter-

action of coding and efficiency knowledge in program synthesis. IEEE
Transactions on Software Engineering, 7(5):458-471, September 1981.
Reprinted in: [BSS84] and [Agr86].

13

[LAB唸l]B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler,
and A. Snyder. CLU Reference Manual, volume 114 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

[Lam83] Butler W. Lampson. Hints for computer systems design. In Proceedings
of the 9th A CM Symposium on Operating Systems Principles, pages 33-

48, October 1983. Also appears in IEEE Software, pages 11-28, January
1984.

[MC85] Jack Mostow and Donald Cohen. Automating program speedup by de-

ciding what to cache. In Proceedings of the 9th International Joint Con-
ference on Artificial Intelligence, pages 165-172, 1985.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12):1053-1058, December
1972.

[Par76] D. L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, 2(1):1-9, March 1976.

[PB88] Colin Potts and Glen Bruns. Recording the reasons for design decisions.
IEEE Transactions on Software Engineering, 10(418-427), 1988.

[PC86] David Lorge Parnas and Paul C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software Engineering,
12(2):251-257, February 1986.

[PS75] D. L. Parnas and D. P. Siewiorek. Use of the concept of transparency in
the design of hierarchically structured systems. Communications of the
ACM, 18(7):401-408, July 1975.

[ROL90] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeBlanc, Jr. Rec-
ognizing design decisions in programs. IEEE Software, pages 46-53, Jan-
uary 1990.

[Sha81] Mary Shaw, editor. Alphard: Fo'im and Content. Springer-Verlag, 1981.

[SPL唸8] Elliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman, and Robin
Lampert. Designing documentation to compensate for delocalized plans.
Communications of the ACM, 31(11):1259-1267, November 1988.

[Whi83] John R. White. On the multiple implementation of abstract data types
within a computation. IEEE Transactions on Software Engineering,
9(4):395-411, July 1983.

14

Decisions in Abstraction and Implementation

Tim Gleeson

May 1991

Revision : 1.5

Keywords: requirements, specification, abstraction, refinement, design, design

decisions, software reuse, modularisation, module selection

1 Introduction

"Abstraction" is widely used. as a sales attraction for the latest in program design
fashion. In this sense it is rather like the "environment friendly", "low in fat" or

"high in fibre" labels used in consumer industries, though considerably less measur-

able than .the latter two.
It is vital to recognise that the success of an abstraction depends on its environ-

ment. We view abstraction as a compromise between flexible application require-

ments and implementation behaviours. This search is based on identifying which
parts of the interaction are critical to this particular construction. Once a stable

compromise has been found it can be presented in a clean, straightforward way

[PC86].
We are forced to examine in more detail the nature of application requirements,
and in particular the fact that some are more :important than others. Understanding

the interactions between requirements and possible implementation behaviours, and

trading them off .. against each other, are vital principles in this iterative process.
The kinds of information used in these processes and the kinds of decisions made

are examined. Current specification techniques are shown to be inadequate for all

but the most idealised development process.

2 What is abstraction?

It is often said that deciding on an abstraction is the hardest part in design, and that

subsequent use and implementation is relatively easy. This is an ideal. In practice,
we have to both implement and use an abstraction before we can decide what the

best abstraction is. This is an iterative process.
Abstraction is an ideal post-hoc explanation mechanism [PC86]. In these cases
we know which issues are important and which are unimportant. It's use as a design

ー

tool must be separated from this, however. Design is the search for important, stable
characteristics in a large, constrained space. Design is the search for abstractions in
a space determined by requirements and resources.

The description of an abstraction being a straight line conjures up rather too
rigid an image. The most important property is that it is a surface, i.e. it has two

sides. Those aspects we are interested in we will certainly want to hold rigid, like
a plane, but other aspects will move to and fro as the implementation changes.

Imagine holding some parts of the surface of a balloon rigid whilst the pressure

inside changes.

This image illustrates the distinction between nearly decomposable [Sim62, Sim73]
and effectively decomposable systems [Gle89]. We cannot hold steady all aspects
of a system and expect to be able to change the implementation. However, we can
hold steady all those aspects of interest.

The beautiful stability of the watch subsystems, which Simon discusses, and the

watch itself, are not stable under many conditions, for exemple, an inquisitive seven
year old, a weighty hammer or high temperatures.

2.1 What can we / should we abstract?

When we abstract, we have to leave something out, but what can it be or what
should it be? The issues which are critical depend on the interaction between the
system and its environment.
Some abstractional decisions can be made which are almost invisible. For ex-

ample, it is almost impossible to tell that my integers are represented in two's

complement form. Looking at the range of values available and just possibly the

timing behaviour under different problems may give us hints. We could X-ray the
machine while operating and find more information. However, these are all insignif-
icant aspects of the behaviour of the representation.

For the kinds of interactions we are interested in, the property concerned is not

significant. If this is the case, then we can abstract from it. As we have noted, an
abstraction depends on its environment. Thus whether something is invisible or not

depends on the kinds of glasses we wear. If we wear X-ray glasses, then new things
may become visible.

However, I can tell that the integers I declare occupy something called "memory".
If I use lots of integers then my system will fail to work in rather unpredictable ways.
It is very hard to model exactly when my system will fall down, in terms of the
numbers of integers I use. If possible, we should use a rough model and overengineer.
We discuss overengineering as a design tool in Section 4.5.

Absolute space and time are not the only characteristics to be considered when

making a choice. A procedure to reverse a list on tape may transiently use a large

amount of internal storage, and then return it all. ・when writing a sort procedure
in a functional, list-based language we must consider the indirect overhead of the
amount of garbage we generate.

2

2.2 What makes a good abstraction?

An abstraction is an agreement between two parties about what they both consider

to be most important. Both parties will have many other considerations in mind and
these will come into play when negotiating the abstraction. Each party is able to

offer tradeoffs to the other. Each may be prepared to accept non-ideal characteristics
of the other so long as they get something more valuable in turn. This negotiating

process requires a detailed understanding of tradeoffs.

An abstraction is the result of the interaction of requirements and available

mechanisms. Sometimes one, sometimes the other dominates the process.
We can consider available mechanisms and work back to (the very large range of)

supportable specifications. This mode of working is necessary because constraints
may well be "how" constraints, e.g. "using the Tortoise Systems Vector Processor"

or "using C" .

An abstraction depends on the environment in which it is placed. For example,

in some environments we don't need to worry about over丑ow.This is related to the
issue of overengineered components and rose coloured spectacles.

We cannot necessarily take an abstraction created for one environment and ex-
pect it to work in another. For example, we cannot expect an abstract data type

developed for a sequential environment to work in a concurrent environment.
The process we are involved in is taking a domain and producing an abstraction.
The abstraction we produce depends as much on the environment/ application as it

does on the solution domain. In choosing an abstraction we are looking for what is
important in this application, and often we don't know this when we start.

• An abstraction depends on its environment

2.3 How far can we separate requirements and implemen-

tation?

A formal specification is an application of abstraction - synthesis knowledge should
be irrelevant to requirements and requirements knowledge should be irrelevant to

synthesis. However, because neither requirements nor implementations are entirely
fixed, they always have soft characteristics, this ideal is not realisable.

Sometimes it is useful to build a solution to understand the relative importance
of requirements1 and sometimes it is useful to hypothesize the range of requirements2

when building a solution.

1The understanding that we gain about requirements is their relative importance in the space
of possible implementations.

2i.e. client behaviour characteristics (e.g. scenarios). What we are doing is optimising within a
set of rigid constraints (the spec). There seem to be 3 classes of issues:

• rigid constraints in the spec

• soft constraints which we then try to optimize

• (nearly) invisible characteristics

3

Though the ideal is not realisable, it is still useful. After separating require—

ments and implementations by a specification, we can reintroduce some of the

elaborations3.

There is a strong belief in the formal methods community that many of the prob-

lems of software production ensue from inadequate specifications4. This is surely

true. But it is also surely a fantasy that the writing of a specification can be com-

pletely divorced from considerations of the implementation of that specification瓦

Unless a specification results from an interaction of requirements and capabilities,

we will be incapable of implementing it. A good specification will have hidden most

implementation considerations, but only because the specifier has the experience to

find a clean abstraction in the messy space of interactions. A poor specifier may pro-

duce an implementation which appears to be free from implementation concerns, but

this is illusory. A specification must describe all important aspects of the behaviour

of a system. Unless a specifier has great experience'in the domains of requirements

and capabilities he will be unable to predict which aspects of the behaviour of a sys-

tern will be important. The only way then to remove implementation considerations
from a specification wi且beto over-simplify.

2.4 Example tradeoffs

3 Requirements and characteristics

I will use the following terminology:

requirements which may be hard or soft

specification which meets at least the hard requirements

implementation which meets the specification, but has other observable behaviour

Requirements can be classified in a number of ways:

• functional and non-functional

• soft and hard

• free and determined

Requirements are usually stated beforehand, but sometimes they take the form

of an evaluation of determined characteristics. For example, speed is usually a

determined characteristic; it is determined by all the other choices we make. We

rarely state the speed that a program should run at, but we certainly do evaluate
this determined characteristic.

A soft requirement may be "the program must run in under an hour".

3e.g. in formal parameters to generic modules?

4 At any level of abstraction in the development of a computer system.

5Writing a specification teaches us about the requirements, but not about the implementation.

4

Sometimes hard non-functional requirements, such as execution speed, may take
precedence over soft functional requirements, for example when a tradeo:ff between

32 and 31 bit integers makes a significant speed and space saving.

Behaviour can be split into two classes:

• Client behaviour

• Implementation behav10ur

The characteristics of these two systems are what we must consider when making
design decisions. Some user properties can be made into a functional, though rather

rough and abstract. For example, the parameter types to a generic module carry
implicit information about client behaviour e.g.:

• has<

• has radix form

• has hash()

• fits in a WORD

Some of these characteristics are sufficiently functional that they can be used in

automatic or semi-automatic implementation choice systems. See section 4.3
Examples of properties of a client are: ExpectedMax and AbsoluteMax on the

number of elements in a storage structure, orderings on the use of operations e.g.
"static searching structures" [BS79] where all inserts precede all queries and relative
frequencies of operation calls.

Examples of implementation behaviour are: e.g. bottom up requirements such

as language structures, RAM, CAS, discs

4 p rocesses 1n choosing an abstraction

The variables we work with are not free. They are subtly interdependent by the

range of possible implementations. Having fixed oneベ_setof variables, our hard
requirements, we can alter the set of implementations and see how the other variables

change. Many of these will be of great interest to us. They may cause us to alter
our set of soft requirements.

There will be a backwards and forwards interaction of :flexible requirements and

flexible implementations - the balloon will alter and change its shape until the

requirements are adequately satisfied.

Initial, upstream design is difficult because adequately is a subjective term. It
usually requires human evaluation.

What is adequate depends on what is possible, and in innovative design we never

know this. Once we have thoroughly understood a domain we know what is possible,

and more importantly we know the tradeo仔sinvolved. However, we are then no
longer concerned with innovative design.

A very simple model of the process might be as follows:

5

What I want. Specify the ideal, desired functional behaviour of the system支

What I have. This delimits a (potentially) large range of possible implementa-

tions. They will probably not meet exactly the desired functional behaviour.

They wi且certainlyadd extra requirements, specify additional behaviour and

suggest possible tradeoffs, e.g. you can't have an arbitrarily large stack, please

give me some idea of how big it will be.

Is this OK. Can the caller meet these extra requirements? Do the tradeo:ffs offered
allow an acceptable compromise? Can the caller operate under the suggested

limits? The caller is forced to reexamine his requirements, and their relative

importance. A greater understanding of requirements is established.

4.1 Criticality

An issue is not critical if it can be dis両ssedfrom consideration by a simple, general

or overengineering argument. Examples of issues and arguments for their non-

criticality are illustrated:

• Is loss of power critical to this abstraction?
No. If we lose power then the whole program dies so it's not an important

issue here.

• Is concurrent access a critical issue?
No. This module is only used in a sequential environment.

• Is the order of computation a critical issue?
No. We never need to sort more than 10 items, so order of computation is not

critical.

Some issues might be critical:

• Is the speed of the abstraction critical?
This depends partly on the abstraction itself, but mostly upon the environment

in which the abstraction sits. We should

It is genuinely hard to determine if an issue7 is critical or not. However, it is this
determination which is at the core of design and abstraction.

1. Is this issue critical?

2. How can we tell if an issue is critical?

3. If an issue is not critical, we can overengineer

6This may involve mak~g the overengineering assumptions we have ma.de, i.e. an order of
magnitude (OoM) calculat10n allows us to assume perfection. In fact, we usually do it the other
way round: assume perfection and later do an OoM calculation. If this fails, the issue becomes
critical.

7What is an issue?

6

4. We need a model of behaviour and tradeoffs by which to evaluate if an issue
is critical.

5. This may be a superabstract model and perhaps this is what develops with

expenence.

N.B. We tend to remember the critical issues about a domain and not the details.

I know Insertion sort is O(n) and Quicksort is O(n log n), but with a larger constant

factor, but dragging up an implementation is genuinely hard. I have to look in a
book, but I know which book and where it is. Thus we do not remember a domain,

we remember superabstract, critical issues about that domain.

It is well known that it is very hard to predict which part of a program will cost
the most execution time. This illustrates the fact that frequently designers do not

understand much of the interaction involved in a program. An implementation is
sometimes the only way to establish the relative importance of parts of a program.

4.2 Available optimisations

The design process may in fact be driven by available optimisations, e.g. "multiple
use" optimisation of 32 bit words: 1 bit for a garbage collection flag and 31 bits for
an integer.

4.3 A utomat1on

What kind of design decisions are automateable? Automation requires having an
operational representation of:

• the alternatives available (generated both from user requirements and domain
options)

• evaluation criteria

• an optimisation procedure

4.4 Design decisions _

Why are some design decisions interdependent? Why do some design decisions
delocalise information?

• Design decisions appear at at least two different times:

• making

• review

When initially making design decisions we are not always aware which issues are

critical and how issues interact. This is a model of the design process as "list issues,

evaluate issues, choose alternative" is too simplistic. While designing we learn more

about the issues involved and their evaluation. Thus we need a more dynamic issue
based system to reflect the learning processes involved in design.

7

4.5 Overengineering

Let us return to pur example of modeling the memory required by integers.

A very naive model would say that I can use 10,000 integers before I have any

trouble with memory. I wouldn't even bother counting them in my program because
I'm sure I have several orders of magnitude less than this. Overengineering requires

us having an order of magnitude of leeway in the characteristics we are considering
so that a simple model can be built. If we get any closer to our resource limits than

this we will have to start building more detailed models. When we can overengineer,
we get simple but adequate models of important (?) behaviour.
This kind of overengineering is a vital concern in many other disciplines, such as

civil engineering and cooking. It is vital to know which issues are important/significant
and which are not. If we do not make these distinctions then the morass of details
will drown us. The conventional model of rigorous system formal specification and
formal development does not allow for this. This kind of overengineering is a special

case of what has been called rigorous rather than formal development [Jon86]. In
this case, we use simplistic models and a wide margin to convince ourselves that a
formal treatment would be possible. ・

Overengineering gives protection from change, it・makes issues non-critical. As
an example, we usually use a 32 bit integer8 where an 8 bit integer would do.

Overengineered constraints are ideal candidates for tightening up (putting into the
bargaining process) when there is strong pressure from other (maybe non-functional)
requirements. The availabi且tyof optimisations feeds back and affects requirements,

for example, integers in CL U [LAB唸1]and some Standard ML [MTH90, MT91]

implementations.
Another way of looking at this is to say that if I have lots of memory and few
integers, I can pretend that memory doesn't exist. If our representation of integers
has lots of bits (32, say) and I use few, then I can pretend9 that overflow is impossible.

5 Conclusions

What this噂 gestsis that it should be possible to build abstract models of the

tradeoffs between hard and soft characteristics in a domain. It should be possible
to do this without explicitly considering the range of implementations which lead to

those tradeoffs.

5.1 Related work

This work goes beyond the simplistic ideas of issue based information systems [PB88]

and explores in more detail the specific character of software design decisions. In
particular, we have shown some of the nature of the debate, the issues and the

considerations which are needed. [PB88], and others, consider models and tools

8But we don't use BigNum.

, i.e. use an instantaneous, in the head, order of magnitude, rough calculation to demonstrate.

8

for design deliberation. These are intended to help in the production and review of

solutions and do not directly cover the generation of abstractions. They do, however,

require some form of speci丑cationas input.

"Issue Based" systems seem useful for recording deliberations based on exist-

ing understanding of systems. However, innovative design requires developing an

understanding of a system. This is a different process.
This is a more specific model of "design schemas" that that presented by Guindon
[GCK87]. We have argued that the important characteristics that domain models

carry into the design process is their models of tradeoffs between behaviours. We
have also more narrowly suggested the value of additional requirements behaviour

(e.g. scenarios) in synthesis, and implementation options in speci丑cationis their con-
tribution to the evaluation of the relative importance of abstraction characteristics.

[GC88] suggest the use of a library of reusable design schemas which model prob-

lem decomposition and merging. This is certainly needed, but example or skeleton

solutions only indirectly contribute to problem understanding aD:d problem/solution

requirements/behaviour interaction understanding. We can potentially build tools,
however, which could indicate and possibly animate the interaction of solution do-

main properties and constraints.

6 Don't read me

Though abstract data types are not ideal for the analysis of design decisions, for

one thing, they are frequently at a lower level than we are interested in and in some

cases are subject to automation (and area we will touch upon). However, they do
illustrate a number of points clearly:

alternatives Given an issue, how do we decide between the alternatives? Here the

alternatives are the (potentially unbounded) set of all possible implementa-
tions. Decisions are based on (understanding of) behaviour.

issue What specification are we trying to implement? This is as much a problem
as implementation choice.

Also related: SETL choice of implementation by sophisticated analysis of the

code.
If we are going to allow the abstraction to shift and change, why then do we
bother to have it at all? (balloon).

[Lam83) gives an example of this. "Static analysis", the detection of implicit
decisions, can be used to increase performance. A joint decision by'the file system

designer (to allocate data sequentially on the disc) and the application designer (to

access the data sequentially) can lead to substantial performance benefits.

6.1 Psychology and formal methods

Recent work in computer systems design psychology has begun to move away from
its origins in programming activities to higher-level or "upstream" research [Gui90a,

，

Gui90b). However, for two decades there has been a vigorous promotion of formal
methods both in low-level activities [Hoa69, Dij76, Gri80) and for higher-level spec-

i:fication activities [GHW85, Hoa85, GH86, LG86, Jon86, Spi89). This work has not

yet had much influence on computer systems design psychology research [GT91).
Between the extremes of the formal methods strict separation of specification and
implementation and the apparent continuum adopted in the psychology research,
there is an interesting band of work. The conscious use of abstraction is useful,

but the way it is used in reality is very different from the idealised development

suggested by formal methods practitioners. Consideration of abstractions provides
a valuable tool in understanding and examining some of the activities involved in

design.

References

[BS79) Jon Louis Bentley and Mary Shaw. An Alphard specification of a correct

and efficient transformation of data structures. IEEE Transactions on
Software Engineering, 6(6):572-584, April 1979. This is a revised version
of a paper from Proc. IEEE Conf. on Specifications of Reliable Software,

April 1979. It also appeared as a CMU technical report in December
1978.

[Dij76) E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[GCSS] R. Guindon and B. Curtis. Control of cognitive processes during design:
What tools would support software design. In Proceedings of the CH/'88
Conference on Human Factors in Computing Systems, pages 263-268.

ACM, 1988.

[GCK87] Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive

processes in software design: An analysis of breakdown in early design
activities by individuals. Technical Report STP-283-87, Microelectronics

and Computer Technology Corporation (MCC), Austin, Texas, 1987.

[GH86]・J. Guttag and J. J. Horning. Formal specification as a design tool. In

N. Gehani and A. D. McGettrick, editors, Software Specification Tech-
niques, pages 187-207. Addison-Wesley, 1986.

[GHW85] John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch

family of specification languages. IEEE Software, 2(5):24-36, September

1985.

[Gle89] Tim Gleeson. Aspects of Abstraction in Computing. PhD thesis, Cam-

bridge University Computer Laboratory, December 1989.

[GriSO] David Gries. The Science of Programming. Springer-Verlag, 1980.

10

[GT91] Tim Gleeson and Toyofumi Takenaka. The roles of formal specifications
in the system design process. In Information Processing Society of Japan:
Spring Conference, 1991.

[Gui90a] Raymonde Guindon. Designing the design process: Exploiting oppor-
tunistic thoughts. Human-Computer Interaction, 5(2 & 3):305-344, 1990.

[Gui90b] Raymonde Guindon. Knowledge exploited by experts during software
system design. International Journal of Man Machine Studies, 33(3):279-

304, September 1990.

[Hoa69] C. A. R. Hoare. An axiomatic basis of computer programming. Commu-
nications of the ACM, 12(10):576-580, October 1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[Jon86] C. B. Jones: Systematic Software Development Using VDM. Prentice-
Hall, 1986.

[LAB埒l]B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler,
and A. Snyder. CLU Reference Manual, volume 114 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

[Lam83] Butler W. Lampson. Hints for computer systems design. In Proceedings
of the 9th ACM Symposium on Operating Systems Principles, pages 33-
48, October 1983. Also appears in IEEE Software, pages 11-28, January
1984.

[LG86] B. Liskov and J. Guttag. Abstraction and Specification in Program De-
velopment. MIT Press, 1986.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
1991.

[MTH90] . Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[PB88] Colin Potts and Glen Bruns. Recording the reasons for design decisions.
IEEE Transactions on Software Engineering, 10(418-427), 1988.

[PC86] David Lorge Parnas and Paul C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software Engineering,
12(2):251-257, February 1986.

[Sim62] Herbert A. Simon. The architecture of complexity. Proc. American Philo-

sophical Society, 106(6):467-482, December 1962.

11

[Sim73] Herbert A. Simon. The organisation of complex systems. In Howard H.
Pattee, editor, Hierarchy Theory: The Challenge of Complex Systems,
pages 1-27. Braziller, New York, 1973.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

12

i'

Revealing Design Decisi<?ns

Tim Gleeson

Aug 1991

Revision:

Keywords: abstraction, design decisions, efficiency, information hiding,

Modula-2, modularisation, module selection, module dependen~e, optimisation, re-
finement, software reuse

1 Introduction

Abstraction, as a process of design decision hiding [Par72], has a clear role in com-
puter systems development [LG86]. The revelation of design decisions has not re-
ceived so much treatment. We attempt to show why this may be interesting and

useful.

2 Background

Scoping is a mechanism for statically enforcing abstraction boundaries. However,

the compilation and linking process is responsible for removing the boundaries and

producing a fiat implementation suitable for execution. This process:

• Removes the boundaries between source level abstractions. In the source, the
semantics s:!f the language describe the meaninglessness of an identifier taken
out of scope. In the object module, there is a relatively1 fiat space of addresses.

• Performs vertical transformations from high-level abstractions to low-level ab-
stractions, perhaps passing through many intermediate level abstractions.

• But, there are no great horizontal transformations which take place.

However, it was suggested a long time ago that this need not be the case, [Par72]:

To successfully and efficiently make use of the . . . decomposition [based

on information hiding principles] will require a tool by means of which

1 Caveat lector: segmented object architectures are not like this.

ー

programs may be written as if the functions were subroutines, but as-
sembled by whatever implementation is appropriate. If such a technique
is used, the separation between modules may not be clear in the final

code.

As a program is transformed from its high-level description to a low-level im-

plementation, some design decisions must be revealed, or transferred out of their
original scope. We suggest that, at appropriate levels of this transformation, such

information can be legitimately employed.

3 Modula-2 opaque types

Let us consider an example of compilation. The ideal of abstract data types (ADTs)

[LG86] can be approached in the Modula-2 language [Wir82] by using the concept
of opaque export of types from a de恥itionmodule. This allows a type name, and
its associated operations, to be exported and used, by importing modules, with no

knowledge of its implementation.
Let us examine the information communicated. An importing module I needs
to know the semantics of an opaque type T exported by module£. A definition
module is a workable mechanism of communicating semantics:

• compiler-usable semantics, basically, just type checking information

• an informal semantics for the programmer to read

However, the implementation of I, let's call it互 needsto know more about the
representation of the opaque type T, let's call it巧.This is because工:must allocate
space for冗objects2.This information has nothing to do with T's semantics and

certainly doesn't appear in the definition module. This information is needed at

compile time, when工:is produced from I.
Modula-2 adopts a quick-and-dirty (others might say, well engineered compro-
mise) solution: opaque types are essentially limited to pointer types. Thus the

importing module implementation allocates a WORD (or however big an ADDRESS
is) for values of the imported type. So, the information is passed by making a
global announcement of the size of such an object. This is an example of very early

binding, or very early information revelation. This compromise simplifies compilers
and linkers considerably, and at a small cost of awkwardness to the programmer, is

perfectly workable.
Such a restriction has some important consequences. The most important is the

removal of dependence of工:On巧， sorecompilations of£do not force recompilations
of工； in Modula-2 terms, I.mod depends on£.def and not on£.mod.

2 Actually, it merely generates a call to巧.StackAllocate,an extra procedure provided by巧
which does not appear in T. This is exactly the information which is "revealed".

2

4 The revelation of design decisions

We thought that abstraction allowed us to contain decisions. Now we see that some

decisions, how type Tis represented as巧，mustbe revealed during the transforma-
tion process from abstract to concrete program descriptions.
The example we have seen illustrates the fact that the Modula-2 concepts of

definition and implementation modules do not ideally correspond to abstraction
principles. They show a (reasonable) compromise between: decision hiding and

revelation, early and late binding of decisions and the relative economies of compiling
and linking.

However, it has also shown that during the vertical transformation (compilation)

process, some information must be passed horizontally (between modules).
Here we want to suggest that, without compromising abstractions, the revelation

of hidden design decisions can be used to good effect.

5 Generic packages

The behaviour ofa generic package clearly depends, in a very well defined way, on

the behaviour of the actual parameters which it is given. There is no dependence
on the implementation of those parameters. It seems possible, however, to make the
implementation of that generic package dependent on aspects of the implementation

of its parameters. This implies no loss of abstraction at the abstract level. This has
not been done, I believe, for several reasons:

• The extra dependence may increase the compilation/link cost associated with
making changes and rebuilding the system

• It is rather hard to express the characteristics of an implementation which
another implementation might be interested in.

Preserving abstraction requires that abstract dependencies be clearly stated. The

decisions made explicit by the compilation of one unit can be used in dependent units
in roughly two ways:

object generation We have already seen that the production of工,from 1 requires
knowledge of the size of冗

source transformation Maybe, knowing the size of冗 wewill use a different
algorithm or data structure in I.

Some of the dependencies we may wish to introduce can be simply expressed

as a substitution, for example, the amount of space to reserve on a stack for a

given object. Conventional parameterisation mechanisms fulfill this need. Other
dependencies require more significant changes.

3

6 Conclusion

The distinction between the work of a "compiler" and the work of a "linker" seems
to rest・at the point where local transformations have finished and global transforma-

tions have been adopted. I don't wish to challenge this division, merely to suggest
that we could try getting the linker to do more, firstly by revealing design decisions

which may be useful over a more global context ?,nd secondly by removing decisions

which have been bound in at an early stage, for example, that opaque types are
restricted to pointers and, more radically, stack structures.
One possible criticism of such an approach is that it will lead to systems which
are riddled with dependencies. The contrary argument is that if our systems aren't

riddled with dependencies, then they can't be very flexible. Exp且citlyrepresenting
our design decisions in this way will ultimately be helpful.

References

[LG86] B. Liskov and J. Guttag. Abstraction and Specification in Program Devel-
opment. MIT Press, 1986.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12):1053-1058, December 1972.

[Wir82] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

4

Generic Module Implementation Selection
Based on Parameter Type

Tim Gleeson

May 1991

Revision : 1.1

Keywords: specification, abstraction, refinement, implementation, software

reuse, modularisation, module selection

This is the introduction for a paper that I might write. I would be ve内

grateful for your comments on it.

1 Introduction

We show how the parameter type passed to a generic module can be used to se-
lect one of a number of possible implementations for that module. This scheme

depends on having a well-defined behavioural subtype relationship over parameter
types which can be examined before link time by the generic module. The selection

mechanism can be automated or can prompt the programmer with the alternatives

available.
We further regard "implementation" as being a special, statically determined

case of "subtyping". By breaking the traditional distinction between the two notions,
further information can be used in module selection. The costs of this appear in the

form of an increased dependency between module and parameter, but is acceptable
when automated.

Suggestions for language features to support these ideas are given.

ー

November 1st 1990
Tim Gleeson

Report on

First Japanese Knowledge Acquisition for Knowledge-Based
Systems Workshop
JKAW'90

Kyoto, October 25th -26th 1990

Workshop Structure Theme and Attendance

JKAW'90 was one of a series of Knowledge Acquisition workshops, previous ones having been held
in Canada and Europe. It was in two parts, the first part was a two day open workshop (at the
Kyoto International Conference Hall) and the second was a three day closed workshop (at the
Hitachi Advanced Research Laboratory at Saitama). There was probably sightseeing between the
two parts.
This note reports on the first part, the open workshop, which I attended. It is very subjective.
The workshop concerned knowledge-based systems (KBS), particularly expert systems (ES),
and addressed the problem of how to get knowledge into them. Knowledge acquisition (KA) seems
to be a bottleneck in the development of larger and "better" knowledge-based systems.
All of the speakers were invited, most of them from the US and only two from Japan. My
(ungenerous) interpretation is that a number of them only came for the sightseeing, and that their
research did not directly address the probleII1S of knowledge acquisition. Nearly all of the attendees
(200, maybe) were Japanese. The only gaijin I met were living and working in Japan.

Brian Gaines (U. of Calgary, Canada)

Foundations of Knowledge Acquisition

The earliest methods of knowledge acquisition were interviewing experts. Now there are computer-
aided tools, such as reperlo内炉ds,behaviour modelling and text analysis. Future work will
integrate these (though it all seems rather ad hoc to me) and provide standards for knowledge
representation.

John Boose (Boeing)

Knowledge Acquisition Tools, Methods, and Mediating Rep-

resent at ions

Mediating repだsentations- problem modelling languages (or notations) that help bridge the gap
between experts and computer implementations are essential. These are of varying levels of formal—
ity, processability and abstraction (some higher level ones e.g. decision trees can be transformed
into lower ones e.g. rules).
Knowledge-based application problems can be divided into analysis (interpretation) and sy正
thesis (construction) problems. Design is a synthesis problem which involves configuring collections
of objects under constraints in relatively large search spaces. General methods for solving synthesis
problems are sparse.

ー

B. Chandrasekaran (Ohio State U.)

Real-Time Problem Solving and Knowledge Acquisition

This talk discussed what real-time control is, using safety-systems as examples. One theme was
that you should try to do as much as possible at "compile time" (i.e. not at run time), i.e. think
about the problem domain and task a lot. There wasn't much mention of knowledge-acquisition.

W. Clancey (Inst. for Research on Learning, USA)

Implications of the System-Model-Operator Metaphor for

Knowledge Acquisition

Expert systems can be viewed as manipulating a number of models. At the lowest level there is
a domain model which discusses classes of objects and their properties, e.g. diseases and immune
systems. Next there is a situation specific model which models a particular enterprise, e.g. one
patient, his symptoms and the reasons for them. Finally, communication with the world, e.g. the
purpose of this expert system, what the user wants from it. From this viewpoint, control knowledge
is the set of procedures which actually construct, extend and develop the situation specific model,
at run-time, as driven bywhat the external world (the user) wants.
Analogies are drawn with Wirth's maxim:

Programs = Data structures + Algorithms
Expert systems = General model + Modelling operators

= Relational network + Graph manipulation operators
This talk also drew analogies with blackboard systems.

Hiroshi Motoda (Hitachi)

An Architecture for Knowledge Acquisition by Interview

Based on Dynamic Analysis

Knowledge can be acquired statically, by asking experts for it and then using it, or dynamically by
evaluating the performance of the system as it runs, identifying the lacking knowledge and then
adding it. Two important issues are failure detection and failure classification and resolution. This
talk introduced a specific dynamic analysis system and discussed general architectures for them.

J. R. Quinlan (U. of Sydney)

Inductive Knowledge Acquisition from Structured Data

One method of knowledge acquisition consists of inductively deriving rules from a set of examples.
This has been well demonstrated for simple domains where objects can be classified by a fixed
number of attributes. The problem is essentially one of searching the rule space. Complexity and
information based heuristics are used to guide the space.
However, a fixed number of attributes is a severe limitation in the kinds of domains which can
be modelled. This talk described extending the work to use relations and first order logic to derive
rules.

2

Shigenobu Kobayashi (Tokyo Inst. of Technology)

Research Activities of Knowledge Acquisition and Learning

in Japan

This talk covered a lot of knowledge acquisition research in Japan. The accompanying paper has
a large bibliography. ASTEM (Advanced Software Technology & Mechatronics Research Institute
of Kyoto) is working on very large engineering knowledge b邸 es.

John McDermott (DEC)

Explorations in How to Make Application Programming

Easier

McDermott discussed a program generator being developed. This has three parts: Spark, Burn
and FireFighter. Spark interviews the user to determine the nature of the program to be de-

veloped. Spark searches in a (tree-structured) library of pre-defined computational mechanisms
for a collection of them which will solve the task. This set of mechanisms is p邸 sedto Burn.
Burn executes knowledge acquisition tools associated with each mechanism to fill in the domain
specific knowledge for the problem. The constructed program is then executed under the eye of

FireFighter. FireFighter determines whether the constructed program fulfills the user's task, and
if not determines whether new mechanisms or new knowledge is required.
McDermott thinks a collection of 100-1000 domain-independent, general purpose, abstract,
mechanisms (e.g. classification, comparison, selection, transformation) will cover most problems.
Currently they have 17 and have built several different programs with the system, with some of
the mechanisms being reused.

The paper contains a good summary of the results of previous research projects whose ideas
the authors used.

Thomas Gruber (Stanford)

Justification-Based Knowledge Acquisition

Knowledge-acquisition consists of building models. The difficulties are due to representation mis-
match, i.e. the domain language (in which people talk about the problem) and the modelling

language (inside the computer) are very different. We need to bring the modelling language nearer
to the level of the domain language.

Strategic knowledge is control knowledge at the knowledge level rather than at the search

level. It determines what to do next to acquire more knowledge, rather than how to search that
knowledge.

Summary

Before I attended this workshop I knew nothing about knowledge-acquisition and not much about
expert systems, though I was very sceptical about them. I am still very sceptical about expert

systems, but I think there is some work which is relevant. There seems to have been little work on
synthesis problems, such as software design, but I think we can benefit from ideas on representation
of problems and control and acquisition. Perhaps we should talk to some people from the AI
department?
The proceedings contains most of the papers given above, and many others from the second

part of the workshop which I didn't attend. For an introduction to knowledge-acquisition, read
Gaines's paper. Boose has a catalogue of computer-based tools for knowledge acquisition, with

3

a short description of each, and a very large bibliography as well. McDermott's paper gives
summaries of several systems.

4

June 21st 1991
Tim Gleeson

Report on

The 3rd International Symposium on

Future Software Environment (ISFSE3)
Hikone, Shiga-ken
June 12 -14 1991

Symposium Structure Theme and Attendance

The 3rd International Symposium on Future Software Environment follows from two previous ones
which were held in Japan (Kyoto) and the United States (Boulder, Colorado). The next one will
also be held in the United States. The total attendance was about 45 people, of whom about 2/3
were Japanese: The symposium was sponsored and organised by the Software Designers Associates
(SDA) Consortium. Many of the attendees belonged to SDA or the University of Colorado or both.
The symposium was split into 4 sessions. Each session had a theme, a chairman and 3 speakers.
The presentations mostly consisted of the work the speakers were engaged in.
Several of the speakers talked about "process programming" and process based environments.
A "process program" is supposed to represent of the steps that are required to design some software.
A process program is executed by a design team, perhaps with machine support. It appears that
process programs are typically given by a set of rules, i.e. preconditions and actions. See [Ost87] "A
software environment is best viewed as a vehicle for the specification of process programs, and for
their compilation and interpretation" and for a contrasting view [Leh87] "In terms of our current
understanding ... process programs are more likely to divert attention from the real problems of
software engineering than to help solve them".

Session 1: Approaches to FSE

One of the issues raised in this session w邸 therelation between software design and architecture.
It w邸 notedthat software design is not "well understood" in the sense that architecture is. An
example, illustrating this di:fference, is the question: what is the software equivalent of a "load
bearing wall"?

Leon Osterweil (UC Irvine)

Software environments can be classified into 3 generations:

toolset An environment is a collection of tools and provides help i~"tool grabbing"

data centred Interoperability in an environment is enhanced by considering common or compat-
ible data formats

process centred The design process determines tool use and data formats

Three other principles for FSEs were mentioned:

• A "process program" is created by a similar development process to a "computer program".
This meta-design must also be supported.

• It is impossible to get requirements right, and requirements change with time. We should
regard software development as a service indust内 andnot a product indust内・

ー

• Development should be regarded as a maintenance process. Initial development is mainte-
nance of an empty item.

Hideyuki Nakashima (ETL)

Nakashima-san discussed some early ideas on "New models for software architecture". His main
thesis was that we need more flexible software components: object-oriented components are too
inflexible. One way to achieve this is to have software modules adapt to their environment: defaults
for a system currently come from inside that system, instead they should be determined by the
environment.
This work follows on some recent ideas from Stanford concerning "Situation theory" and in
particular "Situated environments".

Gerhard Fischer (U. of Colorado)

Fischer listed a number of claims concerning FSEs:

• "Software engineering" is an inappropriate term; we should be more concerned with "archi-
tecture".

• Future software environments will be domain oriented ..

• There are no optimal solutions in design, only compromises and tradeoffs.

• Object-orientedness is necessary but not sufficient.

• "Problem setting" and "problem solving" need to be integrated. The "owner" of a problem
has to be included somewhere in the design loop, because the problem must evolve as well
as the solution.

• Human attention is a scarce resource.

He listed a number of domains that he had been working in:

• architectural floor plan design

• computer network design

• voice mail applications

• user interface design

Session 2: Human aspects of FSE

Heirnbigner's talk generated most questions on the subject of "what is an unanticipated event for
a process program?".

Jonathan Grudin (U. of Aarhus, Denmarkり
Grudin's presentation concerned groupware and CSCW. He distinguished them by saying that
groupware concerned groups, roles and products whilst CSCW was much broader and included the
workplace. He presented 8 design and evaluation challenges for groupware and CSCW systems:

1. Do the people who do the work in the system get the benefit from the system?

2. A certain number of people are needed to make a system work: critical mass and prisoner's
dilemma.

1 Grudin used to be a.t MCC, Austin, Texas.

2

3. Social and motivational factors in the workplace must be considered.

4. Exception handling and non-routine work must be considered.

5. Low-frequency events must be considered.

6. Evaluation of results is needed.

7. We must overcome poor intuitions in design.

8. A system must evolve. Customers .must be prepared for change.

Dennis Heimbigner (U. of Colorado)

Heimbigner is implementing a system based on the idea of a "process program". He gave some
rather general comments on the different possible roles for computers and humans in such a system:

• Machine in control, executing process program. Human as subroutine.

• Human in control. Machine event-driven by human.

• Human as program counter, directing machine.

He suggested that some sort of intermediate system was possible, maybe using some sort of shared
memory blackboard like model.

Tetsuo Tamai (U. of Tsukuba)

Tamai-san reported on a (4 year old) design experiment. He asked 3 teams, each with 3 members, to
build a system which helped in checking housing loan applications. The experiment was supposed
to assess cooperation and competition in small teams. He spent most of the time describing the
experiment, and very little time on the results.

Session 3: Conceptual issues in FSE

Takuya Katayama (TITECH)

Katayarna-san's talk was titled "Specifying the software process". He identified 3 di仔erentaspects
which needed to be specified:

Functional: artifacts and their (static) relationships

Behavioural: order of activities (dynamic aspects)

Enactional: real world, project and organisational issues

It is straightforward to use formal methods for specifying functional aspects. Behavioural aspects
are harder and enactional aspects are harder still. He reported on an experiment using the HFSP
formalism at the Mitsubishi Space Software Company.

Akira Kumagai (恥jitsu)

He said we need to support abduction and intelligent activities, but I didn't understand any of the
rest of this "philosophy" talk.

3

f -

Brian Nejmeh (INSTEPり
This was a very solid survey and attempt to analyse current software design environment (SDE) in-
frastructures: Their taxonomy revealed two important, orthogonal aspects of SDE infrastructures:
functional and structural. Functional aspects are:

• data management

• distribution and communications

• user interaction

• coordination

Structural aspects, starting from the top and moving down, are:

• tools

• tool common services (e.g. widget sets for X)

• substrate (e.g. object management and Xlib)

• platform (e.g. hardware, host operating syst~m)

Particular SDEs can be located on a穿idformed by these two dimensions. The key point raised
was that we should not built new infrastructures but should try to use those that we already have
to build new environments on top of.

Session 4: Supporting technologies for FSE

David Notkin (U. of Washingto記）

An FSE cannot be a monolithic system. The many components of an FSE will need to be in-
tegrated, but "integration" has many definitions. However, some sort of "implicit invocation"
mechanism will be needed to decouple components. This mechanism will be more like broad-
cast communication than point to point communication. There are very many different kinds of
systems around which possess these characteristics and we need to study their similarities and dif-
ferences more; ad hoc construction of implicit invocation mechanisms is not sufficient for efficient
development.
There are a number of characteristic questions which we can ask about such implicit-invocation
systems:

• What kind of components can announce and receive events?

• Is the set of events defined by the system, or can new ones be added by the programmer?

• Can events pass parameters?

• What kind of synchronisation and concurrency facilities are available for multiple receivers?

2Innovative SoITware Engineering Practices

3 Currently at the end of a 1 year sabbatical with Torii-san at Osaka University.

4

Rick Selby (UC Irvine)

This talk w邸 titled"Me邸 urementdriven analysis and feedback systems". This w邸 areport on
part of the "Amadeus" project which integrates me邸 urementtools into a software environment.
The principles adopted in the project are:

• Active use of me邸 urements

• Integration of these me邸 urementsinto process programs

These ide邸 canbe used, for example, to detect fault-prone components in a system邸 itis being
developed. The me邸 urementtools in this case might be connectivity analysis.

Takahira Yamaguch刊(ShizuokaU.)

This was a rather futuristic project entitled "Software process model inference system using CBR
and CIGOL". Case-based reasoning (CBR) is used to build a relatively low-level database of
software components. CIGOL5 is used on this database to try to raise its level by making gener-
alisations. The system requires quite a lot of human intervention.

Summary

This was not an introductory workshop on FSEs. Most of the discussion assumed an understanding
of, and belief in, the ideas ofrich software environments and process programming. Basic principles
were not discussed, some specific issues were mentioned, but the symposium lacked focus. Brian
Nejmeh's talk was the most useful but this only discussed environment infrastructures and not

environments themselves.
Future software environments still lie some time in the future.

References

[Leh87] M. M. Lehman. Process models, process programs, programming support. In Proceedings
of the 9th International Conference on Software Engineering, pages 14-16, 1987. Response
to an ICSE9 keynote address by L. Osterweil [Ost87].

[Ost87] Leon Osterweil. Software processes are software too. In Proceedings of the 9th International
Confeだneeon Softwa穴:Engineering, pages 2-13, 1987.

4Nao虻 T皿 ura(Mitsubishi Electric Corporation) also spoke.

5 An "inverted logic" system.

5

Review of

September 28th 1990
Tim Gleeson

PM: A System to Support the Automatic
Acquisition of Programming Knowledge

R. G. Reynolds, J. I. Maletic and S. E. Porvin
IEEE Transactions on Know ledge and Data Engineering,

2(3):273-282, September 1990

1 Introduction

The PM (Partial Metrics) system is a semi-automated system for analysing and
storing parts of existing programs.

The project attempts to store what the authors call fundamental implementat如

knowledge; this is acquired from example programs in computer science textbooks.
The authors use an inverse of refinement: the input is code and the output is a hier-

archy of aggregates (HAG) of sections of the code which may have corresponded to

stages in the design of the code. Metrics are used to control the aggregation process.
These aggregates are then stored in a frame-based hierarchy of "knowledge".

2 Details

Refinement is regarded as a process of converting pseudocode in code: stubs in the
pseudocode are expanded into code. This is a process of complexity addition. The

metrics used apply to both pseudocode and code and measure aspects of complexity.
The languages considered are Ada, Pascal, C, OPS5 and Prolog. The complexity
metrics depend both on the language and on cognitive issues.

Their system is based on a process of aggregation which they regard as an inverse

of refinement'. A section of code (an aggregate) is identified and replaced with a stub.
The metrics are used to identify aggregates of appropriate complexity, i.e. the kind

of complexity that would have been added in the refinement process. The process
of aggregation i_s repeated until a hierarchically nested sequence of code aggregates

(HAG) is obtained; each aggregate will satisfy the metric constraints.

This process tries to infer what the refinement process was, but it may not
actually reflect the design decisions made.

Next, the code aggregates are clustered, if necessary, to reduce inter-cluster de-
pendencies. A metric is used in this process to identify how independent the aggre-
gates are.

Knowledge is represented in a case (frame-based) tree. The organisation of this
tree "reflects the way knowledge might be organised in a basic programming text".
Each aggregate is stored at an appropriate place in the tree based upon:

1

• Its role in the refinement process (i.e., how it relates to the other aggregates).

• Its functionality (what it actually does).

Insertion of aggregates into the tree seems to be mostly a manual process.

3 Comments

• The system is not completely automated.

• The use of the acquired "knowledge" is not discussed.

• This is a reverse engineering system which attempts to infer design decisions
from code.

• The structure of the case tree is decided before any code is examined. It seems
arbitrary.

✓

2

Philosophy and Psychology of Design
Two Papers

Tim Gleeson

Sep 13th 1990

Thi5 document is a short review of two papers. The first, The Architecture of

Complexity by Herbert Simon [Sim62], is a philosophical description of complex
systems. The second, A Model of Cognitive Processes in Software Development by

Guindon, Curtis and Krasner [GCK87], is a psychological study of design.
We will look at each of these papers in turn, and then draw _some conclusions.

1 The Architecture of Complexity [Sim62]

This is a very old paper, but one that is still frequently cited. Simon's main interest
is the nature of complex systems and, in particular, the nature of hierarchic systems.

Many of the ideas developed here seem very familiar to us now, but the paper is

still worth reading.

Complex and hierarchic systems

Simon defines a complex system as one made up of a large number of parts that
interact in a nonsimple way. He contrasts this with systems with large numbers of

parts that interact in simple ways, for example, crystals, polymers and, in comput-

ing, systolic systems. The patterns of interactions in these systems are a且simple

and regular.
In computing, we are all familiar now with hierarchic systems. Simon cites
examples of hierarchic systems from social systems, biological and physical systems

and symbolic systems.

The importance of hierarchic systems

Simon then goes on to discuss why he thinks hierarchic systems are so common

and so important. In this paper (and also in [Sim73]) he tells the story of the

watchmakers, Hora and Tempus, who are frequently interrupted by telephone calls.
When this happens, the work they were doing is lost. Hora builds his watches by

building subassemblies, which he them assembles. Tempus builds watches as single
assemblies. Tempus almost never completes a watch: his work is lost every time

he gets a phone call. Hora, on the other hand, only loses subassemblies when the

1

phone rings. Since subassemblies are quite small, Hora is more likely to complete
one before a phone call. Eventually he completes enough subassemblies to build a

complete watch.
Simon use this story to indicate the enormous advantages of intermediate stable
states, and hierarchy in general, to the process of evolution:

Among possible complex forms, hierarchies are the ones that have the

time to evolve.

We should thus expect to see many hierarchic systems in nature: they are selected

for.

Near-decomposability

One of the most important observations that Simon makes concerns what he calls

near-decomposability:

Hierarchies have the property of near-decomposability. Intra-component

linkages are generally stronger than intercomponent linkages. This fact
has the effect of separating the high~frequency dynamics of a hierarchy
- involving the internal structure of the components - from the low
frequency dynamics - involving interaction among components.

Most interactions decrease in strength with distance, and this will occur between

levels and between subsystems at a given level in a hierarchy. This has important

consequences for:

• ease of understanding a system

• ease of designing a system

Though we may never be able to build completely-decomposable systems, nearly-
decomposable systems are very useful. We can comprehend the components indi-

vidually, and then comprehend how they are connected. In design, we can build

subsystems and then assemble the11: without concern for the inner functioning of
the subsystems._

Simon elaborates this work in a later paper, [Sim73], in which he discusses the

idea of information hiding as a principle for system design. In the computing field,

similar ideas were stated at about the same time by Parnas [Par72].

2 A Model of Cognitive Processes in Software

Development (GCK87]

This paper reports on a psychological experiment in software design. The goal was

to discover more about the cognitive processes involved in upstream design. The

paper is long (83 pages), has many typographical errors but is an excellent account
of a thorough psychological experiment. The results are certainly significant for

2

those constructing tools to help in the design process. If reading 83 pages is too
hard, [GC88] is a good 6 page summary.
We will examine:

• The experiment

• The cognitive model they developed

• Their observations about the design process

2.1 The Experiment

The experiment aimed to discover more about upstream design, that is, the early

stages of design when the problem is not well understood and there are no obvious

solutions. breakdowns often occur in upstream design. These can be:

• Bad design choices or decisions

• The results of bad decisions

• The inability to make good decisions

• Bottlenecks in the design process

Upstream design is important because breakdowns made at this stage have a large

impact in later stages of design. Upstream design is also not well understood.

The authors studied in detail 8 designers, with a broad range of backgrounds

and experience. They were asked to design the logic for an n-lift1 system serving

m-floors, given a set of constraints on the behaviour of the lifts. The designers were

given two hours, but none of them completely solved the problem.

The authors carefully describe:

• how the experiments were carried out

• how their results were analysed

• the limitations of廿heexperiment

• the validity of the results

They note that this experiment was carried out on individuals and that the design

of large projects is a group activity2 They review other empirical investigations and

it is clear that much of it concerns downstream development.

1 elevator in American English

2Curtis, Kr邸 nerand Iscoe [CKI88]. 邸sertthat software engineering technologies, which are
mostly aimed at individuals, only marginally improve the production of large software. They
say that an understanding of human and organisational factors is essential if we want to improve
production in large projects.

3

2.2 The model

Before starting their experiment, they listed a number of issues that a cognitive

model of upstream development should cover:

1. Breakdowns

2. The nature of expertise

3. The collection of skills involved (e.g. domain knowledge, general computer
science knowledge, problem solving skills)

4. How the type of problem affects the design activities

5. How tools might in且uencethe process

The components of their model are listed in Figure 1.
~.;,, .. ←●

• Knowledge Sources・

-Problem domain know ledge

-Specialised design schemas

-Design techniques, notations and concepts

• Design Process Control

-Design meta-schemas

-Design heuristics

-Design techniques notations and concepts

• Representations

-Internal: short-term memory and long-term memory

-External: available media and tools

Figure 1: Main components of the cognitive model

Specialised design schemas and design meta-schemas

I think the most interesting elements of the model, as far as storage and reuse of

software are concerned, are the specialised design schemas and the design meta-
schemas.

A specialised design schema is an outline (a sketch, a rough description) of how to

solve a particular problem. Specialised design schemas are internal representations of
software designs, they can be parameterised (specialised) to particular cases. They
help the designer both in producing a solution and in understanding the problem.

4

The design meta-schema provides control for the design process, deciding where
to spend time, which subproblems to tackle, which strategies to use, whether more

knowledge about the problem is required etc.
The paper discusses how the use of specialised design schemas and design meta-

schemas interact; these observations were made possible because designers with

widely differing experience were used in the experiment.

Two dimensions of the cognitive model

The cognitive model that the authors produce shows how internal and external

representations of the problem and its solution are related and how the design process
builds and alters this structure. The internal representation is the model that the

designer has; the external representation is any information stored externally, for
example, on paper or on computer.・The model is split along two dimensions:

• the problem domain / solution domain dimension

• the internal representation / external representation dimension

This leads to a picture with four quadrants, as illustrated in Figure 2. Much of the
paper is involved with explaining the activities within each quadrant, how they relate
to activities in other quadrants, and how this model is justified by the observations.

INTERNAL
REPRESENTATION

PROBLEM
DOMAIN

EXTERNAL
REPRESENTATION

PROBLEM
DOMAIN

INTERNAL
REPRESENTATION

SOLUTION
DOMAIN

EXTERNAL
REPRESENTATION

SOLUTION
DOMAIN

Figure 2: "Map" of the cognitive model

One of the most striking observations about the model, and this observation

is not made by the authors, is that there is no direct communication between the

external representation of the problem and the external representation of the solution
- all interaction goes via the internal representations. This observation may be

obvious, but it is very significant. The goal of automatic software generation can be

seen as removing the human element in design. In this example, it means completely
removing any internal representations - all interaction is done solely in the external

representation, in the software tool perhaps.

5

2.3 Observations

Upstream design is an ,iterative, interleaved, loosely ordered activity. They noticed

that late in the session designers were still involved in understanding the problem.

Some design is goal-driven, e.g. "I have to solve subproblem X", however, much

of it is not so systematic. data-driven design is often used. One example of this

is serendipitous3 design where designers notice aspects of the problem for which

they already know partial solutions. This can occur at any level of abstraction and

happens quite accidentally. This form of design can be seen as proceeding from

well-known areas into unknown areas.

External representations (of both problems and solutions) seemed to be used for

the following purposes:

• To alleviate limitations in working memory, in particular to serve as a remind-
ing tool for constraints on the solution. Constraints are often forgotten

• A graphical representation can show relationships which are hard to under-
stand internally

• For simulat10ns

Simulation is very important in design. It is carried out in all four quadrants

of the model. Limitations in cognitive ability make it hard to simulate systems,

especially if they have dynamic and temporal behaviour. It was noted that pen
and paper seemed to be inadequate for many simulations. This is one area where

computerised design tools might help.

The importance of the ideas of specialised design schemas and design meta-

schemas is emphasised by the authors. Many breakdowns in upstream design are

due to:

• lack of knowledge

• lack of control of the design process

• cognitive limitations

The authors observed a near-universal trend to develop a kernel solution very

early on, and they cite other papers which observe the same trend. They conject

that this may be a general problem solving heuristic which helps designers to cope

with the enormous space of possible solutions. Much greater exploration of the

?roblem domain and of alternative solutions would be beneficial. However, if time

1s limited, its use must be balanced. They say:

3 serendipity means "happy accident" or "fortunate unexpected discovery". The word comes
from the Persian fairy tale The Three P百ncesof Seだndip.Serendip was the ancient name for Sri
Lanka. serendipity is the noun and serendipitous is the adjective. This is not a common English
word.

6

We propose that providing tools. and methods to permit greater explo-
ration of alternatives (design processes or solutions) and exploration of

the problem environment before adopting an initial solution be a priority

in research to support the cognitive aspects of software design.

Several other suggestions are made for computer tools to support upsteam design,

these all attempt to alleviate the problems in design discovered in the experiment.

3 Conclusions

When we design and build large systems we must consider both the nature of large

systems and of the human element in design. Tools to help users design systems

must take into account basic ideas of complexity. Also, the intellectual complexity
of construction depends as much on the psychology of the constructor as on the
physical size of the problem.

References

[CKI88] Bill Curtis, Herb Krasner, and Neil Iscoe. A :field study of the software de-
sign process for large systems. Communications of the ACM, 31(11):1268-
1287, November 1988.

[GC88] R. Guindon and B. Curtis. Control of cognitive processes du.ring de-

sign: What tools would support software design. In Proceedings of the
CH1'88 Conference on Human Factors in Computing Systems, pages 263-

268. ACM, 1988.

[GCK87] Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive

processes in software design: An analysis of breakdown in early design
activities by individuals. Technical Report STP-283-87, Microelectronics

and Computer Technology Corporation (MCC), Austin, Texas, 1987.

[Par72] ._ D. L. Parnas. On the criteria to be used in decomposing systems into mod-

ules. Communications of the ACM, 15(12):1053-1058, December 1972.

[Sim62] Herbert A. Simon. The architecture of complexity. Proc. American Philo-
sophical Society, 106(6):467-482, December 1962.

[Sim73] Herbert A. Simon. The organisation of complex systems. In Howard H.
Pattee, editor, Hierarchy Theory: The Challenge of Complex Systems,
pages 1-27. Braziller, New York, 1973.

7
・

Survey of

Design, Design Processes and

Information Structures for Design

Tim Gleeson

August 1991

Contents

1 Introduction

2 Nature of design

2.1 What is design?

2.2 Design as a multi-level activity

2.3 Classifying information sources

2.4 Domains

2.5 Problem d.omain . . ・. •
2.6 Solution domain

2. 7 Domain definition, use and implementation

2.8 Design history ...
2.9 Design rationale

2.10 Examples

2.11 S cenar10

2.12 ReqUlrements .

2.13 C onstraints
2.14 Design decisions

3 Processes of design

3.1 Design process models

3.2 Design activities

3.3 Design control
3.4 Cognitive level processes

3.5 Simulation

3.6 Cogniiive level problems

3.7 Heur1st1cs ..

3.8 Weak problem solving methods

3.9 Expertise

3.10 Design methods, techniques and tools

3.11 Learning

4 Information structures for design

4.1 Memory

4.2 Domain model .

4.3 Design schemas .

4.4 Communication .

4.5 Common knowledge

4.6 Experience

1

3

3

4

5

6

6

7

7

8

8 ， ，
10

11
12

14

14

14

16

18

20
20 -

21

........ 21

22

22

25

28

28

28

31

32

32

33

CONTENTS

5 Miscellaneous

A Glossary

B Changes
References

Index

11

35

36

38

39

47

Chapter 1

Introduction

Aims

The aims oft祖sdocument are:

• To survey, list and give references to existing, research on design, design processes
and information sources used by designers.

• To survey approaches to machine modeling of these processes and sources

• To separate, disambiguate, classify and provide a uniform set of terminology

• To continue this work by filling in missing areas and extending existing ones

Limitations

This survey is not complete and is never likely to be completed because the field it attempts

to cover is so large and constantly changing.

A more thorough survey would not include references to papers unread by the compiler.

Many such references are included here as potentially useful, but unevaluated; pointers

into the literature.

This document has evolved rather than been designed. Periodic overhauls have allowed

some structure to remain in it. However, there are many cases where the structuring is

inadequate, for example, there are many forward references. It is also unclear how some

material s11,ould be structured. The section on information structures for design, Section 4,
particularly shows this inadequacy.

Structure

There are many ways we can analyse design. Like many previous authors we regard
design as an information processing activity, but here we particularly choose to focus on

the multi-level nature of design.

In Section 2, "Nature of design", we look at the nature of design and the general

activities and structures which occur at every level of design. We try to identify what
design is, i.e. to sketch a theory of design. Then in Section 3, "Processes of design", we

look at the particular special forms design processes take and in Section 4,'、Information
structures for design", we look at the information and knowledge structures used. The

ー

CHAPTER 1. INTRODUCTION 2

split between "process" and "data" is of course somewhat arbitrary, especially in a multi-

level interpreter system, but it is useful nonetheless. Section 5 cont叫nsextra notes which
have not been integrated into the m叫nbody of this survey.

In the glossary, page 36, we give a list of important words and phrases and some short
definitions of them. There is then a large bib且ography,page 39, and an index, page 4 7.

Chapter 2

Nature of design

Here we examine the nature of design, in particular software system design. Our focus

is on design as a multi-level activity and the processes and structures which occur at all

levels.

2.1 What is design?

Design requires the proposal of a function to be achieved, resources with which to achieve

it and the production of an artifact (the description of an assembly of those resources) that

implements it. Typically, a design task arises in some social setting where a function has

already been proposed (this is the requirements) and a design process must be undertaken

to produce the required artifact. A theory of design demands a more detailed analysis of

all these terms.

"Requirements" or "function" must be interpreted liberally: "goal" or "desire" are

other terms. It is certainly wider than the "functional requirements" of a computer system.
e.g. "Write some music which pleases me."

It is not often stated, but we should bear in mind that not all design tasks are soluble.

Some problems may be soluble in theory, but紅 ejust too h江 din practice, or maybe just
too hard for the given designer.

[Sim 73] first characterised design tasks as ill-structured if they:

• had incomplete and ambiguous goal specifications;

• no predetermined solution path, and

• knowledge had to be integrated from multiple domains.

(Ger90]出stinguishesroutine design where all functions (goals) and structures are
known before design begins. The design space is well bounded before design begins.

This is simple constraint resolution or prototype instantiation. Non-routine design can

be出videdinto innovative design when the possible design structures紅 enot known and

creative design when neither structures nor the allowable design functions are known.

Innovative design operates in a well-bounded space, but adaption is required within some

of the parameters. Creative design operates in a more open space where variables can be

introduced and removed.

Arrangement or configuration tasks [MF89J江 edominated by subproblem sped且cation

and solution recomposition.

3

CHAPTER 2. NATURE OF DESIGN 4

Desi芦nis often regarded as a subclass of general problem solving and as such se紅 ch.and

exploration are important (search in the space of possible subassemblies or components).
However, this analogy is weak when the search space is ill-defined.

[Sim81], cited by [Gui90a], says that the design process -:is not a natural phenomenon
but a human artifact.

Some other factors in design are:

• Design is carried out in a large space ((Boo90]])

• Constraints may be explicit or implicit ([Rei65, Mos85])

• Constraints come from several domains ([Sim73, Mos85, Gui90b])

• Requirements may be incomplete, ambiguous and contradictory ([Sim73, RWR87,
Gui90b])

• Evaluation criteria紅 enot we且defined([Gui90b])

• Novelty is often involved, so there is no predetermined solution path ([Sim 73, Gui90a])

• Design is an exploration process: what is relevant only appears as design proceeds
([Ger90])

• The set of primitive components (and connections) for the solution may be 1紅 geand
only implicitly specified ([Cha90])

• Trade-offs between constraints - relaxing, modifying or rejecting some - may be
needed1 ((Cha90])

2 .2 Design as a multi-level activity

Design is a multi-level activity. At each level we :find:

• Different problems

• Different processes

• Different sources of information

• Different models (and structures)

• Different goals and different forms of learning

and there is also activity between levels. For example, a "design team" is an entity which

needs to le江njust like a "designer" does.

The design process appears to be carried out at a number of levels. (NC85, (unread)],

cited in [Lew90, Gui90a], partition human behaviour in general into生

• very short term - explicable at the neural processing level.

1 Need to separate design problem characteristics from design process characteristics.

2These, and :finer, categories are crucial. Automated support for design activities depends fundamentally
on the kind of behaviour we want to support. This grading can be carried upwards if we consider team
and group work. We need to indicate what the most significant problem for design is at each level.

CHAPTER 2. NATURE OF DESIGN 5

• short-term - explicable by "conventional psychology".

• longer-term - explicable by bounded rationality色

• very long-term - explicable by social and organisational theory.

A similar set of levels is provided by [RLNM91] who also cite [New90, (unread)]:

Rational band > 10sec
~lOsec Goal attainment

Cognitive band ~lsec Simple operator composition

~lOOmsec Elementary deliberate operations
~ lOmsec Symbol accessing

Neural band < lOmsec

Communication is vitally important. This must occur both between levels and also

within a level. As examples of the latter: at the cognitive plan level, a problem can be split

into subproblems and their solutions recombined; at the group level, a problem can be split

between a number of designers and their solutions combined. Communication is necessary

whether the subtask execute in parallel or nor and whether they are peer or specialised

subtasks, as for example in the relationships between human designers and computer

design. Communication is thus a necessary consequence of design control processes (3.3)
and relies on information structures (4).

2.3 Classifying・ 1nformat1on sources

Information sources used by designers have been documented before, e.g. [Gui90b] who

identi:fied the following "knowledge domains":

• Problem domain

• Requirements and their elaboration

• Design solutions, their representations, simulations and evaluations

• Design strategies, methods and notations

• Problem$← olying and-software design schemas

• Problem s~iving and design heuristics

• Preferred evaluation criteria

This work is wider, firstly because it goes beyond the human-centered idea of "knowledge

domain", and includes extern・al sources of information and secondly because we wish to

show that there are many ways of classifying information sources. There are questions we

should ask about each of these sources:

Location Where is the information stored

3Bounded rationality is itself explained by the interaction of rational endeavours and basic psychological
mechanisms.

CHAPTER 2. NATURE OF DESIGN 6

Storage How is the information stored (and its relation to other information and infor-

mat10n sources)

Acquisition How it came to be stored there (for humans: how it was learned; for external

media: how it was written)

Retrieval How is it retrieved (e.g., searching method, keys)4

Use How is it cognitively (or otherwise) used5

Stage What part of the design process it is used in

Limitations Limitations on any of the above, e.g. the potential for cognitive overload

These questions implicitly define classification schemes and they are also questions we

should ask of any computer support system.

For example, problem dom叫nknowledge and solution notation knowledge may be

stored in the same way (they are both example of domain definitions (2.7)) but are used

in very different ways.

We can .break knowledge sources into two big classes:

• a priori knowledge, either explicit or implicit. This includes previous knowledge and
knowledge of the problem specification and environment.

• working knowledge, for example that used to store partial solutions.

A priori knowledge is just a source for designers while working knowledge is both a source

and product.

2.4
．

Domains

A domain is a space, a part of the world isolated from the rest for separate treatment.

[GC88] give examples of domains:

Technology domains e.g., 出stributedsystems, scheduling systems, algorithms, databases

Application domains e.g., resource allocation systems, inventory control systems

Problem domains e.g., elevators, banking, libraries

Domain knowledge can occur at varying levels of detail. It can be declarative or
procedural and may be stored in various ways, for example, in books as de:finitions and

出scussions(2. 7), as general knowledge in humans as design schemas (4.3), and in machines
as domain models (4.2), or as exemplars (2.10) or episodes (4.6).

2.5 Problem domain

[Gui90b, Gui90a] defines the problem domain as:

A subset of the real world with which a computer system is concerned, but not

the design solution describing the computer system itself.

This has also been referred to as task domain and application domain.

屯oth"structure" and "function" are used in retrieval of design knowledge.

5This particularly concerns the cognitive level at which it is used, e.g. low-level, unconscious, automatic;
high-level, conscious; social, managerial. See (3.1).

CHAPTER 2. NATURE OF DESIGN 7

2.6 Solution domain

The key focus in the solution domain wi且bethe notation for the representation of solu-

tions.
[Gui90b] says:

Design notations play the dual role of vehicle for expressing the design so-

lution and of operators for developing the solutions. Simulations of design

solutions ... helped uncover [inconsistencies and incompleteness of the solution].

The solution simulations often triggered the inference of new req直rementsand

the discovery of partial solutions.

Imaginal representations [GP89] aid simulation and analogical reasoning.
The solution representation must support solutions and partial solutions and their

(mental and external) simulation, evaluation and alteration. Managing an evolving solu-
tion is considered by [RA90]. The representation should record: issues considered, reso-

lutions of issues and open concerns. The mechanism which produced the decomposition

(maybe a design schema (4.3)) can be used to organize, store and retrieve intermediate

solutions.
The urge td generate code as soon邸 possible6can be seen邸 anattempt to shift the

storage of solution issues from limited memory (4.1) to an external medium. However,

a programming language is not a good medium for the expression of high-level solution
designs 7 and there will certainly be a lot of "decompiling"8 up from the language to the

high-level issues.

2. 7 Dom_ain definition, use and implementation

Domain de証itionsare the "what" p江tof a dom益n.Examples are:

• Pascal (User Manual and) Report

• CCITT protocols

• UNIX system calls

• Rules of chess (and go)

However, there is a lot of other useful information about dom叫nsin the form of descrip-

tions and discussions of domains. Domain discussions come in two forms: how you can

implement this domain, using other domains, and what you can implement with this do-

main. Domain models (4.2) usually contain how information, but in bottom-up design

what information is much more important.

Examples of use of domains are:

• Pascal User Manual (and Report)

• Using CCITT protocols

6Need some references here.

7Big questions are: what needs to be represented and designing an external medium which is both
expressive and :fluid/mutable/malleable/low-viscosity.

8See e.g. [GBP87].

CHAPTER 2. NATURE OF DESIGN 8

• Programming the UNIX system

• Openings (joseki) and endgames

Examples of implementations of domains are:

• The Pascal P4 Compiler

• Implementation of CCITT protocols

• The 4.3BSD operating system

• Implementing competitive games programs

Discussions usually involve a goal-directed element. The goal-directed element may be

a solution description for a problem: to implement a恥itetable in Pascal, use an array.
M皿 ydomains are not as well defined as those given above. Such domains cannot have

formal definitions, but they can have出scussionsof use, e.g. the books:

• Ben-Ari, Principles of Concurrent Programming

• Gries, The Science of Programming

Knowledge of how to use a domain is very important when trying to understand a
problem involving that domain. The Draco system [Nei84] attempts to ease programming

by providing models of domains, such as basic algebra, along with tools for manipulating
e羽汀essionsin that domain.

When a domain does not have a good definition, it may be i且ustratedby examples
(2.10) or maybe scenarios (2.11).

2.8 Design history

A design history is a record of the activities and products of a design project.
These histories are records of the external aspects of design experiences汽sothey can be
at various levels of detail. The least detailed, and most usual, is simply the :final product of
the project: a program. More detail may be added in the form of req直rementsdocuments

and intermediate design steps. A significant step is to include details of design decisions
(2.14) relating intermediate design stages. These decisions represent relatively logical and

presentable summaries of internal (rather less logical) decision procふsses.Some of these
internal activities can be recorded by asking the designer to articulate his thoughts. The

value of such records is discussed in [ES80, (unread)].

2.9 D ・es1gn rationale

[PC86] argue for a document which represents the current state of the design, not the path

followed to reach that state. It should represent the design as if it had been produced in

an idealised, systematic way. As such, it may be useful for learning about a design. Such

a document is certainly useful, but it is only a fragment of a design history (2.8).

Such a design mtionale represents an Orwellian-Stalinist view of history: it is an

idealised view of how and why the system was built.

9New topic?

CHAPTER 2. NATURE OF DESIGN

，
 The importance of documentation is emphasised by [PC86] who see documentation as

the "medium of design". This relates both to design decisions 2.14江 dto the importance
of documentation in communication 4.4.

2.10 Examples

Examples can occur in many forms:

• code (for dispatching in the UNIX kernel)

• algorithm sketch (for heap sort)

• element from set (e.g., "blue" from the set "colours")

• deriving a loop invariant

Examples are specialisations. We should not really say "example" but should say "example

of ... " where " ... " represents the abstract domain of discourse. Note that we can have

examples of processes as we且asof artifacts.

Given an abstract description of a domain (e.g., sorting) it may be hard to conceive of

a specific instance from that domain, i.e., to specialise. On the other hand, given a specific

example (e.g., bubble sort) it may be hard to approp付atelygeneralise to the concept of
sorting. This is because it must be done by non-rational induction. We must give both

abstractions and examples so users can build appropriate mental models. Where a domain

is ill-defined, we may only have examples and no domain definition.

Scenarios (2.11) are examples.

How are examples used? They are found by analogy (the analogy is done at the

abstract level) and then modified.

2.11
．

Scenario

A scenario is a test case, or example, or script for a system. A scenario describes a sequence

of activities that a system must perform. Scenarios may be given explicitly in the problem

requirements (2.12) or they may be retrieved from episodic memory (4.6)邸 implicitor

added requirements, particularly if they are problem domain scenarios. Scenarios can aid

the underst,anding of a system speci五cationbecause retrieval and simulation of them can

add new requirements or help to structure requirements.
[KN87, (unread)] discuss translating scenarios into specifications.

[Gui90b] says:

Designers interleave problem domain scenarios with solution development through-

out the design process. These problem domain scenarios lead to the unplanned

discovery of new requirements and of partial solutions in various points and

abstraction levels in the solution decomposition.

The retrieval and simulation of problem domain scenarios serve several purposes.

[Gui90a, Gui90b] list:

• Simulation to get new ideas. A similar idea w邸 notedin [JTPA81] and called
problem solving by understanding. Novices can be expected to do this.

CHAPTER 2. NATURE OF DESIGN 10

• Disambiguate requirements.

• Confirm the correctness of a discovered partial solution. [KN84] note this behaviour.

• Confirm the relevance of an inferred requirement.

2.12 Requirements

Requirements define the goals of a system. They form the starting point of a design task
(2.1). Evaluation criteria are an implicit form of requirement.
Early requirements for software systems may be incomplete, ambiguous and contradic-
tory [RWR87, Gui90b]. Because of this, we need to elaborate requirements [Gui90a] by

inference of implicit requirements and addition of new ones.

[Gui90b] says:

Inferred and added requirements mainly serve two purposes:

1. they lessen the incompleteness and ambiguity inherent in the specification

of the req111rements; and

2. they decrease the range of possible design solutions by acting as simpli-

fying assumptions.

Inferred requirements are implicit in the requirements and real-world knowledge, but

must be deduced and made explicit. Added requirements are desirable additions.

[Gui90a]:

Inferences and additions of new requirements occur throughout the design so-

lution development and are triggered from many sources ... [including] associa-
tions between related concepts10, external出agrammaticrepresentations, and

prerequisites for the application of a design process strategy.

Inference and addition of requirements can lead to rapid shifts in design control (3.3).

The requirements can be stated in a number of ways, including [BKSZ90]:

• specification

• constraints

• scenar10s

This is an idealized view. The specification should be a complete description of the system
behaviour with the constraints and scenarios aiding understanding, and thus solution

development. The following satisfaction conditions should hold, where X 2 Y means X
satisfies Y:

• specification 2 scenarios

• specification 2 constraints

• scenarios 2 constraints

105 preadmg activation.

CHAPTER 2. NATURE OF DESIGN 11

but since the requirements are ambiguous and incomplete these relationships may not

hold. Part of the design process is to modify the requirements so that they meet these

relationships. However, we are then tackling a different design task, and only the social
context in which the task arose can determine whether this is an appropriate course of

action.

The requirements may contain constraints (2.13) which are of the form "how a sys-

tem is built" rather than "what the system does", for example, bottom-up requirements.

These requirements may not be visible to the average user, but they will be visible to the

maintenance and accounts departments of the customer. Thus we really have multiple

"users" of a system, with different views and overlapping requirements.

It is possible that such requirements, especially if they are low-level ones constraining

our implementation, will force or influence earlier refinement decisions. These low-level

pressures can sometimes force their way all the way up to the system specification and

requirements. This is an example of where building a system is an exercise in discovering

consequences.

Part of software system design is requirements validation against user's desires [RW~87].
This is done in several ways, e.g. simulation, symbolic execution, analysis. This is a p迂

ticular case of the more general validation involved in design (3.2).

2.13 Constraints

Constraints represent limits cin the regions of space which are valid for a given design task.

Constraints can be stated riot just in terms of the product of design, "it has to be
black", but also on the design process itself, "do it in less than a week". They can occur

at any level of the design process.

(GCK87] list the following examples of constraints, many of which will be implicit:

• the problem

-(perhaps informal) functional sped且cation

-limitations in solution environment

-performance and usage requirements

-form of the artifact (e.g., maintainability, reliability, simplicity)

• the design process itself

-time available

-allowable costs

-tools available

-organization (team, methods, social, marketing, group)

• the designer

-knowledge of application domain

-knowledge of system class (i.e., specialized design schemas)

-design process knowledge (i.e., design meta-schema)

-cognitive and motivational attributes

CHAPTER 2. NATURE OF DESIGN 12

Implicit constraints may come from the domain knowledge of the designer rather than

the problem speci:fication, e.g. safety issues. Making them explicit is an important part of
the design process and is necessary for effective communication (4.4).

If constraints are, or can be, formally stated, then we may be able to prove they

hold for a given system. Theorem positing and proving could be major tools in problem

understanding.

2.14 Design decisions

A design decision is a tentatative commitment to a smaller design space11. It is often

made by choosing one space from a set of alternatives.

[BC89, 2.2] say:

The process of design can be thought of邸 searchingfor a series of design
commitments that result in a goal state.

Design decisions occur at all levels of design. They do not just apply to design products

(4), e.g. "let's use q直cksort",but also to design processes (3) and in particular design

control (3.3), e.g. 勺et'stry functional decomposition".

Design decisions are the product of the interaction of design control (3.3) and a partic-
ular problem (or subproblem). Design decisions, once taken, can later be revoked. [BC89]

report that [MMW85] discuss a propose and revise strategy. A commitment is proposed

but may later be revised if it was no good. Since design decisions are tentatative, we must

record them to make it e函 erto revoke them later [PB88]. [Fre75], cited in [Fre83] as
promoting the recording of design decisions and [Fre83] as discussing-representations.
A justification expl叫nswhy a particular decision w邸 made.In order to make decisions

comprehensible, justi且cationsmust also be recorded. In order to make decisions easily
revokable, rejected alternatives12 should also be recorded.

[Jac83] lists some properties that different decisions have:

• How liable is it to error? ...

• What is its subject matter? .. .

• How easily can it be made? .. .

• How soon will we血dout if the decision is made wrongly? ...

• How much later development depends on this decision? .. .

• Does a choice here imply some other choice elsewhere? .. .

• Is this an independent decision, or must it be made in conjunction with others?

[Fre83] says that each decision should be evaluated邸 toits impact (if any) on each
goal and the relative importance of goals, and:

We五rstidentify what decisions must be made, then generate alternatives

among which to decide, next evaluate these alternatives to form the basis
for a rational decision, and且nallychoose one alternative.

11This definition is entirely inadequate.

12Question: How are alternatives generated?

CHAPTER 2. NATURE OF DESIGN 13

Design decisions皿 dsolutions (2.6), belong in the realm of working rather than a

priori knowledge (2.3).

Chapter 3

Processes of design

Wewi且nowlook at some of the processes involved in design, especially cognitive processes

and control.

3.1 Design process models

According to [FD89, (unread)], cited in [TVTY90], design process models can be catego-

rized into:

descriptive How design is done. What design is from a theoretical view. We have
examined the general nature of design in (2) and in this section we examine processes

of design.

cognitive Explains the cognitive mech叫 smswhich exhibit themselves as the designer's

behaviour, e.g. [Gui90a] accounts for deviations from "balanced development". There

should really be many models here, explaining the many levels of the design process:

neural, cognitive and social.

prescriptive How design should be done, e.g. top-down design. These models have gen-
erally been based on observations of the nature of design, e.g. complexity control.

They should really also consider limitations involved in the various levels of design,
e.g. cognitive limitations and social communication limitations.

computable Computer models or simulations of design processes.

3.2 Design activities

There are an enormous number of different activities involved in software design, many

interconnected, many overlapping and with an inconsistent nomenclature.

[Mah90] splits the general design process into 3 (perhaps recursively applied) phases:

formulation Defining the problem

synthesis Identifying solutions consistent with requirements

evaluation Checking a design description for conformance with requirements

14

CHAPTER 3. PROCESSES OF DESIGN 15

At a very gross level, this set of 3 phases is acceptable. However, it may be better to

deliberately introduce the idea of feedback. This allows us to show that earlier parts of

design are used in later parts of design.
Here we list the relatively high-level and directed stages of software system design

using the above categories and feedback:

formulation requirements1 acquisition, understan出ng,specification, structuri~g and prob-
lem selection

synthesis kernel solution generation, synthesis, programming, integration, documenta-

tion

evaluation evaluation, testing, validation, verification, criticism, review, consistency and

conformance checking

feedback refinement, elaboration, maintenance, evolution, debugging, adjustment, re-

design

One important development of this simple mo delis as follows. A problem is formulated,

several solutions are・synthesised and then comparatively evaluated and the best solution

is adopted. See the design cycle of [TVTY90]. This can be seen as a recursive application,

where the subproblem is comparative evaluation.

[BC89] suggest that design proceeds by the cooperation of several more specific problem

solvers (or subprocesses or subtasks). These can be split into two groups: those that
"generate" design commitments and those that "test". In the :first cl邸 sare:

• decomposition

• use of design plans (skeletons)

• critiquing and mo出fyingalmost correct designs

• constraint processing

These require some "auxiliary" processes:

• subproblem constraint generation

• recomposition _of subparts

• design verification

• design criticism

[Fre83] lists:

Discovering the structure of the problem means understan出ngthe interaction

between [the most significant] factors2 and the desired functional characteris-

tics of the system.

1requirernents can be considered the top-level problem

2Deterrnining relevance and importance seem to be very important factors. We should try to compart-
rnentalise constraints.

CHAPTER 3. PROCESSES OF DESIGN

Review takes place at all stages of the development cycle of course, but it

is most critical to the design phase ... [It] goes beyond just determining if
something that has been previously spe且edout has indeed been done - it is

an integral part of the process of discovering the nature of the problem and

the proper structure of the solution.

It has been suggested that evaluation may not be needed if we have:

1. Produced a formal specification defining the problem, and

2. Used a sound synthesis method.

16

This is not true. A formal methodology can only constrain a finite, predetermined set of

characteristics. There will always be other, derived characteristics to evaluate. The use of
formal specification in design is discussed in [GT91].

Critiquing is a diagnostic activity, mapping from undesirable behaviour to the struc-

tures which generate that behaviour. Designs with causal indices that explicitly relate

structure and intended function are useful [GC89].

Verification involves ensuring that a design proposal meets its requirements. One

method is simulation: this requires component behaviour descriptions: it takes structural

descriptions and produces behavioural descriptions which can be checked against require-

ments.

3.3 Design control

Design control includes:

• focusing of the designer's attention, e.g. choice of strategy

• resource management e.g. time and cognitive load. [Gui90a] cites [Sim81] as dis-
cussing design as a resource allocation problem.

for this it has to

• represent goals and alternatives

• prioritise these

Design control focuses the designer's atten_tion and does resource (e.g., time, cognitive

load) management and monitors progress to a solution. It concerns:

• Which strategy should be used next.

• How long should it be used for

Part of its role is to prioritise constr叫nts,many of which will be implicit and not all of
which the designer can keep in mind at once (3.6). To do this it has to represent goals
and alternatives.

Design control can and does operate at a number of levels尺forexample, those listed
in (2.2).

3 An analogy to multi-level schedulers in operating systems is possible. We must also discuss control at
the group/social level.

CHAPTER 3. PROCESSES OF DESIGN 17

• At the bounded rationality level, resources are deliberately managed. At a high
level, design control can be conscious. Design methods (3.10.1) can be regarded as

well-structured, high-level design control strategies.

• Cognitive structures for design control are referred to as design meta-schemas by
[GCK87].

A particular designer may fail on a given design task. This may be because of inade-
quate domain knowledge or because of poor design control4 Thus, in a very loose sense,

design control can be regarded as heuristic because it does not guarantee success.

[Gui90b] says:

An aspect of the control of the design process is delaying五rmcommitment

to a design decision and re-evaluating tentative commitments as additional

information is acquired.

The fundamental challenge in the study of design control is the explanation of observed

behaviour. For this, we must consider the interaction of出仔erentlevels of control. ・One

particular observation we must account for is opportunistic behaviour.

[Gui90a] explain opportunistic design behaviour:

In terms of its behavioural manifestations, opportunistic design is design in

which interim decisions can lead to subsequent decisions at various levels of

abstraction in the solution decomposition.

Opportunistic design is characterised by on-line changes in high-level goals and

plans邸 aresult of inferences and additions of new requirements.

A blackboard-based model of opportunistic planning could account, parsimo-

niously, for both opportunistic and systematic design behaviours.

Opportunistic design behaviours, however, do not necessarily imply an oppor-

tunistic model of planning ... [And83] argued that behaviours that appear to
violate hierarchical planning may actually be due to simple failures of working

memory.

The latter can happen either by misremembering goals or forgetting deferred goals (3.6).

Now we will look at some models of multi-level control behaviour.

[TVTY90] distinguish between two levels in the design process: the object level and

the action level. The former concerns objects, their properties and their behaviours. In
the latter, the designer thinks about how to proceed, e.g. by selecting a knowledge base,

scheduling reasoning. In their model,reasoning in the former requires deduction, abduction

[Poo88, (unread)] and circumscription [McC80, Lif85, (unread)], but action level reasoning

only needs deduction, such・as rule-based reasoning lJecause (they say) most of this type
of knowledge is procedural.

[Gui90a]出scussthe difficulty of high-level control and the behaviour of low-level con-
trol:

皿structuredproblems, because of their ill-spe嘩 edgoals, prevent the deter-

mination of a single and stable high-level goal5 and of a corresponding initial

4What is poor design control?

5This sounds like a design process "important factor".

CHAPTER 3. PROCESSES OF DESIGN

hierarchical plan of actions to be executed throughout the design process. ill-

structured problems make a goal-directed, top-down process difficult. On the

other hand, human expertise is associated with the application of data-driven

rules. The interaction of the ill structuredness of a problem with data-driven

processing by experts is likely to induce the recognition of partial solutions at

various levels of abstraction prior to an overall solution decomposition. [This

supports] the hypotheses of Newell and Nii linking data-driven processing and

ill-structured problems. Information that become the focus of attention -par-

tial solutions, problem domain scen紅 ios,requirements and external represen-

tations - can trigger knowledge rules. As these data-driven rules are applied,

the problems become better structured. In fact, the data-driven recognition of

partial solutions is advantageous. The designer increases the number of con-

straints on the solution and decreases the daunting size of the solution problem

space at very little cognitive cost.

[Gui90a]

Designers tend to develop immediately the p江tialsolution corresponding to

the inferred -constraint, leading to a change in goal and a shift to another

part of the solution decomposition. Until a designer has discovered the design

solution decomposition, it is advantageous to evaluate immediately the impact

of a new inferred constraint on the solution rather than take note of it and

handle it later.

18

In a footnote in (3.11) we note the relation of rapid, opportunistic shifts in design

strategy to interrupt and prioritised systems. If we combine this with the multi-level
nature of design activities we get a multi-level prioritised system. The priorities should be

based both on the cognitive cost and the expected gain. This can have a high-level, goal—

directed top-down strategy but which also accounts for opportunistic behaviour arising at

lower-levels. Such a model is worthy of exploration and possible simulation to validate its

sufficiency. This explains the "interaction" noted above.

3.4 Cognitive level processes

Most psychological research on design assumes that humans build and manipulate mental

models (also: conceptual models or conceptualisations) which_represent the problem and

proposed solutions. These are models because they support some form of simulation.

[AS85] hypothesize that mental models may be formed of at least two representations:

one operational, supporting simulation, the other assertional.

A description of the human design process from [GCK87] is summarized here:

• Mental models are formed of the problem and solution. Often a kernel idea is rapidly
adopted.

• These are refined during design:

-The accuracy of the models (mental and otherwise)

-Their relationship

• Specific memory structures are used: to suggest solutions and to add problem con-
straints

CHAPTER 3. PROCESSES OF DESIGN 19

[Mah90] distinguishes 3 activities by the different kinds of design knowledge they em-

ploy.

• decomposition of complex problems into simple problems

• case-based reasoning which employs experience in the form of specific episodes (4.6)6
rather than general schematic (4.3) knowledge

• transformat10n

Fox, cited in [Ste90], lists other (higher-level) processes including: :filtering, analogy,

composition and constraint satisfaction.
We must identify the basic unconscious processes being used in the above stages of

design. Some of the following attributions come from (Gui90b]:

[New69, Nii86] the data-driven application of rules is fundamental to human abilities
to solve ill-structured problems such as design.

[And83] the use of data-driven rules has little cognitive cost, compared with goal-directed
behaviour8.

[RN81, SAE88] knowledge is abstracted from previous problem solving experience.

[GCK87] partial solutions are recognised at different levels of abstraction.

[Gui90a] the associative nature of human memory and spreading activation9 working

memory limitations.

Many researchers postulate an idealized top-down, breadth-first strategy for design

problem decomposition, e.g. (RA90, 2.2]. This is called systematic expansion by [AS85]
and balanced development by (G直90a]when subproblems are explored to roughly the same

depth.
An important aspect of observed behaviour to account for is deviations from systematic

expansion. This has been observed by:

[CTM79]

[JTPA81] who observed "critical component" deviations

(AS85] hypothesize this is needed so that solutions can be mentally simulated

(GCK87] who observed deviations due to problem exploration and serendipitous recog-

nition of known partial solutions

[Gui90a] thinks unbalanced development can occur when experienced designers already

have a good model of a system and when

6[Mah90) gives a lot of references on AI systems and case-memory organization and search but doesn't
directly tackle case-based reasoning as a model for design synthesis.

7With reference to grammars: [MR90)

8We must build our computer support systems so they provide more space for human data-driven
processing, while performing more of the goal-directed work themselves. Analogy with visual momentum
[Woo84).

, We should discuss this somewhere and put a reference in here.

CHAPTER 3. PROCESSES OF DESIGN 20

• there is novelty

• multiple knowledge sources are involved

• when a subproblem appears critical, difficult or has a known solution

3.5 Simulation

Simulation is the activity of exercising a model on some data and comparing the results
with another model. Thus it is an evaluation exercise. The differences can drive diagnostic

and corrective actions to alter the faulty model. Simulation can be purely symbolic or can

use scenarios (2.11).

[AS85], citing [DB81, RMG吋6,(unread)], suggest that a mental model is not runnable
until it has reached a sufficient level of specificity.

3.6 Cognitive level problems

We classify knowledge structures into a priori and working structures (2.3). We can
sep紅 atelyanalyse cognitive problems in these two strnctures10.

Concerning a priori structures, [GCK87, Section 8] say the main cause of design errors

are:

• lack of specialised design schemas

• lack of (or poor) design meta-schema

• lack of problem-domain (i.e., problem-environment) knowledge

and they note [GCK87, Section 8.2.1):

We hypothesize that the use of a meta-schema for design is particularly useful

if the designer lacks more specialized relevant design schemas.

The meta-schema is G直ndon'smodel of human design control (3.3). Design control occurs

at many levels, so even if we can't alter a poor designer's ment叫 designcontrol we can

provide control at higher levels, e.g. group control of which a computer system might be

part of.
Concerning working structures, one major source of breakdown is due to cognitive

limitations whereby even if all the constraints were explicit, the designer cannot bear
them all in mind at once, or forgets to come back and deal with them.
Mental models (3.4) are a form of working knowledge. One major problem is the diffi-
culty in returning to postponed t邸 ks- forgetting them. [AS85] suggested that concerns

arise during simulation (3.5) which are at the wrong level of detail, this sometimes cause

芦 ksto be repeated.

[AS85) observed the importance of external sources, notes, in this respect. Extensive
notes were made when designing an unfamiliar artifact in a familiar domain11, but few

10These seem to be cognitive structure problems. We must also analyse cognitive process problems, e.g.

non-logical reasoning.

11Because you know the domain, you know exactly which things to write down.

CHAPTER 3. PROCESSES OF DESIGN 21

notes were made when designing a familiar artifact in a familiar domain or when designing

an unfamiliar artifact in an unfamiliar domain12.

3. 7 Heuristics

Heuristics are rules of thumb that reduce the complexity of a problem. Heuristics do not

ensure success, but incre邸 eits likelihood.

[GCK87], citing [Jon80, Fai85], note 3 kinds:

General problem solving heuristics for example:

• consider a simpler problem,, maybe by adding simplifying assumptions or ig-
noring certain requirements

• search for a related (solved) problem

• decompose into subproblems

• if progress is slow, change viewpoint or explore the problem more

• try a new representat10n, e.g. draw a picture

General design heuristics for example:

• design the most~ritical component first

• keep the design solution邸 simpleas possible

• keep the design solution parts as consistent as possible

Software design heuristics These can be divided into application heuristics and design

technique heuristics. The former are b邸 edon heuristics of the form: if the applica-

tion is X, then use method (technique) Y. The latter are based on heuristics of the

form: if the software design environment is X, then use method (technique) Y.

3.8 Weak problem solving methods

Weak problem solving methods completely explore a given space, based only on the surface

structure of that space. They are domain independent problem solving schemes. They

include:

• generate and test

• means-ends analysis

This situation involves making decisions in an unfamiliar dom叫n. When only the

goal and available actions13 are known, and they lack additional knowledge about goal

decomposition or proposed action ranking. This situation is like classical puzzle problems:

problem domain represents the structure of the available actions and search methods are

the way space is explored [New80). [NS72) say they are operating in the basic problem
space.

i2B h ecause you don't know t e domain, you don't know what to write down. Part of your work is domain
understanding, and part is solution design.

13We may not know either of these!

CHAPTER 3. PROCESSES OF DESIGN 22

[BC89] note that weak problem solving methods can be useful in part of the design

process. For highly interdependent parameters, an initial heuristic guess is followed by

evaluation, assignment of credit (or blame) and adjustment. This could be a form of
hill-climbing and can be used in "tweeking" designs.

Use

[GCK87] say these can be resorted to when specialised design schemas are lacking, but

their large space of operation produces poor results [LRN8-6, (unread)].
[ES90] report that [Lar81] empirically investigated novices and experts solving difficult

problems. Novices did use means-end analysis but experts never did. [ES90] suggest that
maybe intermediate level problem solvers do mix general weak methods with remembered

dom叫n-dependentsolution methods.

3.9 Expertise

Expertise manifests itself in the出fferencesbetween expert and novice designers, and t祖s

is a particularly fertile且eldfor psychological experimentation.

A number of statements are made about what expertise involves:

(Gui90b] the application of data-driven knowledge rules

[ES90] having the appropriate domain-specific knowledge (citing [M~RH81, (unread)])

[GCK87] req直resdetailed knowledge of the many different domains and techniques in-
volved in design

[GCK87] a sop出sticatedcontrol of the design process

[GCK87] the ability to consider multiple alternatives before adopting an initial solution

kernel

[LaF89] not so much the ability to solve problems but rather the ability to devise (or
revise) problems that五tthe solutions they already have (citing [Scr85, (unread)])

[JTPA81] experts experts engage in more thorough decompositions

Many authors conject at how domain knowledge is stored in experts and novices:

[ES90] citing [CFG81, SH82] and [AS85] cite [Ade81, (unread)]. The general view is that

novices only have structures of low-level, concrete, surface features, while experts have
structures involving both abstract and concrete features.

3.10 Design methods, techniques and tools

The distinctions made in this section are mostly derived from [Bj087].

CHAPTER 3. PROCESSES OF DESIGN 23

3.10.1 Design methods

A design method14 is a set of guidelines for selecting and sequencing the use of design

techniques (3.10.4) and design tools (3.10.2) in order to construct an artifact. As such, we

can regard them as we且-structured,high-level design control (3.3) strategies.

[Cha90] says:

A method can be described in terms of the operators it uses, the objects it oper-

ates on, any additional knowledge about how to organize operator application

to satisfy the goal ... a set of related proposals about organizing computation.

[Gui90b] says:

A design method provides a sequence of operators and associated tests to apply

these operators, for the transformation from an informal specification of the
requirements to a design solution. This knowledge is specific to software tasks,

but independent of the problem domain. Design methods and design notations

can be part of the knowledge searched during design豆

[Fre83] says that a design method specifies three things:

1. What decisions are to be made

2. How to make them

3. In what order they should be made

He applies these parameters to: top-down, outside-in, inside-out, bottom-up and most-

critical component first methods.
Ex皿 plesof design methods are:

• JSD

• VDM

• structured design

• top-down or stepwise refinement

• object-oriented design

[Fre83] indicates that different design methods are more or less algorithmic''from

precise algorithms on the one hand to loose collections on the other". Software design

methods tend to be more heuristic. Many design methods are very vague and poorly

defined, yet are frequently used. Design methods, however, frequently use non-constructive
operators, for example "then find a widget such that it meets constraints X, Y and Z".

JSD follows certain methodological principles[Jac83]:

• Easier decisions should be made before difficult decisions

• The most error-prone decisions should be deferred as long as possible

14 Language note: methodology is the study of methods.

15Such a search and choice is a matter of higher-level control.

CHAPTER 3. PROCESSES OF DESIGN 24

• Implicit decisions should be avoided

• If a decision is error-prone, it should be subjected to the earliest possible confirmation
or refutation

• Whenever possible, decisions should be independent of one another

[Cha90] discusses propose-critique-modify (PCM) methods. He discusses 3 groups of

methods for solution proposal:

• problem decomposition / solution composition

• retrieval of cases from memory

• constraint satisfaction ([Ste81]) (only useful on small, well-defined spaces)

As we have already noted when discussing weak problem-solving methods (3.8), decom→
position and case-based methods reduce the search space by using previously compiled

knowledge.
[Mah90], using rather flexible terminology, says that design methods, such as those

described in [Ale67, Jon80, 1S81, Hol86, (unread)] prescribe what a designer should do,

but not how. She says that the decomposition model of design follows出rectlyfrom~esign
methodology and that specific languages have been developed for machine representation of

knowledge to support this method. "Decomposition" can be of either objects or functions.
Problem decomposition maps a problem to a set of subproblems. There may be sev-

eral possible decompositions, so a choice is needed. A choice is also needed in the order
in which to tackle subproblems and this often depends on the dependencies between sub-

problems. Constraint generation (from problem constraints to subproblem constraints)
this may alternate with partial design of others involving commitment and backtracking,

e.g. propose and revise [MMW85].
At one extreme of decomposition methods we find transformation methods [Bal81] -

the human often resolves control issues.
A special case of decomposition knowledge is a design plan which specifies a sequence

of steps to produce a design - it is a precompiled partial solution to a design goal [Fri 79,

Ric81, JS85, MDM86, BC89, Cha90].

3.10.2 Design tools

Design tools are such things as design notations (3.10.3)皿 dclerical aids to support a

design method (3.10.1) and its design techniques (3.10.4).

3.10.3 Design notations

Design notations include:

• Data孔owdiagrams, state transition diagrams, structure charts

• Pseudocode, Pascal, predicate logic, CSP

They allow for the expression of system specifications and design solutions, and in this
regard they are used externally.

CHAPTER 3. PROCESSES OF DESIGN 25

3.10.4 Design techniques

Design techniques紅 eprinciples. They apply to different p叫rsof steps in a design. Ex-

amples of formal techniques are those used to:

• specify abstract definitions

• transform these into designs and code

• prove such transformations correct

• disch四geproof obligations

[Bj087] suggests there are many well developed (formal) techniques but not enough work

has concerned putting these together as design methods (3.10.1).

3.11 L earning

There are several classes of lear直μgrelevant to design. We can distinguish modes of

learning by whether they apply to working or a priori knowledge (2.3):

working Learning relevant to the curr~nt design project, in particular the discovery of
new knowledge and the creation of solutions.

a priori Learning relevant to later design projects, i.e. experience (4.6) including:

• generalisations, e.g. the development of design schemas (4.3)

• specific episodes
. -- -- -- -- - - ---- - - -- -- --- --- -- - - -- -- -- - - ---- ----- - -- - --- -- - - ----

[Gui90a], citing [KN84], says knowledge discove内 is:

Characterised by the sudden emergence of new knowledge, without apparent

planning, which subsequently plays an important role in the solution attempt

[ES90] say that at the start of problem solving:

Experts first engage in a kind of qualitative analysis [Lar79]. This qualitative

analysis was marked by domain inferences that generated additional useful

infor-mation abou,_t the problem situation that was not explicitly stated in the

problem statement. [LMSS80] label this a "knowledge development strategy",

because it leads to an enriched representation of the problem situation that

clarifies the underlying principles involved in the relevant solution method.

This reminds me of Jones's work [Jon78].
Knowledge discovery can lead to the addition of new requirements or new partial

solutions and can be followed by drastic shifts in design activities.

• Simulation of solutions can lead to recog直tionof a solution from another part of the
problem.

• A requirement can lead to the recognition of a low-level partial solution before solu-
tion decomposition.

CHAPTER 3. PROCESSES OF DESIGN 26

• Simulation in the problem domain can lead to recognition of a partial solution in
another part of the problem.

The rapid shift in design control (3.3) activities accompanying discovery of partial
solutions, rather than making a note and deferring it, can be accounted for [Gui90a] by

the fact that partial solutions can be easily retrieved and reused and immediately add

additional constraints to the problem詞

[ES90] say:

Skill acquisition can be regarded as a type of inductive learning, because every

new episode of performing some task or solving a problem can be viewed as

an example. . . Two very general learning mechanisms - generalization and

曲 crimination- are part of most skill acquisition systems.

Learning is a matter of tr・ansferring information between the various domains we have

identified. On the way it is processed:

• specialised

• abstracted

• used to make inferences (proofs, new knowledge)

• cross-referenced

[And82] proposes a model (ACT) for skill acquisition. There are two major stages:

A declarative stage in which facts about the skill domain are interpreted and a

procedural stage in which the domain knowledge is directly embo出edin proce-

dures for performing the skill ... Knowledge compilation is the process by which

the skill transits from the declarative stage to the procedural stage ... Once pro-

ceduralized, further learning processes operate on the skill to make the pro-

ductions more selective in their range of applications. These processes include

generalization, 出scrimination,and strengthening of productions.

the most notable features of this theory are:

• The interpretive mechanisms which exists are general purpose and are not domain
specific

• Knowledge compilation occurs whilst solving specific problems using the interpretive
mech年 SID17

• Generalisation occurs after proceduralisation

This should lead us to understand that part of the use of external design media (e.g.

books about Pascal) is for interpretive purposes. For inferencing, [HRW79] argue external

sources are weaker than internal ones.

16This sounds like a high-priority interrupt, or process, within the control structure. Perhaps design
activities can be prioritized and addition of constraints is high-priority.

17This suggests that a machine must "learn" rather than be "taught" knowledge (at least compiled
knowledge). The Soar system [RLNM91] also performs its generalisation, or chunking, while engaged in
problem solving. Winograd and Flores [WF86) argue the impossibility of this for real-world domains.

CHAPTER 3. PROCESSES OF DESIGN 27

The creation of schemas, schema-abstraction or prototype formation are discussed in

[HRHR77, MS78, AKB79, EA81, (unread)].
Schank has worked on learning based on reminding. Explanation plays a major role
[Sch86b] and [Sch86a, (unread)}.

..

Chapter 4

Information structures for design

Cognitive sources of knowledge must either be innate in humans or learned (3.11). There

are a number of models of aspects of human knowledge. two w出chfocus on learning are

those of experience (4.6) which discusses direct encoding of episodes, and schemas (4.3)

w虻chdiscusses generalisation of knowledge. Focusing more on the use of knowledge we
have heuristics {3.7), weak problem solving methods (3.8) and design control (3.3).

4.1 Memory

Psychological models of memory were split into semantic memory (Qil68] and episodic

memory (Tul72, Tul83]. Schank [Sch81] proposed conceptual memory which attempted to

integrate them.
It's unclear to me that there is a discontinuity for two reasons: specific episodes are

just one end of a continuum of specificity, the other end being very general knowledge;
secondly, episodes may well be retrieved via schemas anyway, e.g. MOPs (4.6).

4.2 Domain model

A domain model is a representation of features of a domain and the relationship of that
domain to other domains, possibly refinement relationships.

A number of domains have been modeled or suggested for modeling. The following list

is derived from [GCK87) and [RWR87):

• communication systems

• resource manage~ent systems, e.g. inventory control systems

• scheduling systems

• distributed systems

• tracking systems

As an example of the kinds of t出ngsw比chneed to be included in a domain model
[Fic87] discusses the storage and use of a model of the domain of resource management

systems. T出sincludes the concepts (with examples):

resources physical resources, borrowable resources

28

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN

resource depositories buildings, class rooms, libraries

resource managers staff, editors

resource users attendees, students, borrowers

resource operations add resource, remove resource

usage scenarios resource browsing, resource acq直sition

security operations give authorisation, check authorisation

resource constraints maximum size, time limits

resource constraint management waiting lists, fines

queries resources by attribute, usage statistics

environmental aspects staff available, performance constraints

policies maximize available resources, maintain user privacy

29

Searching a design space clearly depends strongly on the representation used. There

are many representations that have been explored in AI and they c皿 notbe sharply

<listing直shed.

Semantic networks (first defined by [Qil68])紅 egraphs made of labeled objects and

relations (e.g. "is-a", "instance-of", "a-paヰ of")including the idea of inheritance of rela-
tions.

A frame system, [Min75], is a graph whose nodes are frames which have a number
of named slots or attributes holding information about an object. References are made-

to other frames by slots and a hierarchical structure and property inheritance can be
implemented.

Schemas (4.3) can also be used to model a domain. Prototypes is皿 othercommon
word.

Many of the AI systems noted in this section are attempting to provide comprehen-

sive, detailed, machine models, taxonomies, classi:fications of and processes of significant

domains. I have big doubts that this is or ever will be, possible, [WF86].

The Spark, Burn, Firefighter system of [MD応 90]includes a library of mechanism1:

Spark wi且select,from a libr紅 yof pre-defined computational mechanisms, one

or more mechanisms that c皿 collectivelyproduce the results desired.

In his presentation, McDermott said a collection of about 100-1000 domain-independent,
general purpose, abstract, mechanisms would cover most problems, giving as examples:

• classification

• compar1Son

• selection

• transformation

1But does it have domain models, or are these implicit in the computaiional mechanisms?

．．
>

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN 30

They currently have 17 such mechanisms.

The Requirements Apprentice (RA) [RWR87] is based on having a library of cliches
in the particular domain required:

Formally a cliche consists of a set of roles embedded in an underlying substrate.
The roles of a cliche are the parts which vary from one use of the cliche to the

next. The substrate of the cliche contains both fixed elements of structure
(parts that are present in every occurrence) and constraints.

釦 examplecliche might be "sequential search". [Wat85] says:

Design decisions will be introduced into the new system by making them the ba-

sis for the organization of the cliche library ... While there are several thousand

important cliches, there are probably only a few hundred design concepts ... It
is the design concepts which form the key vocabulary which the programmer
and the system must have a mutual understanding of.

[Ger90] discusses a particular kind of design schema, design prototypes, which derive

from work on prototype theory [0S81, (unread)]2 and scripts [SA75, (unread)]. It brings
together all the sources of knowledge for a specific design situation.

Retrieval

It is possible that several domain models may be retrieved. A control mechanism for

selecting between them is needed.

In recovering from failure of a plan during design, [BC89, 4.2.2] suggest that pl皿
redesign be used fust. If this doesn't work, plan selection is used, i.e. the current plan is

abandoned and a new one adopted.

Use

Domain models are used by case-based design methods (3.10.1). This use of domain models
can be sharply contrasted with the use of weak problem solving methods. The latter are

based on surface structure, are brute force and completely cover a space. The former are
compiled models of deep structure, allowing critical and rapid access to relevant parts of

a space.

Domain knowledge can be used during at least two different design activities:

elaboration A domain model is a more general case of a particular problem. By]Jlatchlng

in the problem, we can get suggestions of missing objects, actions and constraints
and of conflicts.

refinement A domain (e.g. storage data structures) contains heuristics which allow us
to make refinement choices.

[Bar87] notes the ways in which app且cationdomain and target software knowledge are

used:

• decision making

• inference and analysis

• communication

2In prototype theory, membership of a concept is determined by similarity to the concept's best
exemplar.

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN 31

4.3 Design schemas

A schema3 is a generalised, abstract knowledge structure, rather than a record of a par-

ticular event or experience. Schema theory has developed in two areas: in AI, which seeks

clustered knowledge representations such as frames [Min75] and scripts [SA77], and in

research into hum邸 memory,e.g. [AH83] who say:

It is widely agreed ... that the term schema has no fixed definition. It is most

often used to refer to the general knowledge a person possesses about a par-

ticular dam叫n.A schema allows for the encoding, storage, and retrieval of
information related to that dom叫n.

[THR79] provide a good, general introduction; they list the following generally agreed
properties:

1. A schema represents a prototypical abstraction of the complex concept it

represents ...

2. Schemata are induced from past experience with numerous exemplars of

the complex concept it represents ...

3. A schema can guide the organization of incoming information into clusters

of knowledge that are "instantiations" of the schema. This represents a
goal-directed focusing of processing by active memory schemata.

4. When one of the co~stituent concepts of a schema is missing in the input,
its features can be inferred from the "default values" in the schema ...

[GC88] (and [GCK87, Gui90b]) discuss specialised design schemas. I think the word

"specialised" is redundant because schemas are always representations of p平 iculardo-
mains. "design schemas"紅emore specific than "schemas" because the knowledge they

encode includes design knowledge.

Sirnil江 ideas紅 ediscussed by (HL85, Lub87, LH87, DS90]. Programming plans, which

represent stereotypic action sequences in programming, are related.

A memory or domain model does not need to have an explicit notion of schem邸

Production rule systems, and in particul江 Soar[RLNM91, 4.3.1], use more primitive
representations which may be built dynamically into schema like constructs.

A design schema h邸 twoparts:

Preconditions for this design schema to be valid. These紅 ein terms of the problem

dom叫n.

Solution plan a skeleton outline of how the problem should be decomposed.

[Gui90b]:

On the b函 sof [the preconditions] the design schema is retrieved, in a data-

driven fashion. The design schema also specifies a high-level decomposition of
the software system into subsystems ... Once the design schema is retrieved,

it sets up a go叫 directedtop-down processing (in the sense of building the
system fo且owinga known structure) to design each of the subsystems.

3Language note: the plural of schema can be schemas or schemata.

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN 32

[Gui90b] argues that design schemas can vary in complexity and granularity. She uses

the terms data-driven rules, knowledge rules and knowledge schemas in similar ways.
The MOPs model4 of [KSJ86] is related: the model integrates the storage of episodes

(4.6) and schemas. Knowledge is organized around abstract commonalities and differences.

MOPs are generalized episodes compiled from in出vidualexperiences. In出vidualexperi-

ences are indexed within these structures by features which出fferentiate them. When two

experiences differ from a generalized episode in the same way, reminding occurs. Anal-

ogy occurs when predictions based on the first episode are used to analyze a new one瓦
Generalization occurs when similarities between two episodes are compiled to form a new

schema.

Schemas are often used as domain models (4.2). It is possible that schemas can be
used for other purposes, and dom叫nscan certainly be modeled in other ways. It is also

unclear that human schematic knowledge represents dom叫nknowledge.

4.4 C ommun1cation

If we are to build multi-age虹designsystems6 then one of the major goals is to make
implicit problem constraints explicit so:

1. the other active entities can use and benefit from them

2. by understanding what these constraints are, we can understand how they are used,

and thus more about the design process.

Concerning structures built up during the design process, [RA90, 4.3] citing [Bar83,

(unread)] say:

Researchers in cognitive science point to the ubiquity of ad hoc categories,

highly contextualized concepts that are created on the spot, in the service of
immediate needs.

This may make the communication of design ideas from man to computer difficult.

4.5 Common knowledge

Common knowledge is vital for communication (4.4).

[Wat85] in the context of the Programmer's Apprentice (PA) and KBEmacs systems,

says:

The key to cooperation between the programmer and the assistant is effective

two-way communication - whose key in turn is shared knowledge. It would be
impossibly te出ousfor the programmer to expl叫neach decision to the assistant

from first principles. Rather, the programmer needs to be able to rely on a

body of intermediate-level shared knowledge in order to communicate decisions

easily.

4(ES90] say MOPs originally came from [Sch80, Sch82, 応e81].

5See [Car86]

6This term is adapted from [Cur90] "multi-agent problem solving" and "multi-agent cognitive process"
terms. This may be group design, in which case all the agents are human, or a computer may act as one
of the agents, performing some active role.

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN 33

The setting of goals and the realization of those goals in a software design project are

usually performed by different people. Sometimes many people are involved. Sometimes

many groups are involved.
The common knowledge7 that these people share is beneficial because it can be used

to abbreviate, and more easily communicate, requirements and ideas. It is problematic
because people may think they share the same common knowledge when this is in fact

not true: they have different internal models of what this common knowledge is8. This

can lead to confusion, ambiguity, lack of or excess of communication.

Concerning external representations, [Gui90b] says:

4.6

Designers also relied on external representations to keep track of the req直re-
ments, but in this case, under the form of a list of notes. The notes were also

used to highlight the requirements they felt were most critical釘

Experience

恥perienceis a very important factor in design [Kol83b, (unread)], but this is a very

general term which needs to be re:fined.

Storage

[LaF89]:

Use

Experience gets encoded into episodic memory. In contrast to semantic mem-

ory, which can be described as the knowledge of facts, hierarchically arranged,
episodic memory is the knowledge of situations culled from experience.

[KSJ86] and [LaF89] identify two roles for experience in problem solving:

• refinement and modification of the reasoning process (with both successful and un-
successful experiences) by changing and elaborating existing memory structures

• via episodic memory it provides a set of exemplars: analogies to previous cases guide
and focus later decision making

A design case (this term comes from [Cha90]) is an instance of successful post design

problem solving, either by an individual or a commu直ty.They can be episodic (4.6) or

be the result of abstraction and generalisation of many episodes. Design plans can be

regarded as abstracted cases. They key issues is how to choose an existing c邸 eas close
as possible to the original problem. Goals must be prioritized and case indexed with

"features". Case-based reasoning is strongly connected to analogical reasoning.

7 Common knowledge is an external source of information, since it is created by a group.

8 An internal model of an external model. This is the same situation as we have with external devices
such as paper and computers.

, What kind of requirements are the most critical? The most abstract ones? The ones the designer
knows least or most about?

CHAPTER 4. INFORMATION STRUCTURES FOR DESIGN 34

Retrieval

How are episodes retrieved? [Rei86] says that to retrieve episodic information, one must

access the mental context used to encode the event (for example, constructing a plausible

scenario for an occurrence of that type of event) and that the processing is not purely

automatic but requires strategic reasoning mechanisms to direct the memory search訊

This builds on [Kol83a, Kol84, (unread)).

Note that cases/episodes may not just be retrieved from distant episodic memory, but

also from memory of earlier in the given design project, i.e. from working rather than a

priori knowledge (2.3). This is called reuse of already constructed components or solutions.

10If we try to computerise exemplar search, the human may still have to input strategies for the search.

Chapter 5

Miscellaneous

In evaluating which of these design sources to provide automation for, we must not just

be concerned about which are the most easily automateable, but also with which are the

most useful. We can do this by looking at which areas are the most crucial and the most

susceptible to breakdown [GCK87, Section 8] (3.6). In this context, we must consider
whether the tools we provide are meant to aid novices or experts. In order to do this we

need to understand the differences between novices and experts, [Kol83b, (unread)] (3.9).

35

皐¢

Appendix A

Glossary

This is a list of important words with short definitions for them. Some of these definitions

are my own and some are stolen from other authors. A reference is given in brackets to the

section which出scussesthat word. Synonyms are also given. It is certainly not complete
or correct.

constraints (2.13) Limits on the valid regions of a design space. Requirements (2.12)

are often given as a set of constraints. For systems design, many constraints may be

implicit.

design (2.1) The production of an artifact which meets some needs. The space and
constraints of a design task are given as requirements (2.12). For system design,

the constraints come from multiple domains, may be explicit or implicit and are
often incomplete, ambiguous and contradictory. Evaluation criteria are also not we且

defined.

design control (3.3) is concerned with the control of the design process itself, focusing

the designer's activities and doing resource (e.g., time, mental load) management.

design decision (2.14) is a tentatative commitment to a smaller design space. It is often

made by choosing one space from a set of alternatives.

design history (2.8) A record of the activities and products of a design project.

design knowl函 ge

design method (3.10.1) A set of guidelines for selecting and sequencing the use of design

techniques (3.10.4) and design tools (3.10.2) in order to construct an artifact. e.g.

JSD, VDM.

design rationale (2.9) An idealized version of design history (2.8) documenting only its

current state.

design tools (3.10.2) Such things as design notations (3.10.3) and clerical aids to support
a design method (3.10.1) and its design techniques (3.10.4).

design schema (4.3) General, abstract representations of aspects of design domains,
including decomposition skeleton. Abstracted from previous design experience. Vary

in complexity. Contains or is a mental domain model (4.2).

36

APPENDLY A. GLOSSARY 37

domain (2.4) Any space: we should not use this term alone when we really mean some

particular domain.

domain definition (2. 7)

domain discussion (2.7)

domain model (4.2) A representation of features of a domain. May describes its rela-

tionship to other domains, possibly refinement.

examples (2.10)

experience & expertise (4.6,3.9) Very general terms which include most internalised

forms of knowledge, including domain knowledge, design methods, design schemas

and design control.

heuristics (3.7) are rules of thumb that reduce the complexity of a problem. They

include:

• general problem solving heuristics

• general design heuristics

• software desig五heuristics.

mental model (3.4) (also: conceptual model) An internal, mental representation of the
current state of the design, i.e. understanding of problem and proposed solution.

Supports some form of simulation (3.5).

problem (also: t邸 k,application, goal)

problem domain (2.5) (also: task domain, application domain) The domain in which

the task or purpose or application of the desired computer system is described.

requirements (2.12) (also: specification) define the goals of a system. They are often

incomplete, ambiguous and contradictory for software system design.

scenario (2.11) A scenario describes a sequence of events that a system performs. See-
narios can be given explicitly as problem requirements (2.12) or may be retrieved

from experience (4.6) (usually about the problem domain) as implicit requirements.

simulation (3.5) is the・activity of exercising a model on some data and comparing the
results with another model.

solution domam (2.6)

specifications

weak problem solving methods (3.8) Goal-driven, complete space searches e.g., "means-
ends analysis" and "generate and test".

..

禎

Appendix B

Changes

Since February 7th 1991

• There is a major emphasis on the multi-level nature of design.

• Document split into "Nature of design" (2), "Processes of design" (3) and "Infor-
mation structures for design" (4) sections.

• Added new "Design decisions" (2.14), "Expertise"(3.9), "Common knowledge" (4.5)
subsections and "Miscellaneous" section (5).

Since April 9th 1991

• New "Simulation" (3.5) and "Memory" (4.1) sections.

• Added index.

38

Bibliography

[Ade81]

[AH83]

[AKB79]

(Ale67]

[And81]

[And82]

[And83]

[AS85]

[Bal81]

[Bar83)

[Bar87)

(BC89]

Beth Adelson. Problem solving and the development of abstract categories in
programming languages. Memory and Cognition, 9(4):422-433, July 1981.

Joseph W. Alba and Lynn Hasher. Is memory schematic? Psychological

Bulletin, 93(2):203-231, 1983.

J. R. Anderson, P. J. Kline, and C. M. Beasley. A general learning theory and
its application to schema abstraction. In G. H. Bower, editor, The Psychology
of Learning and Motivation, Volume 13, pages 277-318. Academic Press, 1979.

C. Alexander. Notes on the Synthesis of Form. Harvard University Press,

1967.

J. R. Anderson, editor. Cognitive Skills and their Acquisition. Erlbaum, 1981.

John R. Anderson. Acquisition of cognitive skill. Psychological Review,

89(4):369-406, July 1982.

J. R. Anderson. The Architecture of Cognition. Harvard University Press,

1983.

B. Adelson and E. Soloway. The role of domain experience in software design.
IEEE Transactions on Software Engineering, 11(11):1351-1360, November

1985.

Robert Balzer. Transformational implementation: An example. IEEE Trans-
actions on Software Engineering, 7(1):3-14, January 1981.

L. W. Barsalou. Ad hoc categories. Memory四 dCognition, 11:211-227, 1983.

David Barstow. Artificial intelligence and software engineering. In Proceedings
of the 9th International Conference on Softwaだ Engineering,pages 200-211,

1987.

David C. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge
Structures and Control Strategies. Morgan Kaufmann, 1989.

[Bj087] Dines Bjorner. On the use of formal methods in softw紅 edevelopment. In Pro-
ceedings of the 9th International Conj ere nee on Software Engineering, pages

17-29, 1987.

[BKSZ90] G. David Bergland, Geoffrey H. Krader, D. Paul Smith, and Paul M. Zislis.
Improving the front end of the softw紅 e-developmentprocess for large-scale
systems. ATBT Technical Journal, 69(2):7-21, March/ April 1990.

39

鼻

舎

BIBLIOGRAPHY 40

[Boo90] John H. Boose. Knowledge acquisition tools, methods and mediating repre-

sentations. In Motoda et al. [MMBG90], pages 25-62.

[Car86] J. G. Carbonell. Analogy in problem solving. In R. S. Michalski, J. G.

Carbonell, and T. M. Mitchell, editors, Machine Learning. An Artificial In-
telligence Approach. Vol. II, pages 371-392. Kaufman, 1986.

[CFG81] M. T. H. Chi, P. J. Feltovich, and R. Glaser. Categorization and representation

of physics knowledge by experts and novices. Cognitive Science, 5:121-152,

1981.

[Cha90] B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine,
11(4):59-71, Winter 1990.

[CTM79] J.M. Carroll, J.C. Thomas, and A. Malhotra. Clinical-experimental analysis
of design problem solving. Design Studies, 1:84-92, 1979.

[Cur90] Bill Curtis. Implications from empirical studies of the software design process.

In Info Japan'90, pages 127-134, 1990.

[DB81]・J. DeKleer and J. S. Brown. Assumptions and ambiguities in mechanistic
mental models. In Anderson [And81].

[DS90] Francoise Detienne and Elliot Soloway. An empirically-derived control struc-
ture for the process of program understanding. International Journal of Man

Machine Studies, 33(3):323-342, September 1990.

[EA81] R. Elio and J. R. Anderson. Effects of category generalizations and instance
similarity on schema abstraction. Journal of Experimental Psychology: Hu-

man Learning and Memory, 7:397-417, 1981.

[ESSO] K. A. Ericsson and H. A. Simon. Verbal reports as data. Psychological Review,
87(3):216-254, 1980.

[ES90] Renee Elio and Peternela B. Scharf. Modelling novice-to-expert shifts in

problem-solving strategy and knowledge organization. Cognitive Science,
14(4):579-639, October-December 1990.

[Fai85]・・R. Fairley. Software Engineering Concepts. McGraw-Hill, 1985.

[FD89] S. Finger and J. R. Dixon. A . f h . h . al . review o researc m mec aruc engmeermg

[Fic87]

[Fre75]

[Fre83]

design. Part I: Descriptive, prescriptive, and computer-based models of design

processes. Research in Engineering Design, 1(1):51-67, 1989.

Stephen Fickas. Automating the analysis process: An example. In IWSSD4
[IWS87], pages 58-67.

Peter Freeman. Toward improved review of software designs. In AFIPS, 1975.

Peter Freeman. Fundamentals of design. In Peter Freeman and Anthony I.
W邸 serman,editors, Software Design Techniques, pages 2-22. IEEE, 4th e凸

tion, 1983.

BIBLIOGRAPHY 41

[Fre87] P. Freeman, e出tor.Tutorial: Softwaた Reusability.IEEE Computer Society

Press, 1987.

[Fri79] P. Friedland. Knowledge based experimental design in molecular genetics.
In Proceedings of the 6th International Joint Confeだneeon Artificial Intelli-
gence, pages 285-287, 1979.

[GBP87] T. R. G. Green, R. K. E. Bellamy, and J.M. Parker. Parsing and gnisrap:
A model of device use. In H. J. Bullinger and B. Shackel, editors, Human-
Computer Interaction - INTERACT'87, pages 65-70. Elsevier, 1987.

[GC88] R. Guindon and B. Curtis. Control of cognitive processes during design: ・what

tools would support software design. In Proceedings of the CHI'88 Conference
on Human Factors in Computing Systems, pages 263-268. ACM, 1988.

[GC89] A. Goel and B. Chandr邸 ekaran.Functional representation of designs and

redesign problem solving. In Proceedings of the 11th International Joint Con-
ference on Artificial Intelligence, pages 1388-1394, 1989.

[GCK87] Raymonde Guindon, Bill Curtis, and Herb Krasner. A model of cognitive
processes in software design: An analysis of breakdown in early design ac-
tivities by individuals. Technical Report STP-283-87, Microelectronics and

Computer Technology Corporation (MCC), Austin, Texas, 1987.

[Ger90) John S. Gero. Design prototypes: A knowledge representation schema for
design. AI Magazine, 11(4):26-36, Winter 1990.

[GP89] V. Goell and P. Pirolli. Motivating the notion of generic design within
information-processing theory: The design problem space. AI Magazine,

10(1):18-38, 1989.

[GT91) Tim Gleeson and Toyofumi Takenaka. The roles of formal specifications in the
system design process. In Information Processing Society of Japan: Spring
Conference, 1991.

[Gui90a) Raymonde Guindon. Designing the design process: Exploiting opportunistic

thoughts. Human-Computer Interaction, 5(2 & 3):305-344, 1990.

[Gui90b] Raymonqe G直ndon.Knowledge exploited by experts during software sys-
-・tern design. International Journal of Man Machine Studies, 33(3):279-304,

September 1990.

[Ham89) K. Hammond. Case-Based Planning: Viewing Planning as a Memory Task.
Academic Press, 1989.

[H185] M. T. Harandi and M. D. Luba.rs. A knowledge-b邸eddesign aid for software
systems. In Proceedings of SOFTFAIR II, pages 67-74, San Francisco, CA,
December 1985.

[Hol86] A. Holgate. The Art in Structural Design. Oxford University Press, 1986.

[HRHR77] B. Hayes-Roth and F. Hayes-Roth. Concept learning and the recognition and

classification of exemplars. Journal of Verbal Learning and Verbal Behaviour,
16:321-338, 1977.

亀

幽

噂

BIBLIOGRAPHY 42

[HRW79] Barbara Hayes-Roth and Carol Walker. Configural effects in human memory:

The superiority of memory over external information sources as a basis for
inference verification. Cognitive Science, 3(2):119-140, April-June 1979.

[IWS87] 4th International Workshop on Software Specification and Design, 1987.

[J ac83] M. Jackson. System Development. Prentice-Hall, 1983.

[Jon78] C. B. Jones. Constructing a theory of a data structure as an aid to program
如velopment.Acta Informatica, 11:119-137, 1978.

[Jon80] J. C. Jones. Design Methods. Wiley, 1980.

[Jon86] Capers Jones, editor. Tutorial: Programming Productivity: Issues for the

Eighties. IEEE Computer Society Press, second edition, 1986.

[JS85] L. Johnson and E. Soloway. PROUST: Knowledge b邸 edprogram under-

standing. IEEE Tmnsactions on Software Engineering, 11(3):267-275, 1985.

Biggerstaff gives the authors in the other order.

[JTPA81] Robin Jeffries; Athea A. Turner, Peter G. Polson, and Michael E. Atwood.

The processes involved in designing software. In Anderson [And81], pages

255-283.

[KN84] E. Kant and A. Newell. Problem solving techniques for the design of algo-

rithms. Information Processing and Management, 28:97-118, 1984.

[KN87] Van E. Kelley and Uwe Nonnermann. Inferring formal specifications from

episodic descriptions. In Proceedings of the 6th AAAI, pages 127-132, 1987.

[Kol83a] J. L. Kolodner. Reconstructive memory. Cognitive Science, 7(4):281-328,

1983.

[Kol83b] J. L. Kolodner. Towards an understanding of the role of experience in the evo-

lution from novice to expert. International Journal of Man Machine Studies,
19:497-518, 1983.

[Kol84] J. L. Kolodner. Retrieval and Organizational Strategies切 ConceptualMem-

0内.Erlbaum, 1984.

[KR86] Janet L. Kolodner and Christopher K. Reisbeck, editors. Experience, Memory,
and Reasoning. Erlbaum, 1986.

[KSJ86] Janet L. Kolodner and Robert L. Simpson Jr. Problem solving and dynamic

memory. In Kolodner and Reisbeck [KR86].

[LaF89] Marianne Lafrance. The quality of expertise: Implications of expert-novice

differences for knowledge acquisition. ACM SIGART Newsletter, 108:6-14,

April 1989. Special issue on Knowledge Acquisition.

[Lar79] J. H. Larkin. Processing information for effective problem solving. Engineering

Education, 70:285-288, 1979.

[Lar81] J. H. Larkin. The role of problem representation in physics. In Dedre Gentrer
and Albert L. Stevens, editors, Mental Models, pages 75-98. Erlbaum, 1981.

BIBLIOGRAPHY .43

[Lew90]

[LH87]

Clayton H. Lewis. A research agenda for the nineties in human-computer

interaction. Human-Computer Interaction, 5(2 & 3):125-143, 1990.

M. T. Lubars and M. T. Harandi. Knowledge-based software design using de-

sign schemas. In Proceedings of the 9th International Conference on Software

Eng切eering,pages 253-262, 1987.

[Lif85] V. Lifschitz. Computing circumscriptions. In Proceedings of the 9th Interna-

tional Joint Conference on Artificial Intelligence, pages 121-127, 1985.

幽

[LMSS80] J. H. Larkin, J. McDermott, D. P. Simon, and H. A. Simon. Models of

competence in solving physics problems. Cognitive Science, 4:317-345, 1980.

[LRN86] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in Soar - the

anatomy of a general learning mechanism. Machine Learning, 1(1):11-46,

1986.

[LS81] T. Y. Lin and S. D. Stotesbury. Structural Concepts and Systems for Architects

and Engineers. Wiley, 1981.

[Lub87] Mitchell D. tubars. Schematic tec血 quesfor high level support of software

specification and design. In IWSSD4 [IWS87], pages 68-75.

[Mah88] M. L. Maher. Engineering design synthesis: A domain independent represen-

tation. Artificial Intelligence for Engineering Design, Analysis, and Manu-

facturing, 1(3):207-213, 1988.

[Mah90] Mary Lou Maher. Process models for design synthesis. AI Magazine, 11(4):49-

58, Winter 1990.

[McC80] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artifi-

cial Intelligence, 13:27-39, 1980.

[MDK吋O]John McDermott, Geo缶eyDallemagne, Georg Klinker, David Marques, and
David Tung. Explorations in how to make application programming easier.

In Motoda et al. [MMBG90], pages 134-147.

[MDM86] S. Mittal, C. Dym, and M. Morjaria. PRIDE: An expert system for the

handling of paper systems. IEEE Co四puter,19(7), 1986.

[MF89] S. Mittal and F. Frayman. Towards a generic model of configuration tasks.

In Proceedings of the 9th International Joint Conference on Artificial lntelli-
gence, pages 1395-1401, 1989.

[Min75] M. Minsky. A framework for representing knowledge. In P.H. Winston, editor,

The Psychology of Computer Vision. McGraw-Hill, 1975.

[MMBG90] H. Motoda, R. Mizoguchi, J. Boose, and B. Gaines, editors. Proc. First

Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop -

JJ, 〈AW'90,1990.

[MMW85] S. Marcus, J. McDermott, and T. Wang. Knowledge acquisition for construe-

tive systems. In Proceedings of the 9th International Joint Conference on

Artificial Intelligence, pages 637-639, 1985.

,.

項

BIBLIOGRAPHY 44

[Mos85]・J. Most ow. Toward better models of the design process. AI Magazine, pages

44-57, 1985.

[MR90] S. Mullins and J. R. Rinderle. Grammatical approaches to design. In Proceed-

切gsof the First International Workshop on Formal Methods in Engineering
Design, Manufacturing and Assembly, pages 42-69, 1990.

[MRRH81] K. B. McKeithen, J. S. Reitman, H. H. Reuter, and S. C. Hirtle. Knowl-

edge organization and skill differences in computer programmers. Cognitive
Psychology, 13:307-325, 1981.

[MS78]

[MSM88]

[NA77]

[NC85]

[Nei84]

[New69]

[New80]

[New90]

[Nii86]

[NS72]

[0S81]

[PB88]

[PC86]

D. L. Me出nand M. M. Schaffer. A context theory of classification learning.
Psychological Review, 82:207-238, 1978.

S. Marcus, J. Stout, and J. McDermott. VT: An expert elevator designer that

uses knowledge based backtracking. AI Magazine, 9(1):95-114, 1988.

G. S. Novak, Jr. and A. Araya. Representations of knowledge in a program

for solving physics・problems. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, pages 286-291, 1977.

A. Newell and S. K. Card. The prospects for psychological science in hum証
computer interaction. Human-Computer Interaction, 1:209-242, 1985.

J. M. Neighbors. The Draco approach to constructing software from reusable

components. IEEE Transactions on Software Engineering, 10(5):564-574,
September 1984. Reprinted in [Jon86] and [Fre87].

A. Newell. Heuristic programming: ill structured problems. In J. Arorofsky,

述 tor,Volume 3 in Prog. Oper. Res., pages 360-414. Wiley, 1969.

A. Newell. Reasoning, problem-solving, and decision processes: The prob-

lem space as a fundament叫 category.In R. Nickerson, e出tor,Attention and
performance VIII, pages 693-718. Erlbaum, 1980.

A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

H. P. Nii. Blackboard systems: Blackboard application systems, blackboard
systems from a knowledge engineering perspective. -AI Magazine, pages 82-

106, Summer 1986.

A. Newell and H. A. Simon. Human Problem S。lv切g.Prentice Hall, 1972.
D. N. Osherson and E. E. Smith. On the adequacy of prototype theory as a

theory of concepts. Cognition, 9(1):35-58, 1981.

Colin Potts and Glen Bruns. Recor出ngthe reasons for design decisions. IEEE

Transactions on Software Engineering, 10(418-427), 1988.

David Lorge Pam邸 andPaul C. Clements. A ration叫 designprocess: How
and why to fake it. IEEE Transactions on Software Engineering, 12(2):251-

257, February 1986.

BIBLIOGRAPHY 45

[Poo88]

[Qil68]

[RA90]

[Rei65]

[Rei86]

[Ric81]

［応e81]

D. Poole. A logic叫frameworkfor default reasoning. Artificial Intelligence,

36:27-47, 1988.

M. R. Qillian. Semantic memory. In M. Minsky, editor, Semantic Information
Processing, pages 227-270. MIT Press, 1968.

Mary Beth Rosson and Sherman R. Alpert. The cognitive consequences of

object-oriented design. Humaた ComputerInteraction, 5(4):345-379, 1990.

W. R. Reitman. Cognition and Thought. Wiley, 1965.

Brian J. Reiser. Knowledge-directed retrieval of autobiograp凪calmemories.
In Kolodner and Reisbeck [KR86].

C. Rich. A formal representation for plans in the programmer's apprentice.

In Proceedings of the 7th International Joint Conference on Artificial Intelli-
gence, pages 1044-1052, 1981.

C. K. Riesbeck. Failure-driven reminding for incremental learning. In Pro-
ceedings of the 1th .International Joint Conference on Artificial Intelligence,
pages 115-120, 1981.

[RLNM91) Paul S. Rosenbloom, John E. Laird, Allen Newell, and Robert McCarl. A
preliminary analysis of the Soar architecture as a basis for general intelligence.
Artificial Intelligence, 47(1-3):289-325, January 1991.

[RMG+76]・E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem.
Basic natural categories. Cognitive Psychology, 8:382-439, 1976.

[RN81] D. E. Rumelhart and D. A. Norman. Analogical processes in learning. In
Anderson [And81].

[RWR87] Charles Rich, Richard C. Waters, and Howard B. Reubenstein. Toward a
requirements apprentice. In IWSSD4 [IWS87], pages 79-86.

[SA75] R. C. Schank and R. Abelson. Scripts, plans, and knowledge. In Proceedings of
the 4th International Joint Conference on Artificial Intelligence, 1975. [SA77]
may be more comprehensive.

[SA 77] R. C. Schank and R. Abelson. Scripts, Plans, Goals and Understanding.
Erlbaum, 1977.

[SAE88] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge and processes in the
development of computer programmers. In M. T. H. Chi, R. Glaser, and
M. J. Farr, editors, The Nature of Expertise, pages 129-152. Erlbaum, 1988.

[Sch80) R. C. Schank. Language and memory. Cognitive Science, 4:243-284, 1980.

[Sch81]

[Sch82]

R. C. Schank. The structure of episodes in memory. In D. G. Bobrow and
A. Collins, editors, Representation and Understanding, pages 237-272. Aca-
demic Press, 1981.

R. C. Schank. Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press, 1982.

畠

3

•

塵

J

噂

BIBLIOGRAPHY 46

[Sch86a]

[Sch86b]

[Scr85]

[SH82]

[Sim73]

[Sim81]

[Sla91]

[Ste81]

[Ste90]

[THR79]

[Tul72]

[Tul83]

R. C. Schank. Explanation Patterns: Understanding Mechanically and Cre-

atively. Erlbaum, 1986.

Roger C. Schank. Explanation: A first pass. In Kolodner and Reisbeck

[KR86].

S. Scribner. Thinking in action: Some characteristics of practical thought. In
Practical Intelligence: Origins of Competence in the Everyday World. Cam-
bridge University Press, 1985.

A. H. Schoenfeld and D. J. Herrmann. Problem perception and knowledge

structure in expert and novice mathematical problem solver. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 8:484-494, 1982.

H. A. Simon. The structure of ill-structured problems. Artificial Intelligence,

4:145-180, 1973.

H. Simon. The Sciences of the Artificial. MIT press, second edition, 1981.

Originally published 1969.

Stephen Slade. Cas~-based reasoning: A research paradigm. AI Magazine,
12(1):42-55, Spring 1991.

M. Stefik. Planning with constraints. Artificial Intelligence, 16:111-140, 1981.

David Steier. Creating a sci en ti且ccommunity at the interface between engi-
neering design and AI. AI Magazine, pages 18-22, Winter 1990.

Perry W. Thorndyke and Barbara Hayes-Roth. The use of schemata in the
acquisition and transfer of knowledge. CognitわePsychology, 11(1):82-106,

January 1979.

E. Tulving. Episodic and semantic memory. In E. Tulving and W. Donaldson,

editors, Organization of Memory, pages 381-403. Academic Press, 1972.

E. Tulving. Elements of Episodic Memory. Oxford University Press, 1983.

[TVTY90] Hideaki Takeda, Paul Veerkamp, Tetsuo Tomiyama, and Hiroyuki Yoshikawa.

Modelling design processes. AI Magazine, 11(4), Winter 1990.

[Wat85] 応chardC. Waters. The programmer's apprentice: A session with KBEmacs.
IEEE Transactions on Software Engineering, 11(11):1296-1320, November

1985.

[WF86] Terry Winograd and Fernando Flores. Understanding Computers and Cogni-

tion: A New Foundation for Design. Ablex, 1986.

[Woo84] D. D. Woods. Visual momentum: A concept to improve the cognitive coupling
of person and computer. International Journal of Man Machine Studies,

21:229-244, 1984.

>~

f£

べ
ど
r

Index
む
，

h
9
9

ACT, 26
ad hoc categories, 32
analogy, 7, 9, 19, 32, 33

books, 6, 8, 26
bounded rationality, 5

case-b邸 edsystems, 19, 24, 30

CCITT, 7, 8

chess, 7, 8
chunking, 26

cognitive

cost, 18, 19
limitations, 14, 20

load, 16
overload, 6

problems, 20
commitment, 12, 15, 17, 24, 36

commumcat10n ， 5 32 ，
con:figuration tasks, 3
constr姐nts， 11
examples of, 11

resolution, 3
control, 5, 10, 12, 14, 16-18, 20, 22-24,

26, 28, 30, 36

creative design, 3
critiquing, 15, 16, 24

CSP, 24

data-driven, 18, 19, 22, 31, 32

decisions, 12

evaluation of, 12

revocation of, 12
decomposition, 7, 9, 12, 15, 17-19, 21, 22,

24

design

出story,8

process, 3
rationale, 8-9

t邸 k,3
theory, 3

discrimination, 26

documentation, 9
domain ， 6
de:finition, 7, 9
implementation, 8

use, 7
dom叫ns

examples of, 6, 28

Draco, 8

elaboration, 15, 30
of requirements, 5, 10

episode, 6, 19, 25, 26, 28, 32-34

evaluation, 7, 14

criteria, 4, 5, 36
new constr叫nts,18

not needed, 16
of alternatives, 12

of decisions, 12
of heuristics, 22
of solutions, 5

reevaluation, 17
simulation, 20

examples, 9
expertise, 18, 競

explanation, 12, 27
external, 5-8, 10, 18, 20, 24, 26, 33

frames ， 29 31 ，

generalisation, 9, 25, 26, 28, 32, 33

go, 7, 8

heuristics, 5, 17, 21, 22, 23, 28, 30, 37

human behaviour, 4

ill-structured problems, 3

induction, 9

inductive learning, 26

inference, 25, 26, 30, 31
of requirements, 7, 10, 17, 18

innovative design, 3

，

47

INDEX

insoluble problems, 3

inventory control, 6

justification, 12

KBEmacs, 32

knowledge

a priori, 6, 13, 20, 25, 34
compiled, 24, 26
曲 covery,25

dom叫ns,5

integration, 3

real-world, 10

structures, 1, 20, 31

working, 6

learning, 4, 6, 8, 25-28

m皿ntenance,15
memory, 28

associative ， 19
conceptual, 28

episo出c,9, 28, 33, 34

for cases, 19, 24
MOPs, 28, 32
search, 34

semantic, 28, 33
working

limitations, 17, 19

multi-agent design, 4, 5, 11, 16, 20, 32, 33
multi-level

design, 1, 3, 4

multiple dom叫ns,3, 4

non-routine design, 3
novelty, 4, 20

novice/expert出fferences,22, 35

opportunistic behaviour, 17-18

Pascal, 7, 8, 24, 26
problem

critical, 20
dom叫n， 6
exploration, 19

solving, 4

solving methods

heuristics, 21

solvers, 15

understanding, 9

weak, 21

Programmer's Apprentice, 32
program血ngplans, 31

propose and revise, 12; 24

propose-critique-modify, 24

rationality

bounded, 5

redesign, 15, 30

re恥ement,11, 15, 23, 28, 30, 33, 37
requirements, 3

Requirements Apprentice, 30

resource m猛 agementsystems, 28
rev1ew, 16

routine design, 3

scenario, 9-10

48

schema, 5-7, 11, 19, 20, 22, 25, 27-32, 36
meta-schema, 11, 17, 20
scripts, 30, 31
search, 4

sem皿 ticnetworks, 29
simulation, 20

for verification, 16, 18

of mental models, 18, 20, 37

of requirements, 11, 26
f o scenanos, 9
of solutions, 7, 19, 25
simulations

of solutions, 5, 7
Soar, 26
solution

recompos1t10n ，
specialisation, 9, 26

3 ， 5 ， 15

spreading activation, 10

systematic expansion 14 17-19 ,,'

trade-offs, 4

UNIX, 7-9

validation, 11, 18
verification, 15, 16

	01
	02
	08
	add.pdf
	01
	02
	03

