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abstract 

A closed-form single-shot stereo disparity estimation algorithm is proposed that can com-

pute multiple disparities due to transparency directly from signal differences and vari-

ations on epipolar lines of a binocular image pair. The transparent stereo constraint 

equations have been derived by using a novel mathematical technique, the principle of 

superposition. A computationally tractable single-shot algorithm is derived by using the 

first-order approximation of the constraint equations with respect to disparities. The 

algorithm can compute multiple dispatities from only two images in contrast to the previ-

ous results for motion transparency that needed at least n + l frames for n simultaneous 

motion estimates. The derived algorithm can be viewed as the SSD(sum of squared dif-

ferences) for signal matching extended to deal with multiple disparities. However, the 

constraint is not dedicated solely to SSD method and several other implementations are 

possible. These possibilities are also discussed in this paper. 

Keywords: Binocular stereo vision, Disparity, Transparency, Single-shot algorithm, 

Principle of superposition. 
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1 Introduction 

The use of binocular stereo vision for detecting disparities has drawn considerable at-

tentions in computational vision [Julesz 1960, Marr & Poggio 1976, Marr & Poggio 1979, 

Burt & Julesz 1980a, Grimson 1981, Mayhew & Frisby 1981, Prazdny 1985, Pollard et al. 1985]. 

Stereo vision is also being investigated as an engineering method for passively obtain-

ing the depth and structure of a scene [Baker & Binford 1981, Dhond & Aggarwal 1989, 

Lucas & Kanade 1981, Ohta & Kanade 1985, Okutomi & Kanade 1992]. Most stereo vi-

sion algorithms, however, have not incorporated transparency, i.e., multiple surface per-

ception at the same retinal position. Recent psychophysics has revealed capabilities and 

limitations in the human perception of stereoscopic transparency [Akerstrom & Todd 1988, 

Weinshall 1989, Pollard & Frisby 1990, Weinshall 1991]. This transparency is also an im-

portant problem for engineering computer vision thst must handle realistic environments 

including complex occlusions, transparency, translucency, and several overlapping sur-

faces. These complex environments may be caused by fences, trees, bushes, glass, water 

surfaces, and windowpanes that are common in both natural and artificial scenes. Al-

though a few papers have tried to handle transparency at the level of algorithms for the 

feature-based matching and area-based correlation [Pollard et al. 1985, Weinshall 1992], 

transparency had not been sufficie叫 yrecognized by the computer vision community in 

the past years. 

Prazdny has pointed out that the discontinuities of a surface can be regarded as two 

surfaces in the vicinities of the discontinuities [Prazdny 1985]. He also proposed an algo-

rithm based on the disparity gradient limit [Burt & Julesz 1980a]. Prazdny's algorithm 

does not have inhibitory neighborhood interactions and it can therefore handle multi-

ple surfaces. A similar algorithm, the PMF algorithm has been proposed by Pollard et 

al. [Pollard et al. 1985], who claim that their algorithm is compatible with the human 

perception of multiple transparent surfaces [Pollard & Frisby 1990]. 

Feature-based matching, however, has trouble treating scenes containing pure trans-

parency. In the case of physically pure transparency, appropriate features cannot be 

obtained by conventional feature detectors, such as edge and corner detectors, because 

they assume opacity of the scenes. Intensity-based matching is therefore more appropriate 

for dealing with pure transparency. 

State-of-the-art computer vision does not have theories and tools that can handle 

complex environments including transparency. In fact, the transparency problem is more 

difficult than the segmentation problem that has been notorious in the history of computer 

vision. This paper therefore proposes a computational framework for direct single-shot 

estimation of multiple disparities from a, binocular image pair. By using the assumption 

of additive superposition of image intensities, we derive direct linear constraints on the 
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intensity variations along epipolar lines of the ima.ge pair. These constraints, derived 

under the assumption that n disparities exist at each image position, are approximated 

to first-order derivatives. 

The proposed algorithm is not a special case of the previously reported multiple optical 

flow analysis [Shizawa & Mase 1990, Shizawa & Mase 1991a] because that analysis needs 

n-th order derivates for n-fold flow computation. Since the number of frames required for 

temporal differentiation is n+ 1, that analysis cannot be immediately applied to binocular 

stereo transparency. The algorithm proposed here can compute multiple disparities along 

an epipolar line from only two images. This algorithm can also be extended to multiple 

optical flow estimation from two frames. 

Our previous paper [Shizawa 1992] proposed the constraint equation of binocular 

stereo transparency by applying the principle of superposition [Shizawa & Mase 1991b], 

but that paper neither derived an algorithm for solving the equation nor implemented it on 

computers. We instead discussed the relationships between the constraint of stereo trans-

parency and the human psychophysics of ambiguous random-dot stereograms [Weinshall 1989], 

which are random-dot versions of the double-nail illusion [Krol & van de Grind 1980]. 

This paper uses the constraint equation proposed in the previous paper [Shizawa 1992] 

to derive a computational procedure for the single-shot algorithm by first-order approxi-

mations. A computer simulation is presented for one-dimensional(ID) signal matching. 

The computational framework proposed here also concerns computational aspects of 

the physiological connections in the mammalian visual cortex and corpus callosum that 

take charge of binocular interactions between binocular retinal inputs [Hubel & Wiesel 1962, 

Hubel 1988]. 

The paper is organized as follows: 

Section 2 describes an operator-based formal theory of stereo transparency based 

on the principle of superposition. (The use of the principle of superposition in deriv-

ing constraints for transparency was first proposed for the analysis of multiple motion 

[Shizawa & Mase 1991a, Shizawa & Mase 1991b].) 

Section 3 derives the first-order approximation of the constraints by neglecting higher 

order terms. The constraints become linear in terms of image-intensity derivatives for 

the left and right images of the stereo pair. The coefficients of the constraint have the 

form of symmetrical polynomials of multiple disparities. The constraints are fitted to 

the image data by minimizing the square of the residual of the constraints with respect 

to their linear parameters within a local image patches. This derivation assumes that 

the local image structure is measured by the Gaussian-scaled derivatives similar to the 

image representation in the visual cortex. This minimization problem can be solved by a 

linear inverse operation, and the disparities can be obtained as n solutions of an n-degree 

univariate algebraic equation composed of the linear coefficients of the constraint. The 
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overall algorithm has a quasi-linear single-shot nature. 

Section 4 reports the results of preliminary simulations using computer-generated lD 

signals. The algorithm successfully determines the multiple disparities at local windows. 

Section 5 discusses other possible implementations of the theory proposed here. Con-

straints in the frequency domain are fi.rst described, and then the theory of stereo trans-

parency is combined with the regularization theory. 

Section 6 concludes this paper. 
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A Formal Theory of Stereo Transparency 

In this chapter, the constraint of stereo matching is rewritten in terms of operator-based 

formalism. Then the principle of superposition (which we refer as PoS) and symmetriza-

tion are applied to derive the constraint equations of stereo transparency. 

The intensity-based stereo matching constraint for an opaque surface can be written 

as 

L(x,y)-R(x -D,y) = 0, or L(x + D,y)-R(x,y) = 0, (1) 

where L(x, y) and R(x, y) are intensity distributions at the left and right eyes, and Dis 

a horizontal disparity. We use x for the coordinate along the epipolar line and y for the 

coordinate in the vertical direction. The constraint Eqs. (1) can be rewritten in terms of 

an amplitude operator a(D) and a data distribution f(x, y) as follows: 

f(x,y) 三 [~i:::; l・ 
(2) 

The term'D(D) is a shift operator along the x-axis, and it transforms fに） into f(x -D). 

Although the two equations (1) are equivalent each other, we formalize each of them to 

keep symmetrical operations in the operator formalism. Figure 1 illustrates the operation 

of the amplitude operator on binocular images. 

The Taylor expansion of f(x -D) around xis 

a(D)f(x,y) = 0 where, a(D)三

[-D(-D) 

ー -V(D) ] , 
ー

J(x -D) = J(x、)-Doxfに）＋誓叩(x、)—誓幻（叫... =~(一r~r 的f(x), (3) 

where o;J(xうdenotesn-th order derivative of f(x) with respect to x. The shift operator 

can therefore be written as the differential operator 

00 (-Dl D2 
が

D3 
わ(D)=~ 図=exp(-DfJェ） = 1 -Dax + - --83 

i=O 
i! 2! X 3! X 

(4) 

since Eq. (3) is equivalent to f(x -D) ='D(D)f(ぉ）. Note that this operator is linear, 

i.e.,'D(D)(f1(x) +丘(x))='D(D)f心） +'D(D)h(x) and'D(D)O = 0. Furthermore, the 

shift operator forms a group with respect to its product, since 

1J(Da)D(Df3)三1J(Df3)1J(D砂三 1J(Dcx+ Df3)- (5) 

The constraint (2) can be extended to the higher-order derivatives of the image in-

tensity functions L(x,y) and R(x,y). We denote the (p,q)-th order partial derivatives 

of these by L(p,q) (x言,y) = c匹oiL(ぉ， y)and R(p,q)(x,y) = c匹tり~R(x,y) and f(P,q)(x,y) = 

[L(p,q)(x,y),R(p,q)(:1:,y)f. Then the constraint can be extended to 

a(D)f(p,q)に，y)= o, 
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for p, q = 0, 1, 2, • • •. In general, the whole set of (p, q)-th order derivatives at an image 

point can be considered to completely characterize the local image structure around that 

point. 

Using the linearity of the shift operator, we can see that the amplitude operator a(D) 

is also a linear operator, i.e., a(D)O = 0 and a(D){f1(x,y) +も(x,y)}= a(D)f1(x,y) + 

a(D)も(x,y). 

The principle of superposition can be applied using above formalism, and we have a 

constraint of stereo transparency derived in an entirely formal way: 

a(Dn)・ ・ ・a(D2)a(Dリf(p,q)(x,y) = 0, (7) 

x, y 1s constramed by a(Di)f/p,q)(x, y) = where f(p,q)(x, y) = L fi(p,q¥x, y), and each f/p,q)()・ 
i=l 

0. Unfortunately, however, the amplitude operator do not commute. In fact, we have 

and 

Then 

叫）a(D,)三[1 + 1J(-D⑰ (D,) -1J(D1ピ麟）］
-V(-Dり一 V(-D砂 1+ V(D1)'D(-D砂

叫）a(Dリ三[l+V(鳴）V(Dけ ー叫）一 V(D1)l 
-'D(-D2) -D(-D1) 1 +'D(D2)'D(-Dリ

(8) 

(9) 

叫）a(D1)-a(D1)a(D2) = [ 
-'D(D1 -Dり+'D(D2-Dり

゜ ゜亭 1-Dサー訊D,-D1) l' 
(10) 

and 

(D1 -D2)3 (D1 -Dり5

'D(D1 -D砂ー'D(D2-l入） = 2{-(D1-D2)8x- 8~- fJ~-···}. (11) 
3! 5! 

The order of the product of the amplitude operators therefore changes the meaning of the 

constraint, and the lefthand side of Eq. (7) cannot be zero for general image signals. 

This problem can be remedied by the symmetrization of the amplitude operator of 

transparency with respect to the permutation group of the order of disparities D1, D2, ・ • •, Dか

Then the constraint is valid in the sense of energy minimization. 

We define the symmetrized amplitude operator for n-fold transparency by 

訂 (D(1,D2, ・ ・ ・, Dn))三』 La(DO'(n))・ ・ ・a(D(J'(2))a(DO'(I)), (12) 
叫

びEPれ

where Pn represents the permutation group of order n. When n eq叫 s2 and 3, for 

example, we have the following expressions of the amplitude operators: 

1 
詞 (D(l,D2))三一{a(D1)a(D2)+ a(D砂a(Dリ｝

2 
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and 

a(3)(D(1, D2, D3)) 三 ¼{a(D1)a(D2)a(D3) + a(D2)a(D1)a(D3) + a(D3)a(D1)a(D2) 
+ a(D司a(D2)a(D1)+ a(D2)a(D3)a(D1) + a(D1)a(D司a(D2)}.

(14) 

，
 



3 Derivation of a Single-shot Algorithm 

The constraints derived in Sec.2 are not easily used in computer implementations because 

they are highly nonlinear with respect to disparities D1, D2, ・ ・ ・, Dn. This section therefore 

derive a linear single-shot algorithm for binocular stereo transparency by using the first-

order approximations of the amplitude operator a(D). We derive the constraints and 

algorithms only for the cases in which n = 1 or n = 2. More general descriptions, 

including the cases in which n = 3 or n = 4, are provided in Appendix A. 

3.1 First-order Approximation of the Constraints 

3.1.1 Algorithm for single disparity 

We use the first-order approximation for the following shift operator: 

D(D)~1- D辺 (15) 

Then the first-order approximation of the amplitude operator of the single disparity D 

becomes 

a(D)"'[ -1~DDx -1~Da. l (16) 

Then the generalized constraint a(D)f (p,q) (x, y) = 0 is approximated by the following 

equations: 

r罰p,q](x,y)
(1) 

rR [p,q](x,y) 

{L(p,q)(x,y) -R(p,ql(x,y)} -DR(P+I,ql(x,y) = 0 

{R(p,q)(x, y) -L(p,q)(x, y)} + DL(P+I,q)(x, y) = 0. (17) 

When p and q are both 0, this is equivalent to the equation used in the iterative signal 

matching for stereo vision [Lucas & Kanade 1981, Okutomi & Kanade 1992]. (In those 

papers, one of the two constraints is used to estimate disparity update values. In this 

paper, however, we use both of the constraints simultaneously for the sake of symmetry 

between the left and right eyes.) Now we have the following energy function for estimating 

disparity D around (xo,Yo): 

E(D(xo, Yo))= j j位[p,q](x -xo, y -Yo)}汀｛亭[p,q](x, y)}2 + {哨[p,q](x, y)}2]dxdy, 

(18) 

where w[p, q](x, y) denotes positive weight functions that can be determined from the 

statistical properties of the image derivatives and the window function for integrating 

energy distribution. This function is integrated over the entire image. Different order 

constraints should be weighted differently, since each image intensity derivative has a 
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different noise distribution. But that subject is not discussed in this paper. Solving 
oE(D) we 1ave the followmg estimator for D at (xo, Yo): = 0 for D, l oD 

D(xo,Yo) = 
b(xo,Yo) 

a(xo,Yo)' 
(19) 

where 

a(xo,Yo) =~j j{w[p,q](x-xo,Y-Yo)}門(R(P+l,q)(x,y))旦(LCP+l,q)(x,y))2}dxdy(20) 

and 

b(xo,Yo) =~j j{w[p,q](x-亀℃o,Y-Yo)}2 

x { L(p,q)(:i:, y) -R(p,q) (x, y) }{ R(p+l,q)(x, y) + L(p+I,ql(x, y)}dxdy. (21) 

3.1.2 An Algorithm for Two-fold Surfaces 

It can be shown that the symmetrized amplitude operator for two-fold transparency is 

approximated into the following form: 

詞 (D11,D2))se[ 2-D叫: -2-(D1叫）{ix 
-2+ (D1 + D, 此 2-D叫： ] - (22) 

The residual functions therefore become 

r『)[p,q](x,y) = 2{L(p,q)(x,y)-R(p,q)(x,y)}-(D1 +D2)R(P+I,q¥x,y) 

-D1几L(P+2,q)に，y) (23) 

and 

Tり）[p, q](x, y) = 2{R(p,q)(x, y) -L(p,ql(x, y)} + (D1 + D砂L(P+l,q)(x,y)

-Di几R(p+2,q)に，y). (24) 

The energy function for estimating disparities D1 and D2 is 

E(2l(D1(xo,Yo),D2(xo,Yo))= j j{wp,qに一xo,Y-Yo)ド[{ rf'q (X, y)} 2 + {デ(x,リ）}2]dxdy. 

(25) 

This energy function is quadratic with respect to s1 =½(D1 + D2) and s2 = D1D2. By 
EJE(2) 0EC2) 

considering the condition for minimum energy -―= 0 and―=  0, we have the 
8s1 8s2 

following system of linear equations: 

[ ::: ::: l [ :: l = [~l , (26) 

11 



where 

a11 = 4~/ j{wp,q(x-xo,Y-Yo)ド[{ R(P+l,q)(x, y)}2 + { L(P+l,ql(x, y)}2]dxdy, 

叩 =2~/ j{w叫x-xo, Y -Yo)}2 

x {L(P+2,q¥ x, y)R(p+l,q) (x, y) -L(P+l,q)(x, y)R(P+2,q) (x, y)}dxdy, (27) 

知 =~Jj{wp,q(x-xo,y-yo)ド[{ L(P+2,q)(x, y)}2 + { R(P+2,q¥x, 釘｝門dxdy, (28) 
p,q 

and where 

b1 心 jj{wp,q(x-x0,y-y0)}2 
p,q 

x{L(P+l,q¥x,y) + R(P+l,q)け，y)}{L(p,q)(x,y)-R(p,q)(x, 叫}dぉdy (29) 

and 

b2 2I:j j{匹，q(x-xo, y -Yo)}2 
p,q 

x{L(P+2,q)(x,y)-R(P+2,q)に，y)}{L(p,ql(x,y) -R(p,q)(x, y)}dxdy. (30) 

We can solve this system of equations for parameters s1 and s2 as 

[ :: l = [ ::: ::: l-l [ :: l (31) 

Then the two disparities D1 and D2 (D1~Dサ can be obtained as solutions of the 

following quadratic equation of d: 

d2 -2叫＋砂=0. (32) 

We can write them as 

几＝釘十[ (33) 

and 

D2 = S1一凸二． (34) 

For a single disparity, we have the condition, 

△ (2) = Si - S2 = 0, (35) 

where△ (2) denotes the discriminant of the algebraic equation (32). 

The determination of the number of disparities is an important issue. We ca~use 

the condition (35) for the test of a single disparity in the two-fold disparity estimator. 

Furthermore, disparities are constrained to be real numbers. This is equivalent to the 

condition△ (2)~0. When n > 2, the constraints for multiple-root disparities and those 

for real solutions can be found in the basic mathematics of algebraic equations, such as 

the discriminant of algebraic equations, Descartes'law of signs, and Strum's theorem會
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3.2 Computation of Local Image Structure by using Regular-

ized Derivatives 

We use the local Gaussian-scaled derivatives [Koenderink & van Doorn 1992, Florack et al. 1992] 

as local image representations for the stereo matching. It should be noted that the image 

representation itself is independent of the stereo transparency constraints. We use this rep-

resentation because of its direct relationship to the information necessary for the constraint 

equations. Other image representations, such as Gabor elementary functions, are also pos-

sible. In this respect, biological implications for the physiology of image representation 

in the visual cortex and its binocular interactions [Hubel & Wiesel 1962, Hubel 1988] are 

also involved in this formalism. 

The Gaussian-scaled regularized derivatives can be expressed as convolutions of images 

with derivatives of a Gaussian as follows. 

虐叫x,y) J+ooら (x-'U, y -v)L(p,q)(u, v)dudv 
-oo 
J+oo a(;,q)に一u,y -v)L(u, v)dudv, 
-oo 

and 

Rt叫x,y) J+ooら (x-u,y -v)R(p,q)(u, v)dudv 
-oo 
J+oo 虐叫— u, y -v)R(u, v)dudv, 
-oo 

where the two-dimensional Gaussian Ga (x, y) is defined as 

1 つつ

ら(x,y)=~ー e―6.—-e―茄= 1 e―亨仁
21rび 21rび 4召が

We denote fJP,q)に，y)= [L↓ p,q)(ぉ，y),R炉叫，y)f.

(36) 

(37) 

(38) 

Figure 2 shows a schematic diagram of the derived algorithm. (In the figure, to build 

the symmetry between the left and right eyes, the regularized derivatives are shown in 

mirror-reflected positions. Correspondingly, the connections in the right eye part are 

slightly different from the derived equations.) 
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4 -Simulation Using One-dimensional Signals 

Since the binocular stereo matching is reduced to lD matching along epipolar lines, sim-

ulation of this matching is enough to test the validity of the algorithm. The y coordinate 

is therefore omitted from the following notations. 

4.1 Experimental Condition and Results 

Two original binocular pairs of signals were generated by using a random number gen-

erator and low pass filtering. Then the・signals were shifted so that the two pairs had 

two different disparity maps for two surfaces (Fig. 3). Then the pairs of signals were 

additively superposed and subsampled to produce a pair of input signals for the left and 

right eyes. Figure 4 shows the signals generated for the following simulation. 

To compute regularized derivatives, the input signals are convolved with the derivatives 

of Gaussian(Fig. 5). We used up to fifth-order derivatives as follows: 

G~o,o)(x, 0) 

G~1,0l(x, 0) 

a~2,o)(ぉ， 0)

G~3,0l(x, 0) 

G↓ ~,0l(x,O) 

G~5,0l(x, 0) 

1 ェ2

21rび
っe 2a-

2 -x エ
e―戸

21rび
2')  

X - (J"- _..i. こ
e 2a2 

21rび6

ー呼 +3び2x 丑
e―戸

21r企
x4 -6び丑 +3り _L

? e 2a-
21ra10 

ー砂+10a2x3ー15a4一土

21rび12
e 2a2 

The Gaussian scale parameterび wasfixed to 4[pixel] in the simulation. 

Figure 6 shows some of the results of the convolutions. 

(39) 

The weight function wp,q(x) for integration of the energy density is taken to be the 

square window function 

匹，qに） = {~: 

where Mis the width of the window. 

(lxl > M) 

伽I~M)
(40) 

In this simulation, M was set at 121[pixel], and the estimation was done for p = 0, l, 2 

and 3 Figure 7 shows the final outputs of the two-fold multiple disparity estimator derived 

in Sec. 3. The true disparities and the disparity estimates are superimposed in the plots. 

It should be emphasized that these results are obtained from the first-order approxi-

mation of the stereo transparency constraint. Taking this into account, the results is very 

promising. These estimates can be good initial guesses for the later stages of iterative 

refinement and complete reconstruction of the surfaces. Because the determination of the 
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number of disparities is an important issue for applications, in future implementations, we 

will use the condition (35) to test for a single disparity in the two-fold disparity estimator. 
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5 Alternative Algorithms 

5.1 
．． 

Constraints 1n the Frequency Domain 

The constraints can be transformed into the frequency domain representation by applying 

Fourier transformation. The residual functions become 

and 

吋り(wx,wy) = 2{L(wx,wy)―た(wx,W』}-(D1 + D砂(21ri)wェた(wx,wy) 
2 2 ~ 

-D1D2(21ri) wxL(wェ，wy) (41) 

噌(wx,W砂 2{R(wx,wy) -L(wx,wy)} + (1方 +D2)(21ri)wxL(wx, 凸）

-D1D2(21ri)2w鱈(wx,W砂 (42) 

These frequency domain constraints may be useful in building an algorithm using Gabor 

elementary functions for the image representation. 

5.2 Regul ・
． 

ar1zat1on 

The algorithm presented in Sec. 3 is based on the sum of square difference, so, the 

disparity in a local window is assumed to be constant. To solve our ill-posed problem, 

regularization theory [Poggio et al. 1985] can be applied to the framework proposed here. 
(n) 

In this case, it is more convenient to impose smoothness on the linear parameters si 

instead of the disparity parameters Di, Then the energy functional becomes quadratic 

with respect to the linear parameters when approximated to first-order derivatives: 

E(s(n)) = f j[{LJIGcrR か (s(n))f(p,q)(X, y) 112} + { Ss(n)ド]dxdy, (43) 
p,q 

where s(n) = (s『l,s~n),···,s炉） • The smoothing operator S sh叫 dbe chosen so that the 

original disparity parameters are regularized to an appropriate degree. 
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6 Conclusion 

We have presented a single-shot algorithm for binocular stereo transparency. The deriva-

tion of this algorithm was based on the operator-based theory of transparency, the prin-

ciple of superposition. The constraint in this paper was approximated by the first-order 

approximation of the amplitude operator. A quasi-linear single-shot algorithm was de-

rived by minimizing the squared error of the approximated constraint. Simulation using a 

computer-generated lD signal showed that good initial guesses can be computed by using 

the single-shot algorithm. 

The algorithm presented here will be extended to an iterative method that can com-

pute more precise disparity estimates in a way similar to the iterative image registra-

tion techniques [Lucas & Kanade 1981]. Appropriate control of the scale parameter will 

be a good strategy for large disparities. vVe may also be able to incorporate a sta— 

tistical model for selecting the adaptive window [Okutomi & Kanade 1992]. Another 

possible implementations uses regularization theory. The occlusion analysis at depth 

boundaries[Little & Gillett 1990, Geiger et al. 1992] must be unified into the proposed 

framework. These environmental issues are under investigation. 

It is possible to extend the algorithm into multiple optical flow estimation from only 

two frames. This extension will overcome some deficiencies of the three-frame algorithm 

for two motions [Bergen et al. 1990l[Shizawa & Mase 1991b], such as weakness in the 

ability to handle acceleration. Further, since the presented algorithm can be viewed 

as a general signal matching algorithm, another application area may be the locations 

of multiple sound sources from binaural information. Our constraint-based theory of 

transparency can be regarded as a part of the computational theory of biological visual 

systems, since the computer-based system should use the physics of image formation that 

are common to animals and machines that must properly infer the real physical world in 

order to survive and to serve. 
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Appendix 

A First Order Constraints for the Case of n~4 

A.1 Elementary Symmetric Polynomial Representations for 

Multiple Coexistent Disparities. 

In this appendix, the argument of y is omitted. The coexistence of multiple disparities 

at each retinal position can be conveniently represented by the symmetric polynomials of 

Di, which are defined as 

sP) = nFl, 
(2) S1 = -(Di2) + D罰，

2 
亭=DいD『[

亭=1叫＋叩 +D罰，

亭 = 1叫 Dり+Dり叩＋叫D罰，
亭=Di3)叩 D13)'

亭＝｝叩＋叩 +Dり+D罰，

亭=}(Di4)叩＋叩D14)+ D14)叩 +Di4)叩 +Di4)叩 +D『叫），

亭 =}(Di4) D『誓 +DいD14)叩 +Di4)叩 D『+D『叩D罰，

sり=DいD~4)叩Di4). (44) 

Multiple disparities Dいforn = 2, 3, and 4 can be obtained as solutions of the following 

n-th degree univariate algebraic equations: 

d2 -2s2,1d + s2,2 = 0, 
d3 -:3s3,1d2 + 3s3,2d -S313 = 0, 

and d4 -4s4,1d3 + 6s4,2cz2 -4s413d + S414 = 0. (45) 

A.2 Constraint Equations for the cases n = 2, 3, and 4 

Using these representations, the residue functions r(n)(x,y) = (デ(x,y),r炉(x,y))

= a(n)(D1, ・ ・ ・, D砂f(x, y) of the transparent stereo constraint equations can be written 

simply as couples of linear equations. The explicit forms for n = 1, 2, 3, and 4 are 

(1) 
互 [p,q](x,y)
(1) 

万 [p,q](x,y)

{ L(p,g) -R(p,g)} -R(p+l,g) S1,1 

{R(p,g) -L(p,g)} + L(p+l,g)S1,1 

？伊[p,q](: ℃， y) = 2{L(p,q) -R(p,q)} -2R(P+l,q)s2,1 -L(P+2,q)s2,2 
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喩[p,q](x, y) = 2{R(p,q) -L(JJ,q)} + 2L(P+l,q)s2,1 -R(P+2,q)s2,2 (47) 

亭[p,q](x, y) = 4{L(p,q) -R(p,q)} -4R(P+l,q)s3,l -{3L(P+2,q) -R(P+2,q)}s3,2 

+ R(P+3,q) S3,3 

壻[p,q](x, y) = 4{R(p,q) -L(p,q)} + 4L(P+l,q) s3,1 -{3R(P+2,q) -L(P+2,q)}s3,2 

-L(P+3,q) S3,3 

サ;)[p,q](x, y) = S{L(p,q) -R(p,q)} -SR(P+l,q) s4,1 -4{2L(P+2,q) -R(P+2,q)}s4,2 

+4R(P+3,q) S4,3 + L (p+4,q) S4,4 

r炉[p,q](x, y) = S{R(p,q) -L(p,q)} + sL(P+l,q)S4,1 -4{2R(P+2,q) -L(P+2,q)}s4,2 

-4L(P+3,q)s4,3 + R(P+4,q)s4,4 

A.3 Estimation Algorithms for the cases n = 3 and 4 

The resid叫 energyat (xo, y0) is de恥 eela.s 

(48) 

(49) 

E叫 o,Yo) =~j j { wp,q(x -xo, y -Yo)}門(rt¥x,y)げ＋（心(x,y)げ}dxdy. (50) 

When n = 3, we have a simultaneous linear equation for sP) as follows. We use the 

shorter notations L(p,q) = L(p,q)(x,y), R(p,q) = R(p,q)(x,y), and wp,q = wp,q(x -x0,y-y0) 

in the following: 

where 

(3) 
all 

(3) 
a12 

(3) 
a13 

(3) 
a22 

(3) 
a23 

(3) 
a33 

(3) (3) (3) (3) b(3) 
all a12 Cl13 S1 1 
(3) (3) (3) (3) b(3) 

a12 a22 Cl23 S2 2 
(3) 

a13 
(3) 

a23 
(3) 

Cl33 
(3) 

発
b3 (3) 

l6~j j(wp,q)2[{R(P+l,q)ド+{L(p+l,q)ド］心dy

心 FF佃p,q)2[{L(P+l,q)L(p+2,q) _ R(P+l,q) R(p+2,q)} 

+;・{炉+1,q)L(p+2,q) _ L(P+l,q) R(P+2,q)} Jc紅dy

-4L ff  (wp,qげ{L(JJ+l,q) L(p+3,q) + R(p+l,q) RP+3,q}心dy
p,q 

心 ff(四，qげ[5{L(JJ+2,q)}2-6L(P+2,q)砂 +2,q)+ 5{R(p+2,q)}2]心dy
p,q 

Lf  j(wp,q門[3{Rゆ+3,q)L(p+2,q) + L(p+3,q) R(p+2,q)} 
p,q 
-{R(P+3,q)砂 +2,q)+ L(P+3,q) R(P+2,q)} ]dxdy 

(51) 

>Jj(wp,q)2[{R(p+3,q)ド+{L(p+3,q)ド］心dy (52) 
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、
1
,

、
.
~
、
~

3

3

3

 

(

1

(

2

(

3

 

b

b

b

 

16 I: J J (Wp,qげ{L(P+l,q)+ R(P+l,q)}{L(p,q) -R(p,q)}dxdy 

p,q 

16 I: j j (wp,qげ{L仰+2,q)-R(P+2,q)}{L(p,q) -R(p,q)}dxdy 

ふjj(wp,qげ{L(P+3,q)+ R(P+3,q)}{L(p,q) -R(p,q)}dxdy 

p,q 
(53) 

When n = 4, the simultaneous linear equations becomes 

(4) (4) (4) (4) (4) 刷all a12 a13 a14 S1 

(4) (4) (4) (4) (4) b(4) 
a12 a22 a23 a24 S2 

b3 ~4) I' (54) (4) (4) (4) (4) (4) 
a13 a23 a33 a34 S3 
(4) (4) (4) (4) (4) 刷a14 a24 a34 a44 S4 

where 

(4) 
all 

(4) 
a12 

(4) 
a13 

(4) 
a14 

(4) 
a22 

(4) 
a23 

(4) 
a24 

(4) 
a33 

(4) 
a34 

(4) 
a44 

and 

b(4) 
1 

b(4) 
2 

心 JJ (Wp,q)2 [ { R(p+l,q)ド+{L(p+l,q)ド]dxdy

p,q 

32L j j(wp,q)2[2{R(p+l,q)L(P+2,q) -L(P+l,q)R(P+2,q)} 

p,q 
+{ L(P+l,q) L(P+2,q) -R(p+I,q) R(P+2,q)} ]dxdy 

-32互FF佃p,qげ{L(p+l,q)L(P+3,q) + R(p+l,q) R(P+3,q)}dぉdy

8~ff (wp,qげ{L(P+l,q)R(P+4,q) -R(p+l,q兄(p十4,q)}d叫

l6L ff  (wp,q)2[5{L(P+2,q)}2 -8L(P+2,q)R(P+2,q) + 5{R(P+2,q)ド]dxdy

ふff(wp,q)2[2{L(p+3,q) R(p+2,q) -R(p+3,q) L(p+2,q)} 

p,q 
+{ R(P+2,q) R(P+3,q) -L(P+2,q) L(P+3,q)} ]dxdy 

-4>ff(Wp,q)2[2{ L(p+2,q) L(PH,q) + R(p+2,q) R(PH,q)} 

-{L(P+2,q) R(P+4,q) + R(P+2,q) L(P+4,q)} ]dxdy 
16~ff (wp,qド[{R(p+3,q)}2+ {L(p+3,q)}2]dxdy 

心 ff(wp,qげ{R(P+3,q)L(PH,q) -L(P+3,q) R(P+4,q)}dxdy 

p,q 

~ff (wp,q)2[{R(P+4,q)ド+{L(p+4,q)ド］心dy (55) 
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b~4) = -32Lf j(wp,qげ{L (P+3,q l + R(P+3,q) }{ L (p,q l -R(p,q)} dx dy 
p,q 

翠＝ーs~J j仇p,qげ{L (P+3,q) - R(P+3,q) }{ L (p,q) - R(p,q)} d: ℃ dy (56) 
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Fig. 1. Function of the amplitude operator. 
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Fig. 6. Convolved signals with derivatives of Gaussian. 
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Fig. 7. Two-fold disparities estimated by the single-shot 
algorithm. 
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