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Abstract 

The research performed during this internship has been concerned with two main 
problems with the moire range acquisition system. They are : ambiguous moire pictures 
interpretation and surf ace curvatures computation from moire 3D data. 

The current moire system can only take pictures of simple objects with no great 
depth variations. Especially when there are occluding edges in the object, the extracted 
contours will give incorrect relative orders leading to a distorted or incorrect wire frame 
model reconstruction. An algorithm has been developed an algorithm to detect 
inconsistencies in moire patterns using a graph representation of the pattern. That same 
representation is also used to compute more efficiently the relative orders of the moire 
fringes. An algorithm has been implemented to correct the inconsistencies of the pattern 
(such as occluding edges) : it uses a special kind of pixels call叫"wrongpoints" which 
are to be found in high density on the location of pattern inconsistencies. Providing the 
noise is not too important, it is shown that this algorithm allows a very p~ecise detection 
of the location of the occluding edge and an accurate computation of relanve orders. 

The last part of this report deals with the surface curvatures computation. we 
present a novel surface curvature computation scheme that directly computes the surface 
curvatures (principal curvatures, Gaussian and mean curvatures) from the equidistance 
contours without any explicit computations or implicit estimates of partial derivatives. 
We show how the special nature of the equidistance contours, specifically, the dense 
information of the surface curves in the 2D contour plane, turns into an advantage for 
the computation of the surface curvatures. The approach is based on using simple 
geometric construction to obtain the normal sections and using osculating circles to 
obtain normal curvatures. It is also general and can be extended to any dense range 
image data. We show in details how this computation is formulated and give an analysis 
on the error bounds of the computation steps showing that the method is stable. 
Computation results on real equidistance range contours are also shown. 
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Chapter I 

The 
Introduction 
Experimental ．

． 
System 

I. CONTENTS OF THIS REPORT 

l.l INTRODUCTION 

This internship was mostly focused on the moire range acquisition system and its 

improvement. Two main problems were studied : determination of relative orders in 

ambiguous moire pictures and surface curvatures computation from moire 3D data. 

7
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Chapter I 

I.I.I The First Problem 

The current moire system can only take pictures of simple objects with no great 

depth variations. Especially if there are occluding edges in the object, the extracted 

contours will give incorrect relative orders leading to a distorted or incorrect wire frame 

model reconstruction. Thus the problem to be solved was the following: 

Is it possible to compute correct relative orders from a moire pattern 

containing occluding edges ? 

The answer is "yes" : it is possible to detect occluding edges and some other 

deteriorations of the fringe pattern, and to correct them so as to compute accurate relative 

orders, providing there is enough information in the picture. 

For that purpose a new algorithm for relative order computation was developed : 

this the subject of chapter II. 

The detection of moire pattern inconsistencies and the moire pattern correction 

algorithms are the subject of chapter ill. 

I.1.2 The Second Problem 

We want to use the moire pictures for object recognition and 3D data bases 

building. For that purpose we need to segment the surface in order to extract its most 

stringent features. However the moire pictures provide us with view-dependent 3D data : 

these pictures are relative to the view point from where the picture has been taken. That 

is not siutatble for surface analysis : we need to extract the intrinsic properties of the 

surface, that is those which are invarient with respect to the view point. The most 
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important of these intrinsic properties are the principal curvatures from which other 

important properties such as Gaussian and mean curvatures are derived. 

The problem can then be formulated as : 

Is it possible to easily extract intrinsic features such as Gaussian curvature 

directly from the view-dependant moire data without resorting to s面 acefitting 

techniques (which are too computational intensive and sometimes inaccurate)? 

＇
ド

Here again the answer is "yes" : an algorithm was developed which allows 

surface curvatures computation in a simple fashion without computing second order 

derivatives. 

I.2 THIS CHAPTER 

The main purpose of this introduction chapter is to provide enough information 

on the moire system to explain the following chapters. 

I.3 CHAPTER II 

In this chapter a new algorithm for relative orders computation is described : a 

graph representation of the moire pattern is computed. Using a depth-first search 

recursive algorithm, the relative orders are computed. The picture and the graph need to 

be filtered in order to get good results. 
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l.4 CHAPTER Ill 

In this chapter two algorithms are described. The frrst of them is designed to 

detect the inconsistencies into the moire pattern graph. If inconsistencies are detected the 

picture needs to be corrected : the second algorithm is designed to precisely locate into 

the picture the occluding edge and other distortions of the moire pattern : this 

approximation of the occluding edge is done by searching for a new feature called wrong 

points in the moire picture : these points are present in high density around places where 

the pattern is distorted. These defects are then corrected and the relative order 

determination algorithm can be used safely. 

This algorithm has been tested on moire picture of a tea cup and on simple 

polyhedron scenes where it showed good performance. The time needed to check the 

picture, correct it and generate the relative orders and the coded contours is for example 3 

minutes of CPU time on a VAX 8600 for the tea cup of figure皿 1.

I.5 CHAPTER IV 

This chapter describes the implemented algorithm to extract from a moire picture 

the principal curvatures and directions, the Gaussian and the mean curvature. 

Some error bounds on the curvatures have been found which shows that the 

error is bounded by the moire system physical resolution or under control. 
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II. THE MOIRE SYSTEM 

II.I INTRODUCTION 

The moire topography system has been developed in order to automatically 

acquire the 3D shape data of an object. The ultimate purpose is to develop the basic 

techniques for feature extraction, 3D recognition and 3D databases acquisition. 

The moire topography allows you to acquire with a single shot all 3D data of an 

object view. A regular grating is projected on the object and a picture is taken by a CCD 

camera. After extracting the periodic components of the grating, a digital grating is 

superimposed on the picture and a low-pass filter is applied allowing moire fringes only 

to be collected. We obtain a picture with fringes which represent slices of the object at 

different depth levels from the camera : all 3D information lies within these fringes. 

turning stage 

Fig. I-1 : the experimental system. 

11 



12 Chapter I 

Il.2 TAKING THE PICTURE 

II.2.1 Moire Fringes Generation 

As seen above, a regular grating is projected on the object. An image of the 

object is taken by a camera at an angle o: with respect to the projector : the picture shows 

the deformed grating. 

Fig. I-2: a picture taken by the camera of a deformed grating pattern. 

That grating pattern is then multiplied with a digital grating by a graphic 

processor: 
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Fig. I-3 : generation of the moire pattern from the deformed grating 

and the digital grating. 

After multiplication a low-pass filter is used to get rid of both digital and 

deformed gratings. During filtering the fringes are left unchanged in the picture as they 

belong to the low-frequency part of the picture 

II.2.2 Result 

The picture is then thresholded : high intensity pixels become red and low 

intensity pixels become black, leaving only red fringes or black fringes. 

Each fringe contour is the countour of a slice of the object at a certain distance 

from the camera. 

13 
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camera 

▼
 

二 =red fringe ―= black fringe 
Fig. I-4: a moire picture of a small pyramid. 

II.2.3 Problems 

As can easily been seen from figure I-4, it is not possible to detect if an object is 

concave or convex from the fringe pattern on the right. Below is another way of 

interpreting the moire pattern of figure I-4. 

Fig. I-5 : another possible interpretation of moire pattern of figure 14. 

The moire pattern does not contain any information about the convexity of an 

object surface. 
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11.3 CONCAVITY AND CONVEXITY DISCRIMINATION 

II.3.1 Principle 

If the projector grating or the digital grating is shifted horizontally, the moire 

fringes will also be shifted on the object surf ace : they will all move in the same direction 

(toward or from the camera). We use an angle to measure the shift : 2冗 meansthe shift 

is one period long, and thus nothing changes 

Let us say for example that all fringes move up (= toward the camera) when the 

grating is shifted by an angle~- The fringes on a convex part will then shrink while 

those on a concave part will be enlarged : the way the fringe will move is then a good 

signature of its convexity properties. Here is the evolution of fringes for the two 

previous models from figure I-4 and I-5 : 

P>
shrinking fringes 

fringes 
move 
down 

enlar血gfringe 

corresponding fringe patterns 

enlarging fringes 

15 
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Fig. I-6 : modification of fringe pattern according to convexity of 

surface. 

Moire fringes are very sensitive to phase shift. So a small amount of shift (<冗）

is enough to obtain the phase shifted fringes. 

II.3.2 Realization 

冗

As seen previously we chose a small angle of shifting : 2 (see [Koezuka et al. 

87]). 

Wet訟eone picture of the deformed grating on the object and decode it twice 

using a digital grating and a phase-shifted grating : we get two moire pictures of red and 

black fringes. 

We then superimpose the two pictures : the resulting picture is computed 

according these rules : 

original shifted resulting 
fringe fringe fringe 

red red blue 

black red green 

red black red 

black black black 
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Below is a figure showing the results of the computation : 

ニー—+-
original pattern phase-shifted pattern 

＋
 

一＿ 口
code of colors : 一四 亡コニ

black red blue green 

Fig. I-7 : generation of green and blue fringes by phase shifting of 

1/4 th of period. 

It can clearly be seen on the picture that fringe colors are ordered in a precise 

fashion : for example a red fringe is always surrounded by blue and black fringes and it 

will always be farther from the camera than its black neighbors and closer to it than its 

blue neighbors. We can then recognize convex from concave surfaces. 

Il.4 INTERPRETING THE DAT A 

The phase shifting lifts the ambiguity between convex and concave surfaces. The 

following figure shows the fringe pattern for the concave surface of figure I-5 : it is very 
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different from the convex surface pattern and makes apparent the concavity of the 

surface. 

口
Fig. I-8 : concave surface fringe pattern: the order of color (opposite 

to convex pattern) allows a concavity discrimination. 

The relative position of all fringes toward its neighbors is uniquely defined : we 

can order adjacent fringes by determining which one is closest to the camera. Taking 

one fringe as reference and giving it the level 0, we can give a label to all fringes in the 

picture : this label is called the relative order because it depends on the level you give to 

the reference fringe and on that fringe also. 

After computing the relative orders we want to get the real distance from each 

fringe to the camera. It is enough to know the distance of only one fringe to the camera : 

the absolute order of that fringe can be determined using the moire formula (I-1) given 

below: 

(I-1) I ZN = a'+合六
Where: a = focal length of camera 

1 = distance between camera and projector 

p = CCD pixel size (currently 0.0068 mm) 

S = sampling rate: period of the digital grating: 2 or 6 pixels 
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That fringe is then taken as reference fringe, the relative orders are determined 

relatively to that fringe and its absolute order : these orders are then absolute orders. 

Used in the same formula they give the exact depth of each fringe 

19 





Chapter II 

Relative Order Determination 

I PURPOSE OF THE STUDY 

The existing algorithm gives wrong results if applied to some specific moire 

patterns (occluding edges, noisy pictures). A new algorithm has been designed to 

compute relative order more quickly and more effectively, taking advantage of the 

information gathered for moire pattern consistency checking (see chapter ID). 

In the whole study we will deal only with "connex" moire patterns: e.g., the 

pattern cannot be separated completely by background pixels into two independent sets 

of fringes. 

ー?-
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A graph is computed from the labelled picture according to the same rules used in 

[Cline et al. 84). It is then used to compute the relative orders. 

II ALGORITHM 

II.l LABELLING 

The labelling algorithm is similar to the one already implemented in the moire 

system. The old algorithm uses different kinds of labels for each of the four basic colors 

(red, bl~ck, green and blue). This algorithm gives all fringes a label which is 

independent from their colors. 

The picture is segmented in "fringes" : a fringe consists of a set of pixels of same 

color which are connected together by a neighborhood of 4 or 8 pixels. Two algorithms 

have been implemented : one using the 4-pixel neighborhood and the other using the 8-

pixel neighborhood. 

The picture is scanned horizontally. At a pixel P the neighbors which have 

already been labell辺 arescann函 ：these are nam凶 inthe picture below A, B, C and D. 

。
1023 

゜

1023 

Fig II-1 : a) scanning of the picture, b) when labelling pixel P the 

neighbors are: A, B, C, and D pixels. 
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According to their color and label the pixel P is given a label and if necessary 

some fringes are merged and renumbered. 

Once the picture is labelled we have some more information on the moire pattern : 

the picture is segmented into a set of fringes. For each fringe we know its size in pixels, 

its color and we have the exact coordinates of one pixel belonging to that fringe. We can 

even access all pixels belonging to a certain fringe using a recursive algorithm such as 

this one: 

visit(x , y , fringe_label) 
｛ 

/* mark (x, y) pixel as visited*/ 

work[y][x] = 1 ; 

/* visit the other pixels of neighborhood*/ 

for(all pixels (x', y') of (x, y) neighborhood) 
｛ 
if (label[y'][x'] == fringe_label && work[y][x] == 0) 

｛ 
visit(x', y', fringe_label) ; 
｝ 

In this function "label" is the 1024 by 1024 array representing the labelled image 

: label[y][x] gives the label of pixel (x, y). "work" is an array of same size initialized to 

0 and used to record the visited points. 

23 
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Il.2 GRAPH STRUCTURE 

We now want to gather some information on the relations between fringes : 

which fringe is in contact with which fringe ? ; what is the size of the area of contact 

between two fringes ? 

Two fringes will be said adjacent if they share a common edge. In the picture 

below we can see the following relations between fringes : 

-fringe 1 is adjacent to fringe 2. 

-fringe 2 is adjacent to fringe 1, 3 and 6. 

-fringe 3 is adjacent to fringe 2 and 4. 

-fringe 4 is adjacent to fringe 3 and 5. 

-fringe 5 is adjacent to fringe 4. 

-fringe 6 is adjacent to fringe 7 and 2. 

1 

2
 

3
 

Fig. II-2 : a simple moire pattern. 

From the labelled picture a graph is generated. There are two features : 

nodes : they represent a fringe. 
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links : a link is established between fringes A and B 

when they are adjacent. The weight of the link is proponional 

to the length of the common edge between the two fringes. 

The graph of moire pattern of Fig. II-2 is shown below. 

0--t2 

Fig. II-3 : the graph derived from Fig.II-2 moire pattern : each link 

has a weight proportional to the area of contact between the fringes. 

But the fringes represent slices of the object at different depth-levels. The links 

are thus oriented according to the depth of the fringes. So far we don't know the exact 

depth of the fringes; but we can easily determine the depth difference (or relative depth) 

of two adjacent fringes. We only have to consider the colors of the fringes. The figure 

below shows the relative depth scale deduced from the color of the fringes (see 

chapter I). 

depth relative order 
levels 

high 
BLACK N+2 

RED N+1 

BLUE N 

GREEN N-1 

black N-2 
I 

low 

Fig. II-4 : relative depth scale according to colors. 

25 
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An example of the simple moire pattern colors (see up) is given here: 

Fig. Il-5 : a simple moire pattern with indication of depth levels. 

Adding the depth relations in the graph we get the following : 

~(2 

order N • order N+ 1 

Fig II-6 : the complete directed graph of the simple moire pattern from 

Fig. I-5. 

Here is the C-structure used to represent a fringe in the implemented program: 
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struct fringe { 
short number; /* label of the fringe */ 
short color ; /* color of the fringe * / 
short level; /* relative order of the fringe */ 
short visited; /* visit flag used in graph search */ 
short nbr_high; /* nbr. of links to higher fringes */ 
struct fringe *higher[20] ; /* array of pointers to other fringes * / 
short nbr_low; /* nbr. of links to lower fringes */ 
struct fringe *lower[20] ; /* array of pointers to other fringes * / 
} ; 

Il.3 RELATIVE ORDER DETERMINATION 

We call the graph "consistent" if it is possible to give to each node a relative order 

which is not conflicting with the linlcs. For example the graph of figure II-6 is consistent 

: here is a set of relative orders which shows it : 

回 E1 
E] 回口

0-→ (2 

order N • order N+1 

Fig. II-7 : an example of relative orders on a consistent graph. 

A classical depth-frrst search of the graph is made:in the classical algorithm the 

search of the graph goes trough each node once only. The computation cost grows 

linearly with the number of links (for details see [3]). The implemented algorithm 

recursively visits the graph in the same fashion : the function also gives a relative order 

N to a node when entering it. It then visits all lower unvisited nodes giving them the 

order N-1 and all upper unvisited nodes giving the order N+ 1. 
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visit_fringe(s , level) 
s is a pointer to a fringe node structure ; 
level is the relative order of s 
｛ 

if (s->visited == 1) /* if this fringe has already been visited */ 
｛ 
if (s->level l= level)/* if previous order is different from "level" */ 

｛ 
/* there is something wrong in the picture: record fringe */ 
/* number and level difference*/ 

else 

exception++ ; 
strange_fringe[ exception] [0] = s->number ; 
strange_fringe[ exception] [1] = s->level ; 
strange_fringe[exception][2] =level; 
｝ 

return; 
｝ 

｛ 
s->visited = 1 
s->level = level ; 

/* this fringe hasn't been visited yet 

/* this fringe is being visited 
/* record relative order 

I

I

I

 

*

＊

*

 

for(all lower fringes pointers low_s) /* visit all lower fringes */ 
｛ 
visit_fringe(low _s , level-1) ; 
｝ 

for(higher fringes pointers high_s) /* visit all higher fringes */ 
｛ 
visit_fringe(high_s , level+ 1) ; 
｝ 

return; 
｝ 

If a node has already been visited the function also controls if its relative order is 

coherent with that of the present node. If not the graph is declared "inconsistent" and the 

number and location of detected inconsistencies are recorded. Below is an example of 

inconsistent graph. It is impossible to find a set of relative orders consistent with the 

links of the graph. 
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E] 
E] 

。
Fig. II-8 : left : inconsistent graph of the right moire pattern. 

In figure II-8 the set of relative orders { 6 , 7, 8 , 9) is not consistent with the 

left link which "jumps" from order 9 to order 6. 

The implemented algorithm detects those inconsistencies. 

II.4 FIRST RESULTS 

For moire patterns the graph of which is not inconsistent, the algorithm 

successfully determines a set of relative orders. 

But in some pictures the fringe pattern degenerates : the surface of the object is 

too steep or too dark preventing an accurate computation of the pattern. At those 

locations the fringes disappear in the background noise : a random distribution of small 

dots of 4 colors. Lots of inconsistencies appear in the moire pattern and in the graph as 

can be seen in the following picture : 
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Fig. II-9 : an example of degenerated moire pattern on a steep surface. 

It is then impossible to determine the relative orders from such data: it has to be 

filtered first. 

III FILTERING 

lll.l PROBLEM 

As seen from above some noise can appear in the moire pictures. This noise 

consists of a random pattern of small fringes. This pattern leads to a graph representation 

being inconsistent and containing unnecessary data. The picture and the graph have to be 

印teredbefore relative order can be computed. 
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Ill.2 FILTERING : SIZE OF THE FRINGES CRITERIA 

This fi江sttechnique is a filtering of the moire pattern itself : the original picture is 

modified to eliminate unnecessary data. One way to get rid of the noise in the picture is 

to delete all fringes the size of which is less than a given threshold. 

The implemented algorithm checks the size of all fringes in the picture and deletes 

those which are too small from the data structure. A recursive function is used to go 

through these fringes and turn their pixels back to yellow (= background color). 

This method is efficient in suppressing the noise in dark parts of the object: there 

the moire pattern is a random pattern of small fringes. 

Ill.3 FILTERING : SIZE OF THE GRAPH-LINKS CRITERIA 

Depending on the orientation of the object surface the noise cannot be 

substantially reduced by the previous filtering at some angles. Here is an example of 

such moire pattern : 
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Fig. II-10 : noise on a steep surface : long fringes with small holes. 
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The pattern consists of long fringes disconnected from times to times. The links 

which appear in those holes are of two kinds : 

"wrong" links : these are links between two fringes of 

non-compatible colors (e.g. , the relative order difference 

between these fringes is more than 1). 

small links : the surface of contact between fringes 

through these holes is small. 

So when computing the graph representation only the biggest links are used. 

Under a threshold value the links are considered as non-significant and are deleted. 

Furthermore all "wrong" links are ignored. 

This second filtering technique is applied to the graph: the graph is modified but 

not the moire pattern : there is no loss of information and it is always possible to come 

back to the original data. 

IV RESULT 

IV.l LOSS OF RESOLUTION 

In order to efficiently filter the moire pattern and the graph the thresholds for both 

印teringtechnique have to be set at a high level. 

If the thresholds for the size of fringes and links are set at about 30 pixels we will 

be able to "see" only the fringes which are 30 pixels or bigger even if the physical 

resolution of the experimental system is better than this. 



Relative Order Computation 

IV.2 RESULTS 

This algorithm successfully computed the relative orders of various moire 

patterns providing the threshold levels where appropriately set. The thresholds used in 

the computation were taken twice as big as the noise fringe size, that is between 30 and 

50 pixels. 
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Occluding 
and 

I. PROBLEM 

Chapter III 

Edges Detection 
Correction 

I.l WHAT ARE OCCLUDING EDGES ? 

Occluding edges appear on non convex objects when one part of the object is 

hiding another pan : in the picture of the tea cup below there is an occluding edge at the 

boundary between the body and the handle. 
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Fig. III-1 : a moire picture of a tea cup with an occluding edge. 

1.2 LIMITATIONS OF MOIRE TOPOGRAPHY 

Using moire photography one can access the relative depth of ari object. But as 

this information is relative, there are cases where a moire picture is completely 

ambiguous, preventing one from getting any useful information from it. An easy 

example is that of two parallel planes separated by a distance equivalent to one order. 

The fringe pattern will be strictly identical on both planes and continuous from one to the 

other. 

This is what shows the picture below : a dodecahedron is behind an octahedron. 

The front sides of both objects have exactly the same direction, preventing any accurate 

segmentation of the surface. 
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Fig. ffi-2: an ambiguous moire picture of a dodecahedron hidden by 

an octahedron. 

II. OBJECTIVE 

II.I OCCLUDING EDGES IN MOIRE PICTURES 

An occluding edge will be easy or difficult to detect in a moire picture depending 

on two factors : the direction of the two surfaces on each side of the edge and the spacing 

between them. 

The closer the directions of the planes are, the more difficult it will be to see the 

occluding edge: the patterns will be exactly the same on both surfaces. But we will also 

hardly detect it if the distance along the occluding edge is constant and equal to an integer 

number of orders : the color of both surfaces will be the same and the edge will not be 

detectable. The two surf aces seem to merge into one big continuous surf ace. 

This generates very ambiguous pictures such as in figure III-2: it is not possible 

to fmd the real shape of the object without collecting additional data. 
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Il.2 OBJECTIVE OF IMPLEMENTED ALGORITHM 

In order to get a picture such as figure III-2 the angle and position of objects have 

to be finely adjusted. A small variation of the parameters clearly reveals the edge : in the 

following picture (Fig. III-3), the octahedron has been slightly translated toward the 

camera. The edge is much more easily detected. Figure III-4 shows the octahedron 

rotated by an angle of 30 degree: the edge is also much clearer. 

Fig. ID-3 : translated octahedron from Fig. III-2. 
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Fig. III-4 : rotated octahedron from Fig. III-2. 

What usually happens is that, along the edge, the two patterns are sometimes 

connected and sometimes disconnected : these are the cases the implemented algorithm 

can deal with. 

The fi江stpart of the algorithm is the occluding edge detection : this can be easily 

done by a graph consistency check. When there is an occluding edge in the picture, the 

graph is no longer consistent. 

But in order to be able to determine accurately the set of relative orders the 

algorithm needs to locate precisely the edge in the picture. It can do so if the picture is 

not too ambiguous : if the moire patterns on each side of the edge are very similar (such 

as in figure III-2) the algorithm won't be able to detect the edge. But if the patterns are a 

little different the detection becomes easy. The second part of the algorithm is designed 

to locate the edge as accurately as possible and to use this information to correct the 

moire pattern and to compute the good relative orders. 
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III. DETECTION OF OCCLUDING EDGES 

III.I OCCLUDING EDGES MODIFY THE GRAPH REPRESENTATION 

The occluding edge in the picture is detected by checking the graph consistency : 

the fringe pattern is disturbed by the edge and becomes inconsistent. 

When two different moire patterns meet at an occluding edge some fringes 

tem1inate abruptly and some merge with a fringe of the other pattern : this is shown in 

the figure below. 

゜

9

1

 

1 1 

1 2 

occluding edge ＿ 
1 

2 

3 

4 

5 

6 

7 

8 

• 
left moire 
pattern 

• 
right moire 
pattern 

the patterns near the 
occluding edge. 

Fig. III-5 : at the occluding edge fringes from both sides of moire 

pattern merge together. 

The fringes 1 and 9 merge and make only one fringe although they might be of 

different relative depth. 
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If we try to determine the relative orders for that pattern we get the following 

graph: 

24 or 27? 

result of merging 
of fringes 1 and 9 

; I へ=¥ 
~ 

"good" link 

"wrong link" 
(deleted after filtering) 

"weak link" 
(deleted after filtering) 

゜
fringe 

口 relative order 

result of merging~ ~ ぐ t::.:..1/ (a 4 connected neighborhood is used) 
of fringes 8 and 12 

Fig. III-6 : graph of fringe pattern from figure III-5 : accurate relative 

order computation is impossible. The graph is inconsistent. 

Instead of having on each side of the occluding edge two independent sets of 

fringes we now see some fringes of the same color but of different relative order merge 

together. 

Reflecting the change of the moire pattern, the graph also changes : some nodes 

of different relative depth merge and thus inconsistencies appear. 

The graph is no longer consistent. Note that after detecting the presence of the 

occluding edge we have no idea of where it lies in the picture : we know only a set of 

fringes which lie close to it. But as we don't use any representation of the topology of 

the fringe it is not possible to locate the occluding edge by only using the graph 
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information. It is precisely that information which we need to correct the picture. 

Another algorithm is needed for that purpose. 

111.2 CONCLUSION 

There is a one to one correspondence between the graph consistency and the 

fringe pattern consistency. This inconsistency of the graph comes either from noise ( 

degenerated fringes or bad contouring) or from occluding edges. 

Provided that the size of the fringes of the occluding edge is much bigger than the 

filtering threshold, the only inconsistencies left in the moire pattern come from the 

occluding edge. We will assume from now on that all pictures used have been filtered or 

taken with enough care so that the fringe pattern is noiseless : thus checking the graph 

consistency is enough for detecting occluding edges. 

IV. CORRECTION OF THE MOIRE PICTURE 

IV.l PURPOSE AND PRINCIPLE OF FRINGE PATTERN 

II CORRECTION" 

We want to be able to determine the set of relative order of a moire pattern even 

when there are occluding edges inside. We will assume that the moire patterns from both 

sides of the edge are different enough so we can localize the edge easily. 

We will first approximate as closely as possible the occluding edge with a set of 

segments and then use this approximation to separate the two sets of fringes along the 

computed edge by splitting in two the merged fringes. This corresponds to the splitting 

of the nodes in the graph. 

When all fringes have been corrected this way the graph should be consistent and 

we should be able to determine the relative order of fringes. 
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IV.2 DISCONTINUITIES OF FRINGE PATTERNS NEAR OCCLUDING 

EDGES : WRONG POINTS DETECTION 

On both sides of an occluding edge the frequencies of the fringe pattern are 

different : the two regions of different frequencies join along the edge ; the pattern is 

strongly distorted along that line ; some fringes disappear, some are bent, some merge as 

seen in figure III-5. 

If the occluding edge is long enough, necessarily, two fringes will come into 

contact and create an illegal link. We search the picture for pixels involved in these links: 

we call them "wrong pixels" : a pixel is classified as wrong point when there is in its 

neighborhood, a pixel of forbidden color (for example a black pixel in the neighborhood 

of a blue pixel). These wrong points are always present where pattern inconsistencies 

occur: and can be used to detect a wide range of inconsistencies in the picture : on a 

distorted and noisy part of the pattern, the distribution of wrong points will be 2-

dimensionnal (see paragraph VI). Near an occluding edge the distribution will be 1-

dimensionnal. 

The next figure shows how the wrong points are distributed along a simple 

occluding edge. 

4-connected 
neighborhood 

red pixels lying 
near green pixels 

blue pixels lying 
near black pixels 

a-connected 
neighborhood 

blue pixel near black pixel 

same as 4-con. neighborhood 

red pixel near green pixel 

Fig. III-7: wrong points along a simple occluding edge pattern. 
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For detecting wrong points we can either use a 4 or a 8-connected neighborhood. 

The latter has been chosen for two reasons : all pixels which are wrong points for the 4-

connected neighborhood are also wrong points for the 8-connected. The reverse is not 

true. The 8-connected neighborhood provides us with more data and thus with more 

information on the moire pattern. Second the 8-connected neighborhood allows us to 

detect inconsistent moire patterns such as the one from figure II-8. Using a 4-connected 

neighborhood wouldn't allow us to detect wrong points in these patterns. 

4 connected neighborhood 

゜

8-connected neighborhood 

。
no wrong points □ = 1 pixel 

4 wrong points 

Fig. III-8 : detection of wrong points in inconsistent moire pattern for 

4 and 8-connected neighborhood. 

So these "wrong" pixels are a good signature of the occluding edge. Provided 

that the occluding edge can be detected these wrong points always appear along it : they 

are thus a good "signature" of the edge. If the patterns are very different on each side of 

the edge, the density in wrong points will be high. It will be much lower if the patterns 

are sirn且ar.

It must be noted that these wrong points are also to be found in noisy parts of the 

picture. In order to get rid of these unnecessary points we first filter the moire picture 

and then look for wrong points : thus most of the points we find are closely related to the 
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presence of the occluding edge. The next figure shows an example of a search for wrong 

points in a moire picture of a tea cup. 

Fig. ill-9 : original moire pattern of a tea cup (sampling pitch = 2) 

Fig. III-10 : detection of wrong points for Fig. II-9 moire pattern. 
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IV.3 LINKING "WRONG POINTS" APPROXIMATES THE OCCLUDING 

EDGE 

A simple algorithm is then used to link the wrong points : we assume the set of 

segments computed at that step will be a good approximation of the occluding edge. 

The algorithm links the closest points and makes sure no loop is created (in 

order not to isolate a particular part of the image). 

After linking wrong poi~ 国認伽杞m:.-1-0we get : 

―-------

Fig. III-11 : after linking all wrong points which are closer than 100 

pixels. 

After the linking we get a good approximation of the occluding edge plus a 

certain number of extra segments. 

IV.4 CORRECTION OF THE PICTURE 

The segments approximating the edge are then inserted into the moire pattern 

b . . egmnrng with the smallest ones. 
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When a segment is added to the picture some fringes are split into several parts : 

the old fringe is erased in the data structure and the new fringes are created. They are 

labelled in the picture, their links are calculated and the new graph is computed. The 

consistency is then checked. If the moire pattern isn't yet consistent more segments are 

added. If it is consistent the algorithm stops adding segments : the next figure shows the 

results of the computation for the tea cup at different resolutions. 

,:! ,:)"i j',, 

夕．＿．

Fig. III-12 : set of segments inserted in the moire picture for 

correcting it. 
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Fig. III-13 : tea cup mo江epattern after correction. (sampling pitch=6) 

Fig. ill-14: tea cup after correction (sampling pitch=2). 
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IV.5 RESULTS AND CONCLUSION 

As far as I know there is no algorithm for the detection of occluding edges in a 

moire picture. This algorithm can compute relative orders and moire patterns in pictures 

where usual algorithms are not effective. Provided that the size of the noisy fringes is 

below the resolution needed for the picture, an accurate set of relative orders can be 

computed. 

The algorithm has been tested on the tea cup at different angles and on simple 

polyhedra scenes. The picture below shows an example of computation for an 

octahedron on a ct1be. 

Fig. III-15: an ambiguous picture of a simple polyhedron scene after 

correction 
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Fig. III-16: a closer look at the corrected picture of Fig. III-15 

Now the moire contour is computed from the tea-cup of figure III-9 : the first 

figure shows the results of the conventional algorithm. 

Fig. III-17 : the moire contour computed with the conventional 

algorithm shows an error in the handle. 

It is easy to see that there is a jump in the relative orders at the base of the 

handle : the gap is about 9 orders wide. 
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Fig. III-I 8 : results of our algorithm : the handle of the tea cup is 

given good relative orders. 

Our algorithm has performed well : the relative orders of the tea cup are 

accurately computed. 

The correction and computation of picture III-1 took about 3 minutes of CPU 

time on a VAX 8600, while that of picture Ill-9 took 8 minutes. 

The second is more complex than the frrst one (three times as many fringes and 

many more wrong points), but that does not account for all the time difference. We 

believe this difference is mainly due to the lack of optimization of our implementation : a 

great amount of time is spent updating a 2D array (n皿 ed"contact") containing all link 

weights : contact[i][j] = "weight of link between fringe i and fringe j" 

2 
The cost of that search is estimated to be O(n) where n is the number of fringes. 

When n grows too much that search slows the algorithm down. For the second picture 

(Fig. III-9) there are about 1000 fringes at the beginning of the computation, before 

filtering. 
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A solution would be to record the weight of links directly where it is needed, that 

is within the C structure representing a fringe (see chapter II end of paragraph II.2.). We 

did not have time so far to implement this. 

V. SOME FURTHER POSSIBLE IMPROVEMENTS 

V.1 LIMITATIONS OF IMPLEMENTED ALGORITHM 

It is quite easy to detect singularities in a fringe pattern that needs repair. After 

analyzing the graph representation we can find the most suspect fringes (those that are 

very likely to be the result of an illegal merging). But once one of those fringes is 

found, it is much more difficult to find the point where the fringe has to be split. 

That algorithm makes no use of the information lying in the graph to correct the 

image : it only uses the "wrong" points data, then computes a set of segments and inserts 

as many as necess釦ryin the picture. This is not sufficient for images which are very 

noisy. 

V.2 ANOTHER POSSIBLE STRATEGY 

So far the model of a fringe is quite rough : a node with links to other nodes. By 

using a more sophisticated model of fringe (including the locations of wrong points for 

example) it should be possible to try to correct only the most suspicious fringes ( 

determined after analysis of the graph). The efficiency of the program would be 

improved. 

It would also be interesting to implement some "feedback" in the algorithm. So 

far the program adds segments until it gets the "consistent" answer from the graph. If the 
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picture is noisy many segments inserted into the picture are not useful and don't lead to 

an improvement of the graph. The program should then undo those changes. 

VI. ANNEX : USE OF "WRONG POINTS" FOR AUTOMATIC 

CONTOURING 

VI.I PROBLEM 

When a moire picture of an object is taken a mask is computed after low-pass 

filtering and thresholding of the image. That mask is applied on the picture after the 

fringe pattern has been generated (yellow part of moire pictures): only the significant 

parts of the moire pattern will appear. 

The criteria for masking a pixel or not is its intensity after low pass ftltering. That 

criteria is a little artificial : some dark parts of the object can provide a nice moire pattern, 

but be masked because of their low intensity ; whereas some bright and steep areas with 

a deteriorated pattern will not be masked. The Fig. ID-19 shows such a case : if the 

treshold level is set low, there is too much noise in the picture. But if it is set high 

enough to mask the noisy parts, a great part of the clean pattern disappears. 
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Fig. ID-19 : a difficult mask computation problem. 

IV.2 PROPOSED ALGORITHM 

The proposed algorithm would be to use the wrong points to approximate the 

parts of the picture where the panem is too bad to be of any use. This information would 

then be used to mask these parts. 

As seen previously the wrong point density is a very good indication of how 

good the moire pattern is: if it is distorted or noisy, lots of wrong points appear. 

・,. 

．．． 
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Fig. III-20 : the picture of Fig.III-19 before masking : the fringe 

pattern quality can clearly be appreciated. 

On that picture there are two similar kinds of noise : one is the background noise 

and has been almost completely masked by the coventionnal algorithm. The second is the 

very bad moire pattern on the lower left face of the dodecahedron : this has not been 

masked. 
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Fig. ill-21 : the wrong points detected for the picture of fgure III-20 

(with an 8-connected neighborhood). 

For that last picture all parts that should be masked appear clearly. For the 

algorithm we would suggest to keep, as a first step, the same mask computation 

algorithm, but with a low threshold so as to be sure not to mask any good part of the 

pattern : most of the background would be masked but the object would be left intact. 

We would then search for all wrong points left in the picture. 

We could then use a triangulation technique to compute the mask to be applied on 

the pattern. That algorithm would be precise but might be time consuming. Another 

solution would be to replace each wrong point in the picture with a disk or a square of 

small size (enlarging each pixel). If that size is appropriately chosen a good contour 

could be obtained. 

Using the wrong points for accurate contouring of the object has the advantage of 

eliminating in the picture only the information we do not need : it should not modify the 

moire patterns that can be useful. 
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Surface Curvatures Computation 

I. PURPOSE OF THE STUDY 

I.l EXTRACTION OF SPECIFIC 3D SURFACES FROM A MOIRE 

PICTURE FOR 3D OBJECT RECONSTRUCTION 

The moire photography system has been conceived as a 3D object acquisition 

system. Once several pictures of the object have been taken we want to build an accurate 

representation of its shape. We want this representation to be as concise and as stringent 

as possible. 

In order to achieve these opposite goals we want to extract from object shape the 

lines of surface intersections : their content in information is very high and they should 

allow us to segment the surface and to more easily represent the surface. 
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l.2 SURFACE SEGMENTATION 

We want to segment the surface using intrinsic and extrinsic properties. The most 

important intrinsic feature of a surface is its Gaussian curvature : it should allow us to 

extract parabolic lines (lines where one of the curvatures becomes zero), umbilic surfaces 

(e.g. spheres) and planes.The extrinsic features are the local minima and maxima of the 

picture, the 2D curvatures of the fringes. 

The first step toward surface segmentation is then to be able to compute the 3D 

curvatures all over the surface. The other features are easy to compute using classical 

techniques. The 3D curvatures computation cannot be done using classical techniques in 

a moire system as the 3D data from moire pictures do not give us a dense map. 

1.2. CURVATURES COMPUTATION : BASIC IDEA 

The important starting point is that an equidistance contour, r, is a 2-D surface 

curve lying on the surface of the 3D object. Since the data is dense in this 2D plane, 

→ given any point M lying on r, we can obtain a very accurate estimate of the tangent, t , 

→ principal normal, nr , and the curvature, k , to the curve at M . So, one of the 3 axis of 

the Frenet trihedron of r at M is fixed. 

Next, we go to the contours lying immediately above and below this plane. 

Since these contours are equidistance contours (the so-called level sets), we can parallel 

→ transport the tangent at t , to the neighborhood contours, say, to points P1 and P2 . 

Th → en we can obtam a good estimate of the surface normal, n , at M by usmg 

osculating circle to the points (P1 , M , 恥） . The tangent plane, T(M), and the normal 

→ section that is orthogonal to t are thus fixed. (See Fig. IV-1 and Fig. IV-2) 

Notice that the normal curvature at Min this direction, which we denote by ko, 

can immediately be obtained from the osculating circle by a simple formula which we 

will derive. 
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→ Once the normal n , is fixed, then the normal curvature of r, at M , denoted by 

k90, is also immediately available from Meusnier Theorem, [do Carmo 76, p.142] 

which states that: 

M eusnier Theorem : All curves lying on a surf ace S and having at a given point 

p e S the same tangent line have at this point the same normal curvatures. 

Thus we have : k90 = k cos e where e is the angle between the surf ace 
→ → 

normal n and the principle normal nr of r at M . 

Here the mean curvature is immediately available because it is known that the 

sum of the normal curvatures in two orthogonal direction is always 2H (2 times the 

mean curvature). 

Thus we have : 
1 

H=ぅ(ko+ k90) 

Next to obtain the principal curvatures and Gaussian curvature, we make use of 

the Euler's Formula, which states that: 

Euler's Formula : 

2 2 
ko =恥 cos a + k2 sin a , 

where ko is the normal curvature of a surface curve along a given direction on 

T(M), and (k1 , k2) are the principal curvatures, and a is the angle between the first 

principal direction and the tangent of the surface curve. 

Since we already have a good estimate of (ko , k90), the remaining three 

unknowns, (k1 , k2, ex) can be deduced from Euler's Formula if we can also obtain 

good estimates of (ぬs, k135), the normal curvatures of the 45 and 135 degree normal 

sections. 
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To obtain the 45 and 135 degree normal sections, we again make use of the 

equidistance (or level sets) properties of the equidistance contours to locate the 

intersection points between these normal sections and the surface. Once these 

intersection points are obtained, the respective normal curvatures are estimated using 

their respective osculating circles. 

Thus we see that the computation of the normal curvatures, from ko to k90 , 屈

and k135, are carried out in a step by step fashion, where the errors can all be controlled. 

The final step the involves solving a quadratic equation is also stable. The only 

complicated manipulation is on the location of the 45 and 135 degrees normal sections 

which we show below in details how it is done. 

Wefi江stshow below an outline of the computation steps followed by some more 

details of the intricate parts of the algorithm. 

II. ALGORITHM 

Il.1 CHARACTERISTICS OF THE 3D MOIRE DAT A 

The 3D moire data is different from the us叫 3Ddata used in surface 

segmentation : it consists of a set of fringes which represent slices of the object at 

different heights. The density of the data is much higher along a fringe than usual dense 

maps. But the spacing between two fringes at different levels is not dense. Thus the data 

is dense in 2D but sparse along the Z axis. 

In this chapter, we show how to take advantage of the great amount of data in the 

fringes to segment more efficiently the surface. This should overcome the lack of data in 

the Z direction. This structure of data allows us to segment the surface without having to 

approximate the surlace with patches : the computation should then be less intensive. 
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Il.2 COMPUTATION OF CURVATURES : USING OSCULATING CIRCLE 

II.2.1 What is the Osculating Circle Approximation ? 

As shown in Fig. IV-1, the objective is to approximate the surface at a point M 

within a normal plane P. The normal plane intersects with the surface along a curve. This 

curve is of course included in plane P and M lies on it : we assume that on each side of 

M, the curve intersects a fringe at points P1 and P2. 

p
 

fringe 2 

fringe 3 

Fig. IV-1 : intersection of normal plane P at point M with object 

surface : P1 and P2 are points of intersection curve which belong to 

fringes. 
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p
 frinae 1 

frinqe 2 

frinae 3 

c
 osculating circle 

Fig. IV-2: view of plane P: osculating circle of center C and radius R 

defmed by the points Pi, P2 and M. 

These three points lie in plane P and we approximate the curve at point M with 

the circle C defined by these three points. If Pi, P2 and M lie close enough, the center of 

circle C is close to the center of curvature and the distance CM is close to the radius of 

curvature of the curve at point M. 
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IL2.2 A Quick Look at the Algorithm 

a) Computinc the T.incent ; 

The tangent to the curve is computed first 

fringe 

Fig. N-3 : tangent to the fringe. 

We get: 

<'=rnJ 
→ 

with II t 11 = 1. 

b) Compμtinf th~NQrmfll ; 

The normal is then computed :the picture is scanned orthogonally to the tangent, 

two cross-points P1 and P2 are found. 
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fringe 0 

fringe 1 

Fig. IV-4: normal computation: finding the cross-points. 

The direction of the normal is given by the vector CM where C is the cross-point 

of the bisecting lines of segments MP1 and MP2, as given in Fig. IV-5. 

fringe 2 
P2 

fringe 1 

fringe O 

c
 

Fig. IV-5 : normal computation : computing the normal using the 

osculating circle approximation. 

We get: 

了＝已］ → with II n II = 1. 

For computing the normal we need to compute the distance CM. Thus the normal 
1 

curvature ko =― is computed at the same time. 
CM 
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c) CQrnpletinc the Ort DQCQnal l3a~i~; 

The last vector of the orthonormal basis is computed : 

戸 @1{, ~: いい］
d) Compi1tint: k.w...:. 

The k90 curvature is computed in a special way in order to reduce the error made 

using the algorithm for知 andk135 (see II.4.2). 

The 2D curvature of the fringe at point M is computed and then projected on the 

normal. This projection is the normal curvature at point M for the normal section at 90 

degree (from Meunier theorem) 

e) Computine Norm~! Pl~n~Cooroin~t~~; 

As seen previously, ko and k9。havebeen computed. We now need to compute 

ぬsand k135. These are done using the osculating circle approximation in the normal 

sections P 4s and P135 : the intersection of these sections are computed and the osculating 

circle approximation is used to compute the curvatures. Below are the definitions of the 

planes used in that computation : 

→ → -P 45 is the plane normal to b -t . 

→ → -P135 is the plane normal to b + t . 

65 
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Fig. IV-6 : the planes used in the curvature computation. 

f) in in In r i n P in . B w n Pl n nd Frinu . ・ 

For each normal plane, we compute the intersection of the normal plane with 

fringes one level over and one level under that of point M. 

Let us find the intersection of a normal plane with a fringe one level under M. 

The normal plane intersects the fringe plane along a line D : its direction is given by the 

formula: 

了 [a,] → ［＆ = -a, where A = ::] is the vector orthogonal to the normal plane. 

゜
The D line goes through the point M', projection of M following the direction of 

→ normal n . The intersection of D with the fringe gives us the points we want. 
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fringe 1 

fringe 0 

D
 

Fig. IV-7 : scanning along line D and searching for points P 1 and P2. 

This computation is done three times : for the plane of fringe 1, and for the 

planes just under and just above it. Each time from O to 2 cross-points are found. The 

two closest points to M (one on each side of the normal) are selected and given the 

names P 1 and P 2• 

g) CQmp¥Jtine-The C¥JrVflture ; 

From the 3D coordinates of Pi, P2 and M we compute the radius of curvature, 

using the following figure (in this example P1 has been found on the same level as Mand 

P2 one level under) : 
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Pl 
M 

P2 

c
 

Fig. IV-8 : computing the osculating circle from the points Pi, P2 and 

M. 

The curvature is given by the formula [ see Appendix I] : 

2 sin <I> 
k= 

✓ a2 + b2 -2 ab cos <I> 

h) Computine-the lntrin~i<; Fe~ture~; 

Four normal curvatures are computed: at 0, 45, 90 and 135 degree. This data is 

sufficient for calculating the two principal curvatures Kl and K2, the Gaussian and the 

→ → mean curvature Kand H, and the principal directions e1 and e2 [Fan and al. 83]. 

Il.3 THE IMPLEMENTED ALGORITHM IN DETAILS 

II.3.1 The Tangent Computation 

The fringes are not smooth enough to allow a direct computation of first order 

derivative. So we had to approximate them with beta-splines in order to get an accurate 

computation of tangent. 
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II.3.2 The Normal Computation 

→ 
We want to compute the coordinates n1, n2, n3 of n and the ko curvature. We 

→ → → already know that II n II= 1 and that n l. t . This g・ 1ves us the followmg equations 

2 2 2 
n1 + n2 + n3 = 1 

and 
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We already know t1 and t2 and thus have only to compute 0 . The normal plane 

contains the Z axis and the othogonal vector to the tangent : these two vectors will be 

taken as a basis. 

For computing sin 0 and cos 0 we will have to consider four cases according to 

ー→ →J_ 
the sign of curvature and of inner product MP2 . t . The following figure shows the 

case where both are positive. 
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Z axis 

c
 

Fig. IV-9 : the computation of normal azimuth in the case of positive 

curvature and inner product. 

We have a relationship between 0 , a. and~(here: a.+~- 0 = 1t). Using it 

we compute sin 0 and cos 0 with : 

(1) cos a. +~= cos a. cos~ - sin a. sin~ 

and 

(2) sin a + ~=cos a sin~ + cos~sin a 

but we have the following : 

d 
!cos a I=一

b 

恥I
lsin a I=一

b 

lcos~ I 
b/2 

＝ R 

!sin~I 
b' 

＝ R 
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b'=~ 

Remark: b, b'and dare distances (always positive) while h2 is the z-coordinate 

） 

of MP2 vector. 

The radius of curveture R is computed using the osculating circle approximation 

(see II.3.5). 

The result of the cacul us for all cases can be summed up in the following 

formulas [for details see Appendix II] : 

(3) cos e ='三~(-sign(k) 告+ h2 ✓ 言）

1 
(4) sin 8 =—百(- sign(k) 

恥
↓ 

Tバ（店）― ~J

Using { nn〗二:,801:2
Il3 = Sin 0 

we easily get the normal coordinates. 

At the same time we have computed the normal curvature at O degree : 1
-
R
 

=-

゜
k
 

This method is much more accurate than the method that would consist in finding 

the intersection C of the two bisecting lines of MPI and MP2 and computing : 

i = I で．
ー→

II CM II 

II.3.2 The k9。NormalCurvature Computation 

The 90 degree curvature of the normal section is computed from the 2D 

curvature : the cross-point computation for that angle is not accurate enough 

(see II.4.2.c). 
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As the normal section curve at 90 degree and the fringe have the same tangent at 

point M, we can use the Meusnier theorem (see [ do Carrno 7 6] p 142) : the normal 

curvature k9。iseq叫 tothe projection of k (2D curvature of the firnge) on the surf ace 

normal: 

I応 o= K (n1 . i) I where記sthe 2D principal normal of the fringe at 

point M. 

II.3.3 The Normal Planes Coordinates 

We have already computed the normal curvatures at O and 90 degrees. We now 

need to compute the curvatures at 45 and 135 degree from an arbitrary reference angle. 

In order to simplify the computation of the equations of the normal sections we measure 

→ → the angle in the (b , t) basis. 

The equations of the planes are then more easily computed : 

→ → -P 45 is the plane normal to b -t . 

→ → -P135 is the plane normal to b + t . 

II.3.4 Finding the Intersection Between a Given Normal Plane 

and a Fringe. 

Let n be the order of point M. We compute the intersection between normal plane 

P and fringes at levels n, n+ 1, and n-L For each of these three planes the equation of 

line Dis computed: its direction (identical for the three planes) and a point belonging to 

it (M, M1 or M_1). M1 and M_1 are respectively the projections of point M along the 

normal on planes Pn+l and Pn-1: we get the three lines Dn, Dn-1 and Dn+l・

-.. 
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ー＋
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ー
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fringe n 

Fig. IV-10 : intersection points of normal plane and fringes of level n, 

n-1 andn+l. 

The results are: 

PnPn+l = 0 
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→ 
The line△ = (M , n)separates the plane P into two parts. In each of these part 

the closest point to Mis chosen among the p:: they are named P1 and P2. 



74 Chapter IV 

A―
 

p
 D n+l 

Dn 

D n-1 

同
I
P
n
 

ー

I

n

 
p
 

P:_Iロ

一 directionand area of scanning 

Fig. IV-11 : view of the nonnal plane P : △ line, D lines, intersection 

points, P1 and P2. 

Fig. IV-11 shows the distribution of the intersection points in the plane P, the 

line△ and the points P1 and P2. In this case we have for example: 

2 
P1 = P and P2 = P n n-1・

II.3.5 Computing the Curvature. 

The curvature in normal plane P is computed using the formula stated before (see 

Fig. IV-8). This formula comes from the osculating circle approximation. 

k= 
2 sin <I> 

✓ 叶+d2 -2 d1む cos①

with d1 = MPl and d2 = 

MP2. 
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II.3.6 Computing Intrinsic Features 

a) Tfle Prini;ip(ll Curv'1ture~; 

Once the four normal curvatures ko , ぬs,k9。andk135 have been computed, 

The Gaussian curvature is calculated. 

We have the following relationships between these curvatures and the principal 

curvatures k1 and k2 (see [3]) : 

(1) S = k1 + k2 = k。+k9。

(2) S = k1 + k2 =ぬs+ k135 

In the article [3], the mean curvature S is defmed as: 

(3) 
1 

S = 2(ko +ぬs+ k9。+k13s) 

This formula does not advantage any of the computed curvatures. But as can be 

seen in the error bound chapter, the k90 curvature computation is more unprecise than the 

others. For that reason only the formula (2) is used in the implemented algorithm to find 

the sum of k1 and k2. 

Using this other formula : 

4 (ko kg。＋応 k135)= 4 k1朽+(k1 + k2)2 

with P = k1 k2 we get : 

4 (ko k9。＋屈 k135)= 4 P + S2 

that is : 

P = 4 (k。k9。＋知 k135)-S2 

k1 and k2 are then computed by solving the second degree equation: 

75 
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X2 -S X + P = 0 

By convention we have : I k1 I> I k2 I. 

b) Th~Princ;ipf\l Dir~c;tion~ 

→ → → The basis of the tangent plane is (b , t). The angle between b and the 

principal direction of curvature k1 is named a. 

The following equation gives two values for a : a and冗-a

2 
ko = k1 + (k2 -k1) sin a. 

冗
This second equation also gives two values for a. : a. and --a. : 

2 

2ぬs= k1 + k2 + (k1 -k2) sin 2a 

Comparing those two sets of solution we find the unique value for o:. 

We then compute the principal vector coordinates: 

→ → → 
e1 = cos a. b + sin a. t 

→ → → 
e2 = -sin a b + cos a t 

Il.4 ERROR BOUNDS 

II.4.1 introduction 

The error bound study has been done on the accuracy of two points of the 

computation : the P1 and P2 computation and the curvature computation. 
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The P1 and P2 computation accuracy mainly depends on the tangent computation 

→ accuracy : the location of P1 and P2 is quite sensitive to a small change of t . That is 

why we thought it was worth using a beta-spline approximation to compute the tangent. 

The curvature accuracy itself depends on the accuracy of the measures of MPl 

and MP2 and on that of the angle <l> . 

II.4.2 Error on the Cross-points 

D
 

D' D" 

Fig. IV-12: error in the computation of cross-points. 

The error on the cross-points determination comes from a wrong computation of 

the line D. We will decompose that error into a translation error (D→ D')and a rotation 

error (D'→ D"). 
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a) Tramlation Error (D→ D'); 

D
 

D' 
M' 

I 

fringe 

Fig. IV -13 : translation error in the plane of the fringe. 

D : intersection line of normal plane and fringe plane. 

→ 
A : orthogonal vector to line D. 

M1 : projection of Mon fringe plane. 

8 : angle between fringe tangent and D line. 

P : intersection point between D line and fringe. 

D', M'1 , P': computed data. 

△ s1 : error of arclength coordinate of P. 

→ 
凶： error of M1 computation. 

△ r : distance between D and D'. 

We have then : △ S1 

→ 
心△M.A 

＝＝  
sin e sin e 
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b) Rot'1tion Error (D'→ P") ; 

→ 

D' 

D" fringe 

→ → 
Fig. IV-14: rotation error diagram: A→ A". 

→ 
We suppose here that II All= 1. 

△ s2 
M'1P'sin <I> 

sin <)>+0 
= M'1P' 

→ 

sin <!> 

sin <)> cos e + sin e cos <)> 

We have: sin¢= II△ A,. II (providing¢is small) 

cos<!>= 1 

And thus: 

→ 
△ s2 = MP' II△ A II 

→ 
cos 0 II△ A II + sin 0 

→ 
But II△ II is first order so we can replace MP'by MP: 

→ 
△ s2 = MP 

II△ A II 

→ 
cos 0 II△ A II + sin 0 
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c) Total ErrQr on A~; 

The total error on the arclength of cross-point P is : 

→ 
△ s =△ S1十△s2=-=  

心△M.A 
sin e sin e 

＋ MP 

cos e 

Chapter IV 

→ 
II△ A II 

→ 
II△ A II ＋ sin e 

This result shows that a very big computing error can occur if the angle between 

the fringe and line Dis small. This error would occur mainly when trying to compute the 

curvature at 90 degree (normal plane tangent Of the fringe) : at this angle 0 takes its 

smallest value. The cross-points with the fringe may not be accurately computed. But as 

seen previously, the 90 degree curvature is computed using a different algorithm (from 

2D curvature) : this problem is avoided. 

The computed curvature ko should be the more precise, followed equally by知

and k135. 

II.4.3 Error on① Angle 

M 

Pl Pl I P2 P2' 

Fig. IV-15: error on curvature computation. 
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We compute the curvature using the formula (3) : 

2 sin <D 

k= ✓戸- 2 d 1む cos①

with d1 = MPl and d2 = 

MP2. 

If we differentiate it, we get : 

ok < d 1 -d 2 cos①) 
= -k od1 

d~+d;-2d1 む cos <l> 

(d2 -d1 cos①) 
od2 

d~+ d; -2 d1む cosCl) . • 

cos¢ 

+ (sin$ ― 

2 d1む sin<l:> 

d~+ ct; -2 d1む cos①

砂
ヽ

ノ

In the last term there is an arc-tangent in <D that might grow infinite if <D is not 

bounded. But the moire system has a limited angular resolution : all planes inclined by 

more than about 60 degree will not appear in the pictures : (l) will then always be bigger 

than 120 degree. So around O degree the relative error is bounded. 

The same problem arises when① gets close to 180 degree : the relative error 

cannot be bounded : this is normal as this happens when the curvature becomes close to 

0. The relative error calculation has no meaning here. 

III. COMPUTATION RESULTS 

We present some examples of computation results of our surface curvatures 

computation scheme on real equidistance contour maps containing a single simple 

object. 

Real equidistance range contours used in these examples were acquired with a 

moire interferometry system [Koezuka, et al 1988]. Equidistance range contours were 
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presemed in the form of" eight-connected chain codes", each of which is associated 

with an integer value, called an absolute order, indicating the depth values from a 

reference plane. The spacing in depth direction between two adjacent contours was 

measured as 7 mm in these examples. 

Computations were performed on range images of a single object of simple 

shape. The first example is for a hemispherical object, where the direction of the surface 

nom1al at every point along a contour is equivalent to that of a distance vector from the 

center of the sphere to that point. The curvature at every direction is equal to 1/R, where 

R is the radius of the sphere. The result from the hemispherical contours is shown in 

Fig. IV-16. Values for the surface normals and the Gaussian curvatures are obtained 

accurately. As shown in Fig. IV-16, surface normals computed along contours are 

shown in a needle map representation. Gaussian curvatures computed at points, marked 

from 1 through 12, along the fourth contour are displayed as a graph where the x-axis is 

set to be the arc-length from a starting point (marked by 1) and the y-axis as the 

approximated values of the Gaussian curvature. 

In the second example, computations were performed on a cylindrical object in 

which the Gaussian curvature along every contour is equal to zero. Fig. IV-17 shows the 

result of a scene containing a coffee cup that is viewed with the bottom at low angle. 

Both the surface normals and the Gaussian curvatures at every point were computed 

correctly. The graph shows the values of the Gaussian curvatures along the 20-th 

contour. 

Further examples on other surface features such as local extrema and zero-

crossing points of Gaussian curvature are reported elsewhere [Tanaka, et al 1988]. 
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Fig. IV-16 Computation results of a hemisphere. 
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Fig. IV-17 Computation results of a coffee cup. 

IV CONCLUSIONS 

We have shown how surface curvatures can be computed from the equidistance 

range contours directly without any explicit estimates of panial derivatives. Our 

procedure is based on using simple geometric construction to obtain the normal sections 

and using osculating circles for curvatures computations. St::irting with the surface 
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curves on the 2D contour plane, the algorithm reconstructs the normal sections in a step 

by step fashion so that the geometric quantities are computed as accurately as possible, 

within the resolution of the acquisition system. We have also shown by error analysis of 

the construction steps that the errors are bounded and the computation steps are stable. 

Our method is general and can be applied to any dense range image data. It should offer 

advantages in terms of accuracy, speed and robustness against existing methods that rely 

on the explicit computation or implicit estimation of panial derivatives. 
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Appendix I 

The Derivation of Curvature Formula (1) of section 4.3 

Pl a
 

M 

c
 

fig. 1 : curvature computation from points M, Pl and P2. 

Let Pl, P2 and M lie on the circle of center C and of radius R. 

The secant P1P2 has length : (1) b'= 2 R sin'If 

P2 

But that segment also belongs to the triangle (M Pl P2). Its length is then : 

(2) b'2 = a2 + b2 -2 a b cos CD 

Now, let us write the angle relations in the figure : 

(3) 2 ¥Jf = 2 o:1 + 2~1 

(4) cf>= o:2 +~2 
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冗

(5) o:l = 2―o:2 

(6)~1 = i-~2 

If we replace (3) we get: 

(7)'l'=冗-a.2 -~2 =冗ー①

Thus combining (1), (2) and (4) : 

(8) 2 R sin(冗ー <I>)= ✓ a 2 + b2 -2 a b cos① 

Thus: 

c.q.f.d. 

1 
(9) K=R=  

✓ a2 + b2 -2 ab cos <D 

2 sin <D 

Appendix I 



Normal Computation 

Appendix II 

Normal Coordinates Computation 

As seen in Chapter IV II.3.2 we need to compute the sine and cosine of the angle 

between the normal and the orthogonal vector to the tangent. For that purpose we need to 

d. • • → 
study four cases accor mg to the signs of the curvature k and of the mner product MP2 . 

7.1 

We computed cos 0 and sin 0 for each of the cases and we summed the results in 

those formulas : 

ー→ →J_ 
cos S = sign(MP2 . t)  ( d  

↓ 

R -sign(k) 2 + h2 ✓ 良）―~)

I ,in e =—危(- sign(k) 岳 d ✓(戸~J I 

The calculus for each case is detailed in the four following pages. 
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case 1 : I声 .1.L>〇 and 二

Z axis 

c
 

Here we have : f a +~- e =冗 and thus: 

(1) cos 8 = cos a+~- 冗= -cos a+~ 

(2) sin 0 = sin o: + p -冗=-sin o: + p 

using: 

d 
cos a=-

b 
b/2 

cos~=yx 

. h? . b' 
sm a = ---=-

b 
srn~=-R and b'=~ 

1(3) 
cos e =吏（告+h2 ✓ (店)-k) I We get: 

., 

I (4) sine=½(- 賢 d ✓ （恙） i〕
｀ 
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case2: IMP了.i l. < 0 and d 

Z axis 

c
 

Here we have : I e -(a, +~) =冗 and thus: 

(1) cos0=coscx+~+ 冗＝— cos ex+~ 

(2) sin 0 = sin a.+~+ 冗＝ー sin a.+~ 

using: 

d b/2 
cos a = -ti cos~=で

sin ex= 怒 sin~= 沿 and b'=~ 

1(3) 
cos e =ふ（告 h2 ✓ 良）~)We get: 

I (4) sine=½(-12f- d ✓ 良） k J I 
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case 3: I声 .71. > 0 and d 
c
 

Z axis 

． 

M 

Here we have : [ 8 = a +~ and thus: 

(1) cos e = cos a +~ 

(2) sin e = sin a +~ 

using: 

d 
cos a=-

b 
b/2 

cos~= R―x 

sin a= 悟 sin~= 主 and b'=~ 言

I (3) cos e =ふ（古+h2 ✓ 良）一k)We get: 

ヽ•

I (4) sin 8 -} (岳 d ✓ （店）~-~)
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case 4: I声 .(J_<O and こ
c
 

Z axis M →l. 
t 

Here we have : j 0 = o: +~ and thus: 

(1) cos 0 = cos a +~ 

(2) sin e = sin a+~ 

using: 

d b/2 
cos ex = -b cos~= R―x 

. h2 . b' 
sma=-

b 
sm~=-

R and b'=~ 

1(3) 
cos e =ふ（舎 h2 ✓ 良）ふ〕We get: 

I (4) sine =½(笠 d ✓ 役） k) 



“曹

． 

.,,. 
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