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ABSTRACT 

A two stage probabilistic algorithm for establishing feature correspondence between images is 
presented. First, k-tuples of features are matched based on similar invariant representations. 
The representation should be invariant not only to the group of image transformations but also 
to the permutation group of the k elements. A projective and permutation invariant represen-
tation for 5-tuples of points/lines in a plane is described. In the second stage, the algorithm 
recovers feature correspondence from a contingency table built with the ensemble of matched 
k-tuples. The conditions for reliable performance are given, and it is shown that the correct 
solution for the correspondence problem can be be found while most the data in the matched 
k-tuples is erroneous. The algorithm does not use global information and recovers feature 
correspondence in O[n勺time.
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1. Introduction 

Establishing the correspondence between features in two image frames (or finding the 

instance of a model) is an important prerequisite for the execution of many computer vision 

tasks. The two sets of features involved in a correspondence problem will be referred to as the 

reference set and the transformed set. A projective transformation is assumed to map a subset 

of features from the reference to the transformed set. The presence of noise introduces uncer-

tainty and for convenience all the uncertainty is allocated to the features in the transformed 

set. This assumption bears no relevance for the proposed method and it is true in object 

recognition where the reference set~ontains the models. Our goal is to develop a robust 

object recognition system which tolerates significant feature localization errors. The 

correspondence algorithm described in this paper is a component of the system but c~also 

be used in stereo or motion tasks. 

Feature correspondence is required (although often only implicitly) in most of the 

recently proposed object recognition methods. In the alignment methods (also known as 

transform detern血 ation,or clustering techniques) the affine transfo皿 ationbetween the refer-

ence and transformed sets is sought. To compute the transformation correspondence is 

assumed between two configurations of noncollinear 3-tuples of points randomly chosen from 

the reference and transformed sets. (Equivalent configurations were also used.) To validate 

whether the obtained transfom氾tioncan account for the data, Huttenlocher and Ullman (1990) 

backprojected the model. Whenever the two configurations are in correspondence the com-

puted transformations map into nearby locations in the six-dimensional feature space of the 

transformation parameters. Mundy and Heller (1990) exploited this property and extracted the 

significant clusters from the feature space. Validation was again performed by model back-

projection. In practice the alignment methods are very sensitive to image noise and to 

•, 
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interference among multiple models (Grimson and Huttenlocher, 1990). 

In the indexing methods invariant representations for. both feature sets are computed. In 

geometric hashing (Lamdan et al., 1990) a randomly chosen noncollinear triplet of points 

serves as the two-dimensional affine basis for computing the affine invariant coordinates of all 

the remaining points. These invariant coordinates are the hash-table addresses where the 

basis triplet's index is stored. Thus for a given affine basis, the invariant representation of the 

reference set is distributed over several hash-table cells. The procedure is repeated for all the 

3-tuples in the reference set. Next, for a transformed set basis the invariant coordinates of the 

transforn記dset are computed. The number of times the transformed set coordinates address 

hash-table cells containing the index of the same reference set basis are counted. If the count 

is high enough the two bases are declared in correspondence and the underlying affine 

transformation is computed. Model backprojection then validates the transformation. For 

noisy images, the random affine bases generate large number of false coincidences (Lamdan 

and Wolfson, 1991) and at significant noise levels the invariance property of the representa-

tions can also be lost (Grimson et al., 1992). 

The above discussed object recognition methods require large amount of computations. 

For example, the worst case complexity of geometric hashing is O[記]. Most of this effort, 

however, is wasted on randomly chosen bases which are not in correspondence and thus only 

increase the probability of a decision error. Non-corresponding configurations of feature sub-

sets should not be taken into account at subsequent steps. Invariant representations these 

configurations can be obtained with projective invariants and used to filter out the undesired 

parrs. 

Projective invariants were introduced in computer vision by Weiss (1988) and received 

considerable attention recently (Mundy and Zisserman, 1992). An invariant is an algebraic 
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function in the parameters of a configuration containing a few features. The value of an 

invariant changes after a projective transformation only by a transformation dependent con-

stant. For absolute scalar invariants, the ones of interest for computer vision, the value of the 

constant is one. In the first object recognition system using projective invariants the two 

invariants defined by two coplanar ellipses were employed to index objects from a model 

library (Forsyth et al., 1991). Th e use of complete ellipses puts senous h1TI1tat1ons on the 

class of object which can be represented. On the other hand, ellipse fitting to partial data is 

very sensitive to noise (Porrill, 1990). Several invariants comput~d for different types of 

configurations (coplanar lines, two conics, etc.) were used by Wayner (1991) and Rothwell 

et al. (1992b). The topological relations among the features in the model were used to gen-

erate lists of invariants representing the same object. Recognition employed hashing tech-

niques (Rothwell et al., 1992b) or graphs (Wayner, 1991). 

To obtain the invariant representation of an arbitrary planar shape several methods were 

proposed. Semi-differential invariants (Van Gool et al., 1991; Brill et al., 1992) are based 

on low-order derivatives computed at a few points on the boundary curve. The more points 

are considered (up to four) the less derivatives are needed. Rothwell et al. (1992a) used four 

points on the boundary curve to define a canonical frame in which an invariant representation 

of a concavity can be obtained. The four points were delineated by tangency, a projectively 

invariant property. All the mentioned semi-differential invariant representations assume that 

the correspondence was already found between the points used as anchors. 

Invariant representation of a configuration of k features is a mapping from the high-

dimensional space spanned by the independent parameters of the configuration to the low-

dimensional space of its invariants. For example, two conics in, a plane have ten degrees of 

freedom but yield only two invariants. The mapping is from a ten-dimensional space to a 
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two-dimensional one and different pairs of conics can have very similar invariants. Thus, 

when an invariant representation is used to select corresponding subsets of features (i.e., to 

index a data base) the existence of matching errors must be taken into account. These errors 

were not considered in the invariance based object recognition systems mentioned above. 

In this paper we describe a general method for finding in the presence of matching errors 

between subsets of features the reference/transformed set correspondence. In Section 2 the 

importance of permutation invariants for object recognition is emphasised and as an example 

the projective and permutation invariant representation of five coplanar points/lines is intro-

duced. In Section 3 the new feature correspondence algorithm is described and its perfor-

mance bounds are given. Simulation results are shown in Section 4, and the issues to be faced 

in applications are discussed in Section 5. 

2. Transformation and Permutation Invariants 

A formal definition of an absolute scalar projective invariant I[・] computed with k 

features in correspondence from the reference set r1, ... , rk and the transformed set 

T(r1), ... , T(r k) is 

I [r1, ... , rk] = I [T(r1), ... , T(rk)] , (1) 

where T(・) is the transfom祖 tionapplied to the reference set. Thus, I[・] provides an invariant 

representation for a subset of k features. The invariants currently used in computer vision are 

feature order sensitive, i.e., their value depend on the order in which the elements ri or T(ri) 

were considered. Matching a given reference and transformed k-tuple pair with an order sen-

sitive invariant representation requires that invariants must be computed for all the k ! permu-

tations of one of the k-tuples. 
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Let I1{r1, ・・・心}describe a permutation of the k features. An invariant will be called 

transformation and permutation (TP) invariant when it satisfies the condition 

I [r1, ... , rk] = I [II{r1, ... , rk }] = I [II{T(r1), ... , T(rk)}] . (2) 

A TP-invariant discards not only the influence of the feature transformation T on the k-tuple 

but also the influence of the order in which the k features were chosen into that k-tuple. A 

TP-invariant matching criterion max血izesthe probability of matching between k-tuples 

chosen randomly from the two sets. Let the two sets contain n features in correspondence. 

Assuming uniform sampling, the probability of matching a given reference k-tuple with a ran-

domly chosen transformed k-tuple is either 

均=k!(; l or 加＝闘' (3) 

where Py is for using an order sensitive invariant representation, and Pyp when a TP-invariant 

representation is employed. The higher probability Pyp increases the number of matchings 

for the same number of trials and thus provides a larger ensemble of matched k-tuples. 

Definition of TP-invariants is immediate for the Euclidean group of transformations. The 

magnitude of an angle, the length of an unoriented・segment, do not depend on the order in 

which the points were chosen and therefore are TP-invariants. For the planar projective group, 

TP-invariants can be constructed by exploiting the properties of the cross-ratio. In one dirnen-

sion the cross-ratio of four points A 1, A2, A3, A4 on a line (Fig la) is defined as 

ふA3 A1A4 
入=(A1A2凸A4)=-:-,

んA2 A4A2 
(4) 

where the lengths of the oriented segments AiAj are signed. The four points can be con-

sidered in 4! = 24 different orderings which yield six different cross-ratio values (Springer, 
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1964; p.14): 

入1=入 1
-
入＝
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入 入
入— 1

3 入
入

入
4 入— 1

入
1 

5= 
1-入

入6=1 —入． (5) 

The six expressions in (5) form a group since any勾canbe obtained from any入iby a 

sequence of simple transformations. 

Proposition 2 .1 

Any symmetric function of Ai, ... , 入6is a TP-invanant of four collinear points 

under the group of one-dimensional projective transformations. 

A function is called symmetric if it is not sensitive to permutations of its variables. For exam-

ple, the sum of the variables, the sum of all pairwise products of the variables, etc., are sym-

metric functions. The 24 different point orderings on the line yield the six cross-ratio values 

in (5). Therefore any symmetric function of "A1, ... , 入6will be insensitive to the order in 

which the points were considered when computing the cross-ratio. Hartshorne (1983, p.317) 

used the j-invariant 

J(入）＝
（だ—入+1)3 

だ（入ー 1)2
(6) 

when defining elliptic curves. The expression of the j-invariant remains unchanged when入is

substituted with any入ifrom (5). The j-invariant was introduced in computer vision by May-

bank (1992) in a study of the invariant properties of noncoplanar conics. However, any sym-

metric function can be used. For example, the expression f几iI is a TP-invariant since a 
i=l 

different ordering of the points just changes the order of the terms in the sum. (The symmetric 
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function L入i= 3 is a trivial TP-invariant.) Similarly, 
i=l 
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Figure 1 
Definition of cross-ratios. a) In one dimension, four collinear points. b) In two di— 

mensions, five points in arbitrary positions in a plane. 

L L 入ふ＝
6 6 11,6―3だ+5だー3入+1

i=l j=l,j戎 だ（入ー1)
(7) 

is also a TP-invariant. Beside computational considerations none of the TP-invariants defined 

above seems to be more advantageous. 

The importance of cross-ratio for computer vision was already recognized by Duda and 

Hart (1973, pp. 407-414). The projective transformation of a plane is defined by the 

correspondence of four points in arbitrary positions (no three collinear). 1herefore, to gen-

eralize the cross-ratio in two dimensions a five-point configuration is necessary. Several 

equivalent definitions can be given (see for example Barrett et al., 1991) but for us the pro-

cedure shown in Figure 1 b is the most convenient. One of the five points (A 1) is chosen as 

the center of perspectivity and a line passing through two other points (A 2 and A 4) as a one-

dimensional projective space. The one-dimensional cross-ratio (A 2恥 A4恥） is then taken as 

ct・ the two-1mens1onal cross-ratio associated with A 1. The coordinates of the intersection points 
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妬 andB 5 are not needed explicitly, the two-dimensional cross-ratio can also be computed 

using ratios of areas of triangles defined by the points Ai. The procedure is repeated for all 

the points A 2 to A 5 as center of perspectivity. Of the obtained five cross-ratio values only 

two are independent, and they are known as the projective coordinates of (say) A 1. Like in 

the one-dimensional case the two-dimensional cross-ratio is not order invariant. Changing the 

order of the points in Figure 1 b yields different two-dimensional cross-ratio values, and so 

does choosing a different line as the one-dimensional projective space. Haralick (1989) gave 

the relations among the two-dimensional cross-ratios obtained with different orderings of the 

five points. 

Proposition 2.1 enables construction of a TP-invariant representation for 5-tuples of 

points or lines. (Points and lines are dual in projective spaces.) First, the five two-

dimensional cross-ratios are computed for the five points. Any of the symmetric functions 

mentioned before can be used as TP-invariant and each point is associated with the value of 

that function for the its cross-ratio. The TP-invariant is insensitive to the order of the four 

points (in our example, A 2, B 3, A 4, B 5). This insensitivity removes the influence of the way 

the configuration was labeled or which line was chosen to compute a cross-ratio. Since the 

cross-ratios are not independents, the five TP-invariant values associated with the five points 

provide a redundant representation of the configuration. We are currently investigating the 

properties of this representation and its usefulness for the recognition of planar objects. 

3. Feature Correspondence Algorithm 

The algorithm is described using an idealized feature selection model. This simple 

model allows us to find the necessary conditions for reliable performance and to emphasize 

the issues that must be faced in more realistic conditions. Let assume for the moment that 
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both the reference and the transformed set contains n features in correspondence. A TP-

invariant matching criterion is used to select the k-tuples whose features are in correspon-

dence. All the n features have equal probability to be in any of the k positions of a k-tuple 

satisfying the matching criterion. A matching error appears whenever a feature in the refer-

ence k-tuple does not have its correspondent in the associated transformed k-tuple. Matching 

errors are modeled by allowing u features in the k-tuples drawn from the transformed set to 

be incorrect with probability a. Thus, u~k < n and n :2: k + u. Given the feature ri in the 

reference k-tuple, the probability that its correspondent T(ri) is in the matched transformed 

k-tuple is 

u 
布 =1 — -a.

k 
(8) 

The probability that a second feature T(rj) was also chosen into the same transformed k-tuple 

can be computed considering the two possibilities: 

The feature rj is in the reference k-tuple and therefore the feature T(rj) should be in the 

transformed k-tuple 

釘＝已[1-和］ (9) 

where the first factor is the probability that rj is selected into the reference k-tuple given 

that ri was already chosen into. 

The feature rj is not in the reference k-tuple, that is, the feature T(rj) is in the transformed 

k -tuple due to an error 
一

02~[ I一厨]~ (10) 
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Thus, . the probability that given the presence of a feature ri in the reference k-tuple, both 

T(ri) and T(r j) are present in the matched transformed k-tuple is 

Yij =釘＋島=~一=:[1-和]+ nu~\ . (11) 

We can describe now the new feature correspondence algorithm. The tool to extract the 

individual feature correspondence from the ensemble of matched k-tuples is a contingency 

table. The labels of the reference set features are the row addresses in the table and the labels 

of the transformed set features are the column addresses. Thus any reference and transformed 

feature pair uniquely defines a cell in the contingency table. 

Feature Correspondence Algorithm 

1. Arbitrarily label the features in the two sets. 

2. Obtain an ensemble of matched k-tuples satisfying the TP-invariance criterion. 

3. For every matched k-tuple: 

For every feature in the reference k-tuple: 

3.1. Cast a vote on every feature in the transformed set k-tuple. 

3.2. Record the votes in the contingency table. 

4. Extract the feature correspondence from the contingency table: 

4.1. The cell with the highest number of votes gives the labels of the feature pair 

with the most often recorded correspondence. 

4.2. Remove from the table the column and the row of the cell found at 4.1. 

4.3. If the table is not empty return to 4.1. 

When the reference feature ri votes on the transformed features in the matched k-tuple, the 
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probability that he votes for its correspondent T(rj) is'Yii・Any one of the n-1 non-

corresponding features T(rj) receives a vote with probability'Yij. If in t trials (matchings) the 

feature ri is chosen q times, the expected value in the cell (ri, T(ri)) is the closest integer to 

q'Yii・Any cell (ri, T(rj)), j * i, has the expected value the closest integer to Q'Yij・However, 

these are only expected values and their fluctuation can come from several sources. The 

number of times a reference feature is chosen into a k-tuple in a given number of trials has a 

binomial distribution with parameterμ= k In . Thus q = [叫 where[・] is the integer part of 

the argument, and has the variance tμ(1-μ). Due to the matching errors, the number of 

correct correspondences in the reference/transformed k -tuple pair is also a binomial random 

variable with parameter a. Note that when the number of trials is small the effect of sam-

pling nonuniforn出yyielding deviations from the binomial distributions should also be taken 

into account. 

The correspondence of features ri and T(ri) can be extracted from the contingency table 

if the number of votes in cell (ri, T(rj)) exceeds the largest number of votes in any cell 

(ri, T(rj)), j'i:. i. The number of votes are random variables and we must have 

Prob [ min rii > max rij ] = 1 
j"#i 

i = 1, ... , n . (12) 

where the capital letters signify the randomness of Yii and Yij. A practical (but approxima-

tive) way to reformulate (12) is 

'Yu > Cyij' (13) 

where the constant C > 1 accounts for the spread of the central value. For example, assuming 

a one-sided range of 10 percent from the mean for both "(-s yields C = 1.22. Let characterize 

the quality of the matchings (the presence of matching errors) with 

r
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u
-
K
 

＝
 

ou, 
(14) 

and condition (13) becomes 

1哨>c[峠 I-j3)+長］ (15) 

or 

kC 
n> +1-C. 

1-~ 
(16) 

Given the number of features used in the TP-invariant matching criterion and the quality of 

the matchings, the inequality (16) shows the smallest reference/transformed set size required 

for reliable performance. In Figure 2 the graphs of this bound are shown function of~for 

three values of k = 2, 4, 6. The graphs are the prototype curves for C = 1. The parameter C, 

however, is only a scaling factor since the second term at the right side of (16) has reduced 
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Figure 2 
Minimum number of features necessary for correspondence recovery function of the 
k-tuple matching errors. Solid line: k = 2. Dotted line: k = 4. Hashed line: k = 6. 
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influence. 

The inequality (16) for reliable performance can be interpreted in several ways. Robust-

ness of the correspondence algorithm is measured by the size of the'Yu -C'Yij difference. The 

larger this difference the less the probability of not satisfying (12). Given the data (i.e., n and 

~) the difference increases when the matching criterion uses a smaller k. Since the value of k 

is bounded downward by the transformation group under which TP-invariance must be 

assured, the following result was obtained: 

Proposition 3 .1 

The TP-invariant matching criterion should be based on the least number of 

features allowed by the given transfom追tiongroup. 

Pairs of points can be enough for seeking correspondence under Euclidean transformations, 

but at least five points are required when the correspondence is sought under the planar pro-

jective group. 

The quality of the matchings is represented only through~and therefore we have: 

Proposition 3 .2 

The same performance is obtained when in a transformed k-tuple all the features 

are erroneous with a low probability, or only a few of them are incorrect with a 

high probability. 

In the frequently met case of occlusions the transformed set contains only a partial instance of 

the reference set. Reliable extraction of feature correspondence in the presence of occlusions 

requires low noise level in the transformed set. (Recall the reference set was assumed to be 

always correct.) Indeed, some of the features without correspondent pass the matching cri— 
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terion, yielding a small u and relative large a. When the features in the transformed set are 

also corrupted by significant noise more matching errors occur. Increase in both u and a 

decreases the difference Yu―C'Yij and therefore deteriorates the performance. 

In some applications the number of features in the reference and transformed sets can be 

increased. For example, the available features can be used as anchors to delineate other 

features in their neighborhood. Such procedure is recommended. 

Proposition 3 .3 

The performance of the feature correspondence algorithm improves when the 

number of features whose correspondence is sought increases. 

Indeed, given k and~. if more corresponding features are available (without knowning their 

correspondence of course) the inequality (16) can always be satisfied. At least theoretically, 

the solution of the correspondence problem can be found for arbitrarily high levels of match-

ing errors. Note that Proposition 3.3 is not related to the model backprojection procedure often 

used in the object recognition methods to validate hypotheses. 

It is important to emphasize that Propositions 3.1 to 3.3 use the uniform feature selection 

hypothesis assumed throughout this section. That is, any change in the data (like increasing 

the number of features) should not introduce significant deviations from the assumed uniform 

sampling or decrease the quality of matchings. In Section 5 we discuss the issues raised 

when the algorithm is to be employed in real applications. 

4. Simulation Results 

The influence of random sampling on the performance of the algorithm was investigated 

through simulations. The reference and the transformed sets contained ten features (n = 10) 
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and correspondence was defined by two features having the same label. The TP-invariant cri-

terion was assumed to be based on 5-tuples of features (k = 5), the minimum required for the 

group of planar projective transformations. The matching errors were distributed over the 

entire 5-tuple (u = 5) with probability a and thus~=a. 

The following procedure was repeated t times. First the labels of a reference 5-tuple 

were drawn at random from the set { 1, ... , 10}. Each of the five elements were then 

changed with probability a into an element not in the reference 5-tuple. The obtained five 

labels defined the matched transformed 5-tuple. The values of all the contingency table cells 

addressed by the pair of reference and transformed k-tuples were increased by one. 

The distribution of Yu was measured by computing the mean and the standard deviation 

of the values in the cells (i, i), i = l, ... , 10. The results were expressed as a probability by 

normalizing the computed parameters with q, the expected number of selection of label i into 

a k-tuple. There were no significant differences among the'Yij distributions for different i -s 

and the cells (1,j), j =2, ... , 10 were used to measure the mean and the standard deviation. 

In a transformed k-tuple u features can be incorrect with probability a, and therefore the dis-

tribution of the number of correct feature correspondences in a matched k-tuple pair is 

Prob [ (k -x) out of k correct] = [; l ax (I -a)•-x 

1 

X =0, 1, ... , U 

x=u+l, ... ,k. 

This distribution was also measured during the experiments. 

(17) 

In Figure 3 the results obtained for 100 trials with a= 0.3 are shown. Almost all the 

matched k -tuples contain at least one error as can be seen from the distribution of the number 

of correct correspondences. The number of trials is too small and the effect of nonumform 

sampling yieids large standard deviations for'Yii and'Yij. Assuming the spread from the 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 ， 
10 

MATCHING STATISTICS 
Probability of the number of correct correspondences. 

゜
1 2 3 4 5' 

Theory 0.002 0.028 0.132 0.309 0.360 0.168 
Simulation 0.010 0.030 0.060 0.320 0.360 0.220 

CONTINGENCY TABLE 
Rows: reference feature labels. Colums: transfom叫 featurelabels. 

1 2 

31 23 
19 35 
19 22 
14 19 
23 17 
24 32 
24 19 
21 25 
22 25 
18 23 

3 4 5 6 7 

17 26 20 19 27 
23 18 21 26 25 
34 18 25 23 25 
19 30 16 20 20 
24 15 34 20 30 
26 23 26 40 27 
24 18 23 25 35 
23 18 24 28 23 
25 21 26 26 28 
25 28 30 23 30 

PERFORMANCE ROBUSTNESS 
Normalized number of votes. 

Theory Simulation 

Correct: 咋 0.7000 0.7228士0.0976

Incorrect:'Yij 0.4778 0.4697士0.0657

8 

25 
27 
21 
21 
23 
30 
26 
39 
29 
29 

Figure 3 
Simulation example. Parameters: n = 10, k =5, u =5, ~=a=0.3, t = 100. 
Identical labels are a correct correspondence. 
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， 10 
24 23 
25 21 
28 25 
21 20 
24 25 
23 29 
28 28 
28 26 
41 32 
38 46 



central value as being twice to three times the standard deviation, there is an overlap between 

the two distributions. The condition (12) may be violated but the correct correspondence is 

still recovered as can be seen from the contingency table. 

The largest value in the table is 46 in cell (10, 10). The tenth row and column are thus 

removed from the table and the next largest value, 41, is found in cell (9, 9). The ninth row 

and column are also removed, and the cell (6, 6) holds now the currently largest value, 40, 

etc. The marker sequence of largest values identifying the corresponding elements is: 

46, 41, 40, 39, 35, 35, 34, 34, 31, 30. 

Two important observations should• be made. A necessary condition for correspondence 

recovery is that all the cells in the marker sequence have different values. If the currently 

largest value in the contingency table is appears in more than one cell it is impossible to 

define a unique correspondence. However, ties in the marker sequence can always be broken 

with additional trials. 

The marker sequence guides a peeling-off procedure of the contingency table when the 

feature correspondence is extracted. The technique is based on the observation that if a 

correspondence is correctly identified none of the two features can be paired with any other. 

Thus, the analysis of the contingency table obeys the Optimality Principle in dynamic pro-

gramming: at every stage of the analysis the decision is optimal given the decisions at the pre-

vious steps. When the sampling nonuniforrnity is significant (number of trials too small) 

some cells in the table can have values which are larger than those in the marker sequence. 

In our example the cell (10, 9) has 38, (9, 10) has 32, and four cells have the value 30 beside 

(4, 4). The large values appear since a more frequently chosen reference feature will also cast 

more incorrect votes on a given transformed feature. When the peeling-off procedure 
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Figure 4 

MATCHING STATISTICS 
Probability of the number of correct correspondences. 

゜
1 2 3 4 

Theory 0.031 0.156 0.312 0.312 0.156 
Simulation 0.029 0.161 0.294 0.313 0.167 

RECOVERED CORRESPONDENCE 
Identical labels are a correct correspondence. 

Feature Label Cell 

Reference Set Transformed Set Value 

1 7 285 
7 ， 276 
5 2 275 
6 8 270 
8 6 267 ， 3 264 
3 5 254 
10 10 247 
4 4 236 
2 1 228 

PERFORMANCE ROBUSTNESS 
Normalized number of votes. 

Theory Simulation 

Correct: 布 0.5 0.5067士0.0213

Incorrect:'Yij 0.5 0.4987士0.0236

5 

0.031 
0.036 

Simulation example. Parameters: n = 10, k =5, u =5, ~=a=0.5, t = 1000. 
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removes the selected row and column from the table the cells having large values due to this 

artifact are also eliminated. Note that condition (12) is to be satisfied for each i separately. 

Assuming a ten percent spread (C = 1.22), the smallest number of features for which 

correspondence can still be recovered is n = 9. For n = 10 the largest tolerated~is 0.4. The 

example in Figure 3 illustrates the problems created by a small number of trials. While the 

algorithm always recovers the correspondence, its performance cannot be called robust since a 

small increase of~can cause its breakdown. To obtain a robust performance it suffices to 

increase the number of trials. Using 1000 matchings yields Yii = 0. 7063士0.0315 and 

Yii =0.4765土0.0253.The overlap between the two distributions is now negligible and condi— 

tion (12) is always satisfied. The ten largest number of votes in the contingency table are in 

the ten cells indicating the corresponding features. The probability of having a tie is also very 

low. Any further increase in the number of trials is unnecessary. 

In Figure 4 the simulation results for B =a= 0.5 and 1000 trials are shown. The matching 

errors exceed the upper bound for B and most of the matched k-tuple pairs contain only two 

or three correct correspondences. The distributions of'Yu and'Yij are identical. Increasing the 

number of trials will only reduce their spread but cannot fulfill condition (12). The con-

tingency table does not reflect the correspondence between the reference and transformed sets. 

Once an incorrect correspondence is extracted the error will propagate since a cell which indi— 

cated a correct correspondence was also removed. All the correct correspondences shown in 

Figure 4 were found by chance and not by a systematic procedure. For k = 5, B = 0.5 and 

C = 1.22 the smallest number of features required for reliable performance is obtained from 

(16) as n = 13. When 13 features are used in the algorithm'Yu =0.5073土0.0350and 

'Yij =0.3740土0.0246.The decrease of'Yij allows the algorithm to always recover the correct 

correspondences. Note that in spite of using 13 instead of 10 corresponding features the 

9

、l

¥
 

20 



number of trials and thus the amount of computation remained the same. 

S. Discussion 

The new correspondence algorithm has modular structure and a well defined condition 

(12) for reliable performance. Once the condition cannot be satisfied the performance 

deteriorates steeply. The algorithm belongs to the class of engineering techniques whose adop-

tion in computer vision was strongly recommended by Haralick (1992). The robustness of the 

algorithm is achieved through combining many outcomes of the same simple process (match-

ing of k-tuples) to extract information (feature correspondence) buried under the noise. We 

have shown elsewhere that such a processing paradigm is useful in computer vision where 

assumptions about underlying models often cannot adequately represent the data (e.g., Mintz 

et al. , 1992). The new correspondence algorithm does not have embedded any assumption 

about distributions unlike the optimized geometric hashing method of Costa et al. (1990). 

The performance bounds in Section 3 were computed for a simple feature selection model 

which is unrealistic in applications. However, as long as (12) is true, feature correspondence 

will be recovered independent of the distribution of the matching errors. 

Many of the ideas presented in this paper were crystalized while trying to use the two 

projective invariants defined by two planar conics for feature correspondence recovery (Meer 

and Weiss, 1992). Five points (or lines) uniquely define a conic in a plane. Two conics have 

two invariants under the planar projective transformation group. These two invariants were 

used as the matching criterion betw.een 6-tuples of points randomly chosen from the reference 

and transformed sets. The six points were divided into a subset of four and a subset of two. 

The two conics were defined by taking the four points and a point from the second subset. 

Note that the order of points in either subset is not important and we had a partially TP-
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invariant matching criterion. 

To recover the correspondence often an unrealistic feature accuracy was required: point 

coordinates in the range of one hundred with at least three correct decimal values. Since the 

five points defining a conic were in arbitrary positions, the conic matrices (used in computing 

the invariants) could be ill-conditioned. Then the smallest change in the position of one of the 

points can yield a significant change in the parameters of the conic. The two conics have ten 

degrees of freedom but the two invariants span only a two-dimensional space. This projection 

into a lower dimensional space is the main source of the matching errors. Non-corresponding 

pairs of conics can have very similar invariant values and thus many 6-tuples were matched 

with a high probability of error. Increasing the number of corresponding points did not help 

since the probability of having quasi-degenerate conics and thus the probability of erroneous 

matchings increased too. Note that from the performance analysis in Section 3 matching 

should be based on 5-tuples of features and not on two conics. 

In Section 4 it was shown that the performance of the algorithm can be improved by 

increasing the number of features in correspondence. The probability of the matching errors, 

however, should not increase significantly with the number of features. If the number of 

matchings remains the same, the expected number of selections of feature ri into a k-tuple 

decreases. In t trials a feature is chosen on the average q = [ .!.! ] times and an increase in 
n 

the number of matchings can compensate for the increase of n. Matching of k-tuples requires 

constant time and the number of trials is (weakly) dependent on n. The analysis of the con-

tingency table is O[n2]. We conclude that the complexity of the feature correspondence algo-

rithm is O[n 2]. The low complexity of the new feature correspondence algorithm is similar to 

that of other invariant indexing function methods (e.g., Rothwell et al., 1992b). These 
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techniques do not process all the features in the reference or the transformed set together 

when looking for a model instance, as it is done in geometric hashing. Therefore invariance 

based indexing is better suited for multiple-model object recognition tasks. 

While retaining the good properties of the invariant indexing function methods, the prin-

ciple behind the new correspondence algorithm is different. In the former a small number of 

adjacent configurations (topology is preserved under projective transformation) are used to 

build the invariant representation of an object. In the correspondence algorithm the features 

(which can also be grouped into adjacent regions) are matched in many configurations to 

create the statistically significant support for the correspondences. The possibility of errone-

ous matchings is embedded in the algorithm. Validation through backprojection of an 

extended model (which is a very expensive procedure) can be eliminated. Let the correspon-

dence of n planar features returned by the algorithm. There are [:] possibilities to compute 

the transformation between the reference and transformed sets. The correspondence is correct 

when several combinations give similar transformations. Recall that the performance of the 

algorithm deteriorates very steeply once the condition (12) is not satisfied. 

Application of the correspondence algorithm in a real situation should be preceded by the 

analysis of the matching errors generated in the task. The performance is limited by the 

dependence of these errors on the amount of noise in the data and/or on the number of non-

corresponding features introduced by occlusions. Inaccurate data will always yield matching 

errors since an invariant representation of k features is a many-to-one mapping. The useful-

ness of invariants in building fast and robust object recognition systems is contingent upon 

understanding their sensitivity to noise. 
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6. Conclusion 

A new approach toward solving the feature correspondence problem was presented. 

Small subsets of features are matched through similar invariant representations. The probabil-

ity of finding a match is maximized since invariant representations which also tolerate pennu-

rations of the elements are used. The existence of matching errors is explicitly taken into 

account and their effect is eliminated by pooling the infom叫 ionfrom the entire ensemble of 

matched subsets into a contingency table. The condition for robust performance is well 

defined and it should be checked before employing the algorithm in applications. 

Acknowledgment 

The opportunity to spend three wonderful months at the Auditory and Visual Perception 
Laboratories of the Advanced Telecommunications Research Institute International, Kyoto, 
Japan, and the support of K. Shimohara, N. Sonehara and E. Y odogawa are gratefully ack-
nowledged. 

References 

[1] E.B. Barrett, P.M. Payton, N.N. Haag, M.H. Brill (1991): General methods for determin-
ing projective invariants in imagery. CVGIP: Image Understanding, 53, 46--65. 

[2] M.H. Brill, E.B. Barrett, P.M. Payton (1992): Projective invariants for curves in two and 
three dimensions. In [18], 193—214. 

[3] M.S. Costa, R.M. Haralick, L.G. Shapiro (1990): Optimal affine-invariant point matching. 
In Proceedings of the 10th International Conference on Pattern Recognition, Atlantic 
City, NJ, June 1990, 233—236. 

[4] R.O. Duda, P.E. Hart (1973): Pattern Classification and Scene Analysis. Wiley, New 
York. 

[5] D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, C. Rothwell (1991): Invari-
ant descriptors for 3-D object recognition and pose. IEEE Trans. Pattern Anal. Mach. 
Intel!. PAMl-13, 971—991. 

[6] W.E.L. Grimson, D.P. Huttenlocher (1990): On the sensitivity of Hough transform for 
object recognition. IEEE Trans. Pattern Anal. Mach. Intel!. PAMI-12, 255-274. 

[7] W.E.L. Grimson, D.P. Huttenlocher, D.W. Jacobs (1992): A study of affine matching 
with bounded sensor error. In Computer Vision-ECCV'92, G. Sandini (Ed.), Springer-
Verlag, Berlin, 292—306. 

[8] R.M. Haralick (1989): Monocular vision using the cross-ratio. In Proceedings of The 6th 
Scandinavian Conference on Image Analysis, Oulu, Finland, June 1989, 943-952. 

ー

し

24 



／
 

(9] R.M. Haralick (1992): Performance characterization in image analysis: thinning a case in 
point. Patter Recognition Letters, 13, 5ー12.

[10] R. Hartshorne (1983): Algebraic Geometry. Corrected third printing. Springer-Verlag, 
New York. 

[11] D.P. Huttenlocher, S. Ullman (1990): Recognizing solid objects by alignment with an 
image. International Journal of Computer Vision, 5, 195-212. 

(12] Y. Lamdan, J.T. Schwartz, H.J. Wolfson (1990): Affine invariant model-based object 
recognition. IEEE Trans. Robot. Autom. 6, 578—589. 

[13] Y. Lamdan, H.J. Wolfson (1991): On the error analysis of'Geometric hashing'. 
Proceedings of the 1991 IEEE Computer Society Conference on Computer Tision and 
Pattern Recognition, Lahaina, Maui, Hawaii, June 1991, 22-27. 

(14] S.J. Maybank (1992): The projection of two non-coplanar conics. In (18], 105—119. 

[15] P. Meer, I. Weiss (1992): Point/line correspondence under 2D projective transformation. 
To appear in Proceedings of the 11th International Conference on Pattern Recognition: 
Computer Vision and Applications, The Hague, The Netherlands, September 1992. 

[16] D. Mintz, P. Meer, A. Rosenfeld (1992): Analysis of the least median of squares estima-
tor for computer vision applications. In Proceedings of the 1992 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, Champaign, Illinois, June 
1992, 621-624. 

(17] J.L. Mundy and A.J. Heller (1990): The evolution and testing of a model-based object 
recognition system. Proceedings of the Third International Conference on Computer 
Vision, Osalca, Japan, December 1990, 268-282. 

[18] J.L. Mundy, A. Zisserman (Eds.) (1992): Geometric Invariance in Machine Vision. MIT 
Press, Cambridge, Mass, 1992. 

(19] J. Porrill (1990): Fittind ellipses and predicting confidence envelopes using a bias 
corrected Kalman filter. Image and Vision Computing 8, 37-41. 

[20] C.A. Rothwell, A. Zisserman, D.A. Forsyth, J.L. Mundy (1992a): Canonical frames for 
planar object recognition. In Computer Vision-ECCV'92, G. Sandini (Ed.), Springer-
Verlag, Berlin, 757-772. 

[21] C.A. Rothwell, A. Zisserman, J.L. Mundy, D.A. Forsyth (1992b): Efficient model library 
access by projective invariant indexing functions. In Proceedings of the 1992 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, 
Illinois, June 1992, 109-114. 

[22] C.E. Springer (1964): Geometry and Analysis of Projective Spaces. W.H. Freeman and 
Company, San Francisco. 

(23] L. Van Gool, 0. Kempenaers, P. Oosterlinck (1991): Recognition and semi-differential 
invariants. In Proceedings of the 1991 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Maui, Hawaii, June 1991, 454-460. 

(24] P.C. Wayner (1991): Efficiently using invariant theory for model-based matching. In 
Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Lahaina, Maui, Hawaii, June 1991, 473-478. 

[25] I. Weiss (1988): Projective invariants of shapes. Computer Vision Laboratory. University 
of Maryland, College Park, CAR-TR-339, January 1988. 

25 


	001
	002
	003



