
／

TR -A -0170

A software library of C++ class objects for

biological structure modeling.

Reiner Wilhelms

／｀
I

1993. 3.23

ATR視聴覚機構研究所
〒619-02京都府相楽郡精華町光台2-2岱 07749-5-1411

ATR Auditory and Visual Perception Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-77 49-5-1411
Facsimile: +81-77 49-5-1408

c(掬ATR視聴覚機構研究所

Contents

1 Introduction 1

1.a Requirements in biological system modeling . 3

1.b Why C++? . 3

2 Description of the library 6

2.a Linear Algebra operations . 6

2.a.l

2.a.2

Class vector3

Class tensor3

7

8

0

1

4

4

5

5

8

Cl

Cl

1

3

5

5

6

8

8

8

9

9

Cl

Cl

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

•••••••••••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••••••••••••••••• ••••••••••••••••••••• •••••••••.•••.••••••• •••••••••••.•••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

•••••••••••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

•••••••••••.••••••.•• ••••.•••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••••••••••••••••• •••••••••••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••••••••••••.••••
．

••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••.•••

e

•••

p
 •••••••••••••••••

•••

a

•••••••••••••••••

h

•••

s

•••••••••••••••••

7

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

2

．

•••K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

t

c

h

c

•••••••••••••••••

s

e

.
l

3

r

e
 ••

B

•••

te

...•.

b

j

・

,

．

．

．

．

．

u

n

a
 ••

，
 ••••••.•

0

•.•.•.•

l

.

e

••

ib

•..••

D

•.••••

•

p

s

D

r

3

D

p

t

•••••••••••

t

d

3

,
．

n

a

••

3

.

o

h

••

3

a

•••••

e

••••

n
 ••

n
e
.
t
i
s
s
 ••

e
r
n
 .••••

m

•••

o

••

i

c

k

p

t

g

 ••

i

•••••

a

c

••••

L

.

u

n

.

l

C

P

s

n

e

D

l

y

s

b

3

0

9

.

f

r

.

.

a

e

••••

j

••

3

B

s

.

m

s

e

l

••••

a
s
o
 •.

n

P

n

P

n
t
s
p
e
e
,
S
e
.
d
a
s
a
n
 ••••

l

D

••

g
o
e
d
t
i
o
o
u

p

a

s

n

c

l

p

.

m

C

3

.

l

y

m

c

g

r

i

a

s

a

0

ー

h

l

ー

e

p

c

a

l

a

e

r

p

e

t

i

g

l

g

u

o

a

s

n

l

e

u

g

l

t

s

e

C

B

s

H

p

n

A

0

s

c

G

.
l

t

a

e

r

h

y

r

y

s

s

o

t

s

e

a

e

t

>

p

g

c

.

l

e

t

n

c

r

e

e

r

s

s

s

s

s

t

j
m
t
a
s
a
s
a
s
a
s
a
s
a
s
e
c

s

s

l

p

s

e

o

o

a

p

p

e

s

p

t

s

a

e

t

f

b

b

l

ー

l

l

l

l

s

A

c

c

c

c

c

c

A

a

s

m

a

s

r

.

l

S

a

n

b

s

t

s

t

o

a

i

i

n

l

o

e

ー

e

i

C

R

l

C

t

D

m

L

o

l

l

C

e

n

i

l

I

h

a

.
l

e

3

4

i

t

1

r

1

2

3

4

5

6

P

1

2

3

c

1

2

3

4

5

•••

e

••••••

a

•••

e

•.••.

a

a

n

b

s

c

c

c

c

e

e

e

e

e

．

．

．

．

．

c

c

r

d

d

d

p

•

.
l

．

2

2

F

2

l

2

2

2

2

2

2

C

2

2

2

S

2

2

2

2

2

b

c

d

e

•••• 2

2

2

2

2.e.6 AnatomyObj 31

2.f class notifyMsg for commumcation between different objects 32

3 Technical details of implementation 35
＇`し

3.a The program observer ... 35

3. b Support . 36

_S

A software library of C++ class objects for biological structure modeling.

Reiner Wilhelms, ATR Hearing Dept.

September 29, 1992

1 Introduction

Finite element simulation software for structural mechanics is usually designed following a three-step struc-

ture:

1) A graphic interface allows for the interactive design of a geometrical structure and for the definition
of finite elements in two or three dimensions. It produces a simple output stream that can be read by
a finite element solver.

2) The finite element solver reads information about node location, element assembly, and element
types. It further reads initial conditions, external loads, temperature source information, material
properties, and other variables. It then solves the system of equations, as a static solution for stationary
problems, or as a result of solving of 2nd order dynamics for time dynamic problems.

3) The output of the solver, which can be a series of states of the finite element system (in dynamic
problems) or a static equilibrium in stationary problems, is read by a third part which brings it to
display. This part in many cases includes high performance display of the results, applying a battery
of modern visualization techniques.

The above three-steps structure h邸 evolvedfrom the early days of finite element application codes, in which
the solution of static problems w邸 predominant.Most dynamic problems in structural mechanics are also
successfully solved with this approach because in many cases dynamic problems can be reduced to periodic
dynamic problems. In particular, if we are dealing with a linear system (or approximated linear system), any
non-stationary input to the dynamic system can be decomposed in linear combinations of a basis of some
function space. This allows to solve the general c邸 eby superpositioning.

Nonlinear qu邸 i-static(not containing velocities) problems in finite elements, applied to structural mechanics,
are often dealing with creep, forming processes, crack formation, heat flow, and others. Even most of these
cases are managable using the above three step method, however clumpsy the implementation may be.

Applied to non-linear dynamic problems, the above structure turns out to be a hindrance. Mostly, rather
special dynamic problems are being solved, the problems often originating in impact situations where me-
chanical objects combust on (else where determined) trajectories.

(This study was condected by the author at ATR during the period from April to September 1992.)

＇`

Figure 1: Tongue sections displayed with observer, an application program built based on the library that
is described in this manual.

．ヽし

2

1.a Requirements in biological system modeling

The deformation of biological tissues during the speech production process is a non-linear and non-stationary
problem. The central reason, that commercial FEM packages can not easily be applied to active biological
tissue deformation, can be found in the particularities of the stress generating mechanism. In structural
mechanics, active stress generation as by human musculature is a very rare case. Therefore it is not surprising
that special software for this purpose is not available to my knowledge.

Another limitation can be found in computer-aided design programs for solid design. If we want to model
tissues with finite element simulation methods we need to fully describe element by element, a complex
material structure which does not lend itself for solid formation from surface definition. The FEM modeling
of biological tissue can be seen as definition of scalar-and vector-valued data on a topological cell structure,
where each cell usually corresponds to a finite element. In general, the cell structure itself can not be
generated by automatic means, such as automatic grid generation techniques. For these reasons special
graphic design tools are required.

The availability of new programming methods lends additional credence to the writing of a new library. The
use of the programming language C++, in combination with tools for symbolic mathematics (in the present
case Mathematica), allows and demands clearer structuring, true modularity and real data encapsulation.
Mathematica is used in the library under development for automatic program generation.

1.b Why c++?

Using the programming language C++, we have all well-known and worthwhile features of C, and at the
same time, where algorithms are concerned, a way of writing code that resembles mathematics more then
programming code. Several other reasons add to this:

User Interface Programming

The development of this library was started as an extension to a free software library for graphic program-
ming. This software, The User's Interface Toolkit (UIT) is written in C++ and contains rather appealing
and easily applied class wrappers of XView functionality. In comparison to the confusing, sometimes only
partially understood way of programming for the Xll window system under either Intrinsics or XView,
the UIT class library shows a striking simplicity in its class definitions. To illustrate this point, the following
example compares a programming example for opening a window and including a canvas inside, first with
straight XView programming, and then using the C++ class wrappers in the UIT class library.

Both of the following C code excerpts were originally generated with an interactive user-interface design
program called devguide (Solaris, SunSoft software). The first code-excerpt is produced with a translator
called gnt (Solaris, SunSoft software), and the second using a tranlator named guic provided in the free
software package UIT by Sun Microsystems.

I* Create object'window1'in the specified instance. *I
X立 opaque
Twobuttons_window1_window1_create(ip, owner)
Twobuttons_window1_objects *ip;
X立 opaqueowner;
｛

X立 opaqueobj;
obj= xv_create(owner, FRAME,

3

XV_KEY_DATA, INSTANCE, ip,

XV_WIDTH, 450,

XV_HEIGHT, 300,

XV_LABEL, "Base Window",

FRAME_SHOW_FOOTER, TRUE,

FRAME_SHOW_RESIZE_CORNER, TRUE,

NULL);

return obj;

｝

I* Create object'controls1'in the specified instance. *I

Xv_opaque

Twobuttons_window1_controls1_create(ip, owner)

Twobuttons_windowi_objects *ip;

Xv_opaque owner;

｛

Xv_opaque obj;

obj= xv_create(owner, PANEL,

XV_KEY_DATA, INSTANCE, ip,

xv_x, 240,

XV_Y, 60,

XV_WIDTH, 160,

XV_HEIGHT, 180,

WIN_BORDER, FALSE,

NULL);

gcm_initialize_colors(obj, NULL, NULL);

return obj;

｝

main(argc, argv)

int argc;

char **argv;
｛

I* Initialize XView. *I

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

INSTANCE = xv_unique_key();

Twobuttons_window1 = Twobuttons_windowi_objects_initialize(NULL, NULL);

xv_main_loop(Twobuttons_window1->window1);

exit(O);

｝

The output of UIT's guic looks comparably simpler and much less intimidating:

void main (int argc, char **argv)

BaseWindow window!;

window1.initUI (argc, argv);

window!. set Width (450);

window1.setHeight (300);

window!. setLabel ("Base Window");

window1.show (TRUE);

window1.setDisplayFooter (TRUE);

window1.setResizable (TRUE);

4

ComponentDisplay controls! (TRUE);
controls 1. setX (240);
controls1.setY (60);
controls1.set¥Jidth (160);
controls1.setHeight (180);
controls1.setDisplayBorders (FALSE);
window1.addDisplay (controls!);

Notifier notifier;
notifier.start();
exit (O);

｝

It is the simplicity of the second programing style which gives the application programmer and the software
developer more confidence for developing complex programs. The design of interfaces is already facilitated
by the availability of interactive design tools such as the tool devguide which was applied. An interactive
interface design becomes powerful if it is combined with a code generator, that produces code which can
easily be understood and manipulated.

The UIT class library was used as a basis for extension because it is represents a rather insightful hierarchy

of graphic objects. In its design, the authors made an effort to present a intuitive hierarchy (see The UIT
Technical Overview, p. 9). Extensions can be made in a rather obvious way. Using the C++ class inheritance
method, features of class objects of the UIT library were used to build convenient classes which represent

for example, a 3D-terminal for polynomial data, and an "observer's eye" (a panel that allows the selection
of view-point, observer distance, choice of parallel or central projection etc.). Some of these objects are
themselves user interfaces, and devguide was used to design their user surface.

Mathematical Programming

In the library some general classes, representing vectors, 2nd order tensors, points, lines, and planes in
three dimensions were written. A feature of C++ called operator overloading was employed to realize
various algebraic operations on the above class objects. Programming in C++ allows the implementation of
mathematical operations upon elements other than real numbers as in the following example:

The mathematical expression (v is a 3 dimensional vector, representing a rotation axis direction, and C¥a

rotation angle)

W~:::,.

W

T

v
diag{l, 1, 1}

skew(w)
WW

T

V + (Id -V) cos a + W sin a

(normalized)

(Skew symmetric tensor)
(outer product)

(1)

can be represented by the following C++ code (see class definition of rotator):

vector3 w=v. Norm();
tensor3 V(w,w);
tensor3 W(w);
tensor3 Id(1.0);

tensor3 T = V + (Id-V)*cos(alpha) + W*sin(alpha);

// generator: ww-T

// generator: skew symmetric
／／ generator: unュttensor

Fast and still elegant ..

5

The development of class libraries in C++ is still in its infancy. Several attempts to create useful objects
for mathematical programing are known. The NIH class library (National Institute of Health Class Library,
(USA)) a public domain software 1 has become the best known project of this kind, and it is under consid-
eration to use some of the class definitons. A not so well known second class library called LEDA, written
in Germany by Stefan Na.her at the Max-Planck-Institut fiir Informatik, Saarbriicken, is used in the current
library. 2 It contains, in particular, class definitions for discrete mathematics, enabling graphs and networks
to be easily implemented. Currently the class matrix and vector for general matrices and vectors of any

finite dimension is used.

For the purpose of finite element simulations, where the data structure is a discrete graph, we want to be able
to do typical graph operations such as "for all nodes do ... ", or "for all not visited edges do ... ". Further,
we require the implementation of automatic node-renumbering algorithms, which optimize the enumeration
of the nodes such that the matrices which result from the finite element formulation have small bandwidths.
Realizing this in a language like C++ is a considerably easier task than in other not object oriented languages.

し

2 Description of the library

At the present state, the library is far from complete. The predominant work was done in implementing
convenient classes for user interfacing, whereeas the development of help classes for mathematical objects is
only in its infancy. Below a short overview is given with an outline of further develornents.

2.a Linear Algebra operations

In the library, the classes vector2, vector3, tensor3, Point3, Line3, and Plane3 are implemented.
These objects correspond to 3-dimensional vectors, 2nd order tensors, points, lines and planes. The classes
vector3 and tensor3 implement the essential features to write algebraic expressions using the corresponding
mathematical elements. In other parts of the software, these classes were applied. To illustrate the use of
these classes, the following example was borrowed from the C++ code in the library member mapper3D:

Given the following points (members of the class structure mapper3D): an eye-point EP (observer's eye point
in a three dimensional coordinate system), a view reference point VRP (the point which will be mapped onto
the center of the projection window), and an up-point UP (usually a point on the z-axis); the subroutine
calculates an orthonormal system (U, V, N) which is used for calcualting the view transformation.

void mapper3D: : make_ transform()
｛

dist= abs(EP-VRP);

N = norm(EP-VRP);
V = norm(UP -VRP);
V = norm(V -((N*V)*N));

U = V渭；

R = vector3(VRP);
//crossproduct
// vector version of reference point

｝

1 NIH is available via anonymous ftp from alw.nih.gov (198.231.128.251) in file pub/nihcl.tar.Z.
2 At ATR: LEDA is currently installed on hsun23 in the directory /homes/wilhelms/LEDA. A printed manual is available.

6

Another example using the tensor class is given in the description of the class rotator.

Outline

The definition of the algorithmical components has only been started. For the finite element implemenation,

the code for a simple brick element (see shape.h, shape.cc) was written. Further classes that are currently

implemented or planned:

Classes Element and Node are abstract classes. The classes brick and brick27 are derived from class

Element.

An assembly is an object which holds the mapping between local node points and global node points.
An assembly is a friend class for each finite element. For an element N to obtain it's m-th nodal
point information, the assembly is "consulted". The assembly class contains a member function which
optimizes the organization of the assembly to provide matrices of minimal bandwidth.

A Muscle is a special list that contains references to a collection of nodes in the finite element graph.

A muscle can be activated using special member functions which changes the constitutive parameters

in a node of the graph.

A Iterator is an object that operates on an assembly, solving the system of equations.

2.a.1 Class vector3

The class vector3 implements the idea of a column 3D vector. Functions that are non-members but friends
of the class are marked with the O symbol in the first column.

vector3(double a, double b, double c)

vector3()

vector3(Point3 a)

double Abs()

vector3 Norm()

void operator + = (vector3 pl)

void operator -= (vector3 pl)

double& operator[](int n)

0 vector3 operator -(vector3, vector3)

0 vector3 operator + (vector3, vector3)

0 vector3 operator -(vector3)

0 ostream& operatorくく (ostream&,vector3)

0 vector3 operator /¥ (vector3, vector3)

0 double operator * (vector3,vector3)

Constructor that defines a vector.

Creates a Null vector

Makes a type change from Point to vector.

returns the magnitude of the vector.

returns the normalized vector

Add a vector pl to this vector

Subtract a vector pl from this vector

Right or left side, gives reference to Vn, n =
0,1,2

subtract two vectors.

add two vectors.

negate a vector (left operator).

print a vector

outer product (cross product)

inner product (dot product)

7

<:;:) vector3 operator * (vector3,double) product by scalar from right

~vector3 operator* (double,vector3) product by scalar from left

~vector3 operator / (vector3,double) divide by scalar

~tensor3 operator % (vector3 a,vector3 b) defines a tensor by taking the cartesian

product (a (81 b = (a;b1))

<:;I double abs(vector3) returns the magnitude of the vector

C:;1 vector3 norm (vector 3) returns the normalized vector

2.a.2 Class tensor3

The class tensor3 implements the essential algebra for a 2nd order 3x3 tensor. Functions that are non-

members but friends of the class are marked with the O symbol in the first column.

tensor3(double a, double b, double c)

tensor3 (double a)

tensor3()

tensor3(double a, double b, double c,

double d, double e, double f)

tensor3(vector3 a)

tensor3(vector3 a, vector3 b)

tensor3(vector3 a, vector3 b, vector3 c)

Defines a diagonal 2nd order 3 by 3 tensor

diagonal with same value

null tensor

Creates a symmetric tensor with lower tri-
angle given邸 thesix arguments:

＼
ー
）

d

e

f

b

c

e

a
b
d

（

ー

＼

Produces a skew symmetric tensor used for
rotations around a:

(二:—>
＼

ー

）

2

1

0

a

a

tensor3 Sym()

double&

double&

val(int n,int m)

operator () (int n, int m)

double

double

Trace()

12()

T tensor ab , where a and b are column vec-

tors.

tensor made from the three column vectors

a,b,c

returns the symmetrized form of the tensor

½(A+AT).

left side or right side to get or set the value.

Indices starting at (0,0).

Access scalar value directly: A(i, j), i =
o, ... , 2, j = o, ... , 2

trace (1st mvariant)

2nd invariant

8

double Det()

tensor3 Transp()

tensor3 Inverse()

tensor3 InverseT()

0 void operator * (double f)

C;) void operator * (double f, Tensor T)

0 double trace(tensor3)

Iv double i2(tensor3)

<:,? double det(tensor3)

<? ostream& operatorくく (ostream&,tensor3)

v> vector3 operator * (tensor3 &, vector3 &)

~vector3 operator* (vector3 &, tensor3 &)

<:::> tensor3 operator * (tensor3 &, tensor3 &)

(;'.) tensor3 operator+ (tensor3 &,tensor3 &)

<:;;I tensor3 operator -(tensor3 &,tensor3 &)

<::::> double operator I (tensor3 &, tensor3 &)

(;:) tensor3 transp(tensor3 &)

<v1 tensor3 inv(tensor3 &)

<::> tensor3 invT(tensor3 &)

determinante (3rd invar.)

transposed

inverse of 2nd order tensor.

inverse transposed of 2nd order tensor.

Multiplication with double (T*f)

Multiplication with double (f"T).

trace (1st invariant)

2nd invariant

determinante (3rd invar.)

print matrix

tensor times vector.

vector transp. times tensor.

tensor times tensor.

operator plus

operator minus

mner product

transposed as nonmember friend function

inverse of 2nd order tensor as nonmember

Friend function

inverse transposed of 2nd order tensor as

nonmember Friend function

The two cl邸 sesvector3 and tensor3 allow to implement simple mathematical expressions in a straight

forward way:

For example with A a second order tensor, and I a unit tensor (2nd order), we can have the expression

V =(I-AT A)ー1:

tensor3I(1.0); // diagonal unit matrix

vector3 a(0.1,0.2,0.3) ,b(L0,2.0,-1.0);

tensor3 A(a,b); // cartesian product a,b

tensor3 V = (I -A.Transp() * A).Inverse();

，

2.a.3 Classes Point3, Line3, Plane3

The class Point3 is not close to the mathematical definition, it rather follows the practical needs. We just

want to have an additional class which has the same data structure as a vector3 object. (Friend functions

are marked by a 0.)

、’

Point3(double x,double y,double z)

Point3()

Point3(vector3)

c::> vector3 operator -(Point3 a, Point3 b)

Iv Point3 operator + (Point3,vector3)

void operator + = (Point3,vector3)

void operator -= (Point3,vector3)

double& operator [) (int n)

Iv ostream& operatorくく (ostream&,Point3)

Generates a point specifying the cartesian

coordinates

Generates a point at the origin

makes a point given a vector

Create a vector corresponding to the arrow

from point a to point b.

translate a point by a vector

translate a point by a vector

translate a point by a vector

reference to nth coordinate, starting at 0.

print the point to a stream. (E.g. coutくく

P;)

A simple class Line3 represents Lines as by a point together with a direction.

Line3()

Line3(Point3 o, vector3 t)

Line3(Point3 a, Point3 b)

vector3

Point3

Direction()

Reference()

Create an empty Line

Create a line from a point and a direction

pointer

Create a line from two points, direction is

from first to 2nd

returns the direction vector

returns the reference point

A simple class Plane3 defines a plane in 3 dimensions:

Plane3(Point3 A, vector3 a, vector3 b)

Plane3(Point3 A, Point3 B, Point3 C)

Plane3()

Point3 Reference()

The point A is a point in the plane, a is the

first direction and b the second direction.

The two vectors are normalized and stored

in the object.

The plane is defined by the point A as ref-

erence, and the normalized vectors B -A

and C-A.

A plane at the origin, with the canonical y

and z axis as plane coordinate system

returns the reference point

10

ヽ

vector3 Direction(int i)

vector3 Norm()

Point3 Intersection(Line3 &l)

Boolean intersects(Line3 &l)

Line3 lntersection(Plane3 &p)

Boolean intersects(Plane3 &p)

double Distance(Point3 &P)

vector3 Project(Point3 &P)

vector3 Project(vector3& v)

2.a.4 Rotator class

Figure 2: A rotation

i must be 1 or 2. Returns the first and

second vector spanning the plane

returns a vector perpendicular to the plane

by taking the cross product of the two vec-

tors that span the plane. The returned vec-

tor has a length 1.

returns the point of intersection with a line

returns a value of True if there is an inter-

section

returns the point of intersection with an-

other plane

returns a value of True if there is an inter-

section

returns the distance of the Point from the

plane

transformes the point coordinates to the

plane's coordinate system which consists of

the two directions, and the normal vector.

transforms (via projection) the vector v

into the coordinate system of the plane.

The base vectors are the direction 1 and 2

vectors and the normal vector)

This class represents the rotation transformation around a specified axes by a specified angle. The axis

is defined by a point and a unit direction vector. The angle is in degrees and means a rotation in the

mathematical positive direction (counterclockwise). The following describes shortly the mathematics behind

it:

Let w = (w1, w2, w妍 bea vector which represents the direction of the axis of rotation. P is a reference

point in the axis. From w we can build the following two operators:

11

I -V ,= I -w 0 w = (二::
-W3W1

-W1W2

l -w2四

-W3W2

＼
ー
＇
ー
／

2

3

3

w
w
w

1

2

3

w
w
w

-＿― ー

(2)

and

W,= (三―:~-:n (3)

The operator I-V projects a vector x, obtained as the difference between a point X and a the axis reference
point P, x = X -P, on the plain perpendicular to w, and W projects and then turns counter-clockwise by
goo.

To realize the rotation around w, we thus combine these operators in the following manner:

T = V + (I -V) cos a + W sin a (4)

where CT is the rotation angle. This operator turns any point X by an angle of CT around the axis through P

in the direction of w.

To realize the rotation as a simple operation on points and geometric objects described by points, we have
to implement the following: From each point we subtract the coordinates of P, multiply the resulting vector

from left with the matrix T and then add the coordinates of P to the result, obtaining the coordinates of

the point X after rotation.

The class has the following public members:

rotator()

rotator(Point3 P, vector3 w, double angle)

void setAngle(double angle)

void setAxis(Point3 p,vector3 dir)

void setAxis(Line3 L)

vector3 get Direction()

Point3 get Reference()

double getAngle()

Line3 PgetAxis()

vector3 turn(vector3 &X)

Point3 turn(Point3 &X)

Line3 turn(Line3 &L)

default settings: w is (1,0,0), reference

point is origin, and angle is 90°.

Complete generator of a rotator.

Sets the angle of rotation (in degrees).

Sets the axis of rotation.

Sets the axis of rotation from a directed

line object.

Returns the vector w, the direction of the

rotation axis.

Returns the point P, the reference point in

the rotation axis.

Returns the rotation angle in degrees.

Returns the rotation axis as a Line3 object.

rotates a vector: TX.

rotates a Point3 object: P + T(X -P).

rotates a line by rotating reference point

and direction.

12

Plane3 turn(Plane3 &P) rotates a plane by rotation reference point

and the vectors which span the plane.

The implementation of the rotation is the C++ class rotator:

class rotator{

private:

tensor3 T;

vector3 w;

Point3 P;

double alpha;
void set_defaul ts() {

w = vector3(1,0,0);

alpha= M_Pil2.0; II 90 degrees
P = Point3(0. ,0. ,O.);

｝

void make_T();

public:

// calculate T.

rotator(){set_defaults(); make_T() ;}

rotator(Point3 p, vector3 dir, double angle){P=p; w=dir. Norm(),

alpha=angle*M_PI/180.0;

};

make_T() ;}

void setAngle(double angle)

void setAxis(Point3 p,vector3 dir)

void setAxis(Line3 L)

vector3 getDirection()

Point3 getReferenceO

double getAngle()

Line3 getAxis()

vector3 turn(vector3 &X)

Point3 turn(Point3 &X)

Line3 turn(Line3 &L)

Plane3 turn(Plane3 &P)

// in rotator.cc:

void rotator: :make_T()

｛

tensor3 V(w,w); // ww-T

tensor3 W(w); // skew symmetric

tensor3 Id(1.0); // identity

{alpha=angle*M_PI/180. 0 ;make_T();}

{P=p; w=dir. Norm() ;make_T();}

{P = L. Reference();

w = L.DirectionO;}// normalized
{return w;}

{return P;}

{return alpha*180.0/M_PI;}

{return Line3(P,w);}

{return vector3(T*X);}

{return Point3(P + T*(X-P));}

{return Line3(turn(L.Reference()),

turn(L.Direction())) ;}

{return Plane3(turn(P .Reference()),

turn(P.Direction(1)),

turn(P.Direction(2)));}

T = V + (Id-V)*cos(alpha) + W*sin(alpha);
｝

13

i1

y
Y
 M

Unit Interval

Figure 3: Mappings from the master element to the reference system, and the shape functions defined on
the reference system.

2.b Finite element shape functions.

Shape functions are mappings from the domain of a finite element into the real interval [0,1). They are
defined such that they have the value 1 on one of the element's node points, and O on all others. As an
example, the linear brick element has 8 different shapefunctions:

‘
,
/
‘
,
'
r
‘
,
l
,
‘
,
l
'

"
'
"
'
"
'
"
'

-

l

+

+

1

1

1

1

((‘,'\~(
叫5

叫

り

扮

切

-
8
+
8
-
8
+
8

1

1

1

1

(

（

(

（

ヽ
．
＇
／
ヽ
•
~
‘
,
'
’
ヽ
l
'
’

x

x

x

x

-

＋

-

+

1

1

1

1

、
,
'
‘
(
（
（

‘
,
＇
/
‘
~
‘
、
,
l
'
)

~

~

~

~

―

-

+

+

1

1

1

1

（

（

（

（

、
~
‘
,
'
'
)

y

ぃ5
y

y

-
8
+
8
-
8
+
8

1

1

1

1

（

（

（

（

‘
,
'
’
‘
,
'
／
ヽ
．
＇
ノ
）

Z

8

8

8

十

一

十

一

1

1

1

1

(·~((
(5)

Here {x, y, z} is an element of the cube [-1, 1] x [-1, 1] x [-1, 1] For the extended brick element which has 26
nodes (or 27 with a central node) there would be 26 or 27 shapefunctions. The 27 functions for the brick with
central node can easily be generated from the outer products of the functions for quadratic interpolation on
the interval [-1, 1]:

(1-x) X

2
(1-x)(l+x)

(1 + X) X
2

(6)

These forms, including their differentials where calculated using the symbolic mathematics program Mathe-
matica, and are not printed here because of their length.

2.b.1 Class shape, Brick8shape, Brick27shape

So far there are two different shape function objects designed: Brick8shape and Brick27shape. Both
classes are derived from the base class shape, which is described here:

14

shape(int n)

int

vector

double

double

vector3

matrix

numNodes()

N(vector3 X)

NK(int K, vector3 X)

DNKi(int K, int i, vector3 X)

DNK(int K, vector3 X)

DN(vector3 X)

Generator. Sets the node number

returns number of shapefunctions

Returns the list of shapefunction values at
the location X in the domain of the ele-
ment. -virtual

Returns N K(X) -virtual

Returns N1;,;(X) -virtual

Returns GradN x(X) -virtual

Returns the matrix of all gradients of all
shape functions, with the gradients as line
vectors -virtual

The other two classes Brick8shape and Brick27shape, have the same members, and are directly derived

from the base class shape. The class shape is an abstract class and can not be realized. This implementation
is used to allow for programming were the internal structure of the element is not relevant. Which of the

functions is called is decided automatically at runtime.

2.c User Interface classes

In the UIT class library which was used as a starting base for the development of further user interface
objects, all objects are derived from a class called Generic. Generic is an empty class, it has nothing but
a constructor and destructor in it. Directly derived from Generic are the classes GenericList, Gener-

icHash, InputEvent, and UIObject. These form the basis for all other classes that are used for interface
programming. GenericList is a simple general list, that also allows access to its members via the [] operator.
It can hold any members which are class objects derived from the class Generic. The class UIObject im-
plements the essentials of XView programming, and encapsulates a lot of functionality without demanding
a deeper understanding of XView programming. An UIObject has a representation on the computer screen,
and can receive XView events.

For the purpose of this software, the top class of the UIT library, Generic, was slightly modified and
contains an additional member virtual void receive_other(Generic * g), which is used in derived classes for
communication between various objects, see below under communication between objects.

The existing class hierarchy was used as a starting basis to create new objects by extending the given class

definitions. The resulting hierarchy is depicted in figure 4.

2.c.1 DisplayG

Class DisplayG. Inherits directly from ComponentDisplay, and indirectly from UIDisplay

and UIObject.

Public Members:

DisplayG() Constructor: sets internal defaults

15

Generic

~
UIObject

＼
GenericList

~
UIWindow

Po/UpW← illDiiy
listtoggle Ob: 三~Lsplay

↓
DisplayG

t
mapper

mapL3D

．
nameztem

＼ notifyMsg

I¥
Big3Dobject named3Dobject polygon3D

kecti!/ n
Asectiongroup

AnatomyObj

Figure 4: The hierarchy of objects which are extensions of the UIT class library. Classes taken from the UIT
library are written in bold, and new classes, derived from the UIT classes, are in italic.

16

void receive_other(Generic *)

void ClearCanv邸()

GenericLish getPaintList()

void addgraphicObject (Generic *)

DisplayG& operatorくく (char*colorname)

DisplayG& operatorくく (longcolor)

DisplayG& operatorくく (linestyle1)

DisplayG& operatorくく (graphicoperationg)

DisplayG& operatorくく (xllpolygonp)

DisplayG& operatorくく (XPointX)

void setHighlighted (

Boolean t=TRUE)

long

long

long

long

getPixelbyStructureN ame

(char *name)

getPixel(char *colorname)

getBlackPixel()

get WhitePixel()

17

Communicates with other objects, using

notifyMsg class objects. Using the re-

paintMSG message causes it to repaint by

calling its Redraw Handler

use Xll call to clear the drawing surface

returns the list containing objects to paint

Any graphic object which is derived from

a Generic class can be inserted in the list

Used to set a color (like writing the string

to standard output with theくく operator)

Set a color by pixel value

set a linestyle: Objects of the follow-

ing classes can be used: dotted.line,

dotdash_line, dashed_line, dotdotdash_line,

and dash3doLline. See attributes.h for def-

inition of linestyle classes.

A graphicoperation is a class that is for

instance created as follows: graphicoper-

ation gob(Xxor). G << gob would then
cause the graphics mode to be xor.

plot a 2D polygon of XPoints, see

xllpolygon.h

Plot a XPoint

Causes the line thickness to be set to 2,

if there is no argument or if it is TRUE,

otherwise to 1, which is default.

The program first tries to communicate

with all other programs to translate the

character string name into a color name. If

a listpopup class object is associated with

this object the name can be translated, if

it is in the listpopup's table. If the name

could be translated into a colorname, it

is translated into a pixel value using the

default colormap. If the color can not be

found, a pixel value of OL is returned.

The default color map is used to find the

pixel value

returns the pixel for black from default col-

ormap.

returns the pixel for white from default col-

ormap.

2.c.2 mapper and mapper3D

Class mapper. Inherits directly from DisplayG, and thus indirectly from ComponentDisplay, UIDisplay,

UIObject.

Members:

平
~

double xscale, yscale,virLheight,

virt_ width, virt_origx, virLorigy

mapper()

void
void
double
double

set WorldHeight(double);

set World Width(double)

get WorldHeight()

getWorldWidth()

void

void

void

moveto(vector2 &v)

drawto(vector2 &v)

（ drawpolygon vector2 *V, mt n)

void drawrne(rnapper &rn)

protected. These data items hold the de-

scription of the virtual screen which is

mapped onto the drawing surface. There

are more protected members, see the in-

elude files.

Constructor. Sets defaults.

These public functions are right now im-

plemented to access protected data. The

class mapper was primarily written as a

baseclass for mapper3D, which can directly

use the protected class members. So these

functions may be obsolete for the mapper

class.

Moves to the point without drawing.

Moves to the point drawing.

Draws a polygon of n points, moving to the

first without drawing.

Empty function.

The class mapper3D inherits directly from mapper, and thus indirectly from DisplayG, Component Display,

UIDisplay, UIObject.

Public Members:

mapper3D()

void

Constructor

renew Parameters()

void

void

void

set_ vrp(Point3 vrp)

set_vrp(double x, double y, double z)

seLep(Point3 ep)

void set_ep(double x, double y, double z)

This member communicates with other ob-

jects that are connected to this object in

order to obtain a viewpoint information.

The notify Msg of type viewpointREQMSG

is sent to all associated objects. (see Ob-

serverPanel, FlowNode.h)

Sets the view reference point explicitely

Sets the view reference point

Sets the position of the observer's eye-

point.

Sets the position of the observer's eye-

point.

18

void

void

void

void

void

void

void

Boolean

vector2

XPoint

void
void

void
void

void

void

set_up(Point3 up)

set_ep_polar(double height,

double length, double dist)

set_observer_height(double h)

set_observer_distance(double d)

set_observer_length_angle(double 1)

set_observer_ view angle(double angle)

setparallelProjection (Boolean t=TRUE)

Projection_is_parallel()

project(vector3)

screen_map(vector3 x)

moveto(vector3 &v);

moveto(Point3 P)

drawto(vector3 &p);

drawto(Point3 P)

drawpolygon(vector3 *V, int n)

drawme(mapper &m)

19

Sets the up-direction. If not set the z axis

is used as default.

Sets the observer's eye point in spherical

coordinates. height is a value between -

90.0 and +90.0 describing the altitude of

the observer's eye. 0.0 corresponds to the

horizon which is the x-y plane. length is a

value between 0.0 and 360.0 describes the

longitude, whereby 0.0 corresponds to the

direction of the x a.xis. dist is the distance

of the eye-point from the view reference

point.

Set altitude of observer

Set observer distance

Set observer longitude

This angle in degrees (common values 2-

45) determines the viewing width of the

mapping. A small value results in a map-

ping that is close to parallel projection.

Logical switch between parallel and per-

spective projection

Check the value of the switch which deter-

mines if the projection is parallel or per-

spective

The function that allows to calculate a

mapping without drawing anything. Re-

turns the 2D vector that could be plotted

by an object of class mapper to produce an

image on the screen.

returns the XPoint after projection, con-

sidering the current window size.

Calculate the projections on the screen and

move to the corresponding point or vector

without drawing a line.

Move to point or vector with drawing a

line from the previous position. Last point

moved to is always memorized in the map-

per.

Draws a 3D polygon as projection on the

screen. Moves to the first point without

drawing.

Generates a simple colored coordinate

cross. This function is not implemented

-see ObserverPanel class, which contains

the drawing of a little coordinate axis sys-

tem.

、・
・

Figure 5: Appearance of a class object ObserverPanel

2.c.3 Linestyle classes in attributes.h

In the file attributes.h some classes are defined which implement such concepts as a dashed line or a color.
These class definitions are mostly obsolete. Only the definitions for linestyles should be used.

linethickness and dotted_line are classes that creates an object as follows:

linethickness 1 t (2);
dotted...line dl;

This creates an object representing a linethickness of 2 and one representing a dotted_line. They can be seen
as symbols to be written to a device to put it in a particular mode so that it uses thick dotted lines: The
objects can be be written to the mapper3D object or a DislayG object in the following way:

*M3 << lt << dlくく ''Green'';

where M3 is a pointer to a mapper3D object. After that drawing will be done in thicker green dotted lines.

Other classes of this kind are the following: dotdash」ine,dashedJine,dotdotdash-1ine, and dash3dot-1ine

Colors as long integers (representing a pixel) can be treated the same way as explained for colorstrings.

2.c.4 ObserverPanel

The object Observer Panel is directly derived from UIDisplay. It contains a drawing surface which is an
object of type mapper3D, and a control panel (object of class ComponentDisplay) which contains four sliders
and some buttons. The sliders control the altitude, longitude, distance and viewing width of an observer's
eye-point. One button switches the projection type between parallel and perspective projection. A switch
allows the selection of slow or fast mode. In fast mode a redraw signal is sent to all associated objects after
any change of one of the parameters, and in slow mode a pushing the set button is required (only visible in
slow mode). The reset button will set the system to predefined (see ObserverPanel.h) values. See figure 5
for a the outlook of the object when implemented within a popup window.

20

This class contains a set of internal (private) handler functions which allow it to react to events occuring on

the sliders and buttons. NOTE: An object of class ObserverPanel has to be created in a Base Window or in

a PopUpWindow. Both its mapper3D panel (with the rotatable coordinate system) and the control panel

have to be made child objects of the parent BaseWindow or Pop Up Window. To accomplish that, a call of

ObserverPanel::connect2base() is required.

OberserverPanel() The generator. It installs all the sliders,

buttons and toggles within the object and

initialized them.

int get_o bserver_heigh t () returns observer altitude (between -90 and

+90)

int get_o bserver_ width() returns viewing angle in degrees.

int get_o bserver_horiz () returns observer longitude (0 to 360 de-

grees)

int get_o bserver_dist () returns observer distance.

Boolean is_Pro j ection_ parallel returns TRUE for parallel projection or

FALSE for central projection.

void set_obs_height(int h) sets observer's altitude (-90 to 90 degrees)

void set_obs_width(int w) sets observer's viewing angle (1-45 degrees)

void set_obs_hor(int h) sets observer's longitude (0-360 degrees)

void seLobs_dist(int d) sets observer's distance (1-999 units)

void setX(int x) sets left upper corner X coordinated in the

application window

void setY(int x) sets left upper corner Y coordinate in the

application window

void connect2base(Base Window *BWind) Use this function after creating an Ob-

server Panel to make its canvas and its con-

trol field children of the B邸 eWindow

void connect2base(Pop Up Window *PWind) Use this function after creating an Ob-

serverPanel to make its canv邸 andits con-

trol field children of the Pop Up Window

2.c.5 listpopup

The class listpopup is derived from Pop Up Window, and thus indirectly from UIWindow and UIObject.

The purpose of the class is to show a list of names that are associated with colors. For each name the color

is shown in a little rectangle. The user can select and deselect a check marker for each name. A listpopup

object communicates notify Msg's of the type selectMSG and unselectMSG and redraw MSG to all connected

objects. There are three buttons which allow general settings in the list.

Public Member functions:

21

囮 Bone
閾 o_Geni四IOSSllS

O_SUl)_Lonqit.
O_ltlf_LOllQit.

゜
Trans versus

"''l"'"'li''ll'j' ::,1::11lml:1111!1』囮 o_ verticalis

冒璽!il!o_Hyoqlom』S
,,,,,,,,,,,,,,,,,,,

1,iiiiilh,ill纏i図 0_styloqlOSSllS
,；； :1』』111111:111;閾 0_PalatoQIOSSllS
量Ill町 O_StyloHりoid
璽譴閲 o_Gloss_Phan•nq
"''""""''

,::ii::tt;,1,1閾lilio_Diqastric_post
,,,,,, し'l'I咄,,

, 11ii,,!:11l;1ii!I 』I~ 閲 o_omohvoid

璽璽口 o_DiQastric_ant ,,..,,,,,,,,,,,

曲,:;丘1』C1o_GenioHvoid
O_MyloHりoid
d_ Genioqlossus

亡l. d_Sup_Lonqit.
に}d_ltlf_LOtlQit.

醤

’̀

Figure 6: Appearance of a class object of type listpopup. It reads the list of structures and colors to display
from a file. The class allows selection and deselection of named items in the application. ヽ

22

listpopup(char *file, char *title) Class constructor. The file has to contain

items of the kind:

structure-name color

and is has to contain the number of list
entries in the first line. See the file anato-
mytable.map as an example

~listpopup() Class destructor

Boolean isSelected(int 1) returns TRUE if line 1 (starting at I) is

selected, otherwise FALSE

Boolean isSelected(char *name) returns TRUE label name exists and is se-

lected, otherwise FALSE

void setSelected(int 1) set the label in line l selected

void set U nselected(int 1) set the label in line 1 unselected

chau fieldlabel(int n) returns the character string of the label of

line n (starting at 1)

int N umberofLabels() returns the number of list items.

char* color_of(char *name) translates a structure into a colorname ac-

cording to the that was used to create this

object.

void communicate(UIObject *O) function used by this object to send in-

formation to other objects (should be pri-

vate).

void receive_other(Generic *g) function to receive information from other

objects. This function is virtual in the base

class Generic

2.c.6 listtoggle

Similar to listpopup the class listtoggle is derived from Pop Up Window and thus inherits indirectly from

UIWindow and UIObject.

This object is like a two-dimensional list: For a number of names several states can be selected in an exclusive

choice. For example, a list of named graphical objects can have an exclusive state variable which can have

the state invisible, visible, highlighted. The construction of the class is the only complicated part of it: One

specifies a list of names, and another list of type MsgType (as specified in FlowNode.h)). Selection of one

of the choices in a list element causes that a listtoggle class object sends a message to all associated objects

and specifies the as MsgType the type that is associated with the pressed button's column.

Public Member functions:

23

Figure 7: This is an object of the class listtoggle. It allows selection from a list of mutually exclusive states

of objects.

list toggle(char *title,

int nlines,

char **labels,

int mcolumns,

char **entries,

MsgType *messages,

Boolean master=FALSE)

~list toggle()

int

int

void

char*

int

void

Selection(int n)

Selection(char *name)

setSelection(int line,int column)

fieldlabel(int n)

N umberofLabels()

setMasterSettings()

24

Class constructor: The title appears in

the title field of the underlying Pop Up-

Window. nlines gives the number of lines

(labels). labels is an array of character

strings which become the labels for each

line. mcolumns is the number of columns

associated with each line. entries is an ar-

ray of (length mcolumns) of labels to be

placed on the bottons in each line. mes-

sages is an array (length mcolumns) of

variables of type MsgType which specify

what message type has to be sent if one of

the columns in a line is selected. master is

a variable which determines if there should

be a general line which allows everything

to reset.

Class destructor

returns the column number of the selection

in a line n

returns the column number of the selection

in the line with the label name

sets one entry selected and the other in the

same line unselected

returns the field label of line n

returns the number of lines

This is usually only used internally; it

should be a private member function.

2.d Graphic objects

Class named3Dobject is a derivative of the class GenericList. From GenericList it inherits all the features
of a fast operating list of Generic objects. As long as all graphic objects are derived from the base class
Generic, they can be assembled to any complexion of graphic objects. Unfortunately, the class UIObject
would even be better as a base class for graphic objects, since it then could also receive Xview events, could
have it's own event handler, and other useful features of UIObject. The following considerations lead to the
decision of having two types of objects for 3D graphics, the named3Dobject and the Big3Dobject:

named3Dobject: There is a lot of special simple objects like for instance polygon, or rectangle. However,
a simple polygon should have some more features, as there are: it can be hightlighted, it can be translated,
it can be rotated. It can have a name which decides over its being selected for display or not, etc. Since we
want to have thousands of polyugons in an application, one of them shouldn't take too much space away.
If each graphic object of this kind would be based on the class UIObject, the storage overhead would be
considerably high.

Big3Dobject This class should have mostly the same features as the named3Dobject but should further
be able to communicate as a normal graphic object in the UIT class library. For example, HotRegions can
be associated with it enabling direct interaction with the mouse and keyboard, and it can be a target of
Xview events (and thus Xll events). An important reason for installing this class was that the UIObject
class contains the member functions to associate different UIObjects with each other: setObjectData(),
traverseObjectData(). Further, a Big3Dobject is designed to be loadable from a file (or multiple files), and
can be saved to a file (not yet implemented). These functions have to be implemented in the subclasses
derived form this class, since they depend completely on the data structure. Thus Big3Dobject is an abstract
class. A Big3Dobject (a class derived from it) will usually contain multiple parts which are objects derived
from the class named3Dobject. Usually only few (1 or 2 or more) Big3Dobject are operated within an
application program.

In the current project, the program observer loads sketches of slices of tongue specimen from multiple files
and displays them in 3D. The individual polygons within each sketch of a tongue section are namedpolygon3D
objects which is a special class derived from named3Dobject. Many such namedpolygon3D objects are in
one section, which is represented by the special class Asection. The whole set of sections is represented
by a class Asectiongroup. All three special classes, namedpolygon3D, Asection, and Asectiongroup, are
derived from named3Dobject. However, the object AnatomyObj is derived from Big3Dobject and contains
objects of types namedpolygon3D, Asection, and Asectiongroup. The AnatomyObj contains the whole set
of namedpolygon3Ds, Asections, and Asectiongroups.

2.d.1 nameitem

The data of this class contains four items: a char-string as a name, and three Boolean variables, visible,
selected, highlighted.

Public functions are:

.
name1tem()

nameitem(char•name,Boolean selected=TRUE)

25

Empty class constructor, generates a
nameitem with no name, sets visible to
TRUE, the other Boolean variables FALSE

class constructor: Sets selected to the value
sel (default TRUE) and generates a copy
of the name character string.

void set name(char *X)

char *Name() const

Boolean hastheN ame(const char *X) const

Boolean is Visible()

void set Visible(Boolean v = TRUE)

Boolean isHighlighted()

void setHighlighted(Boolean v=TRUE)

Boolean isSelected()

void setSelected(Boolean v=TRUE)

Boolean isNamed()

void select_by _name(char *name,

Boolean v=TRUE)

void unselect_by_name(char *name)

void highlight_ by _name (char *name,

Boolean v=TRUE)

void setvisible_by_name (char *name,

Boolean v=TRUE)

2.d.2 Abstract Class named3Dobject

replaces old name by new name

returns a char * reference to the name.

compares this name with own name and

returns TRUE if they are the same, other-

wise FALSE.

returns visible

Sets visible (default: to TRUE)

returns highlighted

Sets highlighted (default: to TRUE)

returns selected.

Sets selected (default: to TRUE)

returns TRUE if the name is set (depends

on how the object was created).

Sets selected if the name fits.

Sets unselected if the name fits.

Sets hightlighted if the name fits.

Sets the object's variable visible if its name

is the same as the name in the argument.

named3Dobject has multiple inheritance from nameitem and GenericList. However, the original mem-

bers addltem and traverse, which are already defined in the GenericList class, are modified such that only

other named3Dobjects and thereof derived classes can be hung in the list of a named3Dobject. Thus, a

named3Dobject can contain several recursive member functions which do the same operation on all other

named3Dobjects which are contained in one named3Dobject. This class is abstract, that is it contains

some members which are not defined and have to be defined in derived classes: make-1iull(), translate(),

rotate(), paint3DThis().

named3Dobject(char *name)

named3Dobject()

26

Class constructor, initializes

also nameitem part. Sets the color to non

defined value.

Class constructor for a named3Dobject

which has no name.

virtual void make_hull() = 0

void addltem(named3Dobject *n3o)

named3Dobject *traverse(Boolean flag)

vector3 center()

virtual void translate(vector3 &v)

virtual void rotate(rotator &r)

virtual void paint3DThis(mapper3D *g)

void drawHull(mapper3D *m)

void setcolor(long cc)

long getcolor()

Hull getH ull()

void select_all_named(char *Il)

27

Protected This member has to be defined

in classes that are derived from this class.

The function returns a Hull object, which

is a quarder that contains the graphic ob-

ject of the derived class. The hull quarder

is stored in the named3Dobject class, but

the function to create it can not be writ-

ten as a universal routine, because it de-

pends on the specific properties of the de-

rived special named3Dobject.

Inserts an object of class named3Dobject

or a class object derived from

named3Dobject.

It uses the GenericList part but only allows
named3Dobjects to be inserted in the list.

This is done by casting the pointer n3o to

a named3Dobject pointer, which is a valid

operation only if n3o points to an object

derived from the named3Dobject class.

Traverses the list of named3Dobjects that

have been added using addltem() (above),

to start the list traversing, the flag has

to be set TRUE. By multiply calling

this member function while setting flag to

FALSE after the first call, one can get

a pointer to all named3Dobjects in the

list. When the list is exhausted, a NULL

pointer is returned.

Calculates the hull of the object and re-

turns a vector3 containing the center of the

hull. The hull is a quarder which contains

the whole object.

Abstract virtual -not defined. Must be

defined in derived classes

Abstract virtual -not defined. Must be

defined in derived classes

Abstract virtual: not defined

Draws a quarder in the 3D mapper which

represents the box that contains the ob-

ject.

cc is the Pixel value which can be obtained

from a colormap

returns the currently set pixel value of this

object.

makes a new hull and returns it.

recursive: this and all objects in this class

with the name n are set selected

void

void

void

unselect_all_named(char *)

highlight_ all_named(char *name,

Boolean flag)

setvisible_all_named(char *name,Boolean flag)

2.d.3 Class Big3Dobject

recursive: this and all objects in this class

with the name n are set unselected

recursive: this and all objects in this class

with the name n are set highlighted.

recursive: this and all objects in this class

with the name n are set visible

is an abstract class. It inherits from UIObject and nameitem. Most of its functions have to be im-

plemented by derived cl邸 sessince they are data dependent. This cl邸 sw邸 introducedso that a larger
and more complex graphic object is b邸 edon the cl邸 sUIObject rather than on GenericList. This allows

the treatement邸 apoint of communication withing the application. See the cl邸 sAnatomyObj which is

derived from this one, 邸 anexample.

Big3Dobject()

Big3Dobject(char *name)

~Big3Dobject()

virtual void paint3DThis(mapper3D *M) =0

virtual void load_from_disk(char *filename) =0

virtual void save_to_disk(char *filename) =0

virtual void initialize() =O

2.e Special Classes

2.e.1 Class Hull

class constructor: name not defined

cl邸 sconstructor: name defined and visible

set to TRUE.

Cl邸 sdestructor: empty function

Undefined, Abstract Cl邸 S

Undefined, Abstract Cl邸 s

Undefined, Abstract Cl邸 s

Undefined, Abstract Cl邸 s

This class implements the features of guarders in 3D that contain a 3-dimensional object. A hull is defined

by the two 3-dimensional vectors which describe 3 intervals, and can be seen as diagonally opposed edges of

the guarder. The first vector contains the lower limits of the intervals and the second the higher values. A

hull with no defined limits is empty. The class Hull implements an addition operator where the sum of two
hulls is the hull which contains both.

Hull() Class constructor. Creates an empty hull

Hull(vector3 v) Class constructor. Creates a nonempty

hull (quarder) containing only one point

Hull(vector3 vl,vector3 v2) Class constructor. Creates a quarder

Hull(double xl, double yl, double zl, double x2, double y2, Class constructor. Creates a quarder with
double z2) exphc1tely statmg the two corners.

Boolean is_empty() returns TRUE if the quarder is empty.

28

vector3

vector3

vector3

void

void

Hull

center()

lower()

higher()

clear()

operator += (Hull h)

operator + (Hull a, Hull b)

2.e.2 Class polygon3D

polygon3D()

polygon3D(int n)

polygon3D(Point3 a, Point3 b)

~polygon3D{)

void

Point3&

void

void

Point3

int

addpoint(Point3 &X)

operator [) (int m)

translate(vector3 &v)

rotate(rotator & r)

*first()

no_points(),or int cardinality()

2.e.3 Class namedpolygon3D

returns the middle point of the quarder

and a null vector if it is empty

returns the vector with the lower interval

limits

returns the vector with the higer interval

limits

Makes the hull an empty hull

add a hull h to this hull. The result is

replacing this hull by a hull which contains

both this hull and h

returns a hull which contains both hulls a

and b. Friend function

Class constructor. empty polygon

Class constructor. Space for n edge vectors

Class constructor. Creates a polygon of

two vectors -a straight line

Class destructor. Clears memory

append a vector to the polygon

allows access to the points of the polygon

like in an array. Can be used as right hand

side of an expression or as left hand side of

an expression. If m is out of range, access

to the first (index O)

Add vector v to each point in the polygon.

Rotates all points around a reference a泣s

with specified angle. See the class rotator

returns the address of the first point in the

array.

returns the number of points in the poly-

gon

This is a simple extension of polygon3D, inheriting from polyg6n3D and named3Dobject

namedpolygon3D()

namedpolygon3D(int n)

29

Class constructor. Creates nameless,

empty polygon

Class constructor. Creates nameless poly-

gon with space for n vectors

namedpolygon3D(char *na,int n=O)

namedpolygon3D(char *na,Point3 a, Point3 b)

void

Point3&

void

void

void

paint3DThis(mapper3D *M)

operator D (int m)

translate(vector3 &v)

rotate(rotator & r)

make_hull()

2.e.4 Class Asection

Class constructor. Creates named polygon

with space for n vectors, default if n is not

specified: 0

Class constructor. Creates named polygon

consisting of two vectors

The polygon draws itself with this func-

tion.

allows access to the member vectors in an

array style.

add v to all points of the polygon

Rotates all points around a reference axis

with specified angle. See the class rotator

Protected. The hull is stored in the

named3Dobject-part of this object. It is

defined here, abstract in named3Dobject

This cl邸 srepresents a tongue section sketch. It is derived from the class named3Dobject.

Asection()

Asection(char *name)

~Asection()

void

void

void

void

void

load_from_file(char *filename,int x_coordinate)

paint3DThis(mapper3D *g)

translate(vector3& v)

rotate(rotator& v)

make_hull()

2.e.5 Asectiongroup

Class constructor. Empty

Class constructor. A named section (The

file name can be used as the name.)

Empty class destructor.

Loads the section from file. The x and y

coordinates in the file are used as y and

z coordinates. The new x value has to be

specified to obtain a 3D representation

Draw this section by mapping it with the

associated mapper3D object

add a vector v to all vectors in the section

rotate the section with an operator defined

in the rotator class object r, see class rota-

tor.

Protected. Calculates a new hull which is

stored in the named3Dobject part

This class represents a series of tongue section sketchs. It is derived from the class named3Dobject. It
contains all data of a series of tongue sketches.

30

void make_hull()

Asectiongroup()

Asectiongroup(char *name)

~Asectiongroup()

void

void

void

void

void

add_section(Asection *as)

add_section

（ char *filename,mt x)

paint3DThis(mapper3D *g)

translate(vector3 v)

center_aLorigin()

2.e.6 AnatomyObj

Protected. calculates a new hull which is

stored in the named3Dobject part

Class constructor. Empty

Class constructor. A named section group.

Empty class destructor.

Adds a section of class Asection

Creates a section by reading it from a file,

using the x value to make a 3D slice, and

adds it to the list of subobjects.

Draws everything

In each slide, in each polygon, the vector v

is added to each vector.

calculates a new hull and its center, and

the translates the whole object to the cen-

ter of the hull and calculates a new (trans-

lated) hull.

This class is derived from Big3Dobject. It is used as a wrapper to have the tongue sections represented

as a Big3Dobject. It can thus communicate with other objects derived from UIObject. The class contains a

pointer to an object of class Asectiongroup to hold the data.

AnatomyObj()

AnatomyObj(char *name):Big3Dobject(name)

AnatomyObj(char *name,Asectiongroup &A)

AnatomyObj(char *name,Asectiongroup *A)

~AnatomyObj()

void

void

void

void

void

receive_other(Generic *g)

paint3DThis(mapper3D *M)

load_from_disk(char *filename)

save_to_disk(char *filename)

initialize()

31

Empty class constructor

Class constructor with name

Class constructor with name and reference

to already existing Asectiongroup object.

Class constructor with name and pointer

to already existing Asectiongroup object.

Class destructor, deletes all data

Communication with other UIObjects (see

FlowNode.h). Used for allowing highlight-

ing, selection and deselection of parts of

the tongue section display.

Calles the painting function in the Asec-

tiongroup (pointed at by the pointer data.

The filename contains a list of other file-

names together with a x values that give

the position of the section.

Empty: Not yet implemented.

Currently: Centers around the midpoint of

the sections.

2.f class notifyMsg for communication between different objects

From the UIT library comes the concept to link different objects at run time using the UIObject's member
function set Obj ectData. set□bj ectData is a member of the class UITObject, therefore each class derived
from it has this member. For example, in the main program observer_ui. cc, the following connection is
established:

Maincanvas.setObjectData("ObserverPanel",Observer_Panel);

As a result in the code for the object Maincanvas (which is of class type mapper3D), a pointer to the object
Observer_Panel can be obtained by using the inverse function get Obj ectData.

Various objects as part of this software need to interact in some standardized way. However, the mentioned
type of linking objects seemed to be too specific. We don't want to rely on special names of other objects
when writing the code for a particular class. All that is needed is a connection between objects and methods
of communication. For this purpose, a particular kind of message system, which can be seen as a broadcast
message system, was desiged.

For example, a certain object of class XY changes program parameters that require redrawing all views
of a graphic object. Since there may be all kinds of drawing routines in the program, XY can broadcast
simply: "To whom it may concern: you probably need to redraw." This type of broadcasting messages is
implemented in the class notifyMsg, which is coded in the files FlowNode.h and Flow Node.cc. It is realized
as traversing the list of associated objects and sending them a message. An object B is only notified by an
object A if it is connected with A by a command like:

A.setObjectData(''some string'',B);

The method of message sending can be understood from the include file FlowNode.h, where the data type
notityMsg is defined, and from the example of an ObserverPanel class object communicating the change of
the observer position to other objects, in particular, tt mapper3D class objects. Another simple example is the
implementation of the class function DisplayG: :getPixelbyStructurellame(char•name). The function
creates a notifyMsg with the general request to translate a string. The message is sent to all objects that
are linked with the DisplayG object. If there is an object that understands this message (listpopup, see the
implementation of the function listpopup::receive_other) the receiving and answering object will set a flag in
the message structure, notifying back that the request was answered.

The efford of builing inter-object communication in this way is justified by the advantage that interdepen-
dencies between the different class definitions can be avoided. If the class DisplayG (and derived classes
mapper and mapper3D) would directly call public members of listpopup, the class DisplayG would depend
on the class listpopup. This strategy also cuts down on the number of included include-files.

Where the re-used software of UIT class library is concerned, the outlined communication method required
only a little modification in the highest base class for all objects in the UIT library: The function virtual void
receive_other{Generic *g) was included as a member in the class definition of Generic. In class Generic
the function receive_other(Generic *g) does nothing but return, whereas in some derived classes the function
can be implemented to realize the particular communication abilities of that class.

The communication method is illustrated in the below example.

avoid that each object has to contain very much information about other objects. This requires some
general purpose interface between the different objects. A principle of broadcasting was used to realize

32

communication between objects. For example, if a user sets in an object of class listpopup certain names as
selected, other objects, e.g., a graphics object derived from the class Big3D0bject, has to be automatically

informed about this. While writing the code for the listpopup class, we want to do the design without any
knowledge of future objects which are going to interact with a listpopup class object. To realize that, a
listpopup object has to send a message to all other objects that are known to it. Here is an example:

In the main program, somewhere a Big3D0bject class object is created, and a listpopup class object. In
order to allow communication between them the two have to be connected:

.
main(...

Big3DObject xbach;

...
listpopup lpop;
．．．
lpop. setObj ectData(''some3Dbigthing'1, xbach);

In the listpopup class object, the code to communicate looks as follows: (myself is a pointer to the class
object -the shown code is part of a static handler function)

MsgType mst;
if (choice) mst = selectMSG;
else mst = unselectMSG;

notifyMsg msg(myself ,mst);
notifyMsg repaintreq(myself,repaintMSG);

msg. send_to_all(myself ,myself->fieldlabel(index) ,mst);

repaintreq. send_to_all(myself);

Big3DObject can accept the two types of messages selectMSG or unselectMSG:

switch (msg->getType())

｛

case selectMSG:
data->select_all_named(msg->getString());

The class notifyMsg contains the following data elmenents:

o Generic *source

o Generic *destination

o MsgType type

o Generic *object

Pointer to the object that sends the message

Pointer to the current recipient.

Message type, see below

Pointer to an object that must be derived from Generic and that can
be destroyed when the message is going out of scope or is deleted.

33

o char *string A string that can be destroyed when the message is going out of scope

or is deleted.

o Boolean replied Is set to FALSE until some object sets it to TRUE, signalling that a

request was answered. Example: In the member function renewParam-

eters of class mapper3D, a request is made to inform about the current

viewpoint. An object of class ObserverPanel can answer this request

and will set the variable in the notifyMsg to TRUE.

Message types. MsgType is an enum constant type and has currently the following possible settings (not

all are used sofar):

enum MsgType { unspecifiedMSG, triggerMSG, initializeMSG, resetMSG, updateMSG, repaintMSG,

charstringMSG, objectMSG, selectMSG, unselectMSG, highlightMSG, listMSG, translateREQMSG, view-

pointMSG, viewpointREQMSG }

Public function members of the class notifyMsg

notify Msg()

notifyMsg(Generic *src)

notifyMsg(Generic *Src, MsgType t)

notifyMsg(Generic *src, char *txt,

MsgType t=charstringMSG)

void sendMsg(Generic *<lest)

void send_to_all(UIObject *src)

void request_from_all(UIObject *SIC)

void exchange_string(char *new ..str)

void seLreplied(), Boolean is_replied()

Generic* getSource()

34

Generator, nothing set.

Generator, sender specified

Generator, sender and type specified

Generator, sender, a character string, and

optionally a type specified. If the type is

omitted, charstringMSG is assumed as de-

fault value

calles the routine receive_other in the des-

tination dest. This member is overloaded,

see Flow N ode.h

This routine finds all objects that are con-

nected with the sender src and sends them

this message. This member is overloaded,

see FlowNode.h

This routine finds all objects that are con-

nected with the sender src and sends them

this message. It stops finding objects when
the request has been answered (some recip-

ient has set the replied flag in the message).

This member is overloaded, see FlowN-

ode.h

Deletes the old string in the message and

replaces it by a copy of new_str. Relevant

for translations of one string to another.

Example: DisplayG returns communicates

with a listobject to translate a structure

name string into a color name string.

Used for communicating request noti-

fyMsg's

returns the sender of the message

i;

／

Generic*

Generic*

void

MsgType

chau

getDestination()

getObject()

setObject(Generic *O)

getType()

getString() const

notify Msg()

returns the destination of the message

returns the object transported in the mes-

sage

overwrite old object pointer in the mes-

sage. Relevant for exchanging an object on

request. Example: In ObserverPanel the

observer position is set via a special struc-

ture in which the information is contained,

and which is known in both the mapper3D
class and in the ObserverPanel class.

returns the type of this message

returns a reference to the char string in the
message, or a (char *) NULL.

Class Destructor. Attention: It deletes the

char string if there is one, and it deletes the
object in the notifyMsg if there is one.

3 Technical details of implementation

The following gives a short description of the particular computer environment that was used.

The AT&T C++ compiler release 2.1 was used. It is installed on the sparc station hsun23 at ATR which

was in my use. The path to the compiler is currently:

/export/hsun23/lang/CC

The followin environmental variables have to be set in the Unix environment:

CCINC=/ export/hsun23/lang/SC1. 0/include/CC ; includes for C++

GUIDEHOME=/usr/local/devguide ; to use devguide

UITHOME=/home/hsun23/wilhelms/uit/UIT ; UIT library

GENERICHOME=/home/hsun23/wilhelms/uit/Generic ; ...

UITSUPPL=/home/hsun23/wilhelms/uitlib ; This libraェy
LEDA=/home/hsun23/wilhelms/LEDA ; LEDA
HELPPATH=/usr/local/devguide/lib/locale:/usr/local/devguide/lib/help:/usr/local/openwin/lib/help

Currently the library is installed in the directory /homes/wilhelrns/uitlib. The include files are in /homes/wilhelms/ui1

and the source files in /homes/wilhelms/uitlib/src. This documentation is in /homes/wilhelms/uitlib/doc.

The source directory /homes/wilhelms/uitlib/src contains a Makefile which can create the files in /homes/wilhelms/ui1

libUIC.so.2.0* and libUITSUPPL.a.

3.a The program observer

It can be found in the library /homes/wilhelms/observer There is a Makefile which, if the environmental

variables are set as above, will compile and link observer. The main program is in observer_ui.cc, and

35

observer_stubs.cc contains several handler functions. This program is not completed, even though it works
properly. Additional functions are meant to be added soon: In the immediate future a method will be added
to move, rotate and deform the displayed sketches of biological specimens in order to align serial sections
under visual feed back. Further, a part for loading and saving files will be installed.

Right now, most of the buttons that are contained in the main panel have no real function, except that
pushing them causes some empty handler functions to be called. The program observer was first constructed
with devguide and then considerably modified, replacing for example the ComponentDisplay class object
MainCanvas by a mapper3D class object MainCanvas.

3.b Support

I will continue the development of this library after returning to Columbus, Ohio. From time to time I will
make updates available, via electronic mail or via ftp. I apprechiate any suggestions and bug reports. Have
fun.

My E-mail address in Columbus Ohio is:

reiner@shs.ohio-state.edu

My address in Columbus:

Reiner Wilhelms, D. Sc.
Speech and Hearing Division
The Ohio State University
101 Pressey Hall, 1070 Carmack Rd
Columbus, OH 43210

36

f

	001
	002
	009

