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Abstract 

Pattern recognition consists of two main stages: feature extraction 
and classification. Needless to say, these two constituent processes should 
be designed systematically in a manner consistent with accurate recog-
nition. However, such consistency has not yet been achieved in pattern 
recognition methods up to now. We thus propose in this paper a novel 
solution to this important long standing problem. The proposed method 
is mainly based on a recent discriminative learning theory, the Minimum 
Classification Error formalization and the Generalized Probabilistic De-
scent method, and referred to as Discriminative Feature Extraction. A 
key idea of Discriminative Feature Extraction is to embed both procedures 
of feature extraction and classification in a smooth functional form and 
consistently design both stages so as to reduce the number of miscla.ssifi-
cations. An application of the method to speech recognition clearly shows 
the great promise of this new approach. 

1 Introduction 

For clarity of discussion, we assume that pattern recognition consists of two 
stages, feature extraction and classification. Feature extraction is usually exe-
cuted based on knowledge specific to a given task or criterion that is not directly 
linked to the final classification goal. On the other hand, classification is gener-
ally performed by using statistical pattern classification of the resulting features. 

In this paper, we present a method which integrates the two stages so as to sys-
tematically perform the entire recognition process in a manner consistent with 
accurate classification. 

The recent advent of Minimum Classification Error formalization (MCE)/ 

Generalized Probabilistic Descent method (GPD) provided a new theoretical 
ground for discriminative pattern classification that unifies both the feature 
extraction and classification stages [1-4]. The usefulness of MCE/GPD has 
been demonstrated in many experiments. However, the full potential o'f this 

new framework has not yet been revealed. The most important philosophy of 
MCE/GPD was to formalize the overall procedure in a given task in a smooth 
(at least first differentiable) functional form suited to the use of a practical 
gradient-based search algorithm. This concept is worth applying to many pro-

cedures besides classification. Our focus in this paper is to overcome the above-
mentioned gap between feature extraction and classification by embedding a 

feature extraction process in an MCE/GPD-based classifier design. We call 

this discrimination-oriented feature extraction Discriminative Feature Extrac-
tion (DFE). This paper is intended to introduce this novel approach to pattern 
recognition. 
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The paper is organized as follows. In Section 2, MCE/GPD is described. In 
Section 3, we specifically focus on the idea of embedding the entire classification 
process in a smooth functional form. Section 4 is devoted to introducing DFE 
and examples of its application to speech recognition. The paper is summarized 
in Section 5. 

2 MCE/GPD-Based Discriminative Learning 

2.1 Discriminant function approach: background of MCE/GPD 

Here, we consider an M-cl邸 scl邸 sificationt邸 k,{C1}如 Acl邸 sifierconsists 
of a set of trainable parameters A. Given a set of design pairs, a pattern sample 

Xn and its cl邸 S Ck (n = 1, …，N and k = l , …, M), we aim at des1gmng an 
optimal A. We also邸 sumethat an individual sample is already represented邸

a J{ -dimensional feature vector. 
Bayes decision theory provides a fundamental guideline to design. This 

approach is b邸 edon the Bayes decision rule 

C(x) = C; if PA(C;lx) = m!3-X凡 (CjIx) 
J 

(1) 

where x is an arbitrary sample, x E炉， C(-)denotes a classification operation, 
and it is assumed that the true a posteriori probability has the parameterized 
form凡 (CjIx) and the precise values of A is known. An actual design procedure 
is to estimate the a posteriori probabilities or conditional probabilities. The 
above decision rule, if it can be used, represents the best classification situation, 
i.e., the Bayes minimum risk. Perfect execution ofEq. (1) guarantees realization 
of the Bayes minimum risk, and this rule can thus be considered a principle for 
statistical classifier design. However, the truth is that this approach suffers 
from the serious difficulty that the nature of the sample distributions, such as 
the form of the density function, is rarely known and it is then almost impossible 
to estimate desired probabilities in Eq. (1). 

An alternative to the Bayes decision approach is represented in the following 
functional form classifier: 

C: 炉→｛◎｝仇 (2)

In this most general case, the decision rule is embedded in a functional form. 
This formalization is less practical, however. Thus, the classifier is us叫 lyre-
duced to a more practical version which is associated with the following decision 

rule: 
C(x) = Ci if g;(x; A) = mjax瓜x;A) (3) 

where 9i (x; A) is referred to as a discriminant function and the classifier func-
tion C(-) is expressed in an operational form. The classification based on Eq. 
(3) and discriminant function designs is referred to as the discriminant function 
approach. This approach does not require assumptions about the form of the 
sample distributions. This allows one to execute the classification in a manner 
more flexible than the Bayesian approach. Any reasonable measure such as a 
distance can be used as the discriminant function. The computation of these 
measures is usually simple. Thus, this approach is quite practical. Recall that 
there are many well-studied examples. A classical linear discriminant function 
has long been used. The resurgence of discriminative learning by modern ar-
tificial neural networks is still fresh in memory. However even this attractive 
approach is not perfect. In particular, there was a big gap between actual de-
sign of discriminant functions and realization of the Bayes minimum risk. One 
solution to this serious difficulty is MCE/GPD. 
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In this section we review the background of MCE/GPD. Design of discrimi-
nant functions is usually characterized by two factors: 1) learning objective and 
2) optimization of A (minimum search of the objective). 

The ultimate way is perhaps to find the minimum of an error count objective 
by using Simulated Annealing. This objective can be represented as the average 
of discontinuous 2-state functions, each enumerating error one for misclassifica-
tion, and zero for correct classification. Given an infinite run of adjustments, 
Simulated Annealing can find with probability one the minimum state of the 
objective, which corresponds to an optimal set of A. This property makes the 
method attractive, but the infinite training it requires is never realistic, and even 
practical implementations of the annealing process converge extremely slowly. 
Moreover, a simple execution of this method in a real situation where only a 
finite number of design samples are available means that even with an infi-
nite training run, Simulated Annealing is still prone to the training robustness 
problem. Therefore, a more practical design method is required. 

Thus, a main concern in developing MCE/GPD was to create a method sat-
isfying the following conditions, 1) directly attaining the Bayes minimum risk, 
2) learning efficiently, and 3) being highly practical. The key to the MCE/GPD 
solution was to embed the entire process of classification in a smooth functional 
form and design an at least locally optimal state of classifier parameters through 
gradient descent-based adaptive training. MCE and GPD are closely related to 
each other, and it is thus rather difficult to draw a boundary between both. In 
this paper, we specifically introduce them in the following categorization: MCE 
is a theoretical framework for discriminative learning aiming at minimum clas-
sification error [3, 4]; GPD is a practical, adaptive learning procedure suitable 
for d1scnmmating various kinds of patterns in the sense of MCE [1, 2]. 

2.2 M'. m1mum classificat10n error formalization 

Let us consider the situation that Xn is selected from the given design samples. 
We assume Xn E Ck. MCE formalization consists of 3 steps. The first step 
defines a discriminant function gj(xn; A) which represents the degree to which 
Xn belongs to Cj. As cited before, any reasonable measure can be used to 
define the function. Specifically, we assume that gj (xn; A) is a distance measure. 
The second step is the heart of MCE. A smooth misclassification measure is 
introduced here to simulate the operation in Eq. (3), i.e., comparison/decision 
among the competing classes. Among many possibilities, 

-1/μ 

叫 x0;A)=釦(x.;A)-[ M~1 ;51.{9;(x.;A) f" l (4) 
is a typical definition, where the classification is expressed by decision on a scalar 
value, andμis a positive number. 山(xn;A) > 0 implies misclassification, and 
dk(xn;A) ::; 0 means correct classification. Note here that varying the value 
ofμallows one to realize various decisions. The third step completes MCE by 
embedding the misclassification measure in a loss 

“ふ；A) =fk(dk(xn;A)), (5) 

where£1,:() is a monotonically-increasing smooth function. The loss is introduced 
to evaluate a classification result. 

We focus on a smooth classification error count loss 

瓜Xn;A)= l a>O, 
l+e―a(山(Xn;A)+/3)' 

(6) 
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where a and /3 are real numbers. It is now clearer that MCE can directly attain 
the minimum classification error situation. As a first step, let us assume that 
the discriminant function is selected so as to have the correct form of the a 
posteriori probability PA (C; jx). The Bayes minimum risk is then expressed as 

where 

M 

E=Lf 凡(x,C1.:)l(x E C1.:)dx, 
k=l ふ

l(A) = { 1, if A is true 

゜
， otherwise 

ふ={x EX  Iハ（叫x)f-呵以凡(CjIx)}, and 

X is the entire observation space. 

(7) 

This can be approximated by the miscl邸 sificationme邸 ureand the loss邸 fol-

lows: 

£=  t,1ふ 凡(x,ら）l(x E Ck)l (凡(Cふ） # m;x:PA(C;lx))dx (8) 

M ==~L. 凡 (x,Ck)l(x E C芯 (dk(x;A))dx. 

An important point here is the fact that the approximation accuracy of Eq. (8) 
can be arbitrarily increased by varying the smoothing constants in the MCE 
functions such as the loss. That is to say, MCE possesses the capability to 
approximate the Bayes minimum risk with arbitrarily high accuracy, in the 
extreme case of this discriminant function approach. This result proves that 
MCE potentially bridges the gap between the discriminant function approach 
and the Bayes minimum risk. 

The smoothness of MCE has turned out to be extremely useful in various 
stages of analysis. In fact, the previous discussion already shows that the use 
of Lp-norm form greatly increases the generality of the classification rule for-
malism. In addition, the effect of smoothness on training robustness should be 
addressed. To describe this point, we consider an empirical classification error 

rate 

1 
N M 

L(A) =NL  Lfk(xn; A)l(xn E Ck)-
n=l k=l 

(9) 

Since sample distributions are unknown, this sample average-form, empirical 
error is only one measurable objective in a real situation. If the loss is a real 
error count, i.e., a piece-wise linear 2-step function, this error rate has the shape 
of a piece-wise linear, multi-step surface. As the number of samples increases, 
the surface becomes smoother and goes to a continuous, curved surface. On 
the other hand, the use of a smooth loss makes the surface of this error rate 
smoother, even if the number of samples is not increased. This effect is equiv-
alent to perturbing and increasing the effective size of design samples. If this 
perturbation is properly done around the original locations of given samples, 
the resultant situation can increase the robustness. Interestingly, it was demon-
strated that the smoothness did not drastically change the shape of the empirical 
error based on piece-wise 2-value losses; i.e., it seems that the perturbation was 
locally effective. Therefore, it is probably true that this smoothness has a cer-

tain contribution to classifier robustness. This effect is evidently worth further 
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investigating, and especially the relation between the loss smoothness and the 
samples finiteness (scatter property) should be an interesting topic. 

2.3 Generalized probabilistic descent method 

As suggested by the name, GPD is a modern, extended version of the classical 
probabilistic descent method [5). GPD gives a rigorous form, suited for gradient 
search-based design, for classifying dynamic (variable-durational) patterns by 
various kinds of system structures. 

We have assumed that the pattern sample is a fixed dimensional vector. 
However, many kinds of natural patterns such as speech signals are actually 
dynamic. For instance, it is obvious that segments of the same phoneme class 
can have different durations. A proper classification of these dynamic patterns 
requires a significant extension of the traditional classification methods. In fact, 
even the modern artificial neural networks can hardly overcome this difficulty, 
and as a result many hybrid structures incorporating hidden Markov models 
(HMMs) or Dynamic Time Warping (DTW) based on Dynamic Programming 
(DP) have been reported [6-12). Let us assume in the remaining part of this 
section that all samples Xn's are dynamic. Moreover, let us assume that a 
DTW distance classifier assigning a dynamic reference pattern, denoted by r, 
to each competing class is prepared to classify these dynamic patterns; rk C A 
and rk E Ck. These reference patterns are designed through the pursuit of the 
minimum classification error situation. Measuring different durational patterns 
requires the normalization of duration. As widely seen in speech recognition, 
DTW uses a discriminant function 

叫Xn;A)=叩{D0(xn心）｝， (10) 

where De (x, rk) is a path distance accumulated along the 0-th best (smallest 
distance) path selected by the DP-matching between Xn and rk among all the 
possible 0 paths. The operation searching the best normalization path associ-
ated with the minimum accumulated distance is obviously discontinuous in A. 
This is an impediment in the gradient descent method. A GPD solution to this 
problem is to replace the best path search operation (minimum distance search 
operation) by a smooth search function based on Lp-norm form 

釦(x.;A)~[言{D,(x. 心）｝―,r'", (11) 

where e is a positive constant. Notice that Eq. (11) closely approximates Eq. 
(10), when e goes to infinity. 

Similarly, the idea of smooth search operation is utilized to define a discrim-
inant function 

叫x.;A)~[言{D(x国）｝―']ー,,,, 
where 

D(x国）＝［言{D,(x国）｝―']―'",

(12) 

D(xか rDis a reference distance between Xn and the b-th best Ck reference 
rt, and Bk is the number of Ck references, for a classifier in which multiple 
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reference patterns are assigned to each class. When (goes to infinity, Eq. (12) 
approximates a discriminant function which represents the corresponding class 
by the smallest reference distance of the class. Note that the idea of a smooth 
operation, underlying Eqs. (11) and (12), is conceptually the same with that in 
Eq. (4), i.e., the smooth comparison among the competing classes. 

The entire process of classifying multi-class dynamic patterns is now formal-
ized in a smooth functional form suited for gradient search. Consequently, one 
can design a distance classifier having at least a locally-minimum classification 
error situation, by using a smooth loss, e.g. Eq. (6). There are several ver-
sions of gradient search algorithms. The selection here is flexible. One major 
motivation for GPD is to be able to accomplish adaptive learning. It is highly 
desirable that a classifier always learns to refine itself given a new sample. It is 
probably even more desirable to be able to adaptively accomplish minimization 
of the expected classification error. The following probabilistic descent theorem 
provided a rigorous mathematical ground which satisfies these requirements [5]. 

[Probabilsitc Descent Theorem] 
Given x E ck, if the classifier parameter adjustment 8A(x, ck, A) is specified 
as 

狐 (x,Ck, A)= -c:V▽ 1,k(x; A) (13) 

where V is a positive-definite matrix and c: is a small positive real number, then 

E[8L(A)] :S 0, (14) 

where 

M 

L(A) =~! 凡(x,Ck)l(x E C叫 (x;A)dx.

Furthermore, if an infinite sequence of random observations Xt is presented for 
training and the parameter adjustment rule of (13) is utilized with a correspond-
ing step size sequence€t which satisfies 

00 

i) L£t→ oo ; and 
t=l 

00 

ii) L記<oo, 
t=l 

then the parameter sequence At according to 

A1+1 =ふ十 8A(xt,ck, At) 

(15) 

(16) 

(17) 

(18) 

converges with probability one to a A* which results in a local minimum of L(A). 

The above smooth formalization and the probabilistic descent theorem thus 
complete the adaptive discriminative training for classifying dynamic patterns 
by the distance classifiers. 

We have used a distance measure as our discriminant function. However, 
a probability measure is most likely a more useful discriminant function. To 
this end, [24] and [25] provide a detailed description of the method to design an 
HMM classifier, which is considered most useful for classifying dynamic patterns 
at present, in the MCE framework. 
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Notice that a fixed-dimensional vector is merely a special c邸 eof a dynamic 
pattern, and that no specific邸 sumptionsof the patterns were made in the 
previous discussion. It is thus evident that MCE/GPD can be applied to an 
extremely wide range of pattern classification. 

2.4 Relations with other classification/training methods 

We briefly refer to the relations between MCE/GPD and other training meth-
ods. The readers may notice that the probabilistic descent theorem shows the 
convergence principle of an adaptive form of Error Back-Propagation. In fact, 
a multi-layer feed-forward network, which is conventionally designed with min-
imum squared error criterion and Error Back-Propagation, can be designed in 
a manner more consistent with classification by using MCE/GPD. 

There are several attempts to pursue the minimum cl邸 sificationerror situ-
ation: e.g., a distance classifier using a traditional, piece-wise linear error rate 
function (13) and a multi-layer perceptron using the Cl邸 sificationFigure of 
Merit [14). MCE/GPD is quite different from these in terms of both devel-
opment philosophy and resulting formalization. On the other hand, Learning 
Vector Quantization (LVQ) too is a design method aiming at miscl邸 sificationre-
duction, though it was intuitively developed, particularly without explicit mea-
surement of error counts [15-17). Interestingly, LVQ can be formalized邸 a
simplified implementation, specially prepared for a multi-reference Euclidian 
distance cl邸 sifier,of MCE/GPD. The detailed relation with LVQ is shown in 
[1, 18). It is worth pointing out here that using LVQ is a useful implementation 
ofMCE/GPD. 

2.5 Applications 

MCE/GPDh邸 beenvigorously applied to speech pattern classification, and its 
promising capability has clearly been demonstrated. 

Applications to a multi-layer feed-forward network, particularly likelihood 
network and distance network, are described in detail in (18), where the effec-
tiveness of MCE/GPD w邸 observedon the Fisher iris t邸 k.Let us introduce 
here a corollary-like generalization of results in [18); i.e., a mixture-distribution 
continuous HMM classifier can be formalized in a generalized form by邸 signing
Markov states to an output node of a three-layer likelihood network. 

Application to speech pattern cl邸 sificationwas started in a somewhat lim-
ited way, using a DTW cl邸 sifier[19, 20). A limited implementation in a hybrid 
formw邸 propsoedin [21] too. Full application to DTW systems were performed 
in [22, 23). In particular, (22) studied the smoother case of the minimum search 
operation of Eq. (12), and demonstrated the effectiveness of using multiple 
normalization paths. Application to HMM systems w邸 speciallyformalized邸

segmental GPD and showed great promise [24). Successful results for HMM 
cl邸 sifierswere also observed in [25]. It should be addressed that these HMM 
ap~lications showed an important departure from a rather simple cl邸 sification
of isolated-mode speech utterances; i.e., they provided a training mechanism for 
applying MCE/GPD to cl邸 sificationof arbitrary speech segments such邸 sub-
words, words, and phr邸 es.This extended idea h邸 provedto be useful in a DTW 
classifier too (26). Furthermore, [27), where speaker mapping was trained based 
on MCE, showed a new direction of the application. (28) showed the MCE/GPD 
superiority in a noisy speech cl邸 sification.Application of MCE/GPD is still in 
the beginning stage, however results so far all clearly demonstrate its promising 
capability. 
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3 Task Formalization Using Smooth Functions 

We have considered in this paper that the pattern recognition process consists 
of feature extraction and pattern classification. However, a real pattern recog-
nition process is more complex. For example, in speech pattern recognition, 
the classification process should closely relate to a language process which may 
decide a priori probabilities. Moreover, although a simple speech classification 
scheme assumes that a sample, i.e., a speech segment, is extracted beforehand 
from continuous utterances, a real speech recognizer needs to include this seg-
mentation process. It is certainly desirable that MCE/GPD can handle all these 
real situations properly; doing so may be a real goal of the MCE/G PD approach. 
MCE/GPD actuaHy possesses a great potential which allows one to design rec-
ognizers that are even more general than in the above application studies. A 
recent study on minimum spotting error learning is showing signs of success in 
this new, advanced application (29]. 

Our simple 2-stage definition of pattern recognition suggests a straight-
forward extension of MCE/GPD application; i.e., an MCE/GPD design for 
both feature extraction and classification (30]. Here, the original sample is 
passed to the feature-extraction and classification stages in a consistent man-
ner, directly aimed at the (locally) minimum classification error objective. We 
call this extended use of MCE/GPD Discriminative Feature Extraction (DFE). 

DFE is essentially equivalent to MCE/GPD. Therefore, we don't need any 
new, specific formalization. One may embed a feature extraction process, con-
ditioned by the given task and available resources, in the MCE/GPD functional 
form. MCE/GPD is mainly based on statistics, far from heuristics. However, 
expertise specific to a task is certainly useful in this mathematical approach. 
For example, applying DFE to acoustical speech utterances directly would be 
rather foolhardy, or rather, it would be more realistic to employ a power spec-
trum, which is prepared based on speech science knowledge, as input to the 
recognizer. Implementation of this new concept is thus task-dependent. DFE 
applications for speech recognition are described in detail in the next section. 

4 o・ ・ ・ 1scr1m1native Feature Extraction for Speech 

R ecogn1t1on 

4.1 Various reahzat10ns 

Mainly b邸 edon knowledge of hearing and speech perception, speech is usu-
ally represented, for the purpose of recognition, as a sequence of short-time 
power spectra or related parameter vectors. This kind of extraction, i.e., power 
spectrum sequence, is certainly a proper b邸 efor an effective DFE application. 

A short-time power spectrum is generally computed by using FFT or autore-
gressive modeling. This is sometimes computed with a band-p邸 sfilter bank. 
Frequency scaling is usually linear, or Bark scale, or Mel scale. Spectrum in-
tensity is often scaled logarithmically. The idea of weighting too is widely used 
to control feature sensitivity. As is well known, there are many conventional 
realizations of such sequences. However, most of these realizations are based on 
analysis of human capability, and thus are not necessarily directly applicable to 
statistically-designed machine recognition. 

DFE attempts to accomplish extractions from the standpoint of minimizing 
misclassifications. In place of the Bark scale, a new frequency scaling could 
be found. A linear representation b邸 edon autoregressive modeling too could 
be extended to a discriminative non-linear version. i_,From among many possi-
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bilities, we specifically focus in this paper on cepstrum region design of power 
spectrum. 

4.2 Application to lifter design 

A short-time logarithmic power spectrum pattern is converted to a cepstrum 
vector through the Inverse Fourier Transform. In this conversion, frequency is 
mapped to quefrency, which corresponds to time. Let us consider a cepstrum 
pattern sequence as the recognizer input. It is well known that phoneme class 
identity, which is useful for speech recognition, locally exists in the low quefrency 
region. Therefore, a conventional speech recognizer selectively uses this narrow 
region cepstrum components as a feature for classification, by using a time 
window called a lifter. Notice that liftering (applying a lifter to a cepstrum 
vector) performs the feature extraction. A liftered cepstrum sequence is the 
pattern to be classified. Fig. 1 illustrates this recognition process, i.e., the 
recognizer structure consisting of a lifter and a post-end classifier. 

A liftered cepstrum sequence pattern may represent (phoneme) cl邸 siden-
tity more properly than an unliftered cepstrum pattern. The question here is 
how to design a good lifter. Conventionally, the duration of lifter is chosen so as 
to suppress the cepstrum components due to glottal source. Usual lifter shapes 
are those of lag or time windows, e.g., Hamming window, whose properties 
have been extensively analyzed in spectrum estimation theory. In a somewhat 
advanced case, a lifter is designed over design samples so that cepstrum compo-
nents relevant to classification can be emphasized [31]. However, clearly, these 
lifters, designed independently of the minimum classification error situation, are 
not guaranteed to be optimal. 

DFE consistently designs both the lifter and the post-end classifier within 
the MCE/GPD framework. An arbitrary system structure can be used for 
the post-end classifier. By way of example, we use a multi-layer feed-forward 
network. Our recognizer is illustrated in Fig. 2. To simplify analysis of the 
lifter design, each node of the bottom lifter layer has only a vertical connection. 
The discriminant function here is each of the network outputs. MCE/GPD is 
then implemented accordingly. 

As a preliminary evaluation, we conducted experiments on the t邸 kof clas— 
sifying Japanese five-category vowels. We used speech data of 100 phonetically-
balanced sentences, spoken by 5 speakers (3 males and 2 females) and recorded 
at 12 kHz sampling rate. The recognizer input was just a fixed-dimensional 
cepstrum vector which corresponds to a single time-windowed vowel segment; 
i.e., our sample was not a dynamic pattern. Each sample was prepared邸 fol-
lows: 1) A center segment of vowel was extracted by using a 42 msec Hamming 
window from the database. 2) The extracted speech signal was then converted 
to a 256-point cepstrum vector by using FFT /IFFT. We collected 3,500 samples 
in total; half for design and half for training. 

The recognizer w邸 investigatedwith different settings for experimental con-
ditions such as recognizer size, and produced the highest accuracy, 96.8% on 
design data and 88.7% on testing data. For comparison, we also evaluated the 
conventional use of a rectangular lifter: The rectangular lifter was realized on 
the lowest lifter layer by assigning two constants, 1 and 0, to the connection 
weights: Only the post-end classifier was trained. This conventional way could 
not excel DFE in recognition accuracy. Although different lifter lengths were 
carefully tried, only 89.1% and 87.3% were attained on design and testing data, 
respectively. 

A lifter example of the DFE design is shown in Fig. 3. This lifter clearly 
suppresses cepstrum components in a high quefrency region which is usually 
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occupied by information irrelevant to phoneme classification. The lifter also 
suppresses extremely-low quefrency components, which probably correspond to 
speaker identity. It is likely that DFE successfully distinguished vowel class 
identity from other features such as speaker identity. Observing the spectrum 
domain helps understand the results. Fig. 4 shows two logarithmic power 
spectra of a single input: one was calculated without liftering, meaning that 
this corresponds to the input cepstrum vector, and one was calculated by using 
the lifter in Fig. 3. The smoothed, liftered spectrum removes the harmonic 
structure due to vocal source excitation, and brings out the spectrum envelope, 
which mainly corresponds to the phoneme class identity. 

The experimental results in the above paragraph indicate the fundamental 
possibility that our new design method can be superior to conventional meth-
ods. The DFE learning method is an automatic and efficient way of extracting 
possible feature parameters. 

The results over the testing samples may need further analysis. The dif-
ference in the DFE results between design and testing data should be studied 
from the viewpoint of training robustness. The fact that the lifter in Fig. 3 is 
not so smooth must relate to this big drop. Similar to highly-discriminative, 
nonlinear artificial neural networks, the smoothness of feature extraction should 
be carefully studied in our approach too. 

5 Summary 

In this paper, we summarized the new discriminative learning theory called 
MCE/GPD and also introduced Discriminative Feature Extraction as one of 
its extended applications. A motivation underlying the proposed method is to 
formalize the entire task at hand in a smooth functional form and efficiently 
find a practical solution on this form. Our approach provides a straight-forward 
and sound basis for the realization of long standing minimum classification error 
pattern recognition problem. 
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Figure 1. Speech recognition using cepstrum. 
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Figure 2. A four-layer feed-forward network recognizer 
including a lifter. 
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Figure 3. A lifter example of the Discriminative Feature Extraction Design. 
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Figure 4. Logarithmic power spectra of a single input cepstrum example: 
one calculated without liftering (thin curve) and one calculated by using the lifter 
in Fig. 3 (thick curve). 
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