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Abstract 

Eigen-based methods have proven to be an effective means of obtaining Direction-

Of-Arrival (DOA) estimates of multiple signals from outputs of sensor arrays. 

Among many algorithms, the MU  ltiple Slgnal Classification (MUSIC) algo-

rithm is widely considered to be the most effective. However, MUSIC requires 

a considerable amount of computation because of the need for eigenvalue analysis 

of the covariance matrix and analysis of the MUSIC eigenspectrum. To reduce 

this computational load to the extent that the sensor array system may follow 

the rapid change of the radio environment, the author proposes the Smart MU-

SIC (S-MUSIC) algorithm. In 8-MUSIC, the only requirements are the calculation 

of basis vectors in the space spanned by received data vectors without eigenvalue 

analysis, the calculation of only one vector orthogonal to the basis vectors, and 

a simpler MUSIC eigenspectrum than that of MUSIC. In this paper, 8-MUSIC is 

introduced in detail and the superior characteristics of S-MUSIC's reduced pro-
1 1 

cessing time (一 to- that of MUSIC) and high resolution are shown by 
100 1000 

numerical simulation. 

1 Introduction 

Severe problems exist in the area of array processing involving the estimation of the 

Directions-Of-Arrival (DOA) of fully correlated signals. This case, referred to as the coherent 

signal case, appears in specular multipath propagation and is therefore of great practical im-

portance. Unfortunately, the MUltiple Signal Classification (MUSIC) algorithm [1, 2], the 

minimum norm[3], and the minimum variance[4] fail in this case. A preprocessing technique 

that circumvents this difficulty, referred to as spatial smoothing, was introduced by Evans et 

al.[5] and Shan et al. [6], and further developed[7] -[16]. 

Rao et al. [11] analyzed effects of three preprocessing techniques. They labeled techniques 

presented by Schmidt[l, 2], Shan et al. [6], and Williams et al.[10] as the forward-only, 

the forward-only smoothing, and the forward-backward spatial smoothing techniques, respec-

tively. Among them, the forward-backward spatial smoothing (FESS) technique is considered 

to be the most effective, because FESS can decorrelate the coherency best among these tech-

niques. As a result, there are many applications [17, 18] of MUSIC with FESS at present. 

MUSIC with FESS consists of three steps. The first step is to extract signal eigenvectors out 

of received data. The second step is to calculate noise eigenvectors. The third step is to form 

a MUSIC eigenspectrum by utilizing noise eigenvectors to estimate DOAs. Unfortunately, 

the computational load of MUSIC with FESS is considerably large because of the need for 

eigenvalue analysis of the covariance matrix comprised of received data, and analysis of the 

MUSIC eigenspectrum (叫
In analyzing W, the range of directions under consideration is finely divided to ensure high 

resolution. This means that many directions have to be considered and noise eigenvectors have 

to be estimated through eigenvalue analysis. An algorithm for DOA estimation, which has the 

same high resolution as MUSIC but with a much smaller computatio叫 load,would be ideal 

for the sensor array system to follow the rapid change of the radio environment. 

To reduce the computational load of MUSIC, the author first proposed an algorithm to 

estimate signal eigenvectors and noise eigenvectors with Gram-Schmidt orthogonalization in-
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stead of eigenvalue analysis of the covariance matrix [19, 20, 21]. Then, she proposed a 

simplification of the Gram-Schmidt orthogonalization, called the Smart MUSIC algorithm 

(S-MUSIC) [22, 23]. 

In this paper, we introduce and explain S-MUSIC in detail. Then, we study characteristics 

of S-MUSIC, more specifically, its resolution limit and computational load, in comparison with 

identical characteristics of MUSIC. 

First, the well-established MUSIC algorithm with FBSS is briefly reviewed. Then, the 

Smart MUSIC (S-MUSIC) algorithm is proposed. S-MUSIC does not have to utilize the 

covariance matrix of received data, and furthermore, it introduces a simpler屯 thanthat in 

MUSIC, although S-MUSIC and MUSIC share the principle that direction/steering vectors 

corresponding to incident signals are orthogonal to noise eigenvectors. At the same time, the 

computational loads of S-MUSIC and MUSIC are roughly estimated. S-MUSIC is proven to 

impose a lower computational load than does MUSIC. Finally, it is demonstrated by numerical 

simulation that S-MUSIC has the same high resolution as MUSIC and that the computational 
1 1 

load of S-MUSIC is — to - that of MUSIC. 
100 1000 

2 Problem Formulation 

、T:sti7plify the 11窟寄豆ぎ豆詈［ミ［匹竺戸竺:following notations are used in thls paper. 

and jth column of the matrix X (i,j) 

t
 戸

a Hermite conjugate 

the expected value of x 

a complex conjugate 
the inner product between a vec 

tor x* and a vector . 
a vector x whose euclidean nor 

is at a maximum when the vari-

able/ is cha1ged 
a va ue X w ose magnitude is 

at a maximum when the vari-

able i is chan只ed
Consider NI linear equidistant omnidirectional sensors with a spacing of {; receiving P 

(P < J'vf) incident signals Sp(t)(l :Sp =SP), with DOAs 0P. They are embedded in stationary, 
ergodic Gaussian noise T/m (t) (1 :S m :S NI) with a zero mean and a covariance matrix庄 I,

uncorrelated to impinging signals , whereび isunknown and I is the identity matrix. We 

assume signals to be narrow-band with a central wavelength of入.Received data rm (t) at each 

＊
 

(x, y) 

MAX 
vet i lxl 

vl 
MAX 

i lxl 

antenna is 
p 

2Ti 
rm(t) => exp [汽-m[;sin 0p] $p (t) + T/m (t) 

Received data can be rewritten in matrix form as 

r(t) = (d1・ ・ ・dp)S(t) + r,(t) 

- DS(t)+r,(t), 

5 
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where 

S(t)(p) =名(t) (3) 

r,(t)(m) =加(t) (4) 

and dp is the direction vector or the steering vector characterized by the sensor array as 

D(m,p)1 =凸(m)= exp [1予両sin0p]. 

The covariance matrix of r (t) is 

E [r(t)r(t)t] = DE  [S(t)S(t)t]か＋庄I,

(5) 

(6) 

where 

E [s(t)S(t)t] (i,j) = E [Si(t)ら(t)*] . (7) 

When all incident signals are incoherent, which is the presupposition of MUSIC, the number 

of incident signals and their DOAs can be estimated by eigenvalue analysis of E [r(t)r(t)t]. 

However, not all incident signals are incoherent. When some of incident signals are coherent, 

the matrix E [S(t)S(t)t] is singular and eigenvalue analysis of E [r(t)r(t)t] can not be cor-

rectly performed. Therefore, a preprocessing technique, where the decorrelation factor [24] 
K 

~exp J 
21r 

k=l [ Tkb(sin 0i -sinら）] decorrelates Si (t) and Sj (t) partially or completely, is applied 

to MUSIC because the nonsingularity of E [s(t)S(t)t] is a precondition to successfully apply-

ing the eigen-based method. This paper deals with the most problematic case, in which all 

incident signals are coherent. 

3 MUSIC Algorithm with FBSS 

This section reviews MUSIC with FBSS because it is presently considered to be the most 

effective means of estimating DOAs of coherent signals. 

3.1 Estimation of Signal Eigenvectors and Noise Eigenvectors 

An L-dimensional covariance submatrix C comprised of r(t) is formed, and its eigenvalue 

analysis is carried out. Consequently, P incident signals are counted and both P signal eigen-

vectors and (L -P) noise eigenvectors are calculated. 

3.1.1 Formation of the Covariance Submatrix 

We define the measurement of the hth snapshot at time th to result in the M-dimensional 

vector of r (t砂.With the snapshot number of H, the covariance matrix of the received data is 

I 

l H 

R= —I: r(tりr(t砂t_
H 

h=l 

(8) 
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The computational load at this stage is on the order of M 2 H. When all of incident signals 

are incoherent, R itself is utilized for the eigenvalue analysis in MUSIC. However, when some 

of incident signals are coherent, an L-dimensional smoothed covariance matrix C 

1 K 

一 I:[R(i + k -l,j + k -l)+ 
2K k=l 
R(L + k -j, L + k -i)] 

C(i,j) = 

(1 :'Si, j :'SL< M; L + K -l = M) 

(9) 

is utilized to estimate the signal and noise eigenvectors by FESS. The computational load for 

the smoothing of covariance matrix R is on the order of 2K L 2. 

3.1.2 Eigenvalue Analysis 

Eigenvalue analysis of C is performed with the result that the number of incident signals, 

signal eigenvectors, and noise eigenvectors are all estimated. Through eigenvalue analysis of 

C, we get 

C [a1, a2, •••,a訃＝

μ1 

゜゜゜
μ2 

゜゜
I [a1, a2, ・・・,a月， (10) 

゜
μL 

whereμ1 (1 :::; l :::; L) are eigenvalues, and a1 (1 :::; l :::; L) are their corresponding eigenvectors 

of C, which satisfy 

μL :S ・・・ :SμP+l ≪ μp :S ・・・ :Sμ1 

aL J_・ ・ ・J_ aP+i J_ ap J_・ ・ ・J_ au 

、
ー
、
．
＇
／

1

2

 

1

1

 

(
'
_
1
 when all incident signals are completely decorrelated. The eigenvectors a1 (1 ::; l ::; P), 

corresponding to the lth largest eigenvalue, are signal eigenvectors and a1 (P + l ::; l ::; L), 

corresponding to the (L -P) smaller eigenvalues, are noise eigenvectors. 

MUSIC counts the number of P incident signals by findingμp satisfyingμp□ ≪ μp. The 
computational load of its eigenvalue analysis is approximately on the order of L3. 

3.2 MUSIC Eigenspectrum 

In MUSIC, DOAs are estimated using the MUSIC eigenspectrum屯 as

屯＝
ー

L 

~l(dn, a1)12 
l=P+l 

7r 7r 

2 
:s; 0n :s; 

2' 
(13) 

where dn is defined as in Eq. (5) and successive凡arefinely spaced to ensure high resolution. 
7r 7r 

When仇 ischanged N times from --to -, the computational load of this stage is on the 
2 2 

order of NL(L -P). 
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3.3 Estimation with the miscounting of P 

When MUSIC counts the number of incident signals P correctly, or when a1 (1~l~P) 
contain all signal constituents, DOAs can be perfectly estimated by'Y in Eq. (13). In reality, 

however, the number of incident signals P is counted by findingμp satisfying生ユ三五
μ1 

where五isappropriately set. 

MUSIC was not proposed as a real-time signal processing algorithm, but as an algorithm 

to estimate the number and directions of incident signals without sticking to the processing 

time. Therefore, MUSIC carries out the calculation of屯 withseveral values of冗 several

times, util the estimation can be regarded as correct. However, there are no extra trials for 

the calculation with another冗 inthe case of real-time signal processing. 

Since the aim of this paper is to propose an algorithm applicable for real-time signal 

processing, we set an appropriate五beforehandto estimate DOAs even in the case of MUSIC 

and regard the results by this冗 asestimates of MUSIC. Here, without advance information 

on the noise and incident signals, the value of this冗 isnot always ideal for the estimation of 

DOAs in MUSIC. Therefore, MUSIC does not always count all signals in all cases, but instead 

produces estimates less than the correct number of incident signals when E [s(t)S(t)t] is 

degenerate. 

Therefore, it is worthwhile to discuss DOA estimation in cases MUSIC can not count the 

total number of incident signals. In estimation with the miscounting of P, a1 (P + 1~l~ 
L) contain some parts of signal constituents, and the DOA estimation by W in Eq. (13) 

deteriorates. When the estimated number of incident signals differs from the assumed count, 

the estimated result is taken to mean MUSIC can not resolve the incident signals beyond the 

resolution limit. 

4 Smart MUSIC Algorithm 

In this section, the Smart MUSIC (S-MUSIC) algorithm is proposed. Furthermore, it is 

theoretically proven that the computational load of S-MUSIC is much smaller than that of 

MUSIC. 

4.1 Estimation of Signal Eigenvectors and One Noise Eigenvector 

MUSIC estimates signal eigenvectors and plural noise eigenvectors by implementing eigen-

value analysis of the covariance submatrix C, comprised of received data r(t). 8-MUSIC, in 

contrast, estimates signal eigenvectors and only one noise eigenvector without the eigenvalue 

analysis, and thus it requires less computations than MUSIC. 

4.1.1 Signal Eigenvectors 

8-MUSIC calculates basis vectors in the space spanned by 

← ＼ 

l H 

E[叫＝一こ叫t砂，
H 

h=l 

(14) 

where 

以 (t砂＝
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臼(t砂，Tk+l(i砂，''',Tk+L-1仇）F 
(1 :S k =SK) 

[rM-k仇）*,rM-k-1(九）＊，・・・, TM-k-L+l (t砂*F

(K +ls ks 2K) 

(15) 

入
and th satisfies the following equation with the light speed of v: th+i -th = -. Here, the 

V 
computational load to calculate E [叫 isin the order of 2K LH. On the other hand, the 

computational load to calculate C in MUSIC is in the order of M刃+2KL2. 

Next, the computational load of basis vectors, which are regarded as signal eigenvectors in 

MUSIC, is estimated. To start, we first choose a starting basis vector a1 in the space spanned 

by E [rk] mapped by the equation 

屯=vet 1~f$l IE [叫 I- (16) 

a1 is regarded as the eigenvector corresponding to the largest eigenvalue of C in MUSIC. 

Then, E [r叶(2:::; k :::; 2K) are rearranged on the order of the magnitudes of I (E [r 1] , E [r月）I, 

(2 :::; k :::; 2K) so that inequalities 

are satisfied. 

l(E [r1], E [巧])I~l(E[r1l,E[r』)|

三・・・ ~l(E[叫， E[四KDI (17) 

Then, the other basis vectors ak (2 :S k :S P) in the space spanned by E [rk] are calculated 

through the iteration of the equation: 

ak =E[叫こk-1 (a,,,, E [叫） a氏

I I I I 
(2~k~P). 

氏=1 a氏 a氏

(18) 

P incident signals are counted by finding the value laP+il, which is assumed as 0. 

The computational load of basis vectors ak (1~k~P) is on the order of 2K L when P = 
p 

1, and 4KL-2L十LL(3k -2) when P :::=: 2. 
k=2 

4.1.2 One Noise Eigenvector 

In MUSIC, L -P noise eigenvectors are calculated by eigenvalue analysis. When DOA 

estimation is based on the idea that the direction vectors of incident signals are orthogonal to 

noise eigenvectors, just one noise eigenvector is theoretically sufficient to estimate the DOAs. 

FKMUSIC in [20] calculates several noise eigenvectors which is less than (L -P) in number. 

However, the number of noise eigenvectors and the way unit vectors are established for these 

noise eigenvectors remain unresolved issues. 

To resolve these issues, we propose an approach that calculates only one effective noise 

eigenvector for DOA estimation. Furthermore, we prove that the computational load for both 

signal eigenvectors and one noise eigenvector in S-MUSIC is much smaller than that for the 

formation of C and its eigenvalue analysis in MUSIC. 

， 



In S-MUSIC, we first find the number£which is the number of one of components of a1, 

and ¥a1 (£) ¥ has the maximum value among ¥a1 (l) ¥ (1 ::S; l ::S; L). Then, £satisfies 

叫£)= vl 
MAX 
1 年 i~L la1(Z)I-

Next, we set up the unit vector u as 

(19) 

△ 1£,  T 

u = [a o o i o o o 6 ] 

in which all of the elements except the£th value are 0. Then, after all ak (l~k~P) have 
been calculated, one noise eigenvector a.J¥「isestimated by the equation 

(20) 

p 
(ak*, u) ak 

邸 =u-区一・
k=l ¥ak¥ ¥a叶

The computatio叫 loadfor aN is on the order of 3LP. 

(21) 

4.2 MUSIC Eigenspectrum 

We propose a simple MUSIC eigenspectrum W and estimate the computational load. In 

MUSIC, L -P noise eigenvectors are utilized for Win Eq. (13). However, in S-MUSIC, only 
one noise eigenvector is utilized. DOAs are estimated using屯 as

屯= 1 
l(dn, aN)l2' 

7r 7r 

2 
::; en::; 2・ 

(22) 

Therefore, the computational load for屯 inEq. (22) is on the order of NL, while that of 

MUSIC is on the order NL(L -P). 

4.3 Comparison of computational loads 

Here, we summarize both S-MUSIC and MUSIC and at the same time, estiamte the com-

putational load at each step. 

．．
 
、

I 

10 



MUSIC 
1) Covariance matrix R oI receive 

data r(tりinEq. (8)[M勺］

2 Smoothed covariance subma— （） 
trix C in Eq. (9) [2K L2 

(3)Eigenvalue analysis of C in Eq. 

(25)[L門

S-MUSIC 

(a) Ensemble mean ofreceived dat 

I r(t砂inEq. (14)[2KLH] 

o}Detection oI伍elargest vector 
in Eq. (16) [2LK] 

(c)Rearrangement of E [叫 inEq.

(17) [2L(2K -1)] 

(d) Basis vectors ak in Eq. (18) 
p [I; {3L(k -1) + L} l 

(e) Detection of£in Eq. (19) [2L] 

(f) Noise eigenvector aN in Eq. 
21 L 3P-2 

4)~t~Eige~ 『pecti'iiiriill~ 詞□贔如芦enspectrumin Eq. 
13 NL L-P 22 NL 

4 
When we set the value of L appropriately, that is, as -M, the value of K (= M -L + l) 

L 5 2L 
becomes —+ 1. Furthermore, when we set the value of P as —, the computational loads of 

4 5 
6び H 3L3 

8-MUSIC and MUSIC are on the order of —+(—+ 2)び+(2H + N + l)L and - + 
25 2 2 

25H 3N 
（一＋—+ 2)L2, respectively. Even if we pay attention only to the term L汽therate of 
16 5 

increase of the computational load to Lin MUSIC is more than 6 times that in 8-MUSIC. 

4.4 Estimation with the miscounting of P 

This subsection discusses DOA estimation in the case S-MUSIC can not count the number 

of incident signals and shows a way to estimate the number of incident signals S-MUSIC counts. 

When the number of incident signals P has correctly been counted, or when ak (l :S k :S P) 

contain all signal constituents, DOAs can be completely estimated by W in Eq. (22). In 

reality, however, the iteration in Eq. (18) is stopped, and the number of incident signals P 

iaP+1I 
is determined when a value laP+il is found that satisfies :S冗. When only P ak 

!ail 
(1 :S kさ P < P) are calculated in Eq. (18) and utilized in Eq. (21), the orthogonality 

between aN and ak (l :S k :S P) is 

(~aN) = 
la叶,la刈

11 



゜ (1 :s; k :s; P) 

（竺_:!:__)=三
¥a叶'¥aN¥ ¥ak¥¥aN¥' 

ゆ+1 :s; k :s; P) 

(23) 

where la刈isindependent of k. 
叫 £)*I I年 (£)*I

When akゆ+1 S k s; Q) include the signal component, or (P + 1 S 
[akllaNI la叶

k s; Q) in Eq. (23) becomes nearly 0. In this case, the noise eigenvector aN is orthogonal to 

ak (l ::; k s; Q). This means that in S-MUSIC, Q DOAs can be estimated by aN , although 

aN is calculated with only P ak (l S k s; P S Q). Therefore, we can estimate the number 
lak(.C)*I 

of incident signals Q by analyzing (P + 1 ::; k s 2K). When P s; Q, S-MUSIC can 
la叶

resolve all incident signals. 

5 N umer1cal Simulation 

We examine the computational load of S-MUSIC while varying M, in comparison with 

MUSIC. Furthermore, after defining the resolution limit, we examine this resolution limit with 

a variety of冗 andSNR values. 

5.1 Processing Time 

The computational load was roughly estimated in the previous sections. However, the 

estimation of the computational load in eigenvalue analysis remains in obscurity because we 

utilize a computational library for calculation in eigenvalue analysis on a workstation. There-

fore, we measure the processing time of S-MUSIC or MUSIC to study how this processing 

time is affected by M. The workstation we utilize for the numerical simulation is a DEC alpha 

3000/900. 

P has a great effect on the resolution limit and, thus, on the estimation of P. When Pis 

large, the change of P has an effect on the processing time of 8-MUSIC. 

First, to restrain the effect of P and examine the effect of M, we set the number of incident 

signals P as a smallish number, i.e., 2. 

Figure 1 shows the processing time of 8-MUSIC and MUSIC when there are two (P = 2) 
incident signals without additive noise. The number of antenna elements M ranged from 30 

to 1000, L = 0.8M, 冗 wasset as 0.5 for 8-MUSIC and 10-3 for MUSIC, and N was set as 20. 

Lines (A) and (B) give the processing time of 8-MUSIC and MUSIC, respectively. 

The gradient of line (B) in the case of MUSIC is about twice that of line (A) in the case 

of S-MUSIC. This means that the effect of NI on the processing time of MUSIC was bigger 

than that of 8-MUSIC. In other words, the processing time of MUSIC was largely accounted 

for by eigenvalue analysis of covariance submatrix C, compared with the analysis of W. The 
1 1 

processing time of 8-MUSIC was - to - that of MUSIC. 
100 1000 

TT 

12 



p 
Next, we changed P, so that the ratio of - could be constant with varing M. The lines 

M P 2i 
from (a) to (f) in Figure 2 are the processing times of 8-MUSIC when - is - (i = 1 ~ 7). 

M 25 
p 

The line (g) is the processing time of MUSIC. — does not have a great effect on the processing 
M 

l P 14 1 P 4 
time of MUSIC. The processing times of 8-MUSIC are -(-= -) to - (-= -) that 

6 M 25 60 M 25 
p 

of MUSIC. Consequently, the smaller - is, the shorter the processing time of 8-MUSIC is, 
M 

compared with that of MUSIC. 

5.2 Resolution Limit 

We examine the resolution limits of 8-MUSIC and MUSIC and ascertain that these reso-

lution limits are of the same order. 

5.2.1 Definition of resolution limit 

Figure 3 is an example of DOA estimation by MUSIC when there are three (P = 3) incident 
signals set at intervals of△ 0 (Odeg. :S△ 0 :S lOdeg.) with additive noise of OdB. The array 

system has 32 (M = 32) antenna elements. L and K are set as 25 and eight, respectively. 

冗 isset as 10-3 and the snapshot number His set to 70. 

Area (a) is the range of 25 %且uctuationfrom the given DO As. Area (b) is a range 

containing all of the estimated DO As of area (a). Area (b) consists of two parts; 5. 75deg. :S 
△ 0 :S 6.2deg. and 7.4deg. :S△ 0. In this case, the resolution limit is designated as 7.4deg., not 

5.75deg. 

Simulations of this type are carried out several times. In this paper, the number of Monte 

Carlo runs is set as 30. When all DOAs are estimated with a△ 0 in 85 % of the Monte Carlo 
runs, this△ 0 is regarded to be within the resolution limit. 

5.2.2 Influence of threshold五

The resolution limit is changed by the threshold冗.Figure 4 shows the resolution limit of 

MUSIC, with冗varyingfrom 10 -4 to 0. 7. H and P are set as 70 and 3, respectively. When 

冗 isunder some value, the resolution limit becomes stable. This冗 dependson P and SNR. 

Note that P and SNR do not have a great influence on the tendency for the resolution limit 

to be better with a smaller五 Inthis paper, based on the stable range in Figure 4, 冗 in

MUSIC is fixed as 10-3. 

On the other hand, the resolution limit of 8-MUSIC does not change greatly with varying 

五andP. This means that 8-MUSIC can estimate DOAs correctly with△ 0 ,which is within 

the resolution limit, even when the number of calculated signal eigenvectors is under P. As a 

result, 8-MUSIC can decrease the computational load by setting冗 asa relatively large value. 

In this paper, 冗 in8-MUSIC is fixed as 0.5. 

5.2.3 Influence of snapshot number H 

Figure 5 shows the resolution limits obtained when冗 in8-MUSIC, and冗 inMUSIC are 
p 4 

set as 0.5 and 10-3, respectively, and H ranges from 10 to 70. - M, and SNR are - 100, 
Jvl'25'  
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and OdB, respectively. The extent of the change in the resolution limit in 8-MUSIC is smaller 

than that in MUSIC. The smaller His, the lower the computational load is. Therefore, when 

His set as a small value to decrease the computational load, the resolution limit of 8-MUSIC 

is better than that of MUSIC. In this paper, however, His fixed as 70. 

5.2.4 Influence of the number of antennas J1/l 
p 

Figure 6 shows the resolution limits of 8-MUSIC and MUSIC when SNR and - are fixed 
M 

and M ranges from 25 to 250. Lines (a), (b), and (c) are the resolution limits of 8-MUSIC 
p 

and lines (d), (e), and (f) are those of MUSIC. The values of SNR and - for each case are as 

foll饂率 M 
line 

p 
In S-MUSIC and MUSIC, as M becomes larger and - becomes smaller, the resolution 

p M 
limit becomes better. When SNR and - are relatively higher, the resolution limit of S-MUSIC 

M 
is better than that of MUSIC. 

p 
5.2.5 Influence of the ratio -

M 
p 

Figure 7 shows the resolution limits obtained when M and SNR are fixed and - ranges 
M 

4 14 
from - to - Lines (a), (b), and (c) are the resolution limits of S-MUSI C and lines (d), (e), 

25 25. 
and (f) are those of MUSIC. The values of M and SNR for each case are as follows: 

line (a), (d) (b), (e) (c), (f) 

M 25 25 150 

SNR lOdB 15dB 15dB 
In every case, the resolution limit of S-MUSIC is better than that of MUSIC. Furthermore, 

p 
when - becomes higher, the difference between the resolution limit of S-MUSIC and that of 

M 
MUSIC becomes larger. As a result, the resolution limit of S-MUSIC is much better than that 

p 
of MUSIC when - becomes larger. 

M 

5.2.6 Influence of additive noise 
p 

Figure 8 is the resolution limit when M and - are fixed and SNR ranges from OdB to 
NJ 

20dB. Lines (a), (b), and (c) are the resolution limits of S-MUSIC and lines (d), (e), and (f) 
p 

are those of MUSIC. The values of M and - for each case are as follows: 
NJ 

line I (a), (d) I (b), (e) I (c), (f)' 
．
 

The resolution limits of S-MUSIC and MUSIC are almost of the same order. However, for 

both (a) and (d) with an SNR larger than 5dB, and for both (c) and (f) with an SNR larger 

than lOdB, the resolution limit of S-MUSIC is better than that of MUSIC. 
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The reason why the resolution limit of 8-MUSIC is worse than that of MUSIC with a lower 

SNR is as follows: The aim of Eq. (19) is to find the position of the element where the induced 

electricity by incident signals is the highest in a1, which consists of received raw data. As the 

SNR decreases, however, the noise has a larger effect on the received data and as a result, we 

fail to find the desired position in Eq. (19). In this case, aN in Eq. (21), which is obtained 

from Eq. (20), is not the most desirable. Therefore, the resolution limit becomes worse. 

6 Conclusion 

This paper proposed the Smart MUSIC algorithm (S-MUSIC). Furthermore, the paper pre-

sented a study on the characteristics of S-MUSIC, in comparison with the same characteristics 

in the MUSIC algorithm (MUSIC). 

In MUSIC, the computational load of eigenvalue analysis on the covariance matrix of re-

ceived data and the analysis of the MUSIC eigenspectrum is considerably large. 

S-MUSIC, in contrast, calculates only a few basis vectors in the space spanned by received 

data vectors and only one vector orthogonal to basis vectors without eigenvalue analysis of 

the covariance matrix, to reduce the computational load to the extent that the sensor array 

system may follow the rapid change of the radio environment. Here, basis vectors correspond to 

signal eigenvectors and the one orthogonal vector corresponds to noise eigenvectors in MUSIC. 

Furthermore, in the MUSIC eigenspectrum, S-MUSIC uses only one noise eigenvector. As a 

result, the computational load of MUSIC has been reduced significantly (_!__ to _I_) when 
100 1000 

Pis fixed. 

Numerical simulations have shown that S-MUSIC can decrease the computational load 

by setting五 asa relatively large value, without deterioration of the resolution limit; the 

resolution limit of S-MUSIC is better than that of MUSIC, when H is set as a small value 
p 

to decrease the computational load and both SNR and - are set relatively higher. In the 
NI 

numerical simulations, the superiority of S-MUSIC over MUSIC was shown by the obtained 

small computational load, and it was ocnfirmed that S-MUSIC had the same high resolution 

as MUSIC. 

7 What we should do afterwards 

Estimation of signal parameters via rotational invariance techniques (the ESPRIT algorithm) [25, 

26] was proposed to overcome one of the disadvantages in MUSIC. The disadvantage is that 

the information about the array sensors must be known a priori. However, the advantages 

in the ESPRIT algorithm were not only the decrease of the a priori information requirement 

by using two identical arrays of sensors, but also the reduction of the computational load in 

MUSIC. Nowadays, there are several papers [27, 28] which utilize the ESPRIT algorithm as the 

algorithm with smaller computational load than MUSIC. Therefore, the comparison between 

the ESPRIT algorithm and S-MUSIC is informative. Here, the ESPRIT algorithm is briefly 

introduced. 

The ESPRIT Algorithm requires two subarrays of sensors that are identical but separated 

by a known displacement vector (. The outputs of the subarrays are modeled as the L 
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dimensional vectors r 1 (t) and r 2 (t). In this model, the received data r (t) is 

疇=[~: 悶］， (24) 

which is the 2L dimensional vector. The covariance matrix of r (t) is the 2L x 2L matrix 

E [r(t)r(t)t]. 

Through eigenvalue analysis of E [ r (t)r (t) t], we get 
ー

3

E [r(t)r(t)t] [a1,a2, ・ ・ ・, a2L] = 

, μ1 0 . . . 0 

0μ2 . . . 0 

゜゚ μ2L 

[a1, a2, ··•,a叫， (25) 

where囚 (1:S l :S 2L) are eigenvalues, and a1 (1 :S l :S 2L) are their corresponding eigenvectors 

of E [r(t)r(t)t] , which satisfy 

µ2L~.. ・~ μp+l≪ µp~ ・・・~ μl 

aヰ J_・ ・ ・1-aP+1 1-ap 1-・ ・ ・1-a1. 

(26) 

(27) 

Here, the 2L x P matrix [a1, a2, • ・ •, ap] can be divided into two L x P matrices, 左 and名

as follows: 

[au a2, .. ・, ap] = [ ;~l· (28) 

刃
Through eigenvalue analysis of the 2P x 2P matrix [ :FJ ]口1:F2] , we get the 2P dim en-

sional eigenvectors bp (l :Sp :S 2P). The 2P x 2P matrix [b1, b2, • ・ ・, b2p] can be divided into 

4 P x P matrices Bn, B12, B21, and B22 as follows: 

[b1,b2,・・・,b2P]= [ 
Bu B12 

B21 B22 l (29) 

Through eigenvalue analysis of the P x P matrix -B12 B2}, we get P eigenvalues咋

(1~p~P). These eigenvalues satisfy the equation 

枠 p
sin的＝一ー．

2rr( 
(30) 

＇ 

i

i

 
Therefore, in the ESPRIT algorithm, 的canbe estimated without the calculation of the MUSIC 

eigenspectrum. 
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