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Abstract This article proposes a reinforcement learning (RL) method based on the Actor-Critic ar-
chitecture, which can be applied to partially-observable multi-agent competitive games. As an example,
we consider a card game “Hearts”. The RL then becomes a partially-observable Markov decision process
(POMDP). However, the card distribution becomes inferable from the disclosed information as a single game
proceeds. In addition, the strategy (model) of the other players can be learnable from their actual plays
by repeating games. In our method, a single Hearts game is divided into three stages, and three actors
are prepared so that one of them plays and learns separately in each stage. In particular, the actor for the
middle stage plays so as to enlarge the expected temporal-difference (TD) error, which is calculated using the
evaluation function approximated by the critic and the estimated state transition. After a learning player
trained by our RL method plays several thousands training games with three heuristic players, the RL player
becomes strong enough to beat the heuristic players.
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Abstract This article proposes a reinforcement learning (RL) method based on the Actor-Critic archi-
tecture, which can be applied to partially-observable multi-agent competitive games. As an example, we
consider a card game “Hearts”. In the Hearts game, cards held by the other players and the strategy of the
other players are not directly observable by the learning agent. The RL then becomes a partially-observable
Markov decision process (POMDP). However, the card distribution becomes inferable from the disclosed in-
formation as a single game proceeds. In addition, the strategy (model) of the other players can be learnable
from their actual plays by repeating games. In our method, a single Hearts game is divided into three stages,
and three actors are prepared so that one of them plays and learns separately in each stage. In particular,
the actor for the middle stage plays so as to enlarge the expected temporal-difference (TD) error, which
is calculated using the evaluation function approximated by the critic and the estimated state transition.
Although the state transition is not well-defined in a POMDP, it can be estimated by taking the inferred
card distribution and the other player’s models into account. If the state transition is well estimated, the
problem becomes a Markov decision process (MDP), and hence the RL method works well. We conduct
an experiment to evaluate our method. After a learning player trained by our RL method plays several
thousands training games with three heuristic players, the RL player becomes strong enough to beat the

heuristic players.



1 Introduction

In recent years, computer systems have come to
be mutually connected via networks and the im-
portance has emerged for multiple users and au-
tonomous agents to handle problems for cooper-
ation and competition. Such telecommunication
systems as a whole can be considered as multi-
agent systems. Creating databases of inferable ex-
amples is one idea to solve such m'ulti—a.gent prob-
lems. However, this approach has difficult due to
the dynamic changes in the environments and the
enormous number of possible states. According to
reinforcement learning, on the other hand, it is ex-
pected that the whole problem can be solved by
individual agents, in which each agent carries out
local optimization in response to the dynamic envi-
ronments. The reinforcement learning (RL) is such
a machine learning method that the learning agent
adapts to the environment based on rewards re-
ceived when certain actions are taken.

The RL in a multi-agent system can be di-
vided into (1) cooperation system and (2) compro-
mise/competition system, with respect to payoffs
for action consequences. The former corresponds to
a case where all agents have the same payoff func-
tion; typical examples are pursuit problems [1][2].
In the latter case in contrast, the estimation of the
actions of other agents is important, because the
problems are qualitatively more difficult than the
former. As an existing study, Littman [3] proposed
a min-max Q-learning method, which was a mod-
ification of the Q-learning, in a zero-sum game for
two agents. Since the objectives of the two agents
become opposites in a zero-sum game, the profit of
one agent is always disadvantage of the other agent.
In the min-max Q-learning method, the problem
is reduced to a single-agent problem, by using the
assumption that the opponent agent executes the
action that minimizes the profit of the considering
agent.

Games are typical instances of the competitive
mult-agent problems, and there have been studies
applying RL methods to actual two-player games
like Othello [4], Blackjack [5], and Backgammon

[6]. In non-cooperative games whose number of

players is more than two, however, there are few
RL applications to strategy acquirement, because
the inference of states and strategies of opponent

players involves difficulty.

In this article, we propose an RL method that
proceeds to improve one’s strategy in response
to the environment ,i.e., the other players, which
can be applied to multi-agent competitive games.
As a multi-agent competitive game, i.e., a non-
cooperative n-player game (n > 2), we deal in par- -
ticular with “Hearts”, which is a four-player card
game. Our method employs an Actor-Critic archi-
tecture [8]. The critic carries out evaluation on the
states of the players, and the actor performs action
controls in response to the states. More concretely,
a single game of Hearts is divided into three phases:
early phase, middle phase, and final phase. For the
three phases, we prepare different actors, and they
conduct appropriate controls by estimating oppo-
nent states and action models. We conduct an ex-
periment to evaluate our method. After a learn-
ing player trained by our RL method plays several
thousands training games with three heuristic play-
ers, the RL p.ayer becomes strong enough to beat
the heuristic players.

2 Model

In a multi-agent system, each agent au-
tonomously carries out action selection. The en-
vironment can be formulated as a system including
the considering agent (“agent”) itself and all of the
other agents. This environment, however, changes
over time according to the learning of the other
agents. If the internal states of the other agents
are not observable by the agent, the problem for the
agent becomes partial observation. In the Hearts
game we consider, the cards delivered to the op-
ponents players constitute partial observation. In
such a situation, we aim to construct a model in
which the agent learns a strategy so as to do his best
to achieve his own objective. In the following sec-
tions, an observable state at time ¢ € {0,1,2,...}
is denoted by z; € X, the action taken by the con-

sidering agent at that time is denoted by a; € A,



and the reward obtained by taking the action is de-
noted by ry = r(as,z:) € R. Here, X is the set of
all observable states, .4 shows the set of possible
actions of the agent, and R is a real number space.
Although A differs dependent on each state, in the
following, we neglect the dependence when there is

no ambiguity.

2.1 Actor-Critic algorithm

Agent

Action
at

Xt Actor
A

MReinforcement
Signal
for Action at

Critic V{(x)

Xt___>

Observed Reward
State Xt It -

Environment

1: Actor-Critic architecture

When the strategies and internal states of op-
ponent agents cannot be observed, it is important
to measure them from experience. Even though
the learning of the opponent agents is ignored,
the problem is known to be a partially observable
Markov decision process (POMDP), due to the op-
ponents’ unobserved states. In a POMDP, a way
to probabilistically learn its own policy is often im-
portant. Even for a very simple POMDP, it is ac-
tually known that a deterministic policy is neces-
sarily worse than a probabilistic policy [7]. As such
a learning method, we propose a method that com-
bines opponent policy (model) learning with the
Actor-Critic method [8].

In our Actor-Critic algorithm shown in Fig. 1,
the learning agent has an actor and a critic. The
critic evaluates the goodness of the current ob-
served state x;, which is represented by the value
function V(z;), in the environment including the
agent and the other opponent agents. The actor
carries out an action control ¢; for the current ob-

served state z;.

After the actor emits an action control a;, the
observed state changes into z;y;. After that, the
critic receives a reward as a result of the state
change, and calculates the TD error é; shown by

Eq. (1) below using the new value function V (z:41).

6 = {re + YV (z441)} — V() (1)

Here, V(=) is the value function for the current
observed state zy, which is approximated by the
critic. v(0 € v < 1) is a discount rate. The TD
error is the difference between the old evaluation
value V(z;) for the current state z; evaluated at
time ¢ and the new evaluation value 7y + 7V (zs41)
for z; evaluated at time ¢ + 1. With the general
Actor-Critic algorithm, both of the value function
V(z) approximated by the critic and the strategy
represented by the actor are updated by using the

TD error, as follows:

V(IBt) — V(IEt) + ady (2)

(3)

(s, ap) + p(Tt,0:) + ady

Here, « is a learning coefficient, p(z;, a:) is & merit
function that represents the goodness of action a;
in state z;. The actor determines an action based
on the merit function. Specific details will be de-
scribed in Section 3.2.

With the Actor-Critic algorithm, the probability
of actions is changed via the merit function by using
the TD error which shows, as a consequent of a
single state transition, whether the current action is
good or bad with respect to the current evaluation
function. In multi-agent problems we consider, the
environment includes unobservable factors, namely,
internal states and strategies of the opponents. In

such a problem, the learning based on the TD error

is not effective, because a single state transition in

the observed state space consists of a lot of possible
state transitionsin the actual state space. Namely,
the unobservable factors make the state transitions
complicated and intertwined.

In this study, we determine the agent ac-
tions based on the state transition probability
P4 (x4 |zs,a:) from the current observed state z;

to the next observed state z;4; under the consid-



eration of the unobservable dynamics of the envi-
ronment. Here, ¢ denotes the dynamics of the en-
vironment unable to be observed from the learning
agent, namely, the internal states and strategies of
the opponent agents.

This observed state transition probability satis-
fies

P¢(mt+1|zt,at) = Z Z P,(Stlil)t)

51 €St $t41€S141
: P¢(5t+1’5tyat)

- P(@i11]8641),

4)
where &; or Siy1 denotes the set of possible true
states that correspond to the observed state z; or
Z411, respectively. “True states” mean the states
including both of the observed state and the unob-
served state like the internal states of opponents.
P(x441|st+1) denotes the conditional probability
that the observed state z;i; is obtained in state
St+1- Especially when zy; is the actual observed
state, this conditional probability comes to have a
value of 1, because the observed state z is uniquely
determined from state s. P%(si11]s:,a;) denotes
the transition probability from a true state s; to
a true state s;11 when action a; is selected under
the dynamics of the environment, ¢. It should be
noted that ¢ in the right hand side of equation (4)
does not include the internal states of the opponent
agents but includes the strategies of the opponent
agents. In addition, P(s|z;) is the probability that
the true state is s; for the observed state z;

In order to obtain the observed state transition
probability (4), we need to know P(s;|z;) and true
state transition probability P?(s;i1]ss,a;). Since
the true state transition probability P?(s,y1]s;,a:)
depends on the strategies of the opponent agents,
the probability can be approximated by learning
of the models of the opponent agents. In addition,
depending on the problem, we can approximate the
probability P(s;|z;). Further details are discussed
in Section 3.2.

We here define the expected TD error (6;), with
respect to the observed state transition (4) as fol-

lows.

(6t)a = {{r1)a + v(V(zt+1))a} — V(zt) (5)

Here, (-), denotes the expected value with respect
to

P?(z4,1)z¢,a:). When the dynamics of the envi-
ronment is given by ¢, an action having large ex-
pected TD error implies an action for which the
possibility that a large reward will be obtained over
the future is large under the environmental dynam-
ics. Accordingly, the action selection based on the
expected TD error value is considered to be appro-
priate. .

2.2 Stochastic function approxima-
tor and its learning

Since it is difficult to experience every state espe-
cially when the state space is large, it is desirable to
estimate by some way the values of necessary func-
tion (e.g.,the value function or merit function) for
an unknown state. Generalization from the func-
tion values for the known states using a function
approximator is one such way. In our RL method,
we use function approximators called normalized
Gaussian networks (NGnets) [9] for the value func-
tion of the critic, the merit function of the ac-
tor, and action inference devices for the opponent
agents. These approximators are trained [10] by
the on-line EM algorithm, which provides an ap-
propriate learning framework in dynamic environ-
ments like a multi-agent environment. The output
relationship of By an NGnet, an N,-dimensional
output vector O for an N-dimensional input vector

I is given as follows.

M
O = Z(Wﬂ +6;)NG(I) (6)
M
NGi(I) = Gi(I)/ 3 G5(1) (7)

Gi(I) = (2m) N2 |71
1 —
o |~ - n)TE - )] ®
Here, M is the number of units. N-by-N matrix

3; and N-dimensional vector p; are the covariance

matrix and the mean vector, respectively, for the



i-th unit. N,-by-A matrix WW; is the linear regres-
sion matrix and b; denotes the N,-dimensional bias
vector. Although the approximation ability of the
NGnet depends on the number of units M, it is
possible to select an appropriate M by carrying out
the dynamic production and deletion mechanisms
of units [10].

When an NGnet approximates the value function
of the critic, the input is the observed state z; and
the target output is V(z;). When an NGnet ap-
proximates the merit function of the actor and the
action evaluation function (it is actually the merit
function of the opponent agents) of the inference
devises, the input is the pair of the observed state
z¢ and action a4, and the target output is the merit

value p(zy, as).

3 Hearts as a Multi-agent Sys-
tem

In order to evaluate the applicability of our RL
method to a multi-agent competitive system, it is
applied to the Hearts game which is a card game
played by four players.

3.1 Rules of Hearts

Here, we briefly explain the rules of Hearts, which
is used in our study.

The game Hearts is played by four players and
use the ordinary 52 cards. There are four suits, i.e.,
spades, hearts, diamonds, and clubs, and there is
an order of strength within each suit (i.e., A, K,
Q,-.., 2). There is no strength order among the
suits. Cards are distributed to each player in or-
der, and each player has 13 cards at the beginning
of the game as his hand. After that, each player ex-
changes cards by handing three cards to the player
on his left hand. Thereafter, according to the rules
below, each player plays a card clock-wisely in or-
der. When each of the four players plays a card, it
is called a trick. When a trick begins a card played
by a player, the card is called the leading card and
the player is called the leading player. A single
game ends when 13 tricks are carried out one after

another.
Rule 1) Except for the first trick, the winner of
the current trick is the leading player of the subse-

quent trick.

Rule 2) In the first trick, the two of clubs comes
to be the leading card, implying that the player
holding this card is the leading player.

Rule 3) Each player must play a card of the same

suit with the leading card.

Rule 4) If a player does not have a card of the
same suit with the leading card, he can play any
card. When a heart card is in such a case played
at the first time of a single game, the play is called
“breaking hearts”.

Rule 5) Until the breaking hearts occurs, the
leading player may not play a heart card. If the
leading player has no suits without hearts, it is a
exceptional case and the player may lead a heart

card.

Rule 6) After a trick, the player that has played
the strongest card of the same suit with the leading

card is the winner of that trick.

Rule 7) A heart card has one point and the Q of
spade has 13 points. The winner of a trick receives
all of the points of the cards played in the trick.

According to the rules above, a single game is
processed, and at the end of the single game, the
score of each player is determined as the sum of the

received points. The smaller the score, the better.

3.2 Application of the proposed
model to Hearts

In this section, we apply our RL method to the
game Hearts. In the followings, it is assumed
that the exchange of cards has already been com-
pleted. Among the agents participating in Hearts,
the learning agent is denoted by M7, and the other
agents are denoted by M4, Mp, and M¢. Although
the true state transition occurs at each play of a
single agent the action of the learning agent can be
taken only at his turn. Therefore, we focus only
on the states for the turns of My, and the state

series are described by sq, 81, 513. Here, s; de-
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notes the true state just before My, plays a card in
his (¢t 4+ 1)-th turn, and s;3 denotes the final state
of the game.

In Hearts, the unobserved card distributions be-
come disclosed as a single game proceeds. That
is, the unobservable state variables decrease as the
game proceeds. This fact implies that it is possible
to estimate the distribution P(s|z), which denotes
the probability of the true state s in the condition
of the observed state z. In order to determine the
observed state transition probability using Eq. (4),
it is then necessary to know the transition probabil-
ity P?(s441]st, as) for the true state. If it is possible
to estimate the strategies of the opponent agents,
thie true transition probability is automatically de-
termined by the game rules. The strategy of an op-
ponent agent 3z can be learned by a function ap-
proximator from input/output relationships in the
past games. In a past game, the state observed by
Mgz and his play can be definitely determined for
each turn of Mz, in a backward fashion from the
final game state according to the game rule. When
the learning becomes accurate, the action taken by
Mz can be estimated using the function approxi-
mator.

In the early phase of a single game, however, it is
conceivable that the estimation accuracy of the ob-
served state transition probability is poor, since the
unobserved state variables are larger than the ob-
served state variables. In such a case, the accuracy
of the expected TD error (5) will be poor. There-
fore, this study employs a selective Actor-Critic
model to selectively switch one of the actors that
correspond to the early, middle, and final phases of
a single game. Iu the selective Actor-Critic model,

the critic carries out consistent state evaluations
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3: Architecture of Action Evaluator in the Mid-
dle Phase ‘

during the whole single game. Namely, there is
a unique critic that approximates the value func-
tion for every state in a single game. The NGnet
for the critic is trained by the on-line EM algo-
rithm [10]; the target output for input z; is given
by {r; + vV (zit+1)}. On the other hand, accord-
ing to the game phase, the actor is selected out of
three actors, and the selected actor performs action

controls, as shown in Fig. 2.

3.2.1 Model in the early phase

In the early phase of a single game, little infor-
mation can be obtained on the internal states of the
opponent agents. Therefore, the actor for the early
phase calculates merit Uppen (21, ay) for each action
a; in the observed state z;. This calculation is done
by the NGnet prepared for the early phase. Using
the merit function, the actor selects an action ac-
cording to the action probability P(a:|z;) defined
by the following equation.

eXp(Uapen (-'Ei,, (lt)/T)

P((Zt,l-’ff,) - Zﬂ-teA( eXp(Uo;Den(xh af')/T)7

)

where, T is the temperature parameter that de-
termines the randomness of the actor. This learn-
ing method of the merit function is the same as
that in the conventional Actor-Critic algorithm.
The actor NGnet is trained by the on-line EM
algorithm, where the target output is given by
Ugpen (1, a1) + b, for the pair of input 2, and
action ay. This learning is identical to that given
by Eq. (3).



3.2.2 Model in the middle phase

Fig. 3, shows the construction of the actor in
the middle phase. The action evaluator carries
out action evaluations considering the estimation of
plays of the opponent agents that intervene in the
state transition between state s; and state spi1.
It estimates the internal states of the opponents
for each transition of the true state. As shown
in Fig. 4, after the learning agent selects an ac-
tion for state s;, until the turn of the agent comes
again in the next state s;yy = si", the possible
true state transition is dependent on the possible
action sequence a] = [al,a?,--,a} "] that con-
sist of actions taken by the opponent agents. Ac-
cording to the possible action sequence, there are
a lot of possible paths for the true state transition
i) S?T]'

Here, n, — 1 is the number of opponent agents

— [l &2
T=[s},87,-"

intervening in a single path. The number and order
of intervening agents depend on who is the leading
agent. s; denotes the state just after the learn-
ing agent selects action a; in state s;. After that,
the next (opponent) agent takes an action a} (,i.e.,
plays a card) using its own strategy, and the true
state transits to the next state s?. This repeats
in the same manner, and the turn of the learning
agent comes again as $;41 = s, . Behind the tran-
sition from state z; to z:4; observed by the learn-
ing agent such a complicated state transition in the
space of the true state variables. The possible state
transitions from state s; to s;;1 can be expressed
by a tree whose branch corresponds to an action
taken by each individual agent. The tree can then
be efficiently retrieved based on the depth priority
search and appropriate branch cutting heuristics.
According to the following algorithm, we carry
out the depth priority search retrieving the state
transition tree.  Each retrieval of the transi-
tion tree obtains the state transition probability
P?(zy1|71,a¢), value function V(zyy,), and re-
ward 7, for the transition path. By achieviug the
retrieval of the tree, the expected TD error is cal-

culated.

(a) Estimate distribution P(&i|zy, ap,al,---,ai™h)

(@

observation

ay
o —0
state

i1 i g -1
.a a .ﬁ af d :a: ap’ .2ﬁ a;’ .@

4: Real state transition and observable state

transition

of state §¢ with the opponent agent state infer-
ence in Fig. 3, from observed state z; for trick
t and action ay,ay, -,

i—1

a;” " of the opponent agent. We will explain

this estimation later.

Search for action probability P(at|s) of the
opponent agent with the action inference in
Fig. 3, for inferred value & of the state, by
Eq. (15) (shown later).

(c) Repeat steps (a) and (b) until the turn of the

learning agent comes again.

Calculate the reward r; and state value func-
tion V(z4y) obtained with the 7 when the
turn of the learning agent comes, and then

carry out a search for the next path 7.

The observed state transition probability is ob-
tained from Eq. (10), from (a), (b), (c), and (d)
above.

P41z, a0) =

Ny

2. 2 |[PGienana, -

TETG},...’GI‘_I i=1

- PH(a}|8}) P (w111 |877)

"ai—l)

(10)

Here, n, is the number of turns transiting the op-
ponent agents until the turn of the learning agent
comes again, and 7 indicates the set of possible
state transition paths. Actually, P(z;41]877) 1s 1,
since z;4; is uniquely determined from s;. Inciden-
tally, Eq. (10) is a special case of Eq. (4).

By using Eq. (10), the expected value of the re-
ward and the expected value of the state evaluation

obtained at trick ¢ + 1 become as follows.

(ri)a, = Z PP(zyq1 |z, @)t

T 416X

(11)



(V(@t41))a, = Z PO (zip1]ze, a)
Ti41€X

: V(-’Ut+1) (12)

The learning agent should select an action that
is expected if it believes it can obtain the most
profit. In the action evaluation determinator, util-
ity U"I;id(m,at) obtained from M}, is calculated as

follows using the expected TD error obtained by

selecting action at.

Ukia@,a) = (regn)a, + 7V (@e41))a,

- V(zt) (13)

The action determination is probabilistically car-
ried out by Eq. (14).

exP(Uanid(-’Z’ta a)/T)
D exp(Uk (2, ai)/T)

Here, T is the temperature parameter.

Plag)ze) = (14)

The distribution estimation of & is carried out by
estimating probability P(Mz,C) with which My
has some card C by using the following two kinds
of knowledge.

(a) For example, if the fact was observed that Az
did not take out a card of the same suit as the
leading card in a previous trick, the probability
is assumed to be 0 that Mz has a card of that

suit.

(b) Focusing on the cards of some suit, only the
number of remaining cards excluding the num-
ber of cards one himself possesses as his hand
and the number of cards the opponent agents
take out to that point can exist with the op-

ponents.

By using these two kinds of knowledge, we carry
out estimations of distributions by assuming the
allocations of possible cards to be completely ran-
dom. '

The action evaluators of the opponent agents are
made to learn by using the Ngnets so as to output
utility U?

mid(81,0y) of each action a; when inferred

state &t is assumed to be the input. Here, we con-
sider the utility function of opponent agent Mz to
perform the ith play of path 7. The learning of the

utility function results in updating by using the on-
line EM algorithm, assuming observed state Hz of
the opponent agent uniquely determined from state
st at the end of each game to be the input, and ai
at that time to be the output target. From merit
UZ.,(3},al), the action probability P(a}|8!) of the

opponent agent is estimated as

eXp(Uéid('g%) QZ')/'TZ)
Za‘; exp(Ugid(g;i ai)/TZ>

Here, Tz is the temperature parameter used for the

P(ajlsf) = (15)

estimation of the opponent action.

3.2.3 Model in the final phase

In the final phase, we select the best action based
on an entire search, because the possible state tran-
sition space is tractable. However, it is difficult to
uniquely define the best action, since the relation-
ships and strategies of each agent are complexly in-
tertwined in the multi-agent system. As standards
for selecting the best action, the following can be

considered.

(a) The action maximizing the merit is assumed
to be the best.

(b) The action that maximizes the reward for the
possible worst case is assumed to be the best.

(¢) The action maximizing the average reward is
assumed to be the best.

We adopt standard (a) in this study.

4 Computer Experiments

4.1 Opponent state inference exper-
iments

The major novelty of our study is the actor for
the middle phase. It conducts the state inference
of the opponent agents. In order to evaluate the
state inference, a simple experiment is done. First,
we prepare states at which the considering agent
is the leading player by random plays according to
the game rules. Namely, the card that the agent
plays is the leading cards for the current trick in



cach of those states. The agent estimates the ex-
pected reward () that will be recieved by playing
the leading card. This estimation is compared with
the actual reward r at the end of that trick. The
opponent agents randomly select cards that they
possess and can play according to the rules. By
using the following two types of agents, 40000 dif-

ferent tricks are played.

Agent 1 An agent that estimates the probability
of card distribution (corresponding to step (a)
in Section 3.2.2) infers that each opponent
agent will play according to the distribution
probability.

Agent 2 An agent model that infers that each op-
ponent agent will play a removable card with
equal probability among the cards that have
not seen at present, namely, an agent model
that does not infer the opponent’s hands.

Table 1 shows the normalized inean square error
between the estimated reward (#) and the actual
reward r recieved in an individual trick, for the two
agent models above.

From Table 1, it can be seen that the error for the
model that infers the opponent’s hands is smaller
than that of the model that does not infer the op-
ponent’s hands. In addition, the effect of the state
inferernce increases as the number of tricks enlarges.
This may be due to the fact that the information
on the unobserved states gradually increase as the
single game proceeds. This result shows that the
inference of unobserved states (opponent’s hand) is

effective to estimate the recieved reward.

4.2 FExperiments with Hearts

We carried out experiments using one learning
agent based on the proposed learning model and
three rule-based opponent agents.

The observed state

dimensional vector 2. The first 52 dimensions are

is expressed with B57-

the state expressions of the individual cards;
denotes "has already played in a previous trick,” 1
"when the agent owns in his hand,” or 0 "for the

other cages.” The remaining five dimensions express

information on such things as the present trick, who
is the leading player in that trick, the leading card,
the other cards that have been played in that trick,
and so on. For the earlier 52 dimensions, a number
is assigned to each card in the order of from 2 to A,
in the suit order of clubs, diamonds, spades, and
hearts. That is, 21 is the 2 of clubs, z5 is the 3
of clubs, ..., 213 is the A of clubs, z14 is the 2 of
diamonds, and so on. For example, when the agent
has the 2 of diamonds in his hand, z;4 = 1. When
the Q of spades has already been played, z37y = —1.

Five NGnet’s are prepared for the function ap-
proximation: the value function (i.e., the critic) of
the learning agent, the merit function (i.e., the ac-
tor) for the early phase, and action inference de-
vices for the three opponent agents. For the value
function, input z; is a 57-dimensional vector, and
outputs is one-dimensional value function V(zy).
The merit function for the early phase, the init
is state z;, and the output is merit Uspen(at,c:)
for each action a;. The merit function outputs the
merit for all of the 52 cards. In other words, the
NGnet for the merit function carries out function
approximation whose input and output dimensions
are 57 and 52, respectively. For the action infer-
ence device of each opponent agent, the input is
the estimated state 8, and the output is the merit
UZ. .(a},5}) for action a;. Each of the five NGnets
has 50 units.

The estimated state &i is expressed by a 57-
dimensional vector in a similar way to the state
expression of the learning agent. The state expres-
sion of each card is given by —1 when the card
has been played in a previous trick, or in the other
cases, it is given by the inferred possession probabil-
ity P(Mz,C) where C denotes the card. Namely,
the value is 1 when agent Mz has definitely the
card, and the values is O when agent Mz has no
chance to have the card.

On the other hand, the rule-based agent used in
the experiments lias more than 80 rules so that it
is "experienced” level player of the game Hearts.

The acquired penalty ratio was 0.47 when an
agent who only took out cards at random from its
hand challenged the three rule-based agents. The

acquired penalty ratio is the ratio of the acquired
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penalty of the learning agent to the total penalty
of the four agents. That is, a random agent ac-
quires about a 2.6-fold penalty of rule-based agents

on average.

In Fig. 5, the Actor-Critic method alone shows
results obtained by carrying out learning using all
of the early phase models (without using the middle
phase models) of an action controller, and the pro-
posed model with opponent learning shows results
obtained by carrying out learning using the middle
phase models from six tricks. With the Actor-Critic
algorithm in early phase models, while knowledge
via the dynamics of the enviromment is not uti-
lized, with the proposed method, the dynamics of
the environinent is learned by using the models of
the opponent agents. With the proposed method,
nioreover, it can be said that models of the environ-
ment are created as expected, from a comparison
with the Actor-Critic method alone, since estima-
tions are carried out on unobservable variables by
using the knowledge presently obtained. In Fig. 5,
although the averaged acquired penalty ratio for
the Actor-Critic method without opponent learn-
ing would be about equivalent to a random agent,
an improvement can be seen in the approximate ac-
quired penalty ratio (on average) according to the
proposed method. This difference can be consid-
ered to be due to an effect of the dynamics of the
environment, from the adoption of learning into the
middle phase models. It can also be observed that
the averaged acquired penalty ratio proceeds to im-

prove with learning with the increase in the number

of games, for both the Actor-Critic method alone
and the proposed method (even though it is un-
derstood that the effect of the learning does lead to
further development). This can be considered to be
due to the following: the framework of the learning
of the opponent actions in the proposed method
is carried out independently from other function
approximators, and therefore there is the possibil-
ity of a comparatively quicker learning than the
case of early phase models alone, which depend on
the learning of state value function V' (z) at a slow

learning speed.

5 Conclusion

In this paper, we adopted the card game Hearts,
i.e., a non- cooperative n-player game (n > 2), as
a multi-agent system, and designed agents to be-
have in such a way as to partially update the envi-
ronment models they themselves maintain even in
non- observable states and to obtain more rewards.
As the learning model, we use NGnets in an Actor-
Critic reinforcement learning algorithm. The learn-
ing agent selecfively updates multiple strategies in
response to aspects of the game. In particular,
the strategies of the middle phase showed that it
is possible to accommodate partial observations in
a multi-agent system by including opponent agent
models.

In the future, although agents can be expected to
intervene between computer systems and users in
various ways and to support the considerations of
users, at such a time, approaches where the agents
themselves maintain their own environment mod-
els (since all states will naturally be unable to be
observed) to carry out the identification of the en-
vironment via learning based on the usable knowl-
edge, can be expected to come to be incréaéingly
more important. In particular, a familiar exam-
ple is an agent supporting a user using a computer
with the use of the system after grasping the inten-
tion of the user. It is considered that the proposed
approach can be used even in this case, where the
agent clianges user models (that are changed selec-

tively) in response to the aspect, and then proceeds




to make the models fit through learning.
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4 0.833514 0.91074
5 0.823951 0.924043
6 0.836233 0.956581
7 0.864077 1.01079
8 0.881718 1.05967
9 0.86458 1.08681
10 0.968697 1.26099
11 1.12188 1.50487
12 1.3336 1.81433
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Abstract

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of
local linear regression units. The model softly partitions the input space by normal-
ized Gaussian functions and each local unit linearly approximates the output within the
partition. -

In this article, we propose a new on-line EM algorithm for the NGnet, which is derived
from the baich EM algorithm (Xu, Jordan and Hinton 1995) by introducing a discount
factor. We show that the op-line EM algorithm is equivalent to the batch M algorithm
if a specific scheduling of the discount factor is employed. In addition, we show that the
on-line EM algorithm can be considered as a stochastic approximation method to find
the maximum likelthood estimator. A new regularization method is proposed in order to
deal with a singular input distribution. In order to manage dynamic environments, where
the input-output distribution of data changes with time, unit manipulation mechanisms
such as unit production, unit deletion, and unijt division are also introduced based on the
probabilistic interpretation.

Experimental results show that our approach is suitable for function approximation
problems in dynamical environments. We also applied our on-line EM algorithm to a
reinforcement learning problem. It is shown that the NGnet, when using the on-line EM
algorithm, learns the value funclion much faster than the method based on the gradient
descent algorithm.
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1 Imtroduction

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of local linear
regression units. The model softly partitions the input space by normalized Gaussian functions
and each local unit linearly approximates the output within the partition. Since the NGnet is a
local model, it is possible to change parameters of several unils in order to learn a single datum.
Thercfore, the learning process becomes easier than that of the global models such as the multi-
layered perceptron. In a local model, on the other hand, the number of necessary units grows
exponentially as the inpul dimension increases, if one wants to approximates the input-output
relationship over the whole input space. This results in a computational explosion, which is
often called the “curse of dimensionality”. However, actual data will often distribute in a lower
dimensional space than the input space, such as in attiractors of dynamical systems.

The NGnet, which is a kind of “Mixtures of Experts” mode! (Jacobs, Jordan, Nowlan and
Hinton 1991 ; Jordan and Jacobs 1994), can be interpreted as an output of a stochastic model
with hidden variables. The model parameters can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm for the NGnet was derived by Xu, Jordan
and ITinton (1995). In this article, we propose a new on-line EM algorithm for the NGnet.
The on-line EM algorithm is derived from the batch EM algorithm (Xu, Jordan and Hinton
1995) by introducing a discount factor. Alihough the derivation is straightforward, important
modifications are necessary for practical applications. We will discuss these points in detail
and propose a modified version of the on-line EM algorithm. We show that the on-line EM
algorithm is equivalent to the batch EM algorithm if a specific scheduling of the discount
factor is employed. In addition, we show that the on-line EM algorithm can be considered
as a stochastic approximation method to find the maximum likelihood estimator. A new
regularization method is proposed in order to deal with a singular input distribution. Unit

manipulation mechanisms based on the probabilistic interpretation are also introduced in order
to manage dynamic environments. These mechanisms are unit production, unit deletlon and
unit division.

In order to investigate the performance of our new on-line EM algorithm, experiments for
function approximation problems are conducted for three circumstances. The first one is a
usual function approximation problem for a set of observed data. The second one is a function
approximalion in which the distribution of the input data changes with time. This experiment
is performed to check the applicability of our approach to the dynamic environments. The
third one is a function approximation in which the distribution of the input data is singular,
i.c., {he dimension of the input data distribution is smaller than the input space dimension.
In this case, a straightforward application of the basic on-line IM algorithm does not work,
because the covariance matrices used in the NGnet become singular. Our modified on-line EM
algorithm is shown to work well even in this situation.

Encouraged by these positive results, we applied our on-line EM algorithm to a reinforce-
ment learning problem. In the actor-critic model (Barto, Sutton and Anderson 1983), learnmg
of the value function for a current policy can be regarded as a function approximation problem
in a dynamic environment, since the policy changes with time as the learning proceeds. As
an example, we examined a task for swinging-up an inverted pendulum (Doya 1996). The
experimental result shows that tlie NGnet, when using our new on-line EM algorithm, learns
the value function much faster than the method based on the gradient descent algorithm.

On-line EM algorithm

The paper is organized as follows. The NGnet and its stochastic model are explained in
Section 2. The batch EM algorithm is introduced in Section 3. These sections are based on
previous papers (Moody and Darken 1989; Xu, Jordan and Hinton 1995). The basic on- -line
EM algorithm is derived in Section 4. The modifications of the basic on-line BM algorithm are
discussed in Sections 5, 6 and 7. The experimental resnlts are shown in Section 8, and Sectlon
9 sums up the paper.

2 Normalized Gaussian network

2.1 NGaet

The Normalized Gaussian Network (NGnet) model (Moody and Darken 1989), which trans:
forms an N-dimensional input vector = to a D-dimensional output vector y, is defined by the
following equations. y

( ;|! \ \

M
y =) (Wi 4 b;)Ni(z)

. (2.1a)

1% o

T NE@=GEILGE (2.10)
Gi(z) = (2r N/oly‘ |72 exp [—%(z — )‘El(’r '_‘u)} ) (2.1cj)

M denotes the number of units, and the prime (') denotes a transpose. Gi(z) is an N:
dimensional Gaussian function; its center is an N-dimensional vector s; and its covariance
matrix is an (N x N)-dimensional matrix Z;. |T;] is the determinant of the matrix Z;. A(x)
is the i-th normalized Gaussian function. W; and b; are a (D x N)-dimensional linear regres-
sion matrix and a D-dimensional bias vector, respectively. Subsequently, we use notations:
W; = (W;,b,), and & = (2, 1). VV1th these notations, (2.1a) is rewritten as

y= ZN Wiz (2.25

i=1

The Gaussian function G;(z) is a kind of radial basis function (Poggio and Girosi 1990).
However, the normalized Gaussian functions, M;(z) (< = 1, ..., M), do not have a radial symme-
try. They softly partition the input space into M regions. The z-th unit linearly approximates
its output by W;Z within the corresponding region. An output of the NGnet is given by a
summation of these outputs weighted by the normalized Gaussian functions.

2.2 Stochastic model of NGnet

The NGnet (2.1) can be interpreted as a stochastic model, in which a pair of an input and
an output (z,y) is a stochastic (incomplete) event. For each event, a single unit is assnmed
to be selected from a set of classes {i|7 = 1, ..., M}. The unit index 7 is regarded as a hidden
variable. A triplet (z,¥,1) is called a complete event. The stochastic model is defined by the
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probability distribution for a complete event (Xu, Jordan and Hinton 1995):

1
(y—Wl) .

N (2.3)
where 0 = {p, 55,07, Wi | 4 = 1,..., M} is a set of model parameters. From the probability
distribution (2.3), the following probabilities are obtained.

P(z,y,il6) = (2m)7(PHN 2Py "2 Y exp [—5(z — 1) S e — ) -

PU0Y = 1/M ' (2.42)
P(z]z,8) = Gi(x) (2.4b)
P(ylz,,0) = (27)" P27 P exp [_2¢17°(J ~ W,%) ] (2.4c)

These probabilities define a stochastic data generation model. First,a unit is selected randomly
with an equal probability (2.4a). If the i-th unit is selected, the input z is generated according
to the Gaussian distribution (2.4b). Given the unit index i and the input z, the output y
is gcnora’red according to the Gaussian distribution (2.4c), whxch las the mean W;% and the
variance oz.

When the input z is observed, the probability that the output value becomes y in this
model, turns out to be

Ply|z,0) ZN z)P(y|z,1,6). (2.5)

Trom this conditional probability, the expectatlon value of the output y for a given input z is
obtained as:

J]'c] /yP ylz, 6)dz —ZN ”c)W .z, (2.6)

which is equivalent to the output of the NGnet (2.2). Namely, the probablhty distribution
(2.3) provides a stochastic model for the NGnet.

3  EM algorithm

Trom a set of T' events (observed data), ({z},{y}) = {(=(t),%(2)) | ¢t = 1,...,T}, the model
parameter # of the stochastic model (2.3) can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm (Dempster, Laird and Rubin 1877) can
be applied to models having hidden variables. The EM algorithm repeats the following E-step
and M-step. Since the likelihood for the set of observations increases {or does not change) after
an I5- and M-step, the maximum likelihood estimator is asymptotically obtained by repeating
the IE- and M-steps.

¢ B (Estimation) step :
Let 4 be the present estimator. By using 4, the posterior probability that the i-th unit

is selected for each observation (x(t),y(t)) is calculated according to the Baycs rule.

M

Plile(t), y(2),8) = P(o(t), y(0),l0)] 3 P(=(0),y(2),310). (3.)

j=1
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s M (Maximization) step )
By using the posterior probability (3.1), the expected log-likelihood Q(016, {z}, {y}) for
the complete events is defined by

T M

QUOIF, (=}, {)) = 325 Plil(t), (1), B) log P(x(1), y(1), 10). (3.2)

t=1 i=1

On the other hand, the log-likelihood of the observed data ({=}, {%}) is given hy

L{0|{=}, {¥}) ZlogP ), y(1)16) Zlog (Z P(z(t),y(1), 1[0)> (3.3)

Since an increase of Q(6]9, {z}, {¥}) implies an increase of the log-likelihood L(8]{z}, {v})
(Dempster, Laird and Rubin 1977), Q(6], {z}, {y}) is maximized with respect to the
estimator §. A solution of the necessity condition 8Q}/80 = 0 is given (Xu, Jordan and
inton 1995) by

= (@):(T)/(1):(T) (3.4a)
(= = pa)(z = ) (T (AT = (22)(T)/ (1:(T) — (T ) i(T) (3.4b)
(E22):(T) = (y2'):(T) (3.4c)

of = 5 {ly = WD) (AT) = 5 [A2DAT) ~ Tr (Wit )(T))] /(0AT) (3.40)

)J
W

where Tr(-) denotes a matrix trace. A symbol (-); denotes a weighted mean with respect
to the posterior probability (3.1) and it is defined by

(7 M) = £ 3 a0, 9D Pli(0),3(2), ) (55)

If an infinite number of data, which are drawn independently according to an unknown
data distribution density p(z,y), are given, the weighted mean (3.5) converges to the following
expectation value.

(Flz, ¥):(T) =% E[f(z,y)P(ilz, v, 0)],, (3.6)

where F[-], denotes the expectation value with respect to the data distribution density p(z,y).
In this case, the M-step equation (3.4) can be written as

9: = B[P(i]z,3,0)), (3.72)

= EleP(ilz,y,0)),/9: (3.70)
2 = Blaa'P(ile,v,0)l,/9: = puri (3.7¢)
VE["’P( lz,4,0), = Ely¥ P(i[z,y,0)], (3.7d)
of = (E[[U[ P(ijz,y, 0)}, — Tr(W; B[y P(i]=, v, (7)],,)) s (3.7¢)

where the new parameter set 0 = {/L;,E.;,W,-, a?li = 1,..., M} is calculated by using the old
parameter set § = {fi;, 5, W, 2i = 1,.., M}.
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At an equilibrium point of this EM algorithm, the old and.new parameters become the
same, i.e., § = 0. The equilibrinm condition of the EM algorithm, i.e., (3.7) along with # = 0,
is equivalent to the maximum likelihood condition,

aL(0)/80 = 0, (39)

where the log-likelihood function is given by

L(0) = E[logZP L, 1) (3.9)

i=1

4 On-line EM algorithm

The EM algorithm introduced in the previous section is based on a batch learning (Xu, Jordan
and Hinton 1995), namely, the parameters are updated after seeing all the observed data
({=},{y}).- In this section, we derive an on-line version of the EM algorithm. Since the
cstimator is changed after each observation, let 6(2) be the estimator after the t-th observation
(=(1),y(t))- In the on-line EM algorithm, the weighted mean (3.5) is replaced by:

< f(z,y) > (T) = Z/\T (), yW) PG (), u(t),0(t - 1)) (41a)
|

(T) = Z AT = (1= 2)/(1 = A7), ‘ (4.1b)

Ilere, the parameter A (0 < X < 1) is a discount factor, which is introduced for forgetting
the effect of the old posterior values employing the earlier inaccurate estimator. 7(7T") is a
normalization coefficient and plays a role like a learning rate. The modified weighted mean
< - >; can be obtained by the step-wise equation:

< fzy) > (1) =< f(=,y) > (0= 1) + () [ (=(), v P(t)~ < flm,y) > (1= 1)],
(42)
where Pi(t) = P(i|=(1),y(t),0(t — 1)). After calculating the modified weighted means, i.e.,
€ 1> (1), € 2> (1), € zz' > (), < yI? >: (1), and € ¥& »; (1), according to (4.2),
the new estimator (1) is obtained by the following equations.

(t):<t>> (1)) <1 (1) )
T(1) = [ 2 i (1)) < 1> (1) — w0 )
IV,-( ) =< y& > ()< 7F > ()] (4.3¢)
1 2 =
HOES= [« I > (1) = Tr (Wi(t) < 29 > W) /<120 (43d)
This defines the on-line EM algorithm. In this algorithm, calculatxons of the inversc matrices

ate necessary at each time step. A recursive formula for ;" and W; can be derived, in which
there is no need to calculate the matrix inverse, by using a standard method (Jiirgen 1996).

i
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Let us define the weighted inverse covariance matrix of Z: Ay(t) = (& & >; (1))~*. This

quantity can be obtained by the step-wise equation:

P
sl [ I ] !

Aie) = Tfln_ﬂ [A == <1/:’<(1>) () 13@(;)@()) (’r(f_ o
£73(1) can be obtained from the foll lowing teation heith Ry e
Ri(t) € 1> (1) = < _ ﬁ[;é’) ) 14 ({)15?4‘(}; ;)Lf(t) ) : (4.5)
The estimator for the linear regression matrix, W;, is given by -
W) = < s ORO O e
Wit = 1) + n(t) (1) (y(t) — Wit — 1)2(0)) () Ai(2)- (4.6D)

Thus, the basic on-line EM algorithm is summarized as follows. For each observation
((t),y(1)), the weighted means, i.e., < 13; (t), < & > (t), < |y|? > (), and € 3 > (8),
are calculated by using the step-wise equation (4.2). /—\,-(t) is also calculated by the step—wige
equation (4.4). Subsequently, the estimators for the model parameters are obtained by (4.3a),
(4.3d), (4.5), and (4.6b). ’

5 Scheduling of discount factor

5.1 Time-dependent discount factor

In the previous section, we assumed that the discount factor A is a constant. If this is the case,
the estimators obtained by the on-line EM algorithm and the batch EM algorithm differ from
each other due to the presence of X in (4. 1) Here, we assume that A is a function of the tiime
1, so that A7~ in (4.1a) is replaced by 117_,,;A(s). The normalization coefficient n(T) (4.1h)
is redefined by

t==]1 s=t+1

T T -t :
= (Z I ,\(s)> . (5.1)
It is calculated by the step-wise equation: : Ve
n(t) = (1+ M)/n(t = 1)~ (5.2)

There is no need to redefine the step-wise equations (4.2), (4.4) and (4.6b), if the effective
learning coefficient 7(1) is calculated by (5.2).
The constraint, 0 < A(t) < 1, gives the constraint on 5(t):

12 9(t) 2 1/1. (5.:3)
If this constraint is satisfied, the equation (5.2) can be solved for A(t) as:

A(t) = (t = 1)(1/n(1) — 1). (5.4)
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5.2 Dquivalence between on-line and batch EM algorithms

In the next part, we show that the on-liné BM algorithm defined by (3.1), (4.2) and (4.3) is
equivalent to the balch EM algorithm defined by (3.1), (3.4) and (3.5), with an appropriate
choice of A(t).

Tt is assnmed thal the same set of data, {(z(1),y(t))}t = 1,...,T}, is repcatedly supplied
to the learning system, i.e., z(t + T) = z(t) and y(t + T) = y(t). The time 1 is represented
by an epoch index & (= 1,2,...) and a data number index m (= 1, ..y ) within an epoch, i.e.,
t = (k— 1)T 4+ m. Let us assume that the model parameter 8 is updated at the end of each
epach, i.c., when m =T, and it is denoted by (k). Let us suppose that A(t) is given by

ML) = { 0 ift=(k-1)T+1 (5.5)

1 otherwise

The corresponding n(t) is given by n((k — 1)T +m) = 1/m. Then, the weighted mean <
J(zy) > (2) is initialized to f(z(1),y(1))P(ix(1),y(1),0(k — 1)) at the beginning of an
epoch. At the end of an epoch, < f(z,¥) > (kT) = (f(z,y)):(T) is satisfied for § = 8(k ~1).
This shows that the on-line EM algorithm together with A(t) given by (5.5) is equivalent to
the batch EM algorithm. It should be noted that the step-wise equation (4.4) for A;(t) can
not be used in this case, since the equation (4.4) becomes singular for 7(1) = 1.

5.3 Stochastic approximation

I an infinite number of data, which are drawn independently according to the data distribution
density p(z,y), are available, the on-line EM algorithm can be considered as a stochastic
approximation (Kushner and Yin 1997) for obtaining the maximum likelihood estimator, as
demonstrated below. _

Let ¢ be a compact notation for the weighted mean, ie., B(t) = {12 (1), < x>
(1), <z’ > (1), << y® > (), < WP > (i = 1,..., M}. The on-line EM algorithm, (4.2)
and (4.3), can be written in an abstract form: :

5p(t) = B(t) — ¢t — 1) = n(t)[F(=(t),y(2),8(t = 1)) — $(t — 1)] (5.6a)

o(t) = H($(t))- (5.6b)

Tt can be easily proved that the set of equatiops;
4= BP(z,1,0)), (5.72)
0=H(¢) (5.7b)

is equivalent to the maximum likelihood condition (3.8). Then, the on-line EM algorithm can
be written as

5(t) = ()Y EIF(z,y, H(#(t — 1)), — dlt — 1))+ () (=(t), y(), &t = 1)), (5.8)
where the stochastic noise term ( is defined by

¢((t), y(t), (e — 1)) = (), y(t), H(#(t = 1)) = BIP(z,y, Hg(t = )y, (5.9)
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and it satisfies
E{¢(z, v, #)], = 0. (5.10)
The equation (5.8) has the same form as the Robbins-Monro stochastic approximation (Kush-

ner and Yin 1997), which finds the maximum likelihood estimator given by (5.7). The effective
learning coeflicient 7(t) should satisfy the condition

MER0, Tal)=co, 370 < oo (5.11)
=1 t=1
Typically, n(t), which satisfies the conditions (5.3) and (5.11), is given by
n(r,)*:_"?m—i-g (1>a>0). (5.12)
The corresponding discount factor is given by
AT 1 - E%T) (5.13)

namely, A(?) is increased such that A(t) approaches 1 as ¢ — co.
For the convergence proof of the stochastic approximation (5.8), the boundedness of the
noise variance = necessary (Kushner and Yin 1997). The noise variance is given by

Bll(x,y,9)), = BIF(z,y, H($))"), — E[F(z,y, H(¢))]. (5.14)

Both terms on the right hand side in (5.14) are finite, if we assume that the data distribution
density p(z,y) has a compact support. Consequently, the noise variance becomes finite under
this assumption. This assumption is not so restrictive, because actual data always distribute
in a finite domain. We can weaken this assumption such that p(z,y) decreases exponentially
as [z| or |y| goes to infinity.

It should be noted that the stochastic approximation (5.8) for finding the maximum like-
lihood estimator is not a stochastic gradient ascent algorithm for the log-likelihood function
(3.9). The on-line EM algorithm (5.8) is faster than the stochastic gradient ascent algorithm,
because the M-step is solved exactly. We have so far used the on-line EM algorithm defined by
(4.2) and (4.3), which is equivalent to the basic on-line EM algorithm defined by (4.2), (4.3a),
(4.3d), (4.4), (4.5), and (4.6b}, if n(t) # 1. Therefore, the basic on-line EM algorithm is also
a stochastic approximation.

In practical applications, the learning coeflicient n(t) given by (5.12) becomes too small for
a very large 1, such that the parameters could not be changed significantly in a finite periad.
In order to avoid this situation, n(t) is often set at a small positive value 7,.;» for a very large
t. This clamp corresponds to A(f) = 1 ~ fin- If the input and/or output distribution for the
observed data change with time, it is not necessary that 7(t) converges to zero. This dynamical
sitnation will be considered later in our experiments.

6 Regularization

6.1 Regularization of the covariance matrix

We have assumed so far that the covariance matrix of ihe input data is not singular in each
region, namely, the inverse matrix for every X; (z = 1,..., M) exists. In actual applicalions of
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the algorithm, however, this assumption often fails. A typical case occurs when the dimension
of the inpul data distribution is smaller than the dimension of the input space. In such a case,
7! can not be calculated and A; diverges exponentially with the time 2.

There are several methods for dealing with this problem. They are the introduction of
Bayes priors, the singular value decomposition, the ridge regression, etc. However, they are
not satisfactory for our purpose. Here, we will propose a simple new method that performs
well.

Let us first consider a regularization of an (N X N)-dimensional covariance malrix, Z, for
{he observed data. Its eigen values and normalized eigen veclors are denoted by &, (= 0) and
$a (n = 1,...,N), respectively.

2t = bathn

The sel of the eigen vectors, {¥,|n = 1,..., N}, forms a set of orthonormal bases. The condition
number of the covariance matrix ¥ is defined by

v = g‘min/gma:, (62)

where £nin and £mqe are the minimum and maximal eigen values of T, respectively. So that
0 < v <.1. I{ v =0, the covariance matrix ¥ is singular. If v = 1, the covariance matrix £
is regular and the calculation of its Inverse is numerically stable. If 0 < v < 1, the covariance
matrix is regular and 57 is given by

(n=1,..,N). (6.1)

N
£ = Y £ (6.3)

n=]1

The inverse covariance matrix £~ (6.3) is dominated by &msm, Which may contain a numerical
noise. As a consequence, the inverse matrix -1 becomes sensitive to numerical noises.

In order to deal with this problem, we propose the following regularized covariance matrix
g for the data covariance matrix .

(6.4a)
(6.4b)

Tp=S+alr ly
A% = T(Z)/N,

(0<a<l)

where Iy is an (N x N)-dimensional identity matrix. The data variance A? satisfies the
inequality

Sy W

£maz Z A2 = AT Z En 2 E'maz/N~ (65)

N =
The eigen values and eigen vectors of the regularized matrix Dg are given by (& + aA?) and
i, Tespectively. From the inequality (6.5), it can be proved that the condition number of the
regularized matrix Lg satisfies the condition:

vp 2 o/ (N(L+ a)). (6.6)

Then, the condition number of Ty is bounded below and it is controlled by the small constant
. The rate of change for ihe regularized cigen value is defined by

R(En) = ((g'n -+ (.YAQ) - &n)/&n = a(Ag/&t)- (6'7)

On-line EM algorithm 11

From the inequality (6.5), the ratio (6.7) satisfies the condition:

R(£.) 2 Rllma=) > /N
H(gn) S R(gmin) S CE/‘U.

(6.8a)
(6.8b)

If all the eigen values of & are the same order, ie., v a2 O(1), the rate of change becomes
small, i.e., R(£,) = O(a), so that the effect of the regularization is negligible. If the data
covariance matrix ¥ is singular, i.e., v = 0, the zero eigen value of 3 is replaced by aA? Thus
the regularized matrix L becomes regular and ils condition number is bounded by (6.6). II;
general, the eigen values, which are larger than their éveragc, are slightly affected, while the
very small eigen values are changed so as to be nearly equal to aA>.

By introducing a Bayes prior for a regularized matrix Tp as

P(Zs) = (5/2)" exp (=(5/2)Tr(S5") , (6.9)
one can get a similar regularization equation

EB:‘E-FI{-]N, (G.]O)
where the regularization parameter s is a given constant. However, it is rather difficult to
determine the value of & without knowledge of the data covariance matrix. It is especially
difficult for the NGnet, since there are M independent local covariance matrices &; (z =
1,...,M). The proposed method (6.4) automatically adjusts this constant by using the data
variance A2, which is easily calculated in an on-line manner.

If £ = 0, A? becomes zero and the regularization (6.4) does not work. Therefore, if A% is

_ smaller than a threshold value A2, , A? is set to A2, . This prevents £ from being singular

even when ¥ = 0.

6.2 Regularization of on-line EM algorithm

Based on the consideration above, the i-th welghted covariance matrix is redefined in our
on-line EM algorithm as:

S0 = [(€ a2 1 (8) — pOullt) < 1% () + 0 < A2 > (VD) / < 13 (0]

(6.11)
where

& AP () =< |z — m()]? > (1)/N ='(<< 2] > (1) = a()> <« 1> (f.)) JN. (6.12)

The regularized 7! (6.11) can be obtained from the relation (4.5) by using the following :

regularized A;:

Ay = (€78 > () +a < A2 > (0Fy) . (6.13)
The ((N + 1) x (N + 1))-dimensional matrix, Jy, is defined by
- (Iv 0 o
Iy = ( 0 0 ) :gcnﬂﬁ. (6.14)
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where &, is an (N + 1)-dimensional unit vector; its n-th element is equal to 1 and the other
clements are equal to 0. The regularimtion term in (6.13) can be calculated in an on-line
manner. From the definition (6.12), € A? >>; (1) can be writlen as

€A} (1) =< A > (1= 1) + () (AX)P(1) - € 8 >4 (1 - 1)), (6.15)
where A¥(t) 1s given by

()01 = () Pi()|w(8) — u(W)P/N + (1= g()s(t) = pslt = DI € 14 (t = 1)/N.

(6.16)
The second term on the right hand side in (6.16) comes from the difference between < |z —
(@) > (t = 1) and < jo — it — 1)}2 3»; (¢ — 1). Using (6.14) and (6.15), (6.13) can be
rewritien as

Ruft) = [~ n(AT (1) £ ) (i(t):'c'(mz_:u;(f.)u;'(t)> P (oar)
a(t) = Vas(t)e,. . !

As a resnlt, the regnlarized A;(z) (6.13) can be calculated as follows. Tor a given input data

(6.17b)

x(t), A;(t) is calculated using the step-wise equation (4.4). After that, A;(t) is updated by

T - -
A ) - TOPOROR QR WA
‘. 1+ ()P (A () (8)
using the virtual data {D,(t)[n=1,.., N}. [o D
After calculating the regulanzed A i(t) (6.13), the Jinear Iegressmn matrix W; is obtained
by using (4.6b), in which the regularized A:(t) is used. In the calculation of (4.6b), only the
observed data {(z(t),y(t))jt = 1,2,...} are used and the virtual data {#,(t)|n = 1,...,N;1 =
1,2,...}, which have been used in the calculation of the regnlarized /~\,~(t), must not be used.
Therefore, equation (4.6a) does not hold in our regularization method. Since the regularized
A:(t) is positive definite, the linear regression makrix W; at an equilibrium point of (4.6h)
satisfies the condition

(6.18)

W, E[7% P(i|x,v,0)], = E[yZ P(ilz, v,0)},, (6.19)

which is identical to the maximum likelihood equation, (3.7d) along with § = §. Although
the matrix E[zZ"P(i]x, y,8)], may not have the inverse, the relation (6.19) still has a meaning.
Therefore, our method does not introduce a bias on the estimation of W;.

Let us compare our regularization method, (4.6D) along with (6.13), to the Bayes prior
method. By introducing a Bayes prior for W; as

P(W:) = (k/2m) P2 exp (—(R/Z)Tr(ﬁ/’i'ﬁ/i)) , (6.20)
the regularized equation for W; is obtained: ‘
W =< y&' >; (%) + clyp) (6.21)

This equation is a regularized version of the equation (4.6a) instead of the equation (4.6b). At
an cquilibrium point of the equation (6.21), W; satisfies

W, (B{EH P9, 0] + KIar) = Bl PG, 1,01, (6.22)

implying that this Bayes prior method introduces a bias on the estimation of Y'Vi. ’
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7 Unit manipulation

Since the EM algorithm only guarantees local optimality, the obtained estimator depends on
its initial value. The initial allocation of the units in the input space is especially important
for attaining a good approximation. If the initial allocation is quite different from the input
distribution, much time is needed to achieve proper allocation. In order to overcome this
difficulty, we introduce dynamic unit manipulation mechanisms, which are also effective for
dealing with dynamic environments. These mechanisms are unit production, unit deletion,
and unit division, and they are conducted in an on-line manner after observing each datum
(z(1), (1))
o Unit production

The probability P(x(t),y(t),1 | 0(—1)) indicates how probable the i~th unit produces the

datum (z(2), y(t)) with the present parameter 8(t — 1). Let 0 < Pprouee € 1/M. When

max, P(x(t), y(t), 3] 6(1—1)) < Pproduce, the datum is too distant from the present units

to be explained by the current stochastic model. In this case, a new unit is produced to

account for the new datum. The initial parameters of the new unit are given by:

Mrr4l1l = ’ZZ('() (7 18.)
S = Xy Xy = famingl o () — pl* /N (7-1b)
Uﬁl+1 = amax} o} (7.1c)

(7.

Wirs1 = (Waren, bara) = (0,3()),
where ; and - are appropriate positive constants.

s Unit deletion :
The weighted mean < 1 >»; (t), which is calculated by (4.2), indicates how much the
i-th unit has been used to account for the data until &. Let 0 < Paeere € 1/M. If
& 1>; (1) < Paelete, the unit has rarely been used. In this case, the i-th unit is deleted.

¢ Unit division
The unit error variance ¢2(t) (4.3d) indicates the squared error between the i-th unit’s
prediction and the actual output. Let Dypi. be a specific positive value. If ¢?(z) >
Dyivide, the unit’s prediction is insufficient, probably because the partition in charge is
too large to make a linear approximation. In this case, the z-th unit is divided into two
units and the partition in charge is divided into two. The initial parameters of the two
units are given by:

wi(new) = pe(old) + ﬁg\/f_lf//l tar1(new) = pi(old) — B3 \/21_7/;1 (7.2a)

1Y
Tt (new) = D7 (new) = 4674 -+ > €7 v, (7.2b)
ol (new) = 0%, (new) = a’(old)/2 (7.2¢c)
Wilnew) = Wypya(new) = Wi(old), (7.2d)

where ¢, and 1, denote the eigen valuc and the eigen vector of the covariance matrix
%:(old), respectively, and & = £mez. fs is an appropriate positive constant.
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Although similar unit manipulation mechanisms have been proposed in (Platt 1991; Schaal
and Atkeson 1997), these mechanisms can be conducted with a probabilistic interpretation in
our on-line BM algorithin.

Tinally, we would like to comment on the extrapolation done by the NGnet after the learning
phase. If an inpnt x that is far from all the unit centers is given, the output of the NGnet is
approximately W;%, where i is the index of the closest unit to the input z. This implics that
the output of the NGnet linearly diverges as |x| — oo where thie NGnet has never experienced
the training data. A simple way to prevent this undesirable beliavior is given as follows. If
}:;"Ll G;(2) < Guin for a small threshold value Giyn, the normalized Gaussian function Afj(z)
defined by (2.1b) is replaced by G;(2)/Gumin. This prescription, however, has not been used in
the following experiments, because the input spaces in those experiments are bounded.

8 IExperiments

8.1 Function approximation in static environment

Applicability of our algorithm is investigated using the following function (N =2 and D = 1),
which was used by Schaal and Atkeson (1997).

¥ = max {e““’ﬁ, e50%3 1.25e“5(=3+*§)} (1< a2 <1). (8.1)

Figure 1 shows the function shape.

By sampling the input variable vector, * = (=, z,), uniformly from its domain, we pre-
pared 500 input-output pairs, {(z(t), y(¢))|t = 1,...,500}, as a training data set. A fairly large
Gaussian noise N(0,0.1) is added to the outputs, where N(0,0.1) denotes a Gaussian distri-
bution whose mean and standard deviation are 0 and 0.1, respectively. Figure 2 shows the
function shape with the noise. The problem task is for the NGnet to approximate function
(8.1) from the 500 noisy data. We prepared 41 x 41 mesh grids on the input domain, and the
approximation accuracy was evaluated by means of the averaged squared error nAMSE on the
grids (Schaal and Atkeson 1997). Ilere, n M SE was normalized by the variance of the desired
outputs (8.1). We compared the batch EM algorithm and the on-line EM algorithm. In this
cxperiment, the discount factor A(f) was scheduled for approaching 1 as in (5.13). Figure 3
shows the time-series of nM S E. The abscissa denotes the learning epochs, and the 500 data
points were supplied once in each epoch. The same training data set was used through the
whole epochs. In the figure, we can see that both the batch EM algorithm and the on-line EM
algorithm are able to approximate the target function in a small number of epochs. Although
the so-called “overlearning” can be seen in both learning algorithms, it is more noticeable in the
batch EM algorithm than in the on-line EM algorithm. The number of the units used in both
algorithms was 50. In this task, the data disiribution does not change over time. In this case,

il can be thought that the batch learning is more suitable than the on-line learning becanse

the baich learning can process the whole data at once. However, our on-line EM algorithm
has ability similar to the batch algorithm. In addilion, our on-line EM algorithm achieves a
faster and more accurate approximation ability for this task than the RFWR. (Receptive Field
Weighted Regression) model proposed by Schaal and Atkeson (1997).
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8.2 Tunction approximation in dynamic environments

The on-line EM algorithm is effective for a funciion approximation in a dynamic environment

-where the input-output distribution changes with time.

For an experiment, the distribution of the input variable z; in (8.1) was continnously
changed in 500 epochs from the uniform distribution in the interval [~1, ~0.2] to that in the;
interval {0.2,1]. At each epoch, the input variables were generated in the current domain.'
In the applications of the on-line EM algorithm for such dynamic environments, the learning
behavior changes according to the scheduling of the discount factor A{t). When the discount:
factor is relatively small, the model tends to forget the past learning result, and to quickly
adapt to the present input-output distribution. We show two typical behavioral patterns in!
the learning phase. :

1. Fast adaptation with forgetting past

In the first case, A(t) is initially set at a relatively small value and it is slowly increased,’
i.e., the effective learning coefficient n(t) is relatively large throughout the experiment.
The NGnet adapts to the input distribution change by means of relocation of the units’
center. During the course of this relocation, the units’ center moves to the new region,;
and consequently the past approximation in the old region is forgotten. Figures 4(a) and
4(b) show the center and the covariance (,i.e., two-dimensional display of the standard
deviation) of all the units for the 50-th epoch and the 500-th epoch, respectively. The
dots denote the 500 input points in each epoch. We can see that the NGnet adapts to the,
input distribution change by means of the drastic relocation of the units’ center. Figure!
5 shows the time-series of nM/SE on the current input region during the course of this!
learning task. We can see that the error does not grow large throughout the task. In
this experiment, the number of the units does not change.

2. Slow adaptation without forgetting past

In the second case, A(t) is rapidly increased, i.e., 7(t) rapidly approaches to zero. The
NGnet adapts to the input distribution change without forgetting the past approximation
result. In Figure 6, the solid, dashed, and dotted lines denote the time-series of nA/SE
on the whole input domain, nA/SE on the current input domain at each epoch, and
the number of units, respectively. Tigure 7 shows the center and the covariance of
all the units at the end of the learning task. Since the unit relocation is slow, the
model adapts to the input distribution change mainly by the unit production mechanism.
Consequently, the units in the region where no more input data appear remain, and the’
function approximation on the whole input domain is accurately maintained.

8.3 Singular input distribution

In order to evaluate our regularization method, we prepared a function approximation problem!
where the input variables are lincarly dependent and there is an irrelevant variable. In such a
case, the basic on-line EM algorithm without the regularization method obtains a poor result,
because the input distribution becomes singular.

In this experiment, the output y is given by the same function as (8.1), while the input.
variables are given by & = (1, %2, 73, 24, T5) = (21, 22, (21 + 22)/2, (21 — 75)/2,0.1). When the
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input data are generated, a Gaussian noise N(0,0.05) is added to z3, 24 and z5. For a training
set, we prepared 500 data, where z; and z, were uniformly taken from their domain, and the
output y was added by a Gaussian noise N(0,0.05). For cvaluation, a test set was prepared by
sctting xy and @, on the 41 x 41 mesh grids and the other variables were generated according to
the above prescription. During the lecarning, the same training set was repeatedly supplied. In
TFigure 8, the solid, dashed, and dotted lines are the learning curves for o« = 0.23, & = 0.1 and
a = 0, respectively. If no regularization method is employed (a = 0), the error becomes large
after the carly learning stage. Comparing the cases of a = 0.23 and a = 0.1, the regularization
effect seems fairly robust with respect to the parameter « value.

Let us consider another situation, where the input data distribute on a curved anifold.
We consider a 3-D input space. Each input datum (1, %2, 3) is restricted on the unit sphere,
Cie, 2+ 2 4z = 1. A function delined on this unit sphere is given by

(z1, T2, T3) = (cos 01 cos by, cos b, sin 62, sin 6,) 8.2a)
y = COS(Ol) COS(BZ/Z) n_lax{e'_lo(’l@:/w)z’ é—sﬂ(ﬂz/‘n)21 1.256—5((291/w)7+(52/77)2)} , 821))

—~ e~

where the range of the spherical coordinate is given by —7/2 < 0; < w/2 and —7 < 6, < 7.
The output y does not include a noise. The function (8.2b) is similar to the function (8.1), but
it is changed so as to satisfy the consistency of the spherical coordinate. We prepared 2000
data points uniformly on the sphere. In each learning epoch, the same data set is repeatedly
used.

The covariance matrix of the whole input data is not singular. However, the covariance
matrix of each local unit is nearly degenerate, so that the calculation of the inverse covariance
matrix and tle linear regression matrix may include a noise without the help of the regular-
ization method. In figure 9, the solid and dashed lines are the learning curves for o = 0.023
and a = 0, respectively. If no regularization method is employed (e = 0), the error does not
become small. Note, however, that the calculation of the inverse covariance matrices is possible
without the regularization, since the input data is not linearly degenerate. Our regularization
method (o = 0.023) provides a fairly good result compared to the basic method without the
regularization (@ = 0). The condition numbers defined by (6.2) with the regularization and
without the regularization are 0.0191 - 0.0042 and 0.0071 == 0.0038, respectively.

The local covariance matrix, I;, of each unit represents the local input data distribution
fairly well in our regularized method. It has two principal components which span the tangen-
tial plane to the unit sphere at each local unit position. The third eigen value is very small
and it is bounded below by the regularization term. In figure 10, receptive fields of the local
units are shown. The receptive field of each unit is defined by an ellipse whose axes correspond
to the two principal components of the local covariance matrix ;. The center of this ellipse is
sct at. the center of the local unit, ;. One can see that the receptive fields appropriately cover
the unit sphere. The average cosine between the eigen vectors, which corresponds to the third
eigen values of the covariance matrices, and the spherical normal vectors was 0.9966 £ 0.0157.
This implies that the receptive ficlds are almost tangential to the unit sphere.

8.4 Reinforcement learning

We apply our new approach to a reinforcement learning problem. The task is to swing the
pendulum upward by a restricted torque controller and stabilize the pendulum near the up-
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right position (Doya 1996). An actor-critic model proposed by Barto et al. (Barto, Sutton &
Anderson, 1983) is used for the lcarning system. For the current state, z.(t), of the controiled
system, the actor outputs an control signal (action) w(t), which is given by the pohcy func-
tion (1)), i.e., u(t) = Q(z.(t)). The controlled system changes ils state to z.(t 4 1) afier
receiving the control signal u(t). Following that, a reward r(z(t--1)) is given to ihe learning
system. It is assumed that there is no knowledge of the controlled system.

The objective of the learning system is to find the optimal policy function £2°(z.) that
maximizes the discounted future return defined by

I
™8

Viw) = 3 yr(edlt+1))

8.3
e, (8.3)

=0

where 0 < v < 1 is a discount factor and V(z.) is called the value function. The value function
V(z.) is defined for the current policy function Q(x.) employed by the actor.
The Q-function is defined by

Qzer ) = WV (elt + 1) + r(mo(t + 1)), (8.9)

where 2,(1) = z. and u(t) = u are assumed. The value function can be obtained from the
Q-function:

Vize) = Qe v = zc))- (8.5)
The Q-function should satisfy the consistency condition
Qaelt), u(t)) = ¥Q(olt + 1), Aot + 1)) + (et +1)). (8.6)

The critic estimates the Q-function that satisfies the consistency condition (8.6). The Q-
function is approximated by the NGnet, which is called the critic-network. The input to
the critic-network is the current system state z.(t) and the control signal u(t). The target
output for the critic-network is given by the right hand side of (8.6), in which the Q-function
is calculated using the current critic-network. After obtaining the new state z.(¢ + 1), the
parameters of the critic-network are updated using the on-line EM algorithm. This learning
scheme is different from TD-learning (Sutton 1988) or Q-learning (Watkins 1988), because it
directly uses the target Q-function value.

Tn the task for swinging up the pendulum, the control signal u(t) represents a torque which
is applied to the controlled system, i.e., the pendulum. The policy function is approximated
by an actor-networlk, which is a variation of the Normalized Gaussian Network:

Mo
U = Q(T.) = Umaz - tanh (Z wiN; (=) + e) s (8.7)
i=1

where a random noise ¢ is added in the training phase in order to explore the state space.
Since the maximal torque is fixed at 2,2, the output of the actor-network is filtered through
the sigmoidal function, tanh(-). The centers of the units are fixed at the mesh grid points in
the input space. The covariance matrices are also fixed to the univariate covariance matrices
with the same variance. There is no linear term. Only the bias parameters w are updated by
the gradient ascent method so that the Q-function value increascs (Sofge and White 1992):

a0 aQ

Aw o E(ﬂ;c(t)) . a(:uc(f.),'u,(l,)). _ (8.8)
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The reward for the inverted pendulum is given by
r(z.) = exp(—(0)%/2:3 — 62/2:3), (8.9}

where 0 and 0 denote the angle from the upright position and the angular velocity of the
pendulum, respectively, i.e., z. = (6,8). (= 37 /5) and ta(= w/5) are constant values. The
reward (8.9) encourages the pendulum to stay ncar the upright position.

After releasing the pendulumn from a vicinity of the upright position, the control and the
learning process of the actor-critic network is conducted for 7 seconds. This is a single episode.
The reinforcement learning is done by repeating these episodes. As the learning proceeds, the
initial position of the pendulum is gradually moved away from the upright position. In order
to see the learning performance, we prepared three tesibeds.

s Easy initial setting: 0< |0| < 37/5,0< 0| < /5

e Medium initial setting: 0<10] < 6r/5,7/5 <10 < 27/5

¢ Difficult initial setling: 0<|6] < 9x/5,2x/5 < |6] < 3x/5

After each episode, the actor-critic network is tested under the above three testbeds. Figure
11 shows the time-series of the success rate for the three testbeds. A success is determined
when the final reward is larger than 0.99. In order to achieve this reward value, the pendulum
should stay near the upright position, because the reward (8.9) includes a penalty term for
a large velocity. After about 100 episodes, the system is able to make the pendulum achieve
an npright position for the easy initial setting. After this learning stage, the success rate for
easy and mecium initial settings slightly decrcases, because the initial position at the training
session moves away from the upright position. In this learning period, the system is mainly
adaptling to initial states fairly distant from the upright position. This adaptation is conducted
by relocation of the critic-network units. After 350 episodes, the system is able to make the
pendulum aclieve an upright position from almost every initial state. Since the maximal
torque generated by the controller is limited, the system inverts the pendulum after swinging
il several times. According to our previous: experiments, in which the critic-network is the
NGnet. trained by the gradient descent learning algorithm, a good control was obtained after
about 2000 episodes. Therefore, our new approach based on the on-line EM algorithm is able
to obtain a good control much faster than that based on the gradient descent algorithm.

g Conclusion

Tn this article, we proposed a new on-line' EM algorithm for the NGnet. We showed that the
on-line EM algorithm is equivaleni to the batch EM algorithm if a specific scheduling of the
discount factor is employed. In addition, we showed that the on-line EM algorithm can be
considered as a stochastic approximation method to find the maximum likelihood estimator.

A new regularization mcthod was proposed in order to deal with a singular input distribu-
tion. In order to manage the dynamic environments, nnit manipulation mechanisms such as
unit production, unit deletion, and unit division were also introduced based on the probabilistic
interpretation.
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Experimental results showed that our approach is suitable for dynamical environments '

where the input-output distribution of data changes with time.
We also applied our on-line EM algorithm to a reinforcement learning problem. Tt has been

shown that the NGnet, when using the on-line EM algorithm, learns the value function much -

faster than the method based on the gradient descent algorithm.

In forthcoming papers, we will discuss applications for the reinforcement learning in more :

detail.
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LUFIZ, tplist.exp O > 7N R EE T,

tpLV1.6 /export/home/matsuda/CSK/tp/tpl tpl

tpLV2.6 /export/home/matsuda/CSK/tp/tpl tpl

tpLV3.6 /export/home/matsuda/CSK/tp/tp1 tp1

tpLV1.6_a0 /export/home/matsuda/CSK/tp/tp1 tpl
tpLV1.6_al /export/home/matsuda/CSK/tp/tp1 tpl
tpLV1.6_a2 /export/home/matsuda/CSK/tp/tpl tpl
tpLV1.6_a3 /export/home/matsuda/CSK/tp/tpl tpl
tpLV2.6_a0 /export/home/matsuda/CSK/tp/tpl tpl
tpLV2.6_al /export/home/matsuda/CSK/tp/tpl tpl
tpLV2.6_aZ2 /export/home/matsuda/CSK/Ap/tpl tpl
tpLV2.6_a3 /export/home/matsuda/CSK/tp/tp1 tpl
tpLV3.6_a0 /export/home/matsuda/CSK/tp/tp1 tpl
tpLV3.6_al /export/home/matsuda/CSK/tp/tp1 tpl
tpLV3.6_a2 /export/home/matsuda/CSIUtp/tpl tpl
tpLV3.6_a3 /export/home/matsuda/CSK/tp/tp1 tpl

SR 4



srvHearts |3 B){E I B 5L 2R O 2 % PAIRHEARTS/server/® kekka.dat i 77 L
9. HATNAZABILUTOBED TY,

#— FEAi D= DEEL seed

—ERREOE T N—TDREART NV T 4
kekkadat @7 4 —=<w MILLTOHD Td 6

(178) seed = numseed

(2 f7E LAI%) hand[numhand] Total Score=s0 51 52 53

numseed seed DL
numhand AW NEIE '
5051 82 53 KT W—TDREINFINT 4

=7 U, kekka.dat iZ@ME— FTHAINE T DT, KA srvHearts DSEIHE 7=
BEE 7 A NVOKEED S LEROERPEIETN D LIZRDET,
REHRFNTF 4 BB ATHEBIEY —R 7 7 A b monithrGame.c T #define
FILEOUT INTERVAL & UTEFHE L TWET, IREE (20002 A 293) 8xELT
WA RIFRIL 1000 MITT. MBZEETLIHBFTEIIOEHEZET L.,
PAIRHEARTS/server/ TH 2 > /8 4 )b (make) U T F & Vo monitsrGame.c %
PAIRHEARTS/server/iZ# b & 9 N

HBR ML 5




Oy —I
IN—YH— ST a7 P4 )R PAIRHEARTS/server/LOG/AZ A LE T BV
ZHV—N7a s Alog_read)id, N—YH—NRDBHALEO T 7 7L NVEFRHAT -
H. HEICETR/AIRLET, OVFmAHY—IVORBH IS FIZULTOED T
ER

% log read logfile
log_read I&. EEINELI0 T Y 7 7 1 )W (logfile)s PAIRHEARTS/server/LOG/

WKHBHDE LTHAZHMEBETVWE T, DTHEAIAY—NVERTTIHEIR.
77 74 JvH PAIRHEARTS/server/LOG/ZH 5 Z L ZHER L TF I Vo

OVHRHBIHY—=IIZDNTE, KRF¥aA b TaJHEARIHY—NVEREE 221
LTFEW,

ERFIEE 6



TPT—I T2 b

TP ==Yz b 70/ I 00pDIREHRCSI oNEE XXX 2 212,
PAIRHEARTS/tp/data/DZF TP =—Y 2> P 7 P A NV EHRH/IHE T INOHD T
FPANVBIDZEO TP =—V x> MERBEMITET., 771 VOARIZUTOED
T9o

XXX.ele. . {HFT & 2R HHARER - BHREOBRET 714NV
XXX.rule - FEN—NV 7 7L

XXX.hclass N RS 740V

XXX.hand BNV R 7LV

XXX.mode FRHE—-FT77AIN

(XXXIZTP=—V v bEEEBLET,)
7272 L. XXX.hand i, ZRESMOERD 2 NEEEINMREIXELLEE
Ao E20 FBE— R 7 7 A VIEREY -V LD Wb E TV BIBAIE
HFELEF A
HIREBETAENCINS D7 74 )VHs PAIRHEARTS/tp/data/lizdy 2 = & BiEZ L
TTFEW,

PAIRHEARTS/tp/data/INITDATANZIZ Z N E TR LESL )V TP £—V =
AT FANBNw T v ITHELTEMLTHDET, 774 IVTF—F% DARIL
REEIZ e o TN E T, (XXX hand lidH b FEHA) TheD TP —Px v b2
TR E D & HERIC BN E ¥ 5 & &L, PAIRHEARTS/tp/data/INITDATA/ 2 &
PAIRHEARTS/tp/data/iz 7 74 W% 2AE—LT TS\,

SR, —ED Ny REBEREICZOFEADN Y ROER7 A VBT S L
S LTWET, BO%¥ED On OFPEIE, THNV—NVT7 P4 VEHEATEESICL
TVWET, ZDLE, HASNEZ 7 7 A NVRIZRDESITH>THWET,
XXX num.rule
XXX _num.hclass
(XXX1Z TPz —Y 2> b TT,
num FH A LUERFEONY FEBZERLET,)
ZORRRIEY — R 7 74 ) tpl_extern.h T#define FILEOUT_INTERVAL & LTE
FTLTWET, BifE (200045 2 A 29 H) 8&EL TWARPRIE 1000 BT, BEE
LETHEEFEIOEHELET L, PAIRHEARTS/Ap/TH I > /54 V(make) LT F &
Wo

PAIRHEARTS BN TP ==Y x> bD 7 7 A W DBFR 2 LT T 25413,
— 2774 )tpl_extern.h @

#define TP1DATADIR

#define TP1CONDSCRIPT

#define TP1ACTSCRIPT

#define TP1DISTSCRIPT
BV =774 )VipledD

#define APPDEF_RESOURCE
DEHEEFL, AV SANVLTTFEN,
ZheDY—X7 74 )id PAIRHEARTSAp/AZ 3 D & T,

JIBRFINEE 7



TPZ—Vxy NOBHEIZOVWTIERF2 AL MP=—Y 22 by 28BLTTFE

A
TP ==z b 7Ol SLDMB - 774NV 7A=Y MIDWTIERFa2 AL b
TV My PHGEEREE) 22BLTTFE 0,

TP =—Y x> N 7OV SLET7 7 A NVERICODERY —22—R - F—b 074
WIZOWTIE RFa2 AN TS L8EHE) 22U TTFI Ve

ST 8



TPIT5 45—

TP =5 4 % — (create_tpl) {Z TP =—Y = > M DOREER - £E)BITNE T, TP
T—Vx v NEFBERT B L. create_tpl IZD TP =~V = bDF—2T7 7 A
V% PAIRHEARTS/tp/data/iz 1477 L. ¥1#i TP % % PAIRHEARTS/server/tplist.exp
WCEBMUET,

PHRERIRIC, BECEAET S TP =—Y v b5 —UTHERT AT
create_tpl |22 —mD TP =—Y =2 b D7 74 V& PAIRHEARTS/tp/data/D> &
MAZATHRHEITVE T, 20D, AE—TD TP 2—Y =2 FDF—%1F
PAIRHEARTS/tp/data/iZ 3 % 2 EHidH b £ 370 PAIRHEARTS/ip/data/INITDATA/
ODTP=—Y x> Mroab—3 25513, —B PAIRHEARTS/tp/data/INITDATA/
5 PAIRHEARTS/tp/data/ic 7 7 A W& I E—LTTFE W,

TP ==Y 2> bPOTFT— P 2RTTE255RALCZDT—F B
PAIRHEARTS/tp/data/iZd 5 HEDH D £ 3,

KHETLTP 2~V bOUR MREIE—TD TP =~V =2 b D) X bR &R
T 5 =S create_tpl & PAIRHEARTS/server/® iplistexp ZF AL F 4,
(tplist.exp ICHBFHENTNWE TP T~V MEEVAMIERLET,) TP =—
=V POETEE - OE—21T5 L &L tplistexp I IN 5D TP =—Y x> MBS
FIREINTWAI R LTTI N,

% /= PAIRHEARTS OBz AL T35 EE. V—X7 74 )V confliglpL.h @
#define SERVERENTRYFILE
#define TP 1IPROGRAMPATH
#define CONDSCRIPTFILE
#define ACTSCRIPTFILE
#define DISTSCRIPTFILE
#define TP1DATADIRECTORY
DEHZEE L, PAIRHEARTS/tp/config/ TH I 2 /84 v(make) LT TFX W,
ZheDY—R7 74 )Vik PAIRHEARTS/tp/config/iz & b £ 3,

TP =5 4 ¥ —DBEAEIZDVWTIE FFa AL M TP 574 ¥ —ifERAE 1) &
W ITP =57« & —BEHARE 2) 28BLTT I,

TP ZF 4 7 —DEEIZDWTI RFa AL b TV My 7S 28B 1L
TF&EW,

TP =54 ¥ —RI7 7 7 A WERIZBERY —2A 02— R« F—=F 7 7L WIZDNTIE
RFaADE 70075 LEREE) 2B8RLTTEI N,

SERFNTH 9




PPTZ—>x2 b

PP == x> 70l 5 0pp)IEHRFICHEZ 5NGE XXX 28 &1,
PAIRHEARTS/pp/data/ D XXX F 4 L2 b LU TFOEEPP =~V = b7 74 )%
HAIHET. INOEDT7PANVMIDERID PP =~V = v FERENMITET. 7
7ANVDORBIEUTOED TT,
XXX/element HT &R MMHMRER - HRTORET 714 )V
XXX/rule.org - fFIIV—IVZ 7 AN ) D F ) ~
XXX/prof.org TP 707 7 A )T 74 )v(A YU PF)IV)
XXX/mode ERE—-RFR77A)N
XXXist.prtnr IRNFETIINS—hF—e 22 TPHDOUR M7 74)b
(XXX iZfsEahi- PP =—VxL MEOF 4 LY M) BHELE
TO)
7272 L. list.prine WEEERICSBML, /8= b F— TP L7 — LD
BEWEREIIHFEELEEA. F-. EEE— K774 VIEHEEY — VI
L OB ENTWAHEIEIFELE R A

PAIRHEARTS/pp/data/INITDATANZ IZ Z N E CI/ER LEPP = —V 2> DT A
LZ MNUBNw I 7 THELUTEMLTHED ET. 774V T—F ODRFIIFINAR
TEIZIR S TWET, (list.prinr idH D FEAL) 6D PP o—2 o> b EFIIRIE
e ERICESENEE B & =1k, PAIRHEARTS/pp/data/INITDATA/ »» 5
PAIRHEARTS/pp/data/lc5 4 L 27 P T aE—~LTTFE W,

/. ERBEKBICS—PF—0 TPERINR)DBHE I S L. ppl &
PATRHEARTS/pp/data/XXX/D/)8— b F—EHEHE OB T 7 A W EHRHAIHE T TN
5DTFAINVHIS— N F—TP 2REITET. 7741 NVOARITILLTOED T30

XXX/PRTNR.rule ZDIN— M PR T BITEI =V T 74V

XXX/PRTNR.prof ZON—FF—=IZ®TBTP 707 71 )V
774N

XXX/PRTNR.hand DI FF—IZH T BEHN R 77 AV

(XXX iZfgE& = PP =—Y x> MEDF4 L7 MU RERLE
To PRTNR|Z/S—FF—TP ZEELET.)
JIS— b F—TPIZXTEEEY 74 WIZFDI)S— hF— TP LDV —LHEER
MWWBEEEELEY Ao pplIZZF DA~ F—TP B PP T~z b
IZESTEDTDIN~ M —THIFER. TVIFTNVDT 74 IV ETIZD
A WEHBIERLE T,

ERERIETAEICINSDT 4 L2 MY KRKT 74 )uh PAIRHEARTS/pp/data/lZ
HBDIELEMALTTFE N,

SR AL 10



LR, HOFEEM On OBEIT-—ED/\ v REBERREICZ DR EOTEII —)V
T7ANVERATALICLTVWET, ZQLE, HASNLZ7 74 NVEITRD LS
CZR‘DTL\iTo

XXX/PRTNR_num.rule
(XXX FPP -V EDF4 LI M) BHFELET, PRTNR
X TP =—Cx M4 T T num IZHALEREDN Y FEEE
RUET.)
ZOREREIEY — 27 7 4 )V ppl_extern.h T#define FILEOUT_INTERVAL & UCE
FLTWET, IE (2000F 2 A 29 H) FELTW AR 1000 BITY . HFE2
THETAHERIOEHREZEE L. PAIRHEARTSpp/THEH IV /84 )V(make) LT TF
=W,

PAIRIIEARTS Qi 2 283 258, YV —RAX 7 74 )V ppl_extern.h @
#define PPIDATADIR
#definc PP1CONDSCRIPT
#define PP1IACTSCRIPT
RO —R 774 )ppled
#define APPDEF_RESOURCE
DEDZHEZEFEL. B84V LTTFE W,
IN5DYV—2 774 )i PAIRHEARTS/pp/izdh b £ 9,

PPz—zy FOIHEIZOWTIZ RF2 AL MIPP—V 2y b Z28BLTTE
WVo

PP x—ozy b7 T7L0MBE - 274NV T7 44— MIDWTIERFaAL B
TV oz PHGEERE) 22BLUTTFE W),

PP =—V =z b 7T LET7 74 WERICBERY -0 —R « F—=F 774
WIZDWTIE RFa AL b IO 05 LEREE) 28BLTTE LV,

SR FIAE 11




PPIT744—

PP =54 4% — (create_ppl) Z PP =—Y x> POKREER - TEYZITWE T, PP
T—Y x> NEFHEAERT S L, create_ppl XFDOPP =—V Y MEDF 4L T b
1) % PAIRHEARTS/pp/data/iZ i L. ZDF A L7 FUUTIZF—& 77 )V
BHUET. Fix. Hi PP %% PAIRHEARTS/server/pplist.exp (ZEAI L & T

PriBAERFIC, BRICHFE T2 PP ==V M 52— U TER T 2EEICIE.
create_tpl I XA ¥—x®D PP =~V = > b D7 7 A )% PAIRHEARTS/pp/data/D %
D PP =~V G ERILAFTDOT ALY MITFDPSHSZ ATUERZITNE
T 0RO AE—TD PP =—Y x> MO TF—# 1% PAIRHEARTS/pp/data/dD %
D PP =Yz MEERUATMDT AL PIUTIZHAZLESHDE T,
PAIRHEARTS/pp/data/INITDATA/®D PP =—Y = > b s a—3 2881k, —H
PAIRHEARTS/pp/data/INITDATA/D* 5 PAIRIEARTS/pp/data/izs 4 L7 R T &
A—LTFEW,

PP 2=V x> DT =P 2EHETIHEEORELTA LI P RTF—F
PAIRHEARTS/pp/data/ic # 3 HEHdH 0 £ T,

EETHPP -V bR MRV IE—TO PP ==Y x> bD U R M EERR
3 2 =& create_ppl & PAIRHEARTS/server/® pplistexp ZF A L E T,
(pplist.exp ICBEREINTWAHPP -V "B DR MNIERLET,) PP—Y
=V MNOEHEEE - o —%47D5 L & pplist.exp LINSD PP =—Y x> &S
BREINTNDIZLEHERLUTTI N,

¥ 7= PAIRHEARTS OBFT2 B HE T L5, V—X 7 71 ) configpplL.h @
#define SERVERENTRYFILE
#define PPIPROGRAMPATH
#define CONDSCRIPTFILE
#define ACTSCRIPTFILE
#define DISTSCRIPTFILE
#define PP1DATADIRECTORY
DEHZEEE L. PAIRHEARTS/pp/config/ TCH 22 /34 )Vmake) LT TF & W,
ZhBDY—27 74 )it PAIRHEARTS/pp/eonfighzd b £ 3,

PP =5 485 —DREFEIIDVTIERFa x>y b PP 7y ¥ —R{ESEAE 1y X
U TPP =7 1 & —B{EGHIAE 21 2BMLTTFE 0,

PP 274 S —DBBIZDOVWTIE R F 2 A v b TV 7 by PHEE TS 283U
TTFE.. , _

PP =545 —RT7 7 4 JWMERIZHEIRY) —22— R + F—=F 7 7 1 )UIZ DT
FFa AV b Tonlds LEEE 22BLTTI W,

LB T 19



Ny FIEBTODEER

P—NEEHE2EI LT, ERENYFUIETITI P TEE T, srvHearts I
EINENYF 7 PANDBETCT —LEZHEHREL. =—Y x> bR, V'—
LEHELET NvTF 774 NVICERE— FOREDPRRAINTHWEHEHIZT—Y
TV POERE—RERELET. V' A#%TT%&TD?7A%%TL&?Q
Ny FUITOHRBOEGE. V' — LB TREFFZBELTWOWTADPDO T )V —TH% 100
ﬁ&@it%ﬁﬂ%?%%b<ﬂ@ﬁ%iﬁi%%?t&bi?oﬂﬁ%i@%é
. B ENSYF 7P A IVIZERELE T,

SN TZ FAVCEBON Yy FRBTOERRIOT Y FEHIZ & T, HBOERZd
LTI M TEET,

INVFI77A4IDT#+—<w b
MT®7%~?VFTNV%774%E%%LTT§HQX?ﬁ%iﬁﬁ@&ﬁ\ﬂ
KD EEHEI T ARBORETFT— IV 2ERLE T, UTRERINTHDIDITY
VINWTF =TT, BRARICH>TINSDRETFT—F 2HEMHI TTFEN,

(RiE)

1 agent

2 0tplV3.6 a0 ppl2 a0
3 1tplV3.6 alppll al

2tplV3.6 a2 pplf a2

3 tpl V2.6 ppl2 a3

outfile expi75.1og

gendnum 5000

4
5
6 shtmoon 0
7
8
9

ppmode Oppl2 a0-800-10.0 1.0

10 ppmode 1 ppl2 al -800-10.0 1.0

11 ppmode 2ppl2 a2-8.00-10.0 1.0

12 ppmode Sppll a3-8.01-10.01.0

13 tpmode 0 ¢plV3.6 a0-8.00-10.01.01.00-8.0-1.01.0

14 tpmode I ¢pLV3.6 a1 -8.00-10.01.01.00-80-1.01.0

15 tpmode 2 tplV3.6 a2-8.00-10.01.01.00-80-1.0 1.0

16 tpmode 3 tpLVZ2.6 -801-10.01.01.01-80-1.00021110

7%%5 1 : agent
%ﬁjﬁﬁﬂét’%l Vv bEERSATTEELTTFI N,

7%= 2~5 .
ETN—TICEMT A TP -z b4, PP—Vx ) bEBRRELE
To
#HZwoEDTT,

TN—7HFE TPr—xz > b PPr—2z> b f
17#%%5 6 : shtmoon 0
Shooting the Moon @ On(1)/Off(0) & FE LT F X\,

SR 13



{T&=S T : outfile expl1756.log
HAT2a7 774 VE2EBELTTE N, BFEILS RNWEAIE DT
HIBRLTFE 0,
{755 8 : gendnum 5000
ERERTIA2ETONY FIREHEELTTIV, BEE T TRERRETD
HBARIZZOFREBRLT TSI W,
THES9~12:
PPz—Vxz bOFEBRE—FEZHRELET,
ppmode (ZFE BRI TO@ED T o (1ITTENVTTFE W, )
TIN—7FE PPx—2xz NE ML —ILFE R EE
HO%E On()/0f0) HIOFEFHLRE 1SHEEH (CI)
FHEE13~16:
TP ==Yz bOHEPFE—FEFZRELE T,
tpmode T < HRIFLUTOMY Tdo (LITTHNT TN, )
IN—THE TPT—z NG B — LB R
EO%% On(1)/Of0) FOHEEMEME 18HFE (CI)
B ESBEOIEE HFEE On(1)/Of0) HHFEEE L —ILE0 R
FIFEEEMERE (TML)  tHFEEAGE
HIF 2 E— ROFSE I FIEER)
TN—7"00D TPIZX 3 23 FHFFEE D On(1)/OH0)
TN—7"1D TPIZH T BHHFEED On(1)/OH0)
IN—7"20D TPIZH B HHFFED On(1)/O(0)
IN—7"8D TPIZH 9 2 HFFE D On(1)/0F0)

ppmode, tpmode TiZ FERDMEHFTT —F BFRATWEE T T — I DEPETOD
BETEDPEVERA, /2. LEEULOF—DBAUATHWIESIE. LEEU LT
— X IIERE N E T, ppmode, tpmode ZIEE L RWIBEIE. REOEE T— REE
T77ANDT—IPL—Txr NOFPE—FERDET, FEET— FOHIRIZDOW
T FFa X b TV Moo 7S, MPx—Y =z b TPPE—Yz
b ESREUTTEI 0,

Ny FUETOSRERFIE

1. FRRICBMEES TP =—Yx v b, PP ==V MR TIE2DDHREN
PAIRHEARTS/server/® tplist.exp,pplist.exp iCHDPN T WS D EHERL £,
2. TP =z —Pz> bDF—H, PP -2 bDF 4L M)« F—
PAIRHEARTS/tp/data/, PAIRHEARTS/pp/data/iz® 2D 2 iER L 7
. FRARICH TN Y F 7 74 )b % PAIRHEARTS/server/IZ{ER L E §
4, PATRHEARTS/server/TN—YH—N2EBH LT T, NyvFUFETcoEIHa<w
MELTDED 9,

w

% srvHearts —1 filename

filename (ZiZ)NwF 7 7 A NVEERIEELE T,
5. F—LADHETT 3L, srvHearts X HIENICHK T LU E 4,

SEERTNAH 14



)T ANk BEEER

FTRIRGRTER I ~4 28R T520D0FB[ICOVTRLE T,
#EEL TP LV 8.6X3&+TP L~V 1.6x14. PPX4&IZL S
ERMUKRE (N o 750 FER),
HER D EER I DK TREEN S TP L)V 1.6 D/S— pF—PP %
HO¥E S8 2%,
FER S : RER 2 DR TIREENS TP LV 1.6 2EBEE ALY 13,
/. TP L)V 1.6D/)S— hF—PP 2EHEFE X ¥ 550,
WERA  BER3ORTHENS TP LV 1.6 2AEHEA Y R UEIGH
FFEEEEE, TP L~V 1.6 D/)S—bF—PP 2HO®BXES
FER, HPEEBOEBMFIZL NIV 3.6x3 ZENP2NIIH LT
Do
Z N5 DFERIL 42T Shooting the Moon 1% Off & L, /N> FEEIE 5000 B & L F T,

TP LRV 36X3Z4IFHXD3IODTP—Yxcy MEFERALET,
tpLV3.6_a0
tpLV3.6_al
tplV3.6_a2
TP LAV IGIFXD TP — hEFEALET,
tpLV1.6
(CNS5DTP=—Y = FNDOYHERED T — 4% X PATRHEARTS/tp/data/INITDATA/
WHhET)

PPx4ZIZWD3ID2DPP—Yxr bEFEALET,

ppl2_a0

ppli2_al

ppl2_a3d

ppl2_a4
(50 PP z—Vxzry oI REDT 4LV I MY - F—=% X
PAIRHEARTS/pp/data/INITDATANZH D F 9 )0

BTN 15



INYF T 7 4 I OVER ()

LRI~4DNNVF 774 IVERDLSIERLE T,
HLER 1 DN wF 7 74 ) expl.bat

agent

0 tpLV3.6_a0 pp12_al

1tplV3.6_al ppl2_al

2tpllV3.6_aZ2ppl2_a2

3tpLV1.6 ppl2_a3

shtmoon 0

outfile expl.log

gendnum 5000

ppmode 0 pp12_a0-8.00-10.0 1.0

ppmode 1 ppl2_al-8.00-10.0 1.0

ppmode 2 ppl2_a2-8.00-10.0 1.0

ppmode 3 ppl2_a3-8.00-10.0 1.0

tpmode 0 tplV3.6_a0-8.00-10.01.01.00-80-1.01.0
tpmode 1 tpllV3.6_a1-8.00-10.01.01.00-8.0-1.01.0
tpmode 2 tpLLV3.6_a2-8.00-10.01.01.00-80-1.0 1.0
tpmode 3 tpl.V1.6 -800-1001.01.00-8.0-1.01.0

EER2 DN F 7 74 )Vexplbat

agent

0 tpLV3.6_a0 ppl12_a0

1tplV3.6_al ppl2_al

2 tpllV3.6_a2 ppl2_a2

3tplV1.6ppl2_ald

shtmoon 0

outfile exp2.]og

gendnum 5000

ppmode O ppl12_a0-8.00-10.0 1.0

ppmode 1ppl2_al -8.00-10.0 1.0

ppmode 2 ppl2_a2-8.00-10.0 1.0

ppmode 3 ppl12_a3-8.01-10.0 1.0

tpmode 0 tplV3.6_a0-800-10.01.01.00-8.0-1.01.0
tpmode 1 tpLV3.6_al-8.00-10.0 1.01.00-8.0-1.0 1.0
tpmode 2 tplV3.6_a2-8.00-10.01.01.00-8.0-1.01.0
tpmode 3 tpLV1.6 =~ -8.00-10.01.01.00-8.0-1.01.0

SR TN 16



FERIDNNWF 774 )V expd.bat

agent

0 tpLv3.6_a0 ppl12_a0

1tplV3.6_al ppl2_al

2 tplV3.6_a2 ppl2_a2

3tpLV1.6 ppl12_a3

shtmoon 0

outfile exp3.log

gendnum 5000

ppmode 0 ppl12_a0-8.00-10.0 1.0

ppmode 1 ppl2_al-8.00-10.0 1.0

ppmode 2 ppl2_a2-8.00-10.0 1.0

ppmode 3 ppl12_a3 -8.01-10.0 1.0

tpmode 0 tplV3.6_a0-8.00-10.0 1.0 1.00-8.0 -1.0 1.0
tpmode 1tplV3.6_al1-8.00-10.01.01.00-8.0-1.01.0
tpmode 2 tplV3.6_a2-8.00-10.01.01.00-8.0-1.01.0
tpmode 3 tpLV1.6 -801-10.01.01.00-8.0-1.01.0

T4 DNy F 7 74 )V expd.bat

agent

0 tplvV3.6_a0 ppl12_a0

1tplV3.6_al ppl2_al

2 tplLV3.6_a2 ppl2_aZ2

3tplV1.6ppl2_ald

shtmoon 0

outfile exp4.log

gendnum 5000

ppmode 0 ppl12_a0-8.00-10.0 1.0

ppmode 1 ppl2_al -8.00-10.0 1.0

ppmode 2 ppl12_a2-8.00-10.0 1.0

ppmode 3 ppl12_a3 -8.01-10.01.0

tpmode 0 tpl.V3.6_a0-8.00-10.01.01.00-80-1.01.0
tpmode 1 tpllV3.6_al -8.00-10.01.01.00-8.0-1.01.0
tpmode 2 tplV3.6_a2-8.00-10.01.01.00-8.0-1.01.0
tpmode 3 tpllV1.6 -801-1001.01.01-80-1.01021110
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>z 7 74 )L DYERL()

V7 74 Wik PAIRHEARTS/server/ DA FIC/ERA LE T LTFOY )V 74 )V
(sample.sh)id 4 DD EGKETIT D DDV > TNV TT, ~

1785

1 ep ../tp/data/INITDATA/tplLV3.6_a* . ./tp/data/
2 ep L Ap/data/INITDATAApIV1.6.* | /ip/data/
3 ep -r .4/pp/data/INITDATA/pp-].Z_a* ../pp/data/
4 srvIearts -1 exp L.bat

5 cd LOG

6 gzip cxpl.log

7 cd ..

3 mkdir ../explexpl

9 mkdir ../exp/exp 1/tp

10 mkdir ../exp/exp1/pp

11 my ../ip/data/tpL.V* . Jexp/exp l/tp

12 my ../pp/data/pp12_a* ../exp/expl/pp
13 mv keckka.dat ../exp/expl

14 mv LOG/expl.log.gz .. /exp/expl

15

16 cp ..Jexplexp 1/tp/* ./tp/data/

17 cp -r . Jexplexp l/pp/* ../pp/data/

18 srvHearts -1 exp2.bat

19 ed LOG

20 gzip exp2.log

21 ed ..

22 mkdir ../exp/exp2

23 mkdir ../exp/exp2/tp

24 mkdir ../exp/exp2/pp

25 mv ../tp/data/tpLLV* ../exp/exp@/tp

26 my ../pp/data/pp12_a™ ../exp/exp2/pp
27 mv kekka.dat ../exp/exp2

28 mv LOG/exp2.log.gz ../exp/exp2

29

30 cp ..Jexplexp2/tp/* .. /tp/data/

31 cp -r ../exp/exp2/pp/* ../pp/data/

32 - | srvHearts -1 exp3.bat

33 cd LOG

34 gzip exp3d.log

35 ed ..

36 mkdir ../exp/exp3

37 mkdir ../exp/exp3/tp

38 mkdir ../exp/exp3/pp

39 my ../tp/data/tpLV* . /explexp3/tp

40 mv ../pp/data/pp12_a* ../exp/exp3/pp
41 mv kekka.dat ../explexp3

SR 18



42 mv LOG/exp8.log.gz . /exp/expd
43

44 cp ..Jexplexp3ip/* . /tp/data/

45 cp -r Jexplexp3/pp/~ ../pp/data/
46 srvHearts -1 exp4.bat

47 cd LOG

48 gzip exp4.log

49 - ed ..

50 | mkdir ../exp/exp4

51 mkdir ../exp/exp4/tp

52 mkdir ../exp/expd/pp

53 my ../tp/data/tpLV* . /exp/exp4/tp
b4 mv ../pp/data/ppl2_a™ ../exp/exp4/pp
55 mv kekka.dat ../exp/exp4

56 mv LOG/exp4.log.gz ../exp/exp4

FHES 1~1 4 ETHERIDZDHOFLABTT,
7HF 1, 2 ‘

PAIRHEARTS/tp/data/INITDATA/ @ #] AR e @ & — ¥ %

PAIRHEARTS/tp/data/iZ A E— L& T,

-5 %

0

PAIRHEARTS/pp/data/INITDATA/ @ #] {4k 58
PAIRHEARTS/pp/data/ic 22— L FE T,

expl.bat DFRE TNy FUHTOERETNE T,
7%5 6~1T :
srvHearts DS A LD 77 A VEEBLE T, (B 7774V
T w FIEERZIT T 8.8Kb. 1Y FIEHTH 1L.3Kb i LE
To FD . 5000 [ED /N R TIEHK 6.56Mb DK EF XTI A8,
I TIREMEET D TNVET OTRACAHAY—NVETO T E2FH
T 555X gunzip TEMEMELTTE,)
7%58~14:
PAIRHEARTS/exp/iCEBR 1 HOT — ¥ 2R ET L0057 4 L
27 b)) expl ZER L. 51, TPA. PPAODF AL M) B F
DTIER L. FREhDT—% % PAIRHEARTS/tp/data/.
PAIRHEARTS/pp/data/h» 65X ¥ £ T, F£/=. srvHearts D
HLE77ANVEBHETEET,

FHEZ16~28FTHER2DEHORRIBTT,

THES16, 17:
ERIOKRTREPSEREZITI 2D, K1 DOF—% %
PAIRHEARTS/exp/exp 1/ & PAIRHEARTS/tp/data/.
PAIRHEARTS/pp/data/iz 2 ¥ — L F T,

TH%S518: .

exp2.bat DEZ TNy FABETORREFTNE T,
THEE19~28:
D274 IWVOENE - T—Y OB#HEITNE T,

SRR 19



THES30~4 2 THERIDEHDIRIRT T,
7530, 31:
RIM2ODBRTREPSERETO LD, K207 —% %
PAIRHEARTS/exp/exp2/h* &5 PAIRHEARTS/tp/datal,
PAIRHEARTS/pp/data/tZ a2 — U F 1,
8532 :
expd.bat DERE TNy FAUITDERREZITNE T
fTH=33~42
Y774 IVOHEHE - T DBHETVET,
7%544~58FTHHERLDIEDHDIILTT,
ITH544, 45
KIMIDODKTREISERETS> LD, ER3IDT—2 %
PAIRHEARTS/exp/exp3/h* & PAIRHEARTS/tp/data/,
PAIRHEARTS/pp/data/ic 3 ¥—L £,
THS546 :
expd.bat DFE TNy FUILTORREITNE T,
THEE47~56:
077 7 A VDR - 7—F OBIETNE T,

>z DET
>z )7 74 ) sample.sh % (chmod R ET)RTAHRINEBIC LTS = VERITLE
ER

"% sample.sh

TR UEY 7V 7 74 )b expl.bat, exp2.bat, exp3.bat, exp4.bat, sample.sh &
PAIRHEARTS/server/sample/ticd D £ 96

JER A 20



Y- NNEHE,N O BEZTIHEDERFIR

1. HERRIZBMEEE TP 2 —Y 2 b, PP ==YV FERHTHEDDHEMDN
PAIRHEARTS/server/® tplist.exp,pplist.exp iCEDPNTNWEI D EHEL 7,

2. TP 2—Y =z bDF—% PP -z bDFAaL T MY « F—5% N
PAIRHEARTS/tp/data/, PAIRHEARTS/pp/data/LA TIZH B &R L E T,

3. TP=—YzV bOEBEE—FE TP =545 — Emmf&ﬁbiﬁsPPx~/z
VINDFEEBE-FBE PP 24—V THRELET. TT7 45— HFEHET
— ROBBEDMEFIE FF2 AL b TTP =5 4 ¥ —RIEHINE 1. rTP Ii"“/r 5 —
IBESIEE 2. TPP =54 & —{R{FSIER 1), TPP =54 ¥ —1REfiAE 2, 5 5
BHLUTTF&EW,

4 . PAIRHEARTS/server/T/N\—Y P —NEREIHLE T, o> FIZUTO@D T
j—o

% srvHearts

5. U—/NHM L TUTOHREEZITVE T,
T—hFHEHRELE T,
Shooting the Moon @ On/Off
T— LTS5
HAa 7 o7 A VEEHRELET,
T—-YxzrhEREILET,
TP —YxV FEMHFERIEIBGIIHFEEELE T,
T—=LBHBLET,
. (=L TN—Y F—NERTLE T,

[8))

Y= NHEHOFEDMEAIE FFa X b T —NAERERAES] 22RLUTTFE0,

IR T 21




CSV1ERY — L DOEAAE

CSVERR W~ DV~ 7 7 4 )WiZLT PAIRHEARTS/exp/ied b £ . #ETH L
L, AL NV LTY—=INVDEITT7 74 NWVEERLT TE N,

helassoutd

NV ROSER (TP 7027 A )uie) OF—4%% CSVIERE <X bE)THES
TEZE0070T I ATT, V—X 771 )Vid helassoutd.c T9 o FEITT 7 1 JVIELL
Toavy FTERLET.
% cc —o heclassoud helassoutd.c

DT AT, ==Yz POy FAafRE LTERSINTWEN RIS
2DF—% CEY, S, BRREBEZRICSN L4 7 NV—7F DT EDSIEI
17T 2oHALET. 208D, TOY—)VEFATEEDIZE. 4 7)V—TDNY
ROGEHRDLETHIMTH LI EDVHHRERDE T, GRE. TP =—Y = > P RU PP
Tz hONY ROFHEAP 7027 74 WWHIEL2THET T )EH. 2TON
Y ROHBEINY PO RATHBILEHRELTWE T N2 RO OWTIE
REF2AD T by = PHEEAE) 23 UTTE 0,

hclassoutd DS21T

hclassoutd DERfTO< Y I TOMED T %
% hclassoutd Infile outfile
nfile ZEDNY REEHRT =5 7 74 WEFERTIPETBLIEALZ 74 NVET
To outfileld CSVIERDT—¥ 2T 2DOHNET 7L VETT,
nfile \ZIEUT O 447248 (5EFET) b LE T,

IN—=T0DINw 275 FEBEZ 7L INE TN—0DEEEHRZ 71 )VE
TN—=T"1 DN TS FEBEZ 7L NE TN—1DFEESE T 715
TH—=T2DINw 25 FEB T 7 AN ThN—T2 DEEER 71 IV
IN—=T8DINy 2T RERZ 71 INE IN—T"3DEEEE T 71 1%

helassoud (INV I TS5V RERI 7 A VB L FBERT 71 WVEADRRD L &L,
NI TS5y REREEFBRMOT =P DERFBNY RIS ADT—5 HbET
HALET ZEERZ PANVEDBNw I TSV RERZ PANVZERILEAK 2D
DERBDF —H DESFHA L EE A

JURFNL 22



M. Y2774 L DB EROFITRUE4DDERDN Y ROFEDT
— &% CSVIERTHATE/HOD infile DY > TNV T T,

exp Utp/tplV3.6_a0.hclass
exp I/tp/tpLV3.6_al.hclass
exp 1/tp/tpLV3.6_a2 hclass
exp l/tp/tpLV1.6.helass

exp I/tp/tplV3.6_a0.hclass
exp 1/tp/tpLV3.6_al.helass
exp Vtp/tpLV3.6_a2. hclass
exp l/tp/tpLV1.6.hclass

exp2/tp/tpLV3.6_a0.hclass
exp2/1p/tpLV3.6_al.hclass
exp2/tp/tpLV3.6_a2 hclass
exp2/tp/tpLV1.6.helass

exp3/tp/tpLV3.6_a0.hclass
exp3/tp/tpLlV3.6_al helass
exp3/tp/tpLV3.6_a2.hclass
exp3/tp/tpLV1.6.helass

exp 1/tp/tpLV3.6_a0.helass
exp 1/tp/tpLV3.6_al.hclass
exp l/tp/tpLV3.6_a2 helass
expl/tp/tpLV1.6.hclass

exp2/ip/tpLV'3.6_a0.hclass
exp2/tp/tpLV'3.6_al.helass
exp2/tp/tpLV3.6_a2.hclass
exp2/tp/tpI¥'1.6.helass

exp3/tp/tpLV3.6_a0.hclass
expd/tp/tpLV3.6_al.hclass
exp3/tp/tpLV'3.6_a2 hclass
exp3/tp/tpLV 1.6 helass

exp4/tp/tpL\V'3.6_a0.hclass
expd/tp/tpLV3.6_al.hclass
expd/tp/tpIN'3.6_a2.helass
expd/tp/tpLV1.6.hclass

PRI, Coinfilelc L b HAENZ 727 A NVDY Y TN TT,

6.0, 56.8, 3555, 6.4, 59.5, 3591, 6.1, 58.0, 3616, 6.4, 59.7, 3626,
6.1(6.2), 56.3(55.9), 7252(3697),6.3(6.2), 58.4(57.4), 7338(3747),6.2(6.4), 58.2(58.2), 7309(3693),6.2(5.9), 58.1(56.1), 6723(3097),
6.3(6.7), 58.3(61.7), 11019(3767),6.3(6.4), 58.3(58.0), 11126(3788),6.5(6.9), 59.6(62.1), 11063(3754),5.7(4.7), 53.1(40.1), 9698(2975),
5.9(5.7), 55.1(52.5), 11031(3779),6.2(6.1), 58.3(58.1), 11117(3779),6.2(6.1), 57.5(56.1), 11028(3719),6.4(6.8), 57.9(57.0), 9727(3004),
7.4, 60.5, 1445, 7.5, 62.8, 1409, 6.9, 56.2, 1384, 7.2, 60.5, 1374,

7.4(7.5), 60.4(60.4), 2748(1303),7.6(7.6), 62.9(62.9), 2662(1253),7.3(7.7), 59.6(62.9), 2691(1307),6.9(6.6), 58.6(57.1), 3277(1903),
7.6(8.0), 61.1(62.3), 3981(1233),7.6(7.7), 62.6(61.9), 3874(1212),7.6(8.2), 61.1(63.9), 3937(1246),6.4(5.7), 53.7(44.8), 5302(2025),
7.2(6.8), 59.0(55.5), 3969(1221),7.6(7.6), 62.6(61.9), 3883(1221),7.5(8.0), 61.3(64.5), 3972(1281),7.0(7.2), 58.6(58.5), 5273(1996),
6.3, 54.6, 666, 6.4, 57.4, 630, 5.7, 49.7, 696, 6.2, 56.4, 628,

6.2(6.1), 54.6(54.7), 1235(569),6.3(6.2), 56.5(55.4), 1199(569),6.1(6.4), 52.3(55.0), 1286(590),5.7(5.5), 53.3(51.1), 1609(981),
6.3(6.6), 55.3(56.9), 1747(512),6.4(6.6), 56.4(36.2), 1727(528),6.1(6.4), 52.5(52.9), 1840(554),5.1(4.1), 43.7(27.4), 2664(1055),
5.9(5.1), 52.2(45.9), 1773(538),6.2(6.1), 55.4(53.0), 1714(515),6.4(7.1), 56.6(65.5), 1862(576),5.7(5.7), 50.3(45.5), 2633(1024),

IIFEN 1 BEOER (ER1) ONY RGEROBYIONY RIS 2DT—4 % H
5hLET, ERRUTOEBDLTT,

JXg, i, FERRES FL, SEG FEEREIR, FE, i FERRIE, EH, SEG FEEREE,
EPS3DOHETCOT—ININ—T0DF -, RO 3IOBINV—T1DF—5.
WD 3OVBITN—=T2DF—H, WD I OWINV—T3DF—HTT,

2ITHIZ 2BEOER (EWMR2) 0Ny ROEROBYIONY RIZ2DF—4 2 H
5bLET, BERIFLTHEEUTTH O AN w I IS0 RET R (R
1) L0ESTF—HIBRLET, (ER2ON\V RoERBOT—ZI3ER1D500
O DFERNY FEER2D5 00 0HDERNY FEELEDEET—HTT

SR TR 23
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O PIEER2D500 0EOEFEBRNY RETTNHNY ROERERBL 2550
T '96 7}3\'9 Lb\i?o)

STEIE 3HHDER (ER3) ONY FOBROBRYIONY KIS 2DTF -5 %2H
5HOLET. O AENv I 7SV FeT 2R (ER2) LOoEST -V BRELE
o

417BIZ 4 BHOER (Ef4) ONY FHEROBYIONY FIZ2ADF—0%2H
5bLET, () AN TS ReT BEMR (BM3) LoELSTFT—IE2ELE
T

SITEMPL8FFEHETEINY RAORERO ZHEHONY FITRADT =5 2R L&
o *

YITHP S 1 2FHETEANY FOERDIFHONY IS ADFT =S R L&
£

U N FOHIROREE TCIORRDT—F D EE T,

ruleoutd

PP OITHINV—IVOIREE (DHEE) & CSVIEA I v =RU b ER)THAT =00
TaTSATT, V—RAT 74 VT ruleoutd.c T3 LT 7 74 NFLL T K
TIERRLE T,

% cc —o ruleout3 ruleoutd.c
ZO7OYT AT PP ==Y =2 bOTHIV—IVORE (OHERE) ETHHIN—)V
77 ANVICRIRENTWAIRIZ 17T D2HALET,

ruleout3 MEETT

ruleout3 OEFIT L RIFLULTDED Tdo
% ruleoutd infile outfile
infileld ¥ DFHN—N 7 7 4 VEFRAT B HERRLEAT T 7 1 VAT T ooutfile
1T CSVIER DT -4 2T 27200 T1%ET7 74 V& TT,
infile DY > TNV ELULTIZRLUE T

35

exp2/pp/ppl2_ad/tplV1.6_1000.rule
exp2/pp/pp12_a3/tplV1.6_2000.rule
exp2/pp/pp12_a3/tplLV1.6_3000.rule
exp2/pp/pp12_ad/tpLV1.6_4000. rule
exp2/pp/pp12_a3/tpLV1.6_5000.rule
expd/pp/ppl2_ad/tpLV1.6_1000.rule
exp3/pp/pp12_al3/tplV1.6_2000.rule
exp3/pp/pp12_ad/tpLV1.6_3000.rule
exp3/pp/pp12_a3/tpLV1.6_4000.rule
exp3/pp/ppl2_ald/tpLV1.6_5000.rule
expd/pp/pp12_a3/tplV1.6_1000.rule
expd/pp/pp12_a3/tpLV1.6_2000.rule
exp4/pp/pp12_a3/tplV1.6_3000.rule
exp4/pp/pp12_ad/tpLV1.6_4000.rule
exp4/pp/pp12_ad/tpLLV1.6_5000.rule
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LITEIXSEROFEN 3 DT FDERIZA L, SEMTHERERTLIILERLT
WET, ROSTIR I BFROERIINTLZEFNZFNOERBOFTEHN—IVD 7 714 IVE
T RDS5TIX2HFEOERIINTZFNEFNDOEBOITHN—=INVDT7 74 NVET
To MDSTIX 3 FHOERRIIHN T AFNZFNOEMOITIHN—NVDT7 74 VAT
T

ITFiE, coinfileiC LD HEAZINBZ 77 A NVOY T TNVTT,

-6.14, -6.20, -6.26, -6.29, -6.30, -4.86, -4.94, -5.02, -5.08, -5.14, -4.23, -442, -4.58, -4.71, -4.78,
-6.26, -6.27, -6.29, -6.31, -6.33, -4.87, -4.94, -5.02, -5.07, -5.13, -4.48, -4.52, -4.61, -4.73, -4.79,
-6.22, -6.23, -6.26, -6.29, -6.31, -4.87, -4.95, -5.02, -5.08, -5.13, -4.45, -4.50, -4.59, -4.71, -4.78,
-6.26, -6.27, -6.30, -6.32, -6.34, -4.86, -4.94, -5.02, -5.08, -5.14, -4.49, -4.53, -4.62, -4.74, -4.80,
-6.26, -6.27, -6.30, -6.33, -6.34, -4.86, -4.94, -5.02, -5.08, -5.14, -4.49, -4.53, -4.62, -4.74, -4.80,
-6.22, -6.23, -6.27, -6.30, -6.32, -4.86, -4.94, -5.02, -5.07, -5.14, -4.46, -4.51, -4.59, -4.72, -4.79,
-6.22, -6.23, -6.27, -6.30, -6.32, -4.88, -4.95, -5.03, -5.08, -5.14, -4.45, -4.49, -4.58, -4.71, -4.78,
-6.90, -6.92, -6.93, -6.96, -6.95, -5.10, -5.15, -5.19, -5.26, -5.33, -4.77, -4.91, -5.04, -5.13, -56.17,
-2.76, -2.76, -2.59, -2.589, -2.77, -5.35, -5.35, -5.78, -4.85, -4.80, -3.83, -4.14, -3.91, -3.67, -3.47,
-6.36, -6.36, -5.78, -5.78, -5.74, -6.06, -6.06, -5.93, -5.74, -5.94, -3.81, -4.11, -4.72, -4.69, -4.69,
-6.36, -6.36, -5.78, -5.78, -5.74, -6.06, -6.06, -5.93, -5.74, -5.94, -3.81, -4.11, -4.72, -4.69, -4.69,

1B 1 BFEOITHN—IVORET T, £ 6 5HEBOT7—% £TH 1 HEHDER
(FTERDTD100 0ETEDBIEDHE T —F TTROEBEDFT—F FTH2HH
DREBREGEEH)TD 1 00 0BT OMEDHET —F TTRDSHEDT—F T TH
3HEHDEMERNTO1000RTEDREDHRET -5 TTH

DT, FEHNV—NVOBBETIDT—IDBHEEE T,

tpruleout

TP =—Yx POEXRTHIN VDT —% GRE)E CSV ER(h <KUY bER)T
HATAEHD 72T IL0TT, V—RA774)ViL tpruleout.c T30 EITT77A IV
BUToavy RTERLE T,
% cc —o tpruleout tpruleout.c

ZO7ATI LT TP ==Yz NOERTEN —NVOBEEFTHN IV 7 A
WIZEERBRENTWBIBIZ 1T OoHALET, COV—VEL~)L 1.6, 2.6, 36 I
52 5NTWBERTEHN—NVOT—FEHAT 2 HDTT IR0 E2H 29 H)
LV 1.6, 26, 36 IC5Z SN TWBEERFTEHN—IVIZR>TT =2 HAT D)=
B, FET—Vxz MREDLV AR EANIELTEZZREBERSDET, £/, A
TFEN—NVEEETAEGE. ZOV—NVOYV—RAO—REEETLINENSD F
T

tpruleout METT

tpruleout DETIAX Y FIZLLTDED TTo

% tprueout infile outfile
nfilelZ ¥ DTN —NV 7 7 4 VEMHT 2P ERBB UEANT 71 )VEH T T ooutlile
L CSVIERDT—F EH AT 2200 N%E7 74 VETT,
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infile DT Z)WVELTIZRLE T,

25

exp3/tp/tpLV1.6_1000.rule 0
exp3/tp/tpllV1.6_2000.rule 0
exp3/tp/tpLV1.6_3000.rule 0
exp3/tp/tpLV1.6_4000.rule 0
exp3/tp/tpLV1.6_5000.rule 0.
exp4/tp/tpLV1.6_1000.rule 0
expd/tp/tpLV1.6_2000.rule 0
exp4/tp/tpLV1.6_3000.rule O
exp4/tp/tpLV1.6_4000.rule 0
exp4/tp/tpLV1.6_5000.rule 0

VITEIZSEROMEAN 2 DTEFDOERICHT L, SEBETREEZRTRTLIIEERLT
WE T RO SFIF 1 FHBHOERICHTZENFNOERMEOTHMN VD7 74 IVE
TP r—Vxy hDOLANWIHRT BT 57 TT. MDOETIE2HFHDERICHT B
FNZNOBREDITIN VDT 7 A )NVEHE TP 2=V bOL RV T DT 5
UTTo ZZ7VDMEIEL NV 16D0, LRIV2EDBL, L)VBEH2TT,

DFiE. Coinfilell i W HAENEZ 774 NVDY L TNVTT,

0.00(0), 0.00(0), 0.00(0), 0.00¢0), 0.00(0), 0.00(0), 0.00(0), 0.00(0), 0.00(0), 0.00(0),

::::::::

........

-10.25(18), -10.59(29), -10.93(46), -10.94(84), -10.80(87T), -8.00(8), -7.69(16), -8.57(23), -9.53(32), -10.11(47),
-4.69(13), -7.00(26), -7.63(41), -8.36(58), -8.32(74), -10.21(14), -8.00(33), -8.89(46), -9.46(56), -9.38(71),
-11.75(4), -11.75(d), -7.83(6), -10.25(8), -10.25(8), -24.00(1), -24.00(1), -24.00(1), -24.00(1), -24.00(1),

-11.75(4), -11.75(4), -6.86(7), -9.22(9), -9.22(9), -24.00(1), -24.00(1), -24.00(1), -24.00(1), -24.00(1),

-10.74(34), -12.12(67), -11.02(92), -11.12(130), -10.43(162), -10.38(8), -8.80(20), -9.59(27), -11.65(40), -12.76(62),

1R 1 BEOEAETHN—NVOBET T, £PSSBEDT—Y EFTH1HEHD
RER (RER3) TO1000RCLDHEDCHET—FTFT. () AIFEADET
(WS) OETT, WDSEDT—H ETH2HBEDRR (£M4) ol 000
EDBRBEDOHE T —H T,

2ITE~ATHEE TIXL ~I 1.6 Do TV WERITHI — VD 1= HZeH 7 — ¥ 7
[Zh-oTWET,

P, EATHN—NVOBREETIOT—I PR EET,

SR TR 26




ZOMOERY — L

TREDY—RT7 7 A )FLT PAIRHEARTS/exp/ich b £97, (HE T2 & =3, O
VISA VLTV —VDETT7 74 INVEBEBR LT TSN,

expgzip

PAIRHEARTS/exp/iZ Bh 7= L7 7 A WEIEMHET 200V —IVTT, EREH
DL NEE, BN R 740 N RIS 258 (TP 707 74 )0g) 77
4. TP OFFTIIN—NVT7 7 A VDERDPKE 12D FE T expgzip (T EHE KR UHIFRIZ
LON—RF A RIDEERENSILKTE2EDHOY—=IVTT, V—XT7 74T
expgzip.c T3 o EIT7 7 A NWVIFLLTO Y FTHERLET,

% cc —0 expgzip expgzip.c
7Y S5 ATIE. PAIRHEARTS/exp/iZERL S LT ORI DT 4 L2 R &
HNRELET,

expXXX/

pp/
tp/

XXX IZERRESFTI .

expXXX/ApAZ IR XXX IZBMLE TP ==V 2> bDF—8 7 74 )V

BAXNTWaEDE LE T, Tz, expXXX/pp/IiESZE XXX & mL -

PP =Yz bDF—=F 7 7ANPET4 VI M) TSI TNEHD

ELET, '
ZDEE, expgzip &, expXXX/pp/D TP 7’07 7 A )V 7 7 4 )V FLsEF .prof D7
7 A4 IR UREERIANY K7 74 )V@EEEEF hand O 7 7 4 )&, AAEDH D% TP =
—V Y FESTNR VWSRO B &L BIBRLE T, (BB R7 7 Vid TP
Tz MPEUPP =Yz b ULDRTEHBATEST, = MEY—I
THIFREhTWARNWDTHNIE. A—TF, TP 7O 7 7V N2 FOEES R
FQROVE2H29METODI—V =y MTHADRZD, TNHE—IZRDET,) £
7= exnXXXtp/ DTNV —)V 7 7 A4 VELEEF.rule D7 7 A )V), N> R %D 7 A
)V @ERE F helass D7 74 V). BBERANY R 7 A4 )VAEFEF hand D7 7 1 )W) % gzip
THEMUET

expgzip DEITAT Y FIZLLTDMED T3,
% expgzip exp XXX
expXXX 1T EECDT 4 LI PUMBOT 4 LY NUEATT,

expgunzip

expgunzip | expgzip TELHE - BIRE N7 7 A VW EELTERY—NVTT, V—2R7
7 4 )ViZ expgunzip.c T3 o ET7 7AW TFOaY RTCHEBRLE T,
% cc —0 expgunzip expgunzip.c
expgunzip DETI< 2 FIZLLTOBED TT o
% expgunzip exp XXX
expXXXF LEEDOF 4 LI NI DT 4 LI P VR TT,
expgunzip & expXXXAp/DEMI N7 7 A IV EMRLET, £/ BBV T
PA )Ny N ROERTP 707 74 W7 74 )WV E expXXX/pp/icaE—LUET,

Sk I 27





