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Abstract 

We investigate families of receptive fields (i.e. low-level filter systems) that 
receive their inputs from sensors located on a finite, regular grid. We will first 

introduce a cl邸 sof models that describe the behaviour of such systems. We 

introduce the representation theory of the dihedr叫 groupsto derive some 

irii"'portant properties of such systems that originate in the structure of the 

grid (and not in the particular nature of the system). We will show that 

representation theory leads directly to algorithms with a structure similar to 

those of the FFT. We demonstrate possible applications of the theory in the 

field of low-level vision by showing how to construct and an叫ysedifferent 
type of filter families. We will show that the same, univers叫， coordinate

transformation simplifies叫 thesedifferent approaches. 

In the second part of the paper we will discuss learning rules that lead to 
systems that learn these filter systems from examples. We will introduce three 

different types of systems: The Karhunen-Loeve, the quadratic皿 dthe fourth-

order learning system. All these systems have the same structure that叫 ows

them to learn in par叫 el.The KL-system stablizes in states that are line江

combinations of the eigenvectors of the input process. We will then introduce 
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a new variation of the learning rule, based on second order terms that can 
differentiate betw的 neigenvectors that belong to出fferenteigenvalues. Finally 
we will introduce an energy function that contains fourth order terms. The 

resulting systems can no longer be analysed in terms of the covariance function 

of the input process but we will demonstrate empirically that they have a 

number of advantages over the ordinary KL-transform based systems. We 

will also show that systems that use the group theoretically defined coordinate 

transformation as pre-processing procedure perform better than the systems 

that work on the original pixel data. 

1 Introduction 

The investigation of receptive fields families (or early vision filters) is one of 

the basic problems in vision research and it has been investigated from a large 

number of viewpoints ([8], [9], [5], [6], [3], [16], [17], [24], [13], [12], [11], [29]). 
These filters are used to extract information from the data measured by the 
sensors of vision systems (like cameras or the retina). In their papers [13], 
[12], [11] Koenderinck and van Doorn note that most of these filters were 

constructed in a rather ad hoc manner and that they "constitute an odd lot, 
with little inherent coherence". They therefore propose a principled taxonomy 

of linear spatial receptive :field families based on some general principles (see 

also [15] and [16] for related approaches). 
Their approach is basically motivated by ideas from the scale space theory 

of image processing and the receptive :field families they :finally come up with 

are the Hermite (in cartesian coordinates) and the Laguerre functions (in 
polar coordinates) familiar from quantum mechanics and optics. 

Although this result is very elegant from a theoretical point of view there 

are still some important open problems: 

1. Using Hermite or Laguerre functions always implies an aperture function 

of infinite size since these functions have infinite support. Although they 

fall off exponentially fa.st it is well known that the introduction of binary 
windows of :finite width complicates the study of these systems consid-

erably. In optics these are the aberrations produced by finite apertures. 

ご2.The model is continuous, i. e. all the functions used in the model are 

defined in regions with an infinite number of points. In reality we have 
however only a :finite set of measurements (pixels) to work with. The 

problem of how to bridge the gap between the continuous model and 

the discrete data set requires a careful investigation (see for example 
the discussion on mathematical and physical operators in [31] or the 
literature on sampling theory). 

3. The filter functions are designed (in this case in the framework of scale 

space theory). It is however not explained how (and why) these systems 
could evolve in natural systems. 

These are some of the open problems conn邸 tedwith the approach de-

scribed by Koenderinck and van Doorn and with continuous models in gen-

eral. In this paper we will avoid'these problems by using a discrete model 

instead. We observe that there are only :finitely many sensors in the receptive 

:fi elds and that they are usually arranged in a highly symmetrical way. This is 
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always true when the images are collected by a camera. The pixels represent, 

in this case, data on a square grid. In this paper we will mainly use the square 
grid but all results can be generalized to grid geometries where the locations 
of the sensors are the corners of regular polygons. Other interesting sensor 

geometries include images on hexagonal grids. 

In the first part of the paper we will show how the representation theory 
of the dihedral groups can be used to analyze filter families. We show that for 
a receptive field of a given size and a given geometry there is one coordinate 

transformation under which all filter functions have an especially simple form. 
We show that this coordinate transformation has properties similar to the 

FFT. We will especially consider correlation matrices of input processes with 

group theoretically defined symmetry properties. For these processes we will 

show that the proposed coordinate transformation leads to a decorrelation of 

the transformed signals. The correlation matrix of the transformed signals 

will have a block-diagonal structures. 

In the second part of the paper we describe several systems that can learn 
the eigenvectors of a correlation matrix from examples. The learning rules 
used by the systems make it possible to learn in parallel. From the results 

derived in the first part of the paper we know that the eigenvector analysis 

of a large matrix can be reduced to a number of eigenvector computations on 
smaller matrices if we consider the signal in the group theoretically derived co-

ordinate system. This should speed up the learning process considerably since 

part of the eigenvector calculations are already hard-coded in the coordinate 

transformation. 
In the last section we will demonstrate some of the properties of these 

filter systems with some examples: Some of the basic facts and results from 

the theory of group representations are summarized in the appendix A. The 

different learning rules are derived in appendix B. 

2 The basic model 

We will first introduce some notations and a general framework which will be 
used afterwards. We try to select a minimal set of constraints under which 

interesting results can_be derived・. First we introduce some notations: 

タ:<""'''・- Al The receptive field (i.e. the input of an early vision filter) 

consists of a finite number of sensor measurements. 

The number of measurements is denoted by N and the individual mea-
surements by Sk. All input values are collected in the signal vector: 

s = (s1, s2, …, SN)1 (1) 

The next assumption states that we consider systems of linear filters that 

analyze the same input data simultaneously. 

A2 The system can be described by a matrix of (complex) coeffi-

cients. 

This system matrix is denotect by A. The vector belonging to the k-th 

filter function is: 

叫 =(akl, ak2, ... , akN)- (2) 
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The output Ok of the filter k given the signal vector s is the scalar product 
between ak and s : 

N 

Ok= ak. s = I:ak[S/ 
1=1 

(3) 

or in matrix notation: 

o= A・s (4) 

The number of linear filters in the system will usually be denoted by K. 

From these two邸 sumptionswe conclude that there are at most N linearly 
independent filter functions. Such a maximal filter system will only perform 
a remapping of the origin叫 inputdata without any information loss. In gen-
era.I we are, of course, interested in filter systems with fewer number of filter 

functions. We also note that continuous models usually do not provide such 
an upper bound. 

Next we assume that all filter vectors have the same length: Ila叶ド＝
~1 ai1 = 1. This does not restrict the generality of our approach since scaled 
versions of the filter would only produce scaled output v叫uesbut they would 

not add any new information. 

A3 Filter vectors are normed 

The next assumption is rather general and we will illustrate it with a 
number of examples. Different realizations of this principle gives us diffrent 

types of models: 

A4 We assume that there•is a matrix C that governs the proper-

ties of the filter system. 

Usually we will be able to define the "best" filter system in terms of the eigen-
vectors and eigenvalues of the matrix C. This makes these models especially 
attractive in the context of learning since we can "learn" the best systems it-
eratively by using optimization methods. The investigation of several learning 

rules will be the topic of the second part of our paper. 
Here are some examples that illustrate the assumptions made so far: 

1. Assume the input signals s are generated by a stoch邸 ticprocess and 
that the system consists of one filter function. We define the best system 

’`ぞ心 asthe system with the maximum mean squared response to the input 
signals. The best system is thus described by the vector a with: 

mean., l(a,s>12~mean8 I〈a,s〉12

Computing the mean squared response of a filter vector a gives: 

mean$ !(a, s〉12 ＝ 
＝ 

mean., ((a, s〉(s,a〉)= mean., (a'ss'a) = 

a'(means (ss'))百=(a, Ca〉

(5) 

(6) 

where C is the covariance matrix of the input process. The best filter 
vector is the eigenvector a of C with the largest eigenvalue. 

The matrix C is in this case the covariance matrix of the input process 
a.nd the extremum principle匹 useis: 

.

,
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．
 (a, Ca)~(a, Ca〉 (7) 
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2. The matrix C in the last example was directly coupled to the filter c0€f
ficients a. In the more general model we have to consider a whole family口

of filter vectors simultaneously. This makes it necessary to introduce a 

new measurement of the quality of a filter system. We proposed a quality 

function based on properties of the output vectors. The output vectors 

computed from all possible input signals form a cloud in K -dimensional 

feature space. We found it useful to require that this cloud should oc-
cupy as large a volume as possible in feature space. We measured the 

size of the cloud by the determinant of the covariance matrix of the 

output vectors. This property leads to filter systems A for which 

det C = det (Ckl) = det (mean(o砂）） (8) 

1S ill邸 1mum.

In this model the matrix C is defined in terms of the mean values of 
the products of feature values. The feature values are in turn scalar 
products between the input signals and the filter vectors. 

A careful analysis of this system shows that the best filter systems consist 

of the eigenvectors of the covariance matrix of the input process with 

the largest eigenvalues or of linear combinations of these eigenvectors. 

These facts are proved in [23]. 

3. Next we use a mechanical, membrane-type model for the filter functions 

on the receptive field. We assume that the filter value a.t a. location on 

the grid represents the distance of a particle from an equilibrium state. 
We also assume that neighboring particles are connected by springs and 

tha.t each particle ha.s a spring that pulls it back to the equilibrium state. 

The whole system follows the laws of classical mechanics (one can also 

think of the filter a.s a vibrating membrane). Finally we impose the 

boundary condition that the filter values at the boundary have value 
zero. 

This model ranks the filter kernels according to their potential energy. 

The kernels with extremal values of potential energy are the eigenvectors 
of a matrix C that can be obtained by a discretization of the motion 

equation. The size of C is N X N where N is the number of pixels. 
.ざ.,:: We consider only .. one filter function and denote the filter coefficients 

by ak, To calculate the force that acts on a given location we note that 

(in the case of a four-connected neighborhood) this force is a sum of 

five terms: the spring that pulls the particle back to equilibrium and 

the four forces from the four neighboring positions. If we denote the 
position of the particle at the center by ac, the values at the neighboring 

locations by a6, aw, an and ae (south, west, north and ea.st) and the 
spring constants by Cc (for the center spring pulling the particle back 

to equilibrium) and en then we find that the force acting on the center 
pixel is given by: 

ac・Cc + Cn・([a6 -a』+[ aw -ac] + [ an -a』+[ae -a』)

which can be rewritten a.s: や

ac・(Cc -4・Cn) + Cn・(a3 + aw + an + ae) 
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For an inner point this leads to a Laplacian type filter kernel of the type 

（ 閤~ Cc -:~ ・ C0 i訊゚） 
Rewriting this in vector notation shows that the matrix C is a band-

matrix with the terms Cc -4・Cn in the main diagonal and Cn in four 
neighboring diagonals. Special attention is needed if the membrane is 
pinned down at the boundaries. 

4. This mechanical model can be given another interpretation that might 

be more appealing for low-level vision problems: If the pixel value at 

the center is approximately equal to the pixel value at one of the neigh-

borhood positions then there is a correlation between these two pixel 

values. The energy function can thus also be interpreted邸 ame邸 ure

of how much correlation we have in the neighborhood of a given pixel. 

The detection of such correlations is certainly of greatest importance in 
low level image processing since these structures form the basic building 

blocks for all further processing. 

5. In the next model we assume that the pixel value at a point represents 

the number of particles located at this point. We assume further that 
there are a large number of such particles and that they all perform some 
kind of random motion. In the simplest case this motion is completely 

isotropic: a given particle located at the origin selects with probability¼ 
a given neighbor on the grid and then it moves with probability t to 

this neighboring location. If s0, s.,, sn, sw, Se are the number of particles 
(pi文elvalues) at the origin and the south, north, west and east neighbor 

location then the expected number of particles at the origin (after some 
time step) is given by: 

t 
(1 -t)・So-+ 4・(S., + Sn + Sw + Se) . 

The mean change of the number of particles△ o at the origin is given 
by: 

ぷ翌衣 t 
△。= so -(1 -t)so --(4・so -S3 -Sn -Sw -se) 

t 4 
＝ ー・ (4・SQ-S3 -Sn -Sw -Se) 

4 
(9) 

This is the discrete version of the diffusion equation and it is described 

by the 2-D kernel 

(~1 !'. —~1) 
The corresponding matrix C is again a. bandmatrix with entries in :five 
diagonals a.s in the c邸 eof the membrane model. 

Our last assumption is b邸 edon the observation that the sensors a.re usually 

arranged in a quite orderly, symm訊ricalfashion: Images from cameras come 

in rows and columns, other sensors may be arranged on a polar grid etc .. We 

know furthermore that simple geometric operations (like discrete rotations and 

" 

.1 
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transpositions) have no dramatic effect on the low-level processes considered 

here. (This does not hold for higher processing levels). 
These heuristic叫 ideasare formalized in the following construction (some 

of the basic facts about groups and representations are collected in the ap-
pend.ix, but for a det叫ledtreatment the reader has to consult the litera-

ture [10], [25], [4], [17]): 
We consider permutations that rearrange the pixels on the grid. 

g: (1, …，N)......, (g(l), …，g(N)) (10) 

Next we assume that we have a number (say L) of such transformations 
and we require that they form a group (see the appendix for a definition). The 
set of all permutations of N symbols forms a group (the so-called symmet-

rical group) and the transformations G = {g1, …, 9L} are a subgroup of the 
symmetrical group. We call the group G the symmetry group of our model. 

In this paper we will only consider special permutation subgroups that 
are linked to the geometry of the grid under consideration. These groups are 

the dihedral groups 1Jn. Vn is defined as the group of all isometric mappings 
that leave a regular, n-sided polygon invariant. It consists of n-rotations 

and n-transpositions around the diagonals of the polygon. This group has 

thus 2n elements and it is not commutative. This means that we cannot 

exchange t~e order in which these transformations are applied: rotating first 
and transposing then is usually different from transposing釦stand rotating 

then. This non-commutative behavior has some very serious consequences 

and it complicates the study of these groups considerably. Of special interest 

for image processing is the group 1J4 which maps the square grid into itself. 
Hexagon叫gridsmay also be of interest but it turns out that all dihedral 

groups can be treated in the same way. 
Now consider one element g from the symmetry group and a function f 

on the receptive field. Since the receptive field has only finite elements we can 

write J as a vector J = (Ji, …, JN). If we first apply th e transformat10n g 

to the grid and if we then apply the function f then we get a new function /が

f = (Ji, …， f N) 1-+ fg = (fg(l), …, fg(N)) (11) 

The mapping f 1-+ f9 is a linear operator on the N-d.imensional vector space 

~f.,._.ajl functions on the receptive field and we can therefore describe it by a 
matrix T(g) : 

f9 = T(g)f. (12) 

For each element g we have thus a matrix T(g) and it can be easily seen that 
these matrices have the property: 

T(g中） = T(g1)T(g2) (13) 

for all elements g這 2in the symmetry group. We call the mapping T a matrix 
representation of the group G 

We now use these transformation matrices T(g) to impose some restric-
tions on the system matrix C introduced in assumption A4: We call the 

matrix C G-symmetric if the matrix equations: 

T(g)も=CT(g) (14) 

hold for all elements g in the symmetry group. This is our last assumption: 
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A5 The matrix C is G-symmetric. 

In the simplest c邸 edeals with images on a square grid. The transforma-
tions g are the 0°, 90°, 180°and 270°rotations and the transpositions on the x-

and y-axis and the diagonals. These transformations紅 ethe only isometries 
that leave the square fixed. The symmetry group consists of eight elements 

and the matrices T(g) are the permutation matrices defined in equations 11 

and 12. 

The main point here is that each group element g imposes a constraint 

(equation 14) on the matrix C. The 1四 gerthe group G is the more con-
straints we put on the matrix C and the fewer matrices C will satisfy all these 

constraints. The matrices that p邸 sall these tests have a number of special 

properties and the main goal of the theory of group representations is it to 

detect these properties and to describe them in different forms. 
Now consider the example where the matrix Cw邸 thecovari皿 cematrix 

of a stoch邸 ticprocess. We say that the stoch邸 ticprocess is G-symmetric if 

all the signals {T(g)s : g E G} have the same probability. All the rotated and 
transposed versions of an input signal are then equally probable. It is easy to 
see that the covariance matrix is G-symmetric in the sense of equation 14. 

The matrices C used in the membrane and in the出ffusionmodel are all 

G-symmetric since they were constructed in a way that made them indepen-

dent of the transformations g in the出hedralgroups: In the membrane model 

the forces from all four directions were defined in the same way and also the 

diffusion process h邸 nobuilt-in preferences for one of the neighbors. The sym-

metry conditions can, of course, also. be checked by brute-force calculations of 
the matrix products in equation 14. 

3 Results from Representation Theory 

The derivation of the results described in this section is far beyond the scope of 

this paper we will therefore only summarize the few important aspects of the 
complete theory that are of importance here. Some of the results are described 

in the appendix but the interested reader should consult the literature to get 

a detailed description (see for example [4] for a general investigation of finite 

groups, [25] for a description of the general theory, [7] for a detailed study of 

詞溶tionand Lorentz groups and [10] and [17] for an introduction and some 
applications in image science). 

The G-symmetric matrices C satisfy the matrix equations T(g)C = CT(g) 
for all group elements g of the symmetry group G and the representation T. 

The main property of C that will be used in the following is a consequence of 
Schur's Lemma: 

Theorem 1 Assume that C is a G-symmetric matrix: T(g)C = CT(g). Then 
there is a matrix M such that the transformed matrix: M'CM is a block 

diagonal matrix of the form: 

(>:: : ::: jJ (15) 

where the C1 are square matrices. 
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This fundamental result requires some additional comments (a.more detailed 
description呼nbe found in the appendix): 

1. The ma.in point is that one matrix M is sufficient to block-diagonalize 
all G-symmetric matrices C. 

2. The structure (i.e. the size of the matrices C1 a.nd the number L) is only 
a function of the group G a.nd the mapping T. 

3. Given the group G and the mapping T it is possible to compute the 

transformation matrix M automatica.lly. 

4. For the dihedral group 1Jn the entries of Ma.re a.11 n-th roots of unity. It 
is thus very similar to the DFT. For the square grid and the group 7)4 

it contains only the numbers 1, -1, i and -i. It can therefore be ca.lcu-
lated with only additions and subtractions. This should make it very 

attractive for hardware implementation. 

In the following table we have collected some decompositions for a number of 
neighborhood sizes. This decomposition uses the 7J4 group. It should give a 
f翁 lingfor the simplifications achievable with this method. 

block sizes 

grid size pixels matrix size C1 C2 C3 C4 Cs c6 
2 4 4x4 1 

゜゚
1 1 1 

3 ， 9x9 3 

゜
1 1 2 2 

4 16 16 X 16 3 1 1 3 4 4 

5 25 25 X 25 6 1 3 3 6 6 

6 36 36 X 36 6 3 3 6 ， ， 
7 49 49 X 49 10 3 6 6 12 12 

8 64 64 X 64 10 6 6 10 16 16 ， 81 81 X 81 15 6 10 10 20 20 

10 100 100 X 100 15 10 10 15 25 25 

11 121 121 X 121 21 10 15 15 30 30 

From the table we see that the size of the matrices is reduced with a 
factor of about four. We also see that the last two matrices always have the 
same size. It can be shown that they_ are not only of the same size but that 

.~hey are actu叫yidentical. In the last case of an 11 X 11 neighborhood the 
original problem involving a 1212 matrix is thus reduced to five problems of 
size 21, 10, 15, 15 and 30 respectively. Apart from the reduction of the number 

of computations involved the computations are also numerically more stable 
since only smaller matrices are involved. Finally we want to point out that the 

savings are even more significant if we study dynamical systems like discrete 
diffusion equations. 

We close this section of a paper with some results involving the introduc-
tory examples: 

• In the first example we consider a random pattern on an receptive field 
of size 11 X 11. From this prototype pattern we generate new patterns 

by applying all transformations of the 1J4 group to it. From the con-
struction of the input signals we know that the correlation matrix of this 

process is 1)4 symmetric and that it will have a block-diagonal structure 

in the new coordinate system. The origin叫 correlationmatrix C and 
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Figure 2: Correlation matrices for a randomly selected patterns 

the correlation matrix万Clvf in the new coordinate system are shown 

in figure 1: 

• The previous example was constructed to fit the theory. In the next ex-
ample we show that real images posses a dihedral symmetry. In this ex-

periment we selected randomly three images from our database: Lenna, 
ぞ心 asatellite image of the moon and an image of an airport. From each of 

these images we selected randomly 500 neighborh~ods of size 11 X 11. 
From these samples we computed the correlation matrix C and the trans-
formed correlation matrix M'CM (with the same matrix M as in the 
previous experiment). The result is shown in the next figure 2 

• Computing the first three eigenfunctions of the discrete membrane (fixed 
at the border) with the smallest energy gives the filter functions shown 
in figure 3: They are blob-and edge-detectors. 

In these introductory exposition of the theory we described only the sim-
plest cases in which the group acted on the raw signal values Sk. The same 

algorithms work however also if the group acts on polynomials signal values 
or other transformations of the original signals. 
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Figure 3: The three filters with minimal energy 

4 Unsupervised Learning 

The goal of unsupervised learning neural networks is it to discover structures 
in the space of input signals. One type of unsupervised linear neural networks 
is closely related to the traditional statistical method of principal component 

analysis (or Karhunen-Loeve expansion or eigenvalue analysis). One of the 
earliest attempts to compute one eigenfunction of a class of input signals is 

the principal component analyzer developed by Oja (see [26] and [27]). Oja's 
analyzer acts as a similarity detector or a correlation unit. This leads naturally 
to a Hebbian learning rule which updates the coefficients of the system so that 
the output of the analyzer is maximized. Oja showed that this analyzer could 

learn the first eigenfunction of the input process. Sanger (see [30]) generalized 
Oja's result by showing how different one-dimensional analyzers could be used 
to compute a number of different eigenfunctions. The system proposed by 
Sanger consists of a number of analyzers of the type introduced by Oja which 
are connected in a serial fashion. Another approach to generalize Oja's result 

was investigated by Leen in [14] where he uses lateral connections trained by 
an anti-Hebbian rule to penalize the interaction between different units. Leen 
shows how the analyzers can be forced to converge to different eigenfunctions 

in a parallel fashion. 

In a series of papers ([19], [20]う [18],[28], [21], [23], [22]) we have inves-
,::ti底atedparallel, feed-forward, one-layer linear networks without any lateral 

connections. Following Oja we use a linear correlator as the basic unit of our 
system. The complete system consists of a number of these basis units. The in-
ternal state of this correlator is described by a. set of variables which we collect 
in a. vector. We call this vector the state vector of the unit. The state vector 

{t) 
of the k -th basic unit at time twill be denoted by ak = (ak1, ak2, …akN). 
When it is clear (and we fear that also sometimes when it is not) we will 
drop the reference to the time variable t. At each time step the correlator 

computes the scalar product between the current input signal s and the in-

ternal state vector. The result is the output value of the unit: oり＝〈a~t), s〉
{t) {t+l) 

Then it updates the internal state vector: ak 1---+ ak . We will also assume 
that the state vectors are real and have norm one. The dynamic behavior 

of is governed by an energy function since the update rule tries to move the 
system to a point with minimal energy. Different energy functions lead to 

different update rules and therefore to different systems. In the following we 
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Figure 4: The Learning Filter System 

will describe three such energy functions and the resulting systems. All these 

energy functions are defined in tt!rms of the output values Ok alone. Comput-
ing the gradient of these functions it can then be very easily seen that this 
implies that no lateral connections are neeeded in such systems. All these 
systems can thus work in parallel and they all have the conceptional struc-
ture shown in figure 4. In the next section we will first introduce an energy 

function which leads to a system that learns the eigenfunctions of an input 
process. Then we will modify the. system so that eigenfunctions belonging to 

different eigenvalues will be learned by different units. These energy functions 
are based on second order moments of the input process and we will therefore 

call them second order systems. We will then show that second order systems 

have some disadvantages and we will therefore introduce fourth order systems 

翌hlchavoid these problems. In the last section we will then describe some 
experiments that demonstrate the performance of these systems. Finally we 

note that instead of minimizing an energy function E we could also maximize 

a quality function Q. These two approaches are essentially equivalent. We 
will mainly use the quality function description in the following. 

5 Three different learning rules 

In the remaining sections of the paper we assume that the input signals are 
centered (have mean value zero) and normed (have length one). One basic idea 

behind all the systems discussed is that the system should extract as much 
"information" as possible from the incoming signals. We write "information" 

since we do not use the term in the,ordinary, entropy definition sense. Instead 

we require that the cloud of extracted.feature vectors should occupy as large 
section of the feature space as possible. This volume is measured by the 
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determinant of the covariance matrix of the feature vectors: 

Qv(A) = Qv = <let ([oioj]) :J: MAX (16) 

Here and in the following we use the convention that square parenthesis denote 

averaging over all input signals: [oioj] is the second order moment of the 
feature vectors. Qv depends only on the second order statistical moments of 

the input process since the basic units are all linear. Similar ideas, involving 
entropies, were recently discussed by Atick in [1]. 

In [23] we showed that the optimal filter functions derived from Qv are 
orthonormal transformations of the eigenfunctions of the input covariance 

matrix. The system learns thus the Karhunen-Loeve transform. 
Choosing the determinant in the quality function is q直tenatural since the 

volume measuring property of the determinant is characterizing the deter叫

nant (i.e. up to a constant the selection of the determinant is unique). From 
a practical point of view the determinant is however q直tecumbersome since 
gradient based update rules lead to complicated, computation-intensive ex-
pressions. In the large number of experiments we made with this and similar 
learning rules we found that the determinant based methods are usually the 
only ones that always work as predicted without any additional parameter 
estimation procedure. This observation s紐 msto confirm the unique role of 
the determinant and it usually compensates the difficulties originating in the 

difficult and slow update-rule. 
If A is the matrix with the filter coefficients and C is the covariance matrix 

of the input process then we compute Qv = det(ACA'). If the filter vectors 
in A are orthonormal then AA'is the unit matrix and for . every orthogo-
nal matrjx T we can construct a new optimal solution TA of Qv since the 

value of the determinant is invariant under orthogonal transformations. The 
function Qv does therefore not uniquely determine the optimal solutions. In 
addition to the maximum volume principle we found it useful to req直rethat 

the filter system should concentrate the output signals to as few output chan-
nels as possible. This should be a dear advantage in the case where the units 
have to communicate through noisy channels (as in the case of cells in living 

beings). 
In our first approach to incorporate t祖sidea into our model we introduce 

the quality function 
ぷ

g心

伽 (A)
Qv 

＝ 
Q2 

(where A is the filter coefficient matrix) with: 

N 

Q2 = I: [叫 (1-[or)) 
i=l 

(17) 

(18) 

This definition selects a filter system in which the correlation unit i should 
produce (in the mean) either a very strong or a very weak output signal. 

Q2 is also a function of the second order moments of the training sequence. 

We call a system based on the quality function Qv a K四 hunen-LoeveFilter 
System and a system based on the quality function QQ a second order system. 

In [23] we showed that these second order systems can discriminate between 
eigenvectors belonging to different・袖igenvalues.

Karhunen-Loeve expansions are based on the covariance matrix of the 
input process. They are entirely based on averaged information all information 
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about individual patterns is lost. Two enterly different input processes have 

the same expansions if they posses the same first and second order moments. 
This can be serious drawback as we can seB in the next example: 

For simplicity we consider signals that are functions on the unit circle. 
We select one such signal s(x) and assume that all input signals are shifted 

versions of this signal: se (x) = s(x -0 and that all these signals are equally 
probable. 

The filter functions ak(X) compute the output values: 

1 21r -

噸）＝—j s(xー（王） dx 
21r o 

） (19) 

Next we expand the functions s and ak into Fourier series: 

s(x) = L叩茫， 叫x)= I: 叩 eiμェ (20) 

and compute the output values in terms of these Fourier coefficients: 

1 加

疇）＝五la(;;=er 11eiv(x-e)) (~ 叩 e―iμx)心＝戸"a;;;;e―1バ (21)

This gives finally for the correlation coefficients: 

1 27f' 

[o砂］＝五／咄）瓢d(

1 2゚7f'
= -j LCTv孟 e―̀匹□亨 Iμ占 d(

21r 0 
V μ  

＝区叩知6四 Iv
V 

= L icrv丘戸Iv
V 

(22) 

From this we see that the second order moments are only functions of the 
magnitudes of the Fourier coefficients of the original signals. No information 

about the correlation between the different Fourier coefficients can be retrived 

for the second order moments. 

From this result we conclude that the quality function should contain terms 

pH汀derhigher than two. We thus replace [o~]·[(1 -0%)] by [oi・(1 -oD] = 
[oz] -[ot]. The complete quality function is now: 

with: 

QLFs(A) = -Qv 

Q4 

K 

(23) 

Q4 = I: [0i一o1:] (24) 
k=l 

This quality function tries to learn filter functions that extract as much in-

formation as possible from the input signals and that tries to produce feature 
vectors with more or less binary components. A filter system based on this 

quality function is called a Learning Filter System or a fourth order system. In 
our experiments we found that thisや systemhad the best performance among 

all the investigated systems. Because of the fourth order term it is however 

very difficult to investigate the behavior of this system analytically. 
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A complete derivation of the learning rule in which we used a Newton 
based gradient search can be found in the appendix B. Here we only want 
to make some more comments on the form of the quality function and some 
variations of it. 

The quality functions consists of two parts Qq and Q4 which try to achieve 

contrary goals the Qq part tries to spread out the output signals as much as 
possible whereas the Q4 part tries to concentrate them as much as possible. 
In the extreme case where all the filter outputs are zero we have an optimal 
solution for the Q4 part but we have the worst value for Qq. In the usual ap-
proach to design energy functions with different components (say E1 and恥）
one tries to combine them additively and to control the influence of both 
components with the selection of a weighting factor. The usual energy func-

tions then take the form E = E1十入E2.This leads however to the problem 
of finding a "good" value for the weight factor. This is a highly non-trivial 
problem and the experimental adjustment of this factor is usually computa-
tionally expensive. We tried several variants of such additive functions but it 
always turned out that finding the "right" energy function was non-trivial. In 
the quality functions described in equations 17 and 23 there are no such free 
parameters and they usually work as expected. 

6 Experimental results 

We use first some artificially created data sets to demonstrate some of the 
properties of the different systems. The signals are one-dimensional since the 
results are easier to visualize in this case. Furthermore we can establish some 
of the results analytically. 

In the first series of experiments we used as training sets one-dimensional 
vectors with 256 elements. The first data set (denoted by cos(x), cos(3x) in 

the plots) consisted of 256 shifted versions of cos(x) and 256 shifted versions 
of cos(3x). The second data set_ (denoted by cos(x)+cos(3x) in the plots) 
consisted of 256 shifted versions of the function ; • (cos(x) + cos(3x)) where ; 

is a normalization constant. Three typical patterns from these data sets are 
shown in figure 5 . The patterns are all centered and the two pattern classes 

have the same correlation matrices as can be seen in figure 6 For each of the 
が匹datasets we trained the three diffferent systems with 2000 examples. The 

result is shown in the next series of figures: figures 7, 8 for the determinant 
based system, figures 9, 10 for the second order system and figures ll, 12 for 
the fourth order system. We see that the determinant based system mixes the 

four eigenfunctions cos(x), sin(x), cos(3x) and sin(3x) in a random fashion. 
The second and fourth order systems try to separate these four functions and 

the difference between the fourth order filter functions from data set one and 
data set two is greater than the differences between the corresponding filter 

functions learned with the second order system. 
In the next series of figures we demonstrate the sensitiveness to differ-

ences in the higher order statistics of a signal set. We used two data sets 
based on square waves with period one and two and arbitrary location of the 

jump. These signals could represent the angular distribution of step edge 
and line patterns in a polar coordinate system. In the first data set (denoted 
by edge,lines in the figures) we used as input signals shifted versions of the 

pure period one and periode two patterns. In the second data set (denoted 

ど
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Figure 5: Three different signals from two different classes 
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Figure 7: Cos(x), cos(3x) data set, determinant system 
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Figure 8: Cos(x)+cos(3x) data set, determinant system 
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Figure 9: Cos(x), cos(3x) data set, second order system 
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Figure 10: Cos(x)+cos(3x) data set, second order system 
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Figure 11: Cos(x), cos(3x) data set, fourth order system 
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Figure 12: Cos(x)+cos(3x) data set, fourth order system 
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Figure 13: Edge, line data set, second order system 

by edge+line in the figures) we added one edge and one line pattern first and 
then we shifted this combined pattern to create new signals. Again we trained 
the second and the fourth order systems with 2000 examples from these two 
data sets. The results are shown in the figures 13, 14 for the second order 
system and figures 15, 16 for the fourth _order system. 

-・ ~ ぶ
We see that the second order system stabilizes in the same solution whereas 

.,.r,,_~ . 

. -. the fourth order system produces two significantly different filter sets. 

To give a feeling for the convergence speed we show in figure 17 the val-

ues of the quality functions for the determinant, the second order and the 

fourth order system in the case where we trained them with the patterns 

cos(x)+cos(3x). We see that the quality of the system does not change sig-
nificantly after a few hundred iterations. 

The last four figures do not only demonstrate that the fourth order system 
is sensitive to higher order statistics (whereas the second order system is not) 
but they also show that the systems perform a Fourier analysis of the input 

process: the filter functions are the sin(x), cos(x), sin(2x), cos(2x) functions. 
Theoretically this is to be expected since the Fourier transform diagonalizes 

operators that are translational invariant. 
Next we investigate the pro匹 rtiesof the filter systems when they are 

trained with neighborhood data from images. In the figure 2 we saw that the 

application of the group theoretically constructed coordinate transformation 

25 



0.1 

0.05 

゜-0.05 

-0.10 

Edges+lines 
0.1 

0.5 ー

0.05 

゜-0.05 

-0.10 
0.5 

ー

0.1 0.1 

0.05 0.05 

゜ ゜-0.05 -0.05 

-0.1 -0.1 

゜
0.5 1 

゜
0.5 1 

.,•ぐ.・'な4'なさ

Second Order 

Figure 14: Edge+line data set, second order system 
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Figure 15: Edge, line data set, fourth order system 
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matrix M lead to a partial decoupling of the feature components. On the 
other hand we saw in the derivation of the unsupervised filter systems that 
they too try to decouple the different features by learning the Karhunen-Loeve 
expansion of the input process. It seems therefore be natural to use the group 
theoretically derived coordinate transform as a pre-processing process for the 

unsupervised filter system. The next series of images will describe a few of 
our experiments based on this idea. 

The input image for the next experiments is shown in figure 18. 
In the first experiment we learned the four filter functions defined on 5 X 5 

neighborhoods. We trained a fourth order system with 5000 randomly selected 
neighborhoods from the original image. Since we always assume that the 
input signals to the system are normed and centered we have to normalize 

the trainings samples first (we ignore all samples with a variance lower then 
a small threshold value). Filtering a subimage of the original image with the 

resulting filters give the results shown in figure 19 Next we applied the group-
theoretically defined coordinate transformation as a pre-processing step. Since 
the transformation matrix is complex we have to concatenate the real pa.rt 
and the imaginary part of the transformed data vector to produce a new 
data-vector. In o~r case・t凪sgives a 50-dimensional input vector. The system 
was again trained・with 5000 neighborhoods and the resulting filter system 
was then transformed back to the image coordinate system. Filtering the 

subimage with these filters resulted in the images shown in figure 20 
The sum of the absolute values of the four filtered images represents the 

accumulative response of the system. The two filter systems give comparable 
results as can be seen in figure 21 where we show the inverted images obtained 

from the、twosystems (the system trained on original image is shown on the 
top and the transformed system on the bottom). 

In the next two plots (figure 22) we see the dynamical behaviour the quality 
functions for the two systems. In the upper plot (showing all 5000 iterations) 
we see that the overall behaviour for the two systems is the same. In the lower 
plot (with only the first 50 iterations) we see that the quality function for the 
system trained with the transformed input data (dashed line) reacts faster to 
the incoming data. 

In the next series of figures we see the correlation between the learned filter 

functions and the eigenvectors of the correlation matrix. In this experiment 
wiざ羞~lectedrandomly 10000 neighborhoods of size 5 X 5 from th original image. 

From this data set we computed the correlation matrix. Then we computed 
the scalar products between the learned filter functions and the eigenvectors 

of the estimated correlation matrix. The results are shown in the figures 23 
(for the system trained with the original data) and 24 (for the system with the 
transformed data). We see that both systems have strong correlations with 
the eigenvectors. In the following tables we give the results of the matrix 

products M,。=F.。-F'。,Mt = Ft・F't, N,。=F.。-C-F'。andNt = Ft・C・F't 
where F.。andFt are the matrices containing the filter coefficients of the system 
trained with the original data and the system trained with the transformed 

data respectively. C is the estimated correlation matrix. These matrices show 
how correlated the different filters are and how good they approximate the 

.. 
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Figure 18: The origina.l image 
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Figure 19: Filtering with U1e lilkrs learned「romthe original image> 



Figure 20: Filtering with the filt<'rs learned l'rorn the trans「ormeclirnagr 



Figure :21: Sum of absolute responses (original and transformed) 
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Figure 22: The values of the quality functions 
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Figure 23: Correlation between the eigenvectors and the learned filters (original) 
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eigenvectors of the correlation matrix: 

(1.0000 -0.0:!.55 -0.0034 0.0116 , 

M。=
-0.0155 1.0000 0.0214 -0.0052 
-0.0034 0.0214 1.0000 0.0237 

(25) 

¥ 0.0116 -0.0052 0.0237 1.0000) 

(1.0000 0.0269 0.0210 0.0010 1 

Mt= 
0.0269 1.0000 0.0358 -0.0110 

0.0210 0.0358 1.0000 -0.0558 
(26) 

¥ 0.0010 -0.0110 -0.0558 1.0000) 

(0.6678 0.1059 0.0115 0.0153 , 

N。=
0.1059 0.5888 -0.0208 -0.0226 
0.0115 -0.0208 0.4656 -0.0199 

(27) 

~0.0153 -0.0226 -0.0199 0.7249) 

(0.6817 -0.0672 0.0199 0.0154 , 

Nt = 
-0.0672 0.4841 0.0120 -0.0123 

0.0199 0.0120 0.7663 0.0254 
(28) 

¥ 0.0154 -0.0123 0.0254 0.4446) 

We see that the filters in transformed system are slightly more correlated 
and that the two strongest filter functions have slightly higher values in the 

diagonals. The overall response (measured by the value of _the traces of N,。
and Nt) is comparable. 

Finally we tried to restore the original image by adding the mean value 
in the neighborhood and the computed filter results. The results are shown 
in figure_s 25 and figures 26 for the system trained with the original data and 
the system trained with the transformed data. 

In this case we found that the system trained with original data and the 
system trained with transformed data produced very simular results. In the 

next two series of experiments we will show that the system trained with the 
transformed neighborhoods may provide visually better results. 

In the first experiment we trained a system consisting of four units with 

20000 samples from an image. The neighborhood size was again 5 X 5 pixels. 

Then we filtered a subimage with the fo~r filter functions. The sum of the 

absolute values of the four response images is shown in figure 27 the system 
改'.

（ 
・'with the original data on the top and the one with the transformed data on 
the bottom). Then we smoothed the subimage with a 5 X 5 averaging filter and 
added the smoothed image and the four filter response images. The result is 
shown in figure 28. The image on the bottom is the original subimage, the top 
left image was produced by the system with the original data and the top right 
image comes from the transformed data. We see that the system trained with 
the original data produces a more blurred image than the system that works in 
the transform domain. This observation is confirmed when we trained a four 

unit system with the Baboon image. In this experiment we used only 2500 
neighborhoods from the original image. The same results (absolute response 

and restorations) are shown in the images 29 and 30: In this case some of the 
filters learned in the transform domain had also a simple interpretation: they 

were two perpendicular edge filter.s. The four filters learned by the system 
tr叫nedin the transform domain are shown in figure 31 and the four filters 

extracted from the original data are shown in figure 32. 
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Figure :2:3: Restoration with mean and filter results (original da1a) 
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Figure :28: Restoration with mean and filter results (1でst.oratiouwith original. wit 11 

transform; original image) 
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Figure :30: Restoration with mean and filter results (resioratiou with original鴨 ¥¥'itIi 

transform; original image) 
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Figure 31: Four filter kernels learned by the system trained in the transform domain 
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From these experiments we conclude that it might be preferable to use the 

group-theoretically motivated coordinate transform as a pre-processing stage 
for a learning filter system. This might increase the speed of learning and 
the results produced with these systems seem to be superior. The additional 
computations can be done very・fast since they involve only additions and 

subtractions. 

7 Conclusions 

We demonstrated first how problems on a regular grid can be simplified by 
using results from the representation theory of the dihedral group. The main 
result was that a whole class of problems can be simplified by applying a group 

theoretically derived coordinate transformation. Then we introduced several 
unsupervised filter systems that can learn the Karhunen-Loeve expansion in 
parallel. We also discussed why Karhunen-Loeve type expansions might not 
be sufficient in many cases. This lead us to the introduction of a learning 
filter system based on fourth order moments. We investigated the properties 

of this system with a number of generated data sets. Finally we combined 
the group theoretically defined coordinate transformation and the learning 

filter systems to learn filter functions from real images. We showed in some 

experiments that the systems operating in the transform domain have superior 
performance compared to those working on the original pixel data. 
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A Basic facts from the theory of group 

representations 

In this appendix we will summarize some of the very basic definitions・and 
results from the representation theory of finite groups with special emphasis 
to the dihedral group. It contains only the most important facts n紐 dedin 
this paper. To get more information the reader might consult the literature 
(s統 [17],[10], [4], [2], and [25]). 

A.1 Groups 

We recall that a group is a set G together with a group operation• such that: 

1. •:GxG • G; (91, ぬ） I-+ 91 . 92 

2. There is a neutral element e such that 

e・g = g・e = g for all g E G (29) 

3. For each g E G there is an inverse element gー1such that 

ー1 -1 g・g=g・g =e (30) 

4. The operation is associative 

91・(92・93)= (91・92)・93 = 91・92・93 for all 91,92,93 E G. (31) 

Usually.we will write 9192 instead of 91・92・ 

Definition 1 1. The group is called abelian or commutative if g1釦＝

9291 for all gi E G. 

2. A group is called cyclic if there is an element 9o E G such that all group 
elements g have the form g・=-= 90 for some integer n. 

3. A group is called a finite group if it consists of finitely many elements. 

4. The number of elements in a group is called the order of the group. We 

ぷや
will usually denote it by !GI, 

Sometimes it is enough to know a few elements of the group since all the 
other elements can be generated from them. This is especially important for 
the dihedral groups: 

Definition 2 Assume G is a group and S = {gi: i E J} is a subset of G. 
Then we call S a generating system of G if all elements g E G can be 
written as finite products of elements in S : 

g = 91…9N (gn ES) (32) 

The dihedral group叫 isdefined as the group of all isometries that leave a 
regular, n-sided polygon invariant. Using some geometry it can be shown that 
the Dihedral group叫 consistsof'2n elements: n rotations and n transposi-

tions. The rotations belonging to 1>n form a cyclic group Cn of order n. This 

group consists of all 2-D rotations with rotation angles峙，(k= O, …, n-1). 
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Figure 33: Generating elements for the group'D4 

The other n elements in the group are the transpositions on the lines with 
angle与(k= 0, …，n -1) with the x-axes (we always assume that the first 
訟 isof the polygon lies on the x-axis). 

For the Dihedral group 1J4 (connected to the square) two of these trans-
positions are denoted by er and r in the figure 33. The 90°rotation will be 
denoted by p. 

From the figure we derive the following properties of 1Jが

Theorem 2 1. The elements er and r form a generating system of匹

2. Applying two transpositions gives a rotation: rcr = p and err= p―1 

3. The elements er and p form a generating system of V4 

4. er炉=p―kcr

5. The elements of V4 are all of the form: er況 withl = 0, 1 and k = 

0, 1,2,3. 

Similar relations hold for all dihedral groups. 

A.2 Rep 
． 

resentat1ons 

We now come to the important definition of a (finite-dimensional) represen-

tation: 
.;,;,,-心

・・・Definition 3 Assume G is a group, V is a vector space and G L(V) is the 
space of all invertible, linear maps: V→ V. A map T: G→ G L(V) is called 

a representation of G if 

T(g1ぬ） = T(g1)T(g2) for all g1,92 E G (33) 

The dimension of V is called the dimension of the representation. If all 

the mappings T(g), g E G are unitary then we say that the representation is 

unitary. 
In the following we will only consider finite-dimensional representations. 

If we select one fixed b硲 isin the vector space then we can think of T(g)邸 a
matrix. 

If S is a generating system of t4e group G then it is sufficient to define the 

representation mapping T on the elements of the generating system S. For 
the dihedral group 7J4 we have T(g) = T(a況） = T(a)1T(p? with l = 0, l 
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and k = 0, 1, 2, 3. The representation is therefore completely defined by the 
two matrices T(a) and T(p). 

Next we define the simplest representations possible: 

Defimt1on 4 1. Assume T : G → L(V). 1s a representat10n of G. As-
sume that V1 is a subspace of V that is also inva.ri皿 tunder a.11 opera-

tions T(g),g E G. Then we ca.11 V 1 a.n invariant subspace. 

2. A representation T is ca.lied reducible if there is an invariant sub-

space V1 of V such that Viヂ{0}叫 Vi:/ V. 

3. A representation Tis ca.lied irreducible if it is not reducible. 

An irreducible representation is thus a representation with no non-trivi叫 in-
va.ria.nt subspaces. The invariant subspaces of an irreducible representation 

are the sma.llest possible. 
In terms of ma.trices we get the following characterizations: 

Theorem 3 The representation {T(go), …, T(BN-1)} of a finite group is re-
ducible if and only if there is an invertible matrix P such that all matri-
ces PT(gk)p-I have the form: 

PT(gk)p-l = (か農：）
where the matrices Ak, Bk and Ck all have the same size for all indices k. 

If we can further simplify the matrices so that they become block diagonal 
then we say that the representation is completely reducible: 

Definition 5 The representation {T(g0), ... , T(9N-l)} of a finite group is 
completely reducible if and only if there is an invertible matrix P such 
that the matrices PT(gk)p-1 have the form: 

叫）Pー1= (塁 1:
0 0 

ヽ

）

0
 0
 
.
 At 

(34) 

(35) 

}N賑rethe matrices {A。,…，A正 1}all have the same size for all indices l and 

where 

T1 :G→ {Aも，...,Aい｝
defines an irreducible representation of G for all 1. 

In the case where the group is finite it can be shown that all representations 

are essentially unitary and completely reducible. This is an important result 
since it allows us to simplify calculations considerably. 

Assume that G is a finite group and T: G→ G L(V) is a finite-dimensional 
representation. Then we find: 

Theorem 4 1. There is a scalar product in V such that the representation 
is unitary. 

2. All representations of finite groups are completely reducible. 

~ 
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A.3 Representations of the dihedral groups 

We recall that a dihedral group is generated by two elements, a rotation p 
and a transposition <J. It is therefore sufficient to define the representation 
for these two group elements. For the dihedral groups we find the following 
types of irreducible representations: 

l. T(p) = (くり (~m) and T(<J) = (~ ~). 

2. T(p)=l,T(<J)=l 

3. T(p) = 1, T(<J) = -1 

4. T(p)=-l,T(<J)=l 

5. T(p)=-l,T(<J)=-l 

where (m is the root of unity (m = e 
戸

The cases T(p) = (閏 ~1) and"T(p) = -1 can only occur 1f n is even 

since only then we get -1 as a root of unity. This completes our study of the 
irreducible representations of the dihedral group Dn. 

A.4 G-symmetric operators and Schur's Lemma 

The intertwining or G-symmetric operators where defined as matrices that 
commuted with all the representation matrices: 

Definition 6 Assume that T is a finite-dimensional representation of a finite 
group G. We say that C is a (G,T)-symmetrical operator if the following 
equations hold for all g E G : 

T(g)C = CT(g). (36) 

If it is clear what representation T we mean then we speak of G-symmetrical 

operators. Sometimes we also say that the matrix has the symmetry of 
the group G or that the matrix is an intertwining operator. 

These equations restrict the form C can have and a precise characterization 

of all these C is given in the following theorem known as Schur's Lemma: 

,,Theorem 5 Let T1 and T2 be two finite-dimensional irreducible representa-
tions of the finite group G. Furthermore let C be a G-symmetrical operator. 
Then we have: 

1. C = 0 or 

2. C is invertible and T1 and T2 are equivalent. 

With the help of Schur's Lemma one can characterize the G-symmetrical 
matrices as follows: 

Theorem 6 Assume that C is a (G,T)-symmetrical matrix. Assume further 

that the representation matrices T(g) have the form: 

T(g) =『:g). ゜乃(g)
． 

5゚3 

＼

）

 

s
 

TN 

0

0

.

 

(37) 



where all the ma.trices在 (g)in turn a.re block diagonal ma.trices of the form: 

ち(g) 0 … 

巧(g)= (0凸：：：
0 0 

＼

）

 
、1,g
 

0

0

.
（
 

t] 

(38) 

and the tj(g) belong to the j-th irreducible representation of the group. The 

matricesち(g)have the size nj X ni and in rj(g) there are Cj identical copies 
ofち(g).N is the number of irreducible representations of the group. 

In the coordinate system connected to this form of the representation T 
the matrix C is a block diagonal matrix and in its diagonal it has n1 matrices 

of size c1, n2 ... , and nN matrices of size CN・

A.5 The projection formulas 

The la.st theorem tells us that all G-symmetrical matrices C have block祉

agonal form in the a special coordinate system in which T(g) ha.s the form 
described in equations 37 and 38. What is left is the problem to find for a 

given representation Ta coordinate system in which it ha.s the form 37 and 38. 
This is solved in the following theorem: 

Theorem 7 Assume that we have a complete set of irreducible representa-
tions of the group G. We denote them by Dn(9), n = 1, …，N. Assume further 
that the dimension of the representation Dj is ni. The matrices Dj(g) have the 
size nj x nj and the element with index (k, 1) in the matrix Dj(g) is denoted 

by咄(g).

For・each triplet (k, l,j) we define now the new matrix PH) a.s: 

埒=I: 咄(g―l)T(g)
gEG 

The algorithm to compute the desired coordinate system is now as follows: 

(i) 
1. Apply the operator P11 to a set of b邸 isvectors of the original vector 

space. The operator P団isa projection operator and the image of the 
basis vectors will contain Cj independent vectors. 

如,; ぞ 2.Find these Cj independent vectors and apply the operators P}[), k = 
(i) 

2, …，ni to them. Each operator P1k will produce Cj new basis vectors 

from the ones constructed in the first step. This gives the Cj * ni basis 
vectors connected to the matrix Tj. 

B The learning rule 

(39) 

In our implementation we use a Newton b邸 edlearning rule to find the max-
imum of the quality function. We recall that all the quality functions consid-

Qv A ered were of the type Q(A) =一丹 whereQv(A) w邸 thedeterminant of Qc(A 

the output covariance matrix and Qc(A) w邸 asecond function of the filter 

matrix A. The partial derivatives of Q are: 

8 

8a1k 
―Q(A) = __J__ (生凶

知 Qc(A))

54 

鴫

、A
和

“
 



／
 

＝ 
Qc(A)品;Qv(A)-Qv(A)品召Jc(A)

Qも(A)

＝ 旱Qも(A)

ぶ

・ー

Since we are interested in maximum values of the quality function we 
go in the direction of the gradient and we use the second derivative as the 
steplength parameter. This makes it necessary to compute the lk-th entries 

of the matrices G and G'(A): 

G(A(t)) 

G'(A(t)) 

＝ 

＝ 

＝ 

a a 
Qc(A(t))— Qv(A(t)) -Qv(A(t))— Qc(A(t)) 
IJ Oa/k Oa/k 

Oa/k 
G(A(t)) 

炉 a2
Qc(A(t))— Qv(A(t)) -Qv(A(t))— Qc(A(t)) (40) 

8a1k2 8a1k2 

The three different systems we considered used as Qc the functions (see equa-

tions 16, 18, 24): 

Qc 

Qc 

Qc 

＝ 

＝ 

＝ 

2
 

1

Q

 

Q4 

＝ 

＝ 

N 

I: [or] c 1 -[ ol]) 
i=l 
K 

L [oi -01)] 
k=l 

In our update rules we need therefore the first and second derivatives of 

Qv(A), Q2(A) and Q4(A). 
To compute the derivative 品~Qv(A) we note first that only the k-th 

column and the k-th line of the matrix S = ([oioj]) depend on the weight ll/k : 

Qv(A) ＝ 

＝ 

［社]det Skk + L. [o匹 ][oj四］（一l)i+i十△(i,j,k) det (Skj)ik 
i:j;k;j# 

[0%] det如+I: [a匹][o;ok] /3各
洋k;#k

”心

-where△ (i,j,k) is defined as: 

△ (i,j,k) ＝ 

1

1

0

0

 

,4~ 
if i > k and j > k 
if i < k and j < k 
if i > k and j < k 
if i < k and j > k 

(41) 

(42) 

如 denotesthe (N -1) X (N -1) submatrix of ([oi町])obtained by deleting 
the k-th row and the k-th column. (Skj屈isthe (N -2) x (N -2) subma-
trix of ([oioj]) obtained by deleting rows k and i and columns j and k. All 
these submatrices (and thus {3各） are independent of G/k• The first and second 
derivatives are computed as: 

゜Oa/k Qv(A) ＝ 2 [okpi] det紺+I: 閑([ojok][ OiPd + [o叫 [ojp1])
洋k;j#
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a2 

8a11<:2 
Qv(A) = 2 [Pr] <let Skk + 2 I: 恐[ojpi][oipi] 

洋：k;j-::f.k 

The first and second derivatives of Q2(A) are given by: 

8 8 N 

了 卯A) =了~[叫 (1- [ot]) 
a1k a1k i=l 

= 2 [okpt] -4 [0%] [okpt] 

己い） = 2 [Pr] -8([okpi])2 -4 [oI] [Pr] 

and for the fourth order function we get: 

゜
a N 

す―Q4(A) ＝ 一 L[or(l -or)] 
a1k Oa/k i=l 

＝ 2 [okpi) -4 [叫
a2 
戸如A) ＝ 2 [Pf] -12 [o1pf] 
ll/k 

とざ
.. ,.,.. 

.,. 

ゃ
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