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Virtual trajectory predicted by inverse models 

Abstract 

Because of the long delays associated with neural feedback loops, feedforward control is essential 

for relatively fast movements. Two approaches explaining the feedforward control of voluntary 

movements have been proposed in computational neuroscience for motor control. One avoids 

explicitly computing the inverse dynamics problem, and the other solves the problem by using 

learned internal models of the motor systems. In the former approach, a virtual trajectory control 

hypothesis has been intensively studied. According to this hypothesis, the brain computes the 

virtual trajectory and does not need to worry about low-level control problems. If experimentally 

observed roughly straight hand trajectories can be produced from such simple virtual trajectories as 

the straight minimum-jerk trajectory, complicated computations associated with the inverse 

dynamics problem need not be addressed. Thus, trajectory planning and control can be very simply 

performed. This paper compares the computational complexity of planning the virtual trajectory 

with that of solving the inverse dynamics problem. Computer simulations are performed using 

stiffness values during movement measured by Bennett et al. (Bennett, 1991; Bennett, Hollerbach, 

Xu, Hunter, 1992). The virtual trajectories and stiffness ellipses are predicted by neural network 

models which solve the inverse dynamics problem. The shape and orientation of the stiffness 

，
 

ellipses predicted during posture maintenance are similar to those measured in human experiments. 

The stiffness ellipses during movements depended greatly on the orientation, amplitude, and speed 

of movements. The virtual trajectories were much more complex than the actual trajectories. This 

indicates that planning the virtual trajectory is as difficult as solving the inverse dynamics problem, 

at least for fast movements. Finally, we propose a computational framework to integrate the virtual 

trajectory control hypothesis and learning neural internal models. 

，＂ 
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1 Introduction 

Voluntary arm movements should be explained by feedforward and feedback control mechanisms. 

Control mechanisms using only feedback cannot explain how deafferented monkeys can move their 

arms to a target without concurrent visual information (Polit, Bizzi, 1979). The final position 

control hypothesis that takes account of only the final target point (Bizzi, Polit, Morasso, 1976), 

cannot explain how an intact monkey arm perturbed while movmg toward a target returned to an 

intermediate point on the planned trajectory (Bizzi, Accornero, Chapple, Hogan, 1984). Moreover, 

feedback control is limited by the delays associated with neural feedback loops: about 100 msec for 

feedback through a transcortical loop, and at least 150 msec for visual feedback. In systems with 

long delays, only slow movements can ,be executed stably by feedback control, because a large 

feedback gain gives rise to instability. Feedforward control therefore appear to be essential for fast 

movements. The fundamental question here is how the central nervous system (CNS) executes 

feedforward control. Two approaches for feedforward motor control have been proposed. One 

approach is that viscoelastic properties of musculoskeletal system are utilized to avoid intensive 

computations required for solving the inverse dyn皿 icsproblem. The other approach resolves the 

inverse dynamics and kinematics problems based on learned internal models of motor systems (see, 

for exainple, Kawato, Furukawa, Suzuki, 1987; Katayama and Kawato, 1991a; Gomi and Kawato, 

1990). 

Our objective in this paper is to systematically compare the computational difficulties of the two 

approaches. Let us first review briefly the former approach. The visco-elastic properties of the 

neural-musculoskeletal system play an important role in controlling posture and movement. Rack 

and Westbury (1974) examined the length-tension curve of an individual muscle under isometric 

conditions and quantitatively ascertained that muscles exhibit spring-like behavior. This muscle 

elasticity depends on the activation level of the muscle itself, and a higher muscle activation level 

results in greater stiffness. Fel'dman (1966, 1990) studied how the CNS makes use of such elastic 

muscle behavior and proposed that posture is determined by the equilibrium point of the length-

tension curves of agonist and antagonist muscles, well known as the equilibrium point hypothesis. 

-3 -



Virtual trajectory predicted by inverse models 

Hogan (1984) proposed the virtual trajectory control hypothesis. A virtual trajectory was defined as 

a series of equilibrium points generated by gradually shifting the equilibrium posture. 

Virtual trajectory control for multi-joint arm movements is described by the following equation. 

M(0)0+C(0,0)0+G(0) =て， 
y
 (la) 

た=fs(xv-x) ， (lb) 

de .. d2e ax 
0=- 8=― l=― 
dt . dt2 . X = L(8)'ae 

Here x and 0 are the actual hand position and joint angle vectors; M(0) is the inertia matrix; C(e, ()) 

is the matrix that expresses the centrifugal, Coriolis and friction forces; G(0) is the vector of the 

joint torque due to gravity;'r'is the torque vector around the joint; L(0) is the forward kinematics 

equation; and J is its Jacobian matrix. In this framework, the joint torque'r'required for an intended 

trajectory are automatically generated by multiplying the difference between the virtual trajectory xv 

and the actual trajectory x by the hand stiffness S. The actual trajectory is therefore determined by 

the interaction of this elastic force with the dynamic forces caused by the terms M, C and G. Thus, 

the inverse dynamics problem is solved implicitly, since the joint torque is generated without any 

explicit torque computation. In this control hypothesis, the main role of the brain is to send the 

virtual trajectory and a series of stiffnesses to the periphery, without considering low-level control 

problems. The advantages of this hypothesis are that the viscoelastic properties of the 

musculoskeletal system are efficiently utilized, the inverse dynamics problem is avoided, and force 

control as well as trajectory control can be dealt with. Such control schemes, however, do not 

readily explain biological motor learning. 

If the hand stiffness S during movement is much greater than the at-rest stiffness during posture 

maintenance, the virtual trajectory x. is similar to the actual trajectory x. On the other hand, if S is 

not large enough, the virtual trajectory differs significantly from the actual trajectory. The profile of 

such a virtual trajectory therefore strongly depends on the value of S during movement. The CNS 

must either increase the stiffness or modify the virtual trajectory, because the dynamic forces for fast 

movements become large. For example, inertia and interaction force increase is proportional to the 
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square of the inverse of movement time. Hogan (1984) simulated a single-joint movement, and 

found that in faster movements the virtual trajectory was initially overshot but that this overshoot 

could be eliminated by increasing the stiffness while keeping the same damping ratio. To 

quantitatively assess the computational difficulty of the virtual trajectory control hypothesis, it is 

therefore necessary to measure stiffness values during movements. Mussa-Ivaldi, Hogan and Bizzi 

(1985) measured and characterized the field of elastic forces associated with hand posture in the 

horizontal plane. The measured stiffness ellipses were approximately oriented with the major axis 

pointing towards the shoulder, and the shape and orientation of the ellipses of a fixed posture were 

somewhat invariant for different subjects and different days, with only their size changing. 

The human hand trajectories for point-to-point movements are roughly straight, with a bell-

shaped tangential velocity profile (horizontal plane: Moras so, 1981; Abend, Bizzi, Morasso, 1982; 

Flash and Hogan, 1985; Uno, Kawato, Suzuki, 1989a. vertical plane: Atkeson and Hollerbach, 

1985). This indicates that the virtual trajectories must be planned by taking into account spatial 

anisotropies in the stiffness ellipses, while the actual trajectories are roughly straight isotropically. 

Flash (1987) simulated multi-joint arm movements based on virtual trajectory control, and 

concluded that the actual human arm trajectories could be reproduced by assuming straight virtual 

trajectories. Planning the straight virtual trajectories is obviously easier than directly solving the 

inverse dynamics problem. Flash (1987), however, assumed that the coefficients of the joint 

stiffness matrix during movements of one-second duration are two to three times larger than the 

values measured by Mussa-Ivaldi et al. (1985), and manually adjusted the coefficients so as to 

reproduce the actual arm movements. When 500-msec movements are executed based on this 

assumption, the coefficients must be about 10 times as large as their static values during posture 

maintenance, because the dynamic forces during half-duration increase roughly four times. 

2. Learning of neural inverse models 

Insert Figure 1 around here 
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Kawato et al. (1987) expanded conceptual models that show that the voluntary movements are 

accomplished using internal models of the motor systems (Ito, 1970; Tsukahara and Kawato, 

1982), and proposed a hierarchical neural network model for controlling and learning voluntary 

movements. This model uses afeedback-error-learning scheme, which is a supervised-motor-

learning scheme, to acquire the inverse kinematics model and/or the inverse dynamics models of the 

controlled object. By further developing this neural network model, Katayama and Kawato (1991a) 

proposed a parallel-hierarchical neural network model, that uses also the feedback-error-learning 

scheme, to acquire inverse statics and dynamics models. 

We briefly review our parallel-hierarchical neural network model. The dynamics equation of a 

multi-joint arm can be written as 

M(0)0+C(0,0)0+G(0)= -r(0,0,u) 

-r(0, 0,u) = A(0/T(l,l,u) ， 

l・＝紛

(2a) 

(2b) 

Here 1:(e,0,u) is the joint torque generated by agonist and antagonist muscles and the other 

notations are similar to (la). The vector variable u is the motor command fed to the muscles, and 0 

is the joint angle. T(l,i,u) is the muscle tension vector and l is the muscle length vector. The 

dimension of vectors, 0 and 7:, are equal to the number of joints n. The dimension of vectors, u, T, 

and l, are equal to the number of muscles m, and m is greater than n. The matrix A(8) is the n x m 

moment arm matrix and depends on the joint angle 0. 

If the arm is static (0 = 0 = l = 0), then Equations (2a) and (2b) are reduced to 

A(0lT(l,0,u)-G(0) = O_ (3) 

This is a statics equation. The problem of calculating the motor commands from a desired joint 

angle vector using this equation is defined as the inverse statics problem. There are two difficulties: 

frrst, Equation (3) includes the nonlinear functions A(e), T(l,O,u), and G(e). We need, therefore, 

to solve these nonlinear equations. Second, as discussed below, the inverse statics is an ill-posed 

problem. These difficulties, however, can be solved by training the inverse statics model ISM. The 
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problem of computing dynamic torque other than that calculated from (3) is called the inverse 

dynamics problem and is solved by training the inverse dynamics model IDM. The main role of the 

ISM is to control the equilibrium posture and mechanical stiffness, and that of the IDM is to 

compensate for the dynamic properties of the arm during fast movements. The ISM control is 

closely related to the virtual trajectory control. The parallel-hierarchical neural network model 

arranges these parallel inverse models hierarchically in conjunction with a feedback controller (Fig. 

1). The motor command for agonist and antagonist muscles is the sum of the three outputs, uism' 

uidm, and u1c, which are calculated by the ISM, the IDM, and the feedback controller. In this study, 

the ISM and IDM are structured as multi-layer neural network models with synaptic weights w. 

These two inverse models can be described as mappings from the desired trajectory 0d to motor 

commandu: 

uism =児m(wism息），

Uidm =咋dm(Widm'0d,(}d, 化）．

(4a) 

(4b) 

To obtain the parallel inverse models, the synaptic weights of the ISM and IDM are modulated 

by a combination of the following feedback-error-learning algorithm (Kawato et al., 1987) and the 

back-propagation algorithm for hidden units (Rumelhart, Hinton, Williams, 1986). 

予（乏〕'.[,
(5a) 

~=(乏〕'.fe
(5b) 

The ISM learns while the arm is static and the IDM learns while it is moving. Before learning, the 

arm is controlled mainly by the feedback controller but after learning, because the feedback signal is 

minimized by the learning procedure, feedforward control is performed mainly by the parallel 

inverse models. 

The ISM has three advantages: it can simultaneously control both the posture and the force 

(Katayama and Kawato, 1991b). Second, ISM control explains the results of Bizzi's experiment 
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with intact and deafferented rhesus monkeys (Bizzi et al., 1984). Third, it is easy to learn the 

inverse dynamics model because it is separated into the ISM and the IDM. 

Insert Figure 2 around here 冒

The human arm is redundant at the dynamics level because the joint torque is generated by both 

agonist and antagonist muscles (Fig. 2). Acquisition of the inverse model is therefore an ill-posed 

problem in the sense that the muscle tensions cannot be determined uniquely from the prescribed 

trajectory and force. The CNS can solve such ill-posed problems by applying suitable constraints. 

We believe that smoothness is the fundamental principle of coordinated movements. Uno, Suzuki 

and Kawato (1989b) proposed a minimum-muscle-tension-change model that closely reproduces 

human arm movements. This model generates the optimum trajectory by minimizing an objective 

function, 

Cr=½ は（誓）2 dt 
(6) 

which is the time integral of the squared sum of the rate of change in muscle tension. Here, T; 

expresses the tension generated by the ith muscle. To reduce the dynamic redundancy, we 

proposed a feedback control law related to the minimum-muscle-tension-change criterion (Katayama 

and Kawato, 1991a), which is applied to the feedback controller shown in Fig. 1. An inverse of the 

Jacobian matrix calculating from small changes in muscle tensions to small changes in joint torques 

is not uniquely determined because the matrix is not a square. However, by using the pseudo-

inverse matrix (the Moore-Penrose generalized inverse matrix) of the Jacobian matrix, small 

changes in muscle tension can be uniquely determined from small changes in joint torque. The 

solution is based on instantaneous minimization of the muscle tension change because the Euclidean 

norm of small changes in muscle tension is minimized by the pseudo-inverse matrix. Necessary 

changes in joint torque are first calculated by a simple feedback control law such as a PID 

(proportional, integral and derivative) controller from the difference between actual and desired 

trajectories. Then, by applying the pseudo-inverse matrix, small changes in muscle tensions are 
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uniquely calculated. Combination of this feedback control law and the feedback-error-learning can 

u solve dynamic redundancy. Learning is performed by applying the feedback motor command Jc to 

the learning algorithm (5). As a result, inverse statics and dynamics models, based approximately 

on the minimum-muscle-tension-change model, can be acquired. We ascertained the efficiency of 

the parallel-hierarchical neural network model in learning control experiments using an artificial 

muscle arm with agonist and antagonist muscle-like rubber actuators driven by air and made by 

Bridgestone Co., Ltd. (Katayama and Kawato, 1991a). 

3. Arm modelling 

Insert Figure 3 around here 

3.1 Muscle modelling 

One of the most important properties of muscles is to change their visco-elasticity according to their 

activation level. Realistic muscle models including many elastic and viscous elements have been 

proposed, but, when modeling the human arm, it is difficult to determine many parameters in such a 

model. We therefore used a simpler model consisting of an elastic element and a viscous element 

connected in parallel, since the parameters in the simpler model can be determined from previous 

studies. This model is called the Kelvin-Voight model心zkaya,Nordin, 1991). The muscle 

tension Tis mathematically described as 

T(l,i,u) = K(u){l,(u)-l}-B(u)i_ (7) 

Here l is the muscle length vector and l is the contraction velocity vector. K(u), B(u) and l/u) 

express muscle stiffness, muscle viscosity and rest length of the muscle. They depend nonlinearly 

on the motor command u e.g., motoneuronal activations (see Fig. 2B). We assume, however, that 

K(u), B(u), and l,(u) have the following linear dependencies on the motor command u: 

K(u) = ko+ku 

B(u) =lb+ bu 

-9 -
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l/u) =も+ru (8c) 

Herek and bare the elasticity and viscosity coefficients, respectively, and k0 and b。arethe intrinsic 

elasticity and viscosity. The termもisthe intrinsic rest length when u is zero, and r is a constant. 

3.2 2-link arm model with 6 muscles 

It is suggested that double-joint muscles play an important role in arm movement and force control 

(Hogan, 1985; Flash and Mussa-Ivaldi, 1990; Tsuji, Ito, Nagamachi, Ikemoto, 1988). In this 

paper, the human arm is modeled as a 2-link manipulator with four single-joint muscles and two 

double-joint muscles (Fig. 3). Since the 2-link manipulator has no kinematic redundancy, the 

inverse kinematics problem can be solved uniquely. 

The muscle tension vector T(l,i,u) and the moment arm matrix A(0) are described as follows: 

T(l,i,u) = ('fi,T2,T3, 刀，Tぷ）T' 

A(0) =(砥）
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The subscripts s and e express shoulder and elbow joints. T1 and T2 are the respective tensions of 

the shoulder flexor and extensor, T1 and T4 are those of the elbow flexor and extensor, and T5 and T6 

Th e overall JOmt torque vector, r(0, 0,u)・ , IS are those of the double-joint flexor and extensor. 

calculated from (2b) and consists of the shoulder joint torque r, and the elbow joint torque r,. By 

assummg constant moment arms that do not depend on Jomt angles, A(0) = A , the muscle length 

vector is given as 

l=lm-A0_ (10) 

0 0 l Here the joint angle vector 0 consists of s and e, m is the muscle length when the joint angle 0 is 

zero. The joint stiffness Rand viscosity Dare then derived as 

R=裔=A吾翡=ATK(u)A 
， (1 la) 

み• 汎 ai
D=-=AT-— T 
ae ai ae = A B(u)A (1 lb) 
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The joint stiffness and viscosity matrices here are symmetrical. The dynamics equation of a planar 

2-joint arm is thus given as 
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(12) 

The subscripts I and 2 respectively indicate the upper arm and the forearm. / is the moment of 

inertia around the joint, Lis the link length, L8 is the center of gravity of each link, Mis the link 

weight. 

3.3 Arm model physical parameters 

3.3.1 Arm parameters 

Insert Table 1 around here 

Insert Table 2 around here 

The physical parameters of a 2-link arm are estimated from previous measurements. Morasso 

(1981) measured the length of the humerus and the forearm in adult subjects and found that the 

difference between the lengths of the humerus and the forearm, ranged from O to 10 cm. In the 

present paper it is assumed that the upper arm is 30 cm long and the forearm is 35 cm long. The 

weights of the two links estimated in previous studies are used, and the moment of inertia around 

the joint is calculated from the length and weight of each link. The center of gravity for each link is 

determined according to Hatze's suggestions (Hatze, 1979). These parameters are listed in Table 1. 

Amis, Dowson, Wright (1979) examined the moment arms for each muscle around the elbow joint 

and found a nonlinear relationship between the moment arm and the joint angle. In this paper, 
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however, we assumed constant-moment arms (Table 2) described by the average values of 

anatomical data (Amis et al., 1979; Wood, Meek, Jacobsen, 1989a, 1989b). 

3.3.2 Muscle parameters 

Insert Table 3 around here 

Physical properties such as stiffness and viscosity are known to include the combined influence of 

muscle intrinsic properties and low-level neural feedback. The stiffness value of individual muscle 

measured in vitro does not include the influence of neural reflexes (Rack and Westbury, 1974). 

Moreover, the complexity of neural-musculoskeletal system makes it difficult to predict the joint or 

hand stiffness from the muscle stiffness. Elbow joint stiffness has been experimentally measured in 

vivo with small perturbations (Lacquaniti, Licata, Soechting, 1982; MacKay, Crammond, Kwan, 

Murphy, 1986) by using a linear second-order model of motor system. MacKay et al. found that 

the elbow stiffness values measured in different subjects ranged from 2 to 12 N-m/rad, the elbow 

viscosity values ranged from 0.1 to 0.2 N-m-sec/rad, and the joint stiffness and viscosity depended 

on the joint angle. As described in section 1, Mussa-Ivaldi et al. (1985) characterized the field of 

elastic forces as a stiffness ellipse. The measured hand stiffness ranged from about 100 to 450 N/m 

and the elbow stiffness which was estimated from the hand stiffness ranged from about 10 to 40 N-

m/rad. The measurements and analysis methods in previous studies were different, and the 

measured stiffness values therefore also differed considerably. The main reasons for the variation 

seem to be the coactivation of agonist and antagonist muscles and the phasic and tonic properties in 

neural reflexes and muscle responses. The phasic properties and the coactivation induce higher joint 

stiffness. For example, the stiffness increases as the amplitude of instantaneous changes in 

displacement decreases (Rack and Westbury, 1974; MacKay et al., 1986). The coactivation caused 

by gripping a handle may exist in Mussa-Ivaldi's experiment because some muscles activated for 

hand grasp are multi-joint muscles connected to the humerus. Some of the stiffness values 

measured in previous studies may therefore be larger than the true, at-rest stiffness values. 

-12 -



Virtual trajectory predicted by inverse models 

Moreover, the dynamic stiffness during movement may be quite different from the at-rest 

stiffness during posture maintenance, because the activation level of the neural reflexes during fast 

movements may be suppressed by descending signals from the CNS. Bennett, Hollerbach, Xu, 

Hunter (1992) measured elbow joint mechanical impedance (stiffness, viscosity, and moment of 

inertia) during a single-joint cyclic movement at an amplitude of 1 radian with a period of 750 msec. 

In this experiment, small pseudo-random force disturbances were applied to the wrist with an airjet 

actuator. The mechanical impedance was estimated by an autoregressive moving average model 

(ARMA) using a quasi-linear second-order model of the single-joint motor system. As a result, 

they found that the elbow stiffness values during the cyclic movement were smaller than the at-rest 

stiffness during posture maintenance. In a related experiment, Bennett (1991) measured joint 

stiffness values during the elbow joint movement by using a powerful direct-drive motor to apply 

positional perturbations and then to measure the resulting torques. Although the two methods 

differed, the estimated stiffness values during movement were similar. Additionally, he found that 

the at-rest elbow stiffness values ranged from 3 to 5 N-m/rad and that the at-rest stiffness during 

posture maintenance was smaller than the dynamic stiffness during movements. The at-rest 

stiffness values were also about 50-12.5% smaller than those measured by Mussa-Ivaldi et al. 

(1985) and Bennett et al. (1992). We therefore used the dynamic elbow stiffness and viscosity 

values measured by Bennett et al. (1991, 1992). The measured stiffness and viscosity values 

changed somewhat independently (Bennett et al., 1992). The stiffness ranged from 2 to 9 N-m/rad 

and the viscosity ranged from Oto 0.7 N-m-sec/rad. We roughly determined the elbow stiffness 

and viscosity coefficients by considering only the maximum and minimum values of these measured 

parameters, assuming that the muscle stiffness and viscosity values are proportional to the motor 

command, as described in (8). Because a value of O is implausible for the minimum viscosity, we 

assumed a value of 0.2 N-m-sec/rad. Consequently, the damping ratio of the forearm, calculated as 

D22/~ 瓦応was0.24 when all the motor commands were zero. 
Flash and Mussa-Ivaldi (1990) showed that the necessary and sufficient condition for the major 

axis of the stiffness ellipse pointing towards the shoulder is that the single-joint shoulder muscle 
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stiffness is equal to the two-joint muscle stiffness. In our human arm model, the stiffness and 

viscosity values are minimal at a functional standard posture where all motor commands are zero. 

In this paper, the functional standard posture is defined as that where the shoulder joint angle is 45 

degrees and the elbow joint angle is 70 degrees. Roughly speaking, the ratio of the shoulder and 

elbow stiffness measured by Flash and Mussa-Ivaldi (1990) around the functional standard posture 

matches the ratio calculated when assuming that the six muscle stiffness values are all the same. We 

therefore assumed that all the stiffness values of six muscles are the same and that all the viscosity 

values are also the same. Using this assumption, we calculated the shoulder and elbow joint 

stiffness from these muscle stiffnesses and their moment arms, as described in Eqs. (lla) and 

(1 lb). The joint stiffness and viscosity values at the functional standard posture were estimated as 
み西

凡叩.,,,,=冒喜3.9 1.6 (i_6 3_0) N-m/rad 

城凋

立五D,,-=[胃〗］＝（゜~::~。悶〕 N・m-sec/rad 
Note that these joint stiffness and viscosity values are smallest for the standard posture. The 

coefficient r was roughly determined from the isometric length-tension curves measured by Rack 

and Westbury (1969). The values of 1mーも werechosen so as to fit the defined functional standard 

posture. All the muscle parameters are listed in Table 3. With these parameters, the damping ratio 

increases as the motor commands increase. 

4. Prediction of virtual trajectory and stiffness ellipse 

4.1 Dynamic stiffness 

In this section, we introduce the definition of dynamic stiffness during movement. Dynamics 

equations in the Cartesian coordinates can generally be expressed as 

<p(x, ふえ，u)=o. (13) 
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Here xis the position and u is the motor command. Let us assume that the velocity, acceleration, 

and motor commands do not change during perturbed movement when instantaneous small changes 

in displacement occur at a given time t. The dynamic stiffness can thus be defmed as 

a 
Dynamic stiffness (t) = -<p(x, x, え，u)

み (14) 

This is the definition of the dynamic stiffness. The dynamics equation for a multi-joint arm 

movement can be described in the joint coordinates as 

<p(0, 0, 0,u) = M(0)0 + C(0, 0)0 + G(0)-r(0, 0,u) = 0 (15) 

The restoring torque bcp caused by small changes in displacement 80 is 

... 

ocp = 
cJcp(e, e, e, u) 
ae oe 

(16) 

The restoring torque is translated to the hand force oF by using an inverse of the Jacobian 

transpose: 

OF= (11)―i o<p. 
(17) 

As a result, the four hand-stiffness coefficients of S are uniquely calculated from torque 

responses to positional perturbations in two different directions: 

8x=J80 

8F=S8x 

(18a) 

(18b) 

This definition of the dynamic hand stiffness corresponds to the hand stiffness measured 

experimentally with small positional perturbations (Gomi, Koike, Kawato, 1992), but in most cases 

it is in fact necessary to consider the influence of the small changes in velocity and acceleration 

caused by the perturbations (MacKay et al., 1986; Lacquaniti et al., 1982; Bennett et al., 1992; 

Gomi et al., 1992). 

Here we introduce another possible definition of dynamic stiffness which is more appropriate for 

virtual trajectory control hypothesis. We believe the h皿dstiffness Sin (1) should be derived from 

the joint stiffness cJr I ae caused by the muscles themselves because in the virtual trajectory control 
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the dynamic forces (e.g., inertia and Coriolis forces) act as external forces. The hand stiffness is 

therefore calculated by using Eqs. (17), (18), and the following equation: 

如＝（誓〕80 
(19) 

，
 The hand stiffness matrices can be represented graphically as ellipses by using the following 

equation (Mussa-Ivaldi et al., 1985). 

G}G)+a(t tt:i~) 
(20) 

(0~t く 2冗）

(x ,y) 
Here, f f is a position on ellipse, (x,y) is a concurrent position, and a is a scaling coefficient. 

4.2 Virtual trajectory 

If the motor command u(t) at time tis kept constant for an infinite time, the equilibrium posture 

should be observed. When the motor commands u are given to muscles at time t, the virtual 

~ trajectory, represented by the virtual joint angle or the virtual muscle length v, can be derived 

from the following equilibrium condition. 

ATTUv,0,u) = 0 (21) 

゜
Here the virtual joint trajectory vis calculated by putting v into (10). Eq. (21) is the same form as 

the statics equation (3) in planar movements. However, the motor commands used in (3) and (21) 

are different. The motor command u in (3) specifies the equilibrium posture, while the u in (21) is 

the motor command during movement at time t. The virtual trajectory Xv in the hand coordinates is 

translated from the joint coordinates using a forward kinematics equation L(8), as 

ふ=L(0it) (22) 

5. Simulation results 

5.1 Stiffness ellipses during posture maintenance 
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The inverse statics model ISM was first trained during posture control. The ISM was structured as 

a three-layer perceptron with 2-30-6 neuron units. The ISM learning required about 10,000 

iterations. As shown in Fig. 4, the orientation and shape of the predicted stiffness ellipses were 

similar to those measured by Mussa-Ivaldi et al. (1985). The shape narrowed as the hand 

approached the work-space boundary, and the stiffness ellipses were oriented with the major axis 

roughly pointing towards the shoulder. The major axis of the stiffness ellipse gradually turned 

towards the elbow as the hand approached the body. Note that the hand stiffness values measured 

by Mussa-Ivaldi were about six to ten times larger than those estimated by our simulation. This is 

because we used the low stiffness values measured by Bennett et al. (1991, 1992) in this 

simulation. When only the single-joint muscles were used in a human arm model, the shape of the 

stiffness ellipses became overly narrow (Katayama and Kawato, 1991 b). 

Insert Figure 4 around here 

5.2 Virtual trajectories and . stiffness ellipses during movement 

Insert Figure 5 around here 

We first simulated single-joint forearm movement. A single-joint dynamics equation was used, the 

shoulder joint angle was fixed, and two elbow-joint muscles and two double-joint muscles were 

used. The virtual trajectories for single-joint movement were predicted. The virtual trajectories 

were similar・to those simulated by Hogan (1984) and were as simple as the desired or actual 

trajectories. The elbow joint stiffness values ranged from 3.0 to 3.9 N-m/rad in a discrete 

movement at I-radian amplitude with 750-msec duration. This dynamic range was smaller than that 

measured for similar cyclic movements by Bennett et al. (1992). 

Accordingly, the parallel-hierarchical neural network model was used to train the inverse statics 

and dynamics models for each movement. The IDM was a three-layer perceptron with 6-30-6 

neuron units. The IDM learning was performed by using trained ISM. The learning iteration 
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number was about 5,000. The desired trajectories between the targets were determined as the 

minimum-jerk trajectory (Flash and Hogan, 1985). The target locations are shown in Fig. 5. 

Leaming trajectory control was carried out for each movement: T2-T6, T2-T5, T3-T6, and T4-Tl. 

These movements were performed with two movement durations: 500 and 750 msec. After both 

inverse models are trained, the stiffness ellipses during each movement were predicted from (18), 

(19), and (20) and the virtual trajectories were predicted from (21) and (22). The predicted stiffness 

ellipses during movement are shown in Fig. 6. Note that the predicted stiffnesses do not involve 

the influence of the terms M, C, and G in (15), as mentioned in section 4.1. For fast movements, 

the orientation, size, and shape of the ellipses changed markedly because the IDM outputs changed 

during movement. These characteristics depended on the orientation, position, amplitude, and 

speed of the movement. The dynamic stiffness matrices during movements are not generally 

symmetrical. The predicted dynamic hand stiffness matrices were, however, almost symmetrical 

for 500-msec and 750-msec point-to-point movements. 

Fig. 7 shows the desired, actual, and virtual trajectories for each movement, and also shows the 

tangential velocity profiles corresponding to these three kinds of trajectories. Because the IDM 

learning was not perfect, the difference between the desired and actual trajectories was observed and 

the velocity values of the virtual trajectories were not zero around the initial and final positions. For 

fast movements, the predicted virtual trajectories were curved and much more complex than the 

actual trajectories. This is because of the larger dynamic forces of the 2-link manipulator, and 

spatial anisotropies of the stiffness ellipses. For slow movements, however, the virtual trajectories 

are more similar to the actual trajectories. The minimum-jerk point-to-point trajectories have a bell-

shaped tangential velocity profile, but some of the virtual trajectories have tangential velocity 

profiles with-two more peaks. Moreover, Figure 8, which shows the actual and virtual trajectories 

in the joint coordinates, indicates that the trajectories were as complex as the virtual trajectories 

represented in the Cartesian coordinates. These results indicate that it is not easy to plan the virtual 

trajectory either in the task or joint coordinates. Virtual trajectory planning therefore appears to be 

as complex as solving the inverse dynamics problem. 
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The motor commands to six muscles during T2-T6 750-msec movement are shown in Fig. 9. 

For 750-msec movements, the dynamic joint stiffness coefficients were less than 1.3 times the at-

rest joint stiffness. For the T2-T6 trajectory, the element R11 of the dynamic joint stiffness ranged 

from 4.4 to 5.6 N-m/rad, R22 ranged from 3.5 to 4.4 N-m/rad, R12 and R21 ranged from 1.7 to 2.3 

N-m/rad, and the damping ratio of the forearm ranged from 0.26 to 0.29. The element S江 ofthe 

dynamic hand stiffness ranged from 14 to 65 N/m, Syy ranged from 40 to 64 N/m, Sxy and Syx 

ranged from -7 to 29 N/m. For 500-msec movements, the dynamic joint stiffness coefficients were 

less than 1.5 times the at-rest joint stiffness. For the T2-T6 trajectory, the element R 11 of the 

dynamic joint stiffness ranged from 4.2 to 6.7 N-m/rad, R22 ranged from 3.6 to 4.6 N-m/rad, R12 

and R21 ranged from 1.8 to 2.3 N-m/rad, and the damping ratio of the forearm ranged from 0.26 to 

0.3. The element S立 ofthe dynamic hand stiffness ranged from -1_3 to 80 N/m, Syy ranged from 40 

to 97 Nim, S:,;y and Syx ranged from -27 to 52 N/m. For the static hand stiffness during posture 

maintenance along the T2-T6 trajectory, S立 rangedfrom 25 to 63 N/m, Syy ranged from 35 to 71 

Nim, S :,;y and Syx ranged from -10 to 16 N/m. We found that some of the dynamic stiffnesses during 

movement were smaller than the at-rest stiffnesses during posture maintenance. This is because 

some of the motor commands, which are the sum of the ISM and IDM outputs, are smaller than the 

ISM outputs required to maintain the posture at time t, as shown in Fig. 9. 

Insert Figure 6 around here 

Insert Figure 7 around here 

Insert Figure 8 around here 

Insert Figure 9 around here 

We also examined simulation results whenever we assumed different stiffness and viscosity 

values. As mentioned before, the simulated dynamic range of the elbow stiffness values was 

smaller than the dynamic range measured by Bennett (1992). The elbow stiffness and viscosity 

values were detem血edas the average of the values during cyclic movement (Bennett, 1992). That 

is, 
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6.4 2.7 凡"""""~(2_7 S. 0 J N・m I rad 
， 

0.45 0.19 
D,,..,,, = (。.19 0_35) N・m・secf rad 
These are values at the functional standard posture. Consequently, the damping ratio of the forearm 

was 0.32. For the single-joint discrete movement at I-radian amplitude with 750-msec duration, the 

elbow stiffness values simulated ranged from 5.0 to 6.4 N-rn/rad. The virtual trajectories for T2-T6 

two-joint movements are shown in Fig. 10. The predicted virtual trajectories were more complex 

than the desired trajectories, although the predicted virtual trajectories were simpler than those 

shown in Fig. 7, because of comparatively larger stiffness values. For the 500-msec movement, 

the dynamic elbow stiffness values ranged from 5.7 to 7.3 N-m/rad, the shoulder stiffness from 7.0 

to 10.1 N-m/rad, and the damping ratio of the forearm from 0.35 to 0.42. 

Finally, even larger stiffness values at the functional standard posture were examined. The 

stiffness value was determined from those measured by Mussa-Ivaldi et al. (1985) during posture 

maintenance, and the viscosity values were determined so that damping ratio of the forearm was 
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The virtual trajectories are shown in Fig. 11. Using larger stiffness values, the predicted virtual 

trajectories became simpler, but the virtual trajectories for ballistic 250-msec movements were much 

more complex than the actual trajectories. Thus, the virtual trajectories become simple as the 

stiffness values increase. 

Insert Figure 10 around here 

Insert Figure 11 around here 

5.3 ISM control 
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We tried ISM control using straight desired trajectories based on the minimum-jerk model (Flash 

and Hogan, 1985), which is similar to Flash's simulation (Flash, 1987). Trajectory control was 

performed by only the ISM inputting the minimum-jerk trajectory. The trajectories produced by 

ISM control are shown in Fig. 12. Here, only the generated hand paths during the specified 

movement durations (750ms or 500ms) are shown. The virtual trajectories used in ISM control is 

exactly the same as the desired trajectories. For slow T2-T6 movements, the actual trajectories seem 

sim血 tohuman subject data because the T2-T6 human arm trajectory is distally curved a little. The 

simulated actual T4-Tl trajectories for example, however, differed from the human arm trajectories 

because the T4-Tl human arm trajectory is almost straight. For faster movements, the actual 

trajectories varied more. These results differed from Flash's simulation results because the stiffness 

values used in this simulation were smaller than those assumed by Flash (1987). 

Insert Figure 12 around here 

6. Discussion 

This paper investigated the virtual trajectories and stiffness ellipses predicted by the learned inverse 

statics and dynamics models. The predicted virtual trajectories for faster point-to-point movements 

were curved, and much more complex than the actual trajectories. Thus, we found that planning the 

virtual trajectories is not easy, and appears to be as complex as solving the inverse dynamics 

problem. However, we must note that this conclusion heavily depends on several assumptions 

made in this study. First, as can be seen by comparing Figs. 7, 10, and 11, virtual trajectory 

profiles are quite dependent on the assumed stiffness values during movement. Thus, it is 

important to exactly estimate the muscle physical parameters during posture maintenance and 

movement, but reliable estimation seems rather difficult. Second, how to determine the motor 

commands is not at all apparent. The simulated coactivation of pairs of muscles was quite small 

because instantaneous minimization of muscle-tension change was adopted in this study. 
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Flash's simulation results (1987) differed from ours even for relatively slow movements. The 

differences can be readily underst~od if one recalls that the required joint torques are generated as 

the product of the mechanical stiffness and the difference between the virtual and actual trajectories. 

If physical parameters such as inertia moments, masses, and lengths of links are given and the 

actual hand trajectory is fixed, the required joint torques are uniquely determined from the inverse 

dynamics equation. When the stiffness is small, this difference becomes large. Human multi-joint 

hand paths are roughly straight for point-to-point movements. Consequently, in Flash's simulation, 

and assuming relatively high stiffness values, the virtual trajectory could be close to the human ann 

trajectory. For T2-T6 movement, Flash (1987) assumed that the R11, Rl2'and R22 of the dynamic 

joint stiffness matrix during 1-second movement are 80.7, 42.9, and 68.9 N-m/rad, respectively. 

Moreover, Flash (1987) assumed a wide damping ratio range during the movements: 0.35 to 1.5. 

The damping ratio was larger than those used in our simulation. However, previous measurements 

indicated that the human arm is an underdamped system (Bennett, 1992; MacKay et al., 1986; 

Lacquaniti et al., 1982). The virtual trajectories predicted by using an arm model that roughly 

approximates a critically-damped system were also more complex than the actual trajectories, 

although the profiles differed from those shown in Figs. 7, 10, and 11 (Katayama and Kawato, 

1991b). 

Relatively low stiffness values were assumed in our simulation. For T2-T6 movement, the Rw 

R12'and R22 of the dynamic joint stiffness matrix during 750-msec movement averaged 5.1, 2.0, 

and 3.9 N-m/rad, respectively. These values were about 2.5-5% smaller than those assumed by 

Flash (1987). Thus, the virtual trajectory was very different from the actual trajectory and was 

wildly curved. If actual stiffness during movement is relatively small, then to achieve the roughly 

straight hand paths observed, the virtual trajectory must be planned carefully to compensate for the 

dynamic link interaction forces between ann segments. This planning problem is nearly equivalent 

to solving the inverse dynamics problem and is similarly difficult. For slow movements, however, 

virtual trajectory control is quite effective. Jordan (1990) proposed a neural network model to train 

22 -



Virtual trajectory predicted by inverse models 

the virtual trajectory for single-joint movements. This is a possible strategy to combine the virtual 

trajectory control hypothesis with the internal models. 

For posture control, the orientation and shape of the predicted stiffness ellipses were similar to 

those measured by Mussa-Ivaldi et al. (1985). For single-joint movement, however the dynamic 

range of the stiffness during movement was smaller than the dynamic range estimated by Bennett et 

al. (1992). This might be partly because of the difference between the point-to-point movements 

studied here and the cyclic movements studied by Bennett. In Bennett's experiment, the 

coactivation of pairs of muscles may have occurred just before reaching targets during cyclic 

movement. On the other hand, the adopted instantaneous minimization of the muscle-tension-

change did not reproduce such coactivation because quite small motor commands were selected. 

The minimum-muscle-tension-change criterion is effective from the standpoint of energy 

consumption in muscles, while the postures and movements may be more stably controlled when 

the control system uses coactivation. We need to further examine how to explain such a 

coactivation mechanism. One possible strategy would be to use a learning control model based on 

the minimum-motor-command-change model (Kawato, 1992) rather than the minimum-muscle-

tension-change model, because the feedback control law related to the minimum-motor-command-

change model can explain the coactivation of a pair of muscles (Katayama and Kawato, 1991a). 

We found that some of the dynamic stiffness values were smaller than the static stiffness during 

posture maintenance, as mentioned above. Bennett et al. (1992) found that the elbow stiffness 

values during cyclic movement were smaller than the at-rest stiffness during posture control. 

Moreover, Gomi, Koike, and Kawato (1992) recently measured the time-varying stiffness of a 

multi-joint arm during discrete point-to-point movements rather than single-joint movement and 

found that some of the dynamic stiffness values were smaller than the static stiffness during posture 

maintenance. This is possibly because, during fast movement, the activation level of the low-level 

neural reflexes might be suppressed by the descending signals, and the motor command values 

during movements might be smaller than those required to maintain the posture. Moreover, in 

Gomi's experiment during T2-T6 750-msec movement, the hand stiffness value Syy ranged from 50 
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to 200 N/m. The hand stiffness values estimated in this simulation during such a movement were 

within this measured hand stiffness value range. With this in mind, such experimental findings may 

support our assumptions and conclusion. 

In this paper, we presented the various virtual trajectories predicted by using the stiffness values 

of three cases where the elbow joint stiffness values are 3.0, 5.0, and 16.8 N-rn/rad. For point-to-

point trajectory control using relatively small stiffness values range from 3.0 to 5.0 N-m/rad, the 

complicated virtual trajectories were predicted, while using a relatively large stiffness value of 16.8 

N-m/rad resulted in simpler virtual trajectories. Consequently, when the human elbow stiffness 

values are less than about 15 N-m/rad, it is essential to solve the inverse dynamics problem or to 

plan the complicated virtual trajectories by training the internal models of the motor systems. In 

contrast, when the human elbow stiffness values are larger than about 15 N-m/rad, even a simpler 

control mechanism such as the virtual trajectory control hypothesis can explain the feedforward arm 

control. Based on these considerations, we finally propose an integrated computational scheme 

which is based both on the virtual trajectory control hypothesis and learning inverse internal models. 

Fig. 13 shows the architecture of the integrated model. The VTP (Virtual Trajectory Planner) stands 

for the internal inverse model which calculates the virtual trajectory form the desired trajectory. 

Several advantages of this scheme can be pointed out. First the VTP could be a unity function for 

slow movements or high stiffness conditions. Thus the CNS can start learning movement with 

slow movement conditions or high stiffness conditions, then adapt VTP to fast movements with low 

stiffness (see related work by Sanger, 1992). Second, as the input and the output of the VTP are 

represented in the same Cartesian coordinates, it is quite straightforward to design the feedback 

controller (FC in Fig. 13), which is the most difficult part of the feedback-error-learning. It is one 

of our future projects to examine the computational efficiency and biological plausibility of this 

integrated scheme. 

Acknowledgments 

We are grateful to Drs. Masaaki Sato, Yasuhiro Wada, Menashe Domay, Yasuharu_Koike, Hiroaki 

Gomi, David Bennett, and Terry Sanger for their helpful comments and discussions during 

-24 -



Virtual trajectory predicted by inverse models 

preparation of this manuscript. This work was supported by a Human Frontier Science Program 

Grant to M. Kawato. 

25 



Virtual trajectory predicted by inverse models 

References 

Abend, W., Bizzi, E., Morasso, P.: Human arm trajectory formation. Brain 105, 331-348 (1982). 

Amis, A.A., Dowson, D., Wright, V.: Muscle strengths and musculoskeletal geometry of the upper 

limb. Engineering in Medicine 8, 1, 41-48 (1979). 

Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movement. 

Journal of Neuroscience 5, 2318-2330 (1985). 

Bennett, D.J.: Relationship between stiffness and net joint torque during ballistic elbow joint 

movement. Society for Neuroscience Abstracts 17, 1029 (1991). 

Bennett, D.J., Hollerbach, J.M., Xu, Y., Hunter, I.W.: Time-varying stiffness of human elbow 

joint during cyclic voluntary movement. Experimental Brain Research 88, 433-442 (1992). 

Bizzi, E., Polit, A., Morasso, P.: Mechanism underlying achievement of final head position. J. 

Neurophysiol. 39, 435-444 (1976). 

Bizzi, E., Accornero, N., Chapple, W., Hogan, N.: Posture control and trajectory formation during 

arm movement. The Journal of Neuroscience 4, 11, 2738-2744 (1984). 

Fel'dman, A. G.: Functional tuning of the nervous system with control of movement or 

maintenance of a steady posture. III. Mechanographic analysis of execution by man of the 

simplest motor tasks. Biophysics 11, 766-775 (1966). 

Fel"dman, A.G., Adamovich, S. V., Ostry, D.J., Flanagan, J. R.: The origin of electromyograms-

Explanations based on the equilibrium point hypothesis. In Multiple Muscle Systems: 

Biomechanics and Movement Organization. Winters, J.M., Woo, S.L-Y. (Eds), Springer-

Verlag, New York (1990). 

Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed 

mathematical model. The Journal of Neuroscience 5, 7, 1688-1703 (1985). 

Flash, T.: The control of hand equilibrium trajectories in multi-joint arm movement. Biological 

Cybernetics 57, 257-274 (1987). 

Flash, T., Mussa-Ivaldi, F. A.: Human arm stiffness characteristics during the maintenance of 

posture. Experimental Brain Research 82, 315-326 (1990). 

-26 -



Virtual trajectory predicted by inverse models 

Gomi, H., Kawata, M.: Learning control for a closed loop system using feedback-error-learning. 

Proc. the 29th IEEE Conference on Decision and Control, Hawaii, 3289-3294 (1990). 

Gomi, H., Koike, Y., Kawato, M.: Human hand stiffness during discrete point-to-point multi-joint 

movement. Proc. IEEE EMBS (1992) submitted. 

Hatze, H.: A model for the computational determination of parameter values of anthropomorphic 

segments. National research Institute for Mathematical Sciences, CSIR, South Africa, 

Technical report TWISK 79 (1979). 

Hogan, N.: An organizing principle for a class of voluntary movements. The Journal of 

Neuroscience 4, 11, 2745-2754 (1984). 

Hogan, N.: The mechanics of multi-joint posture and movement control. Biological Cybernetics 

52, 315-331 (1985). 

Ito, M.: Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. 7, 162-

176 (1970). 

Jordan, M.I.: Motor learning and the degrees of freedom problem. In M. Jeannerod (Ed.), Attention 

and Perfonnance XIII (pp.796-836). Hillsdale: Lawrence Erlbaum Associates.(1990) 

Katayama, M., Kawato, M.: Parallel-hierarchical neural network model for motor control of 

musculoskeletal system. Systems and Computers in Japan, Scripta Technica, Inc., 22, 6, 95-

105 (1991a). 

Katayama, M., Kawato, M.: Virtual trajectory and stiffness ellipse during force-trajectory control 

using a parallel-hierarchical neural network model. Fifth International Conference on Advanced 

Robotics, 1187-1194 (1991b). 

Kawato, M., Furukawa, K., Suzuki, R.: A hierarchical neural-network model for control and 

learning of voluntary movement. Biological Cybernetics 57, 169-185 (1987). 

Kawata, M.: Optimization and learning in neural networks for fonnation and control of coordinated 

movement. In Meyer D, Kornblum S (eds) Attention and Performance, XIV: Synergies in 

Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience -a Silver 

Jubilee. MIT Press, Cambridge, Massachusetts, in press. 

-27 -



Virtual trajectory predic叫 byinverse models 

Lacquaniti, F., Licata, F., Soeching, J.F.: The mechanical behavior of the human forearm in 

response to transient perturbations. Biological Cybernetics 44, 35-46 (1982). 

MacKay, W.A., Crammond, D.J., Kwan, H.C., Murphy, J.T.: Measurements of human foreann 

viscoelasticity. Journal of Biomechanics 19, 3, 2-31-238 (1986). 

Morasso, P.: Spatial control of arm movements. Experimental Brain Research 42, 223-227 (1981). 

Mussa-lvaldi, F. A., Hogan, N., Bizzi, E.: Neural, mechanical, and geometric factors subserving 

ann posture in humans. The Journal of Neuroscience 5, 10, 2732-2742 (1985). 

Ozkaya, N., Nordin, M.: Fundamentals of biomechanics: equilibrium, motion, and deformation. 

Van Nostrand Reinhold, New York (1991). 

Polit, A., Bizzi, E.: Characteristics of the motor programs underlying arm movements in monkeys. 

J. Neurophysiol. 42, 183-194 (1979). 

Rack, P.M.H., Westbury, D.R.: The effects of length and stimulus rate on tension in the isometric 

cat soleus muscle. Journal of Physiology 217, 419-444 (1969). 

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating 

errors. Nature 323, 533-536 (1986). 

Sanger, T: Learning inverse dynamics by local exploration. Abstract for Neural Networks for 

Computing Snowbird, (1992). 

Tsuji, T., Ito, K., Nagamachi, M., Ikemoto; T.: Impedance regulations in musculo-motor control 

system and the manipulation ability of the end-point. SICE 24, 4, 385-392 (1988) in 

Japanese. 

Tsukahara, N., Kawato, M.: Dynamic and plastic properties of the brain stem neuronal networks as 

the possible neuronal basis of learning and memory. Competition and cooperation in neural 

nets, Amari, S., Arbib, M.A. (Eds), New York: Springer-Verlag, 430-441 (1982). 

Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint 

ann movement: minimum-torque-change model. Biological Cybernetics 61, 89-101 (1989a). 

-28 -



Virtual trajectory predicted by inverse models 

Uno, Y., Suzuki, R., Kawato, M.: Minimum-muscle-tension-change model which reproduces 

human arm movement. Proceedings of the 4th Symposium on Biological and Physiological 

Engineering, 299-302 (1989b) in Japanese. 

Wood, J.E., Meek, S.G., Jacobsen, S.C.: Quantitation of human shoulder anatomy for prosthetic 

arm control -I Surface modelling. Journal of Biomechanics 22, 3, 273-292 (1989a). 

Wood, J.E., Meek, S.G., Jacobsen, S.C.: Quantitation of human shoulder anatomy for prosthetic 

arm control -II Anatomy matrices. Journal of Biomechanics 22, 4, 309-325 (1989b). 

-29 -



Virtual trajectory predicted by inverse models 

Legend Descriptions 

Figure 1: 

Parallel-hierarchical neural network model. This learning control model can acquire the parallel 

inverse models structured by the inverse statics model ISM and the inverse dynamics model IDM, 

and arrange these parallel inverse models hierarchically in conjunction with a feedback controller 

FC. Controlling signals are the sum of the ISM output uぃm'theIDM output Uu1m and the feedback 

signal u . 

Figure 2: 

Redundancies at statics and dynamics levels. A Subscripts f and e denote flexor and extensor 

muscles. B The posture is specified as an intersection point of isometric length-tension curves for 

agonist and antagonist muscles. When the posture is maintained, there is an infinite number of 

combinations of the motor commands for a pair of muscles. C Muscle tensions for agonist and 

antagonist muscles during movement. There is also an infinite number of combinations of the 

muscle tensions for a pair of muscles, which is required to realize an intended trajectory. 

Figure 3: 

Human ann model with four single-joint muscles and two double-joint muscles. 

Figure 4: 

Stiffness ellipses predicted during posture maintenance in a horizontal plane. The shaded ellipse 

expresses the stiffness ellipse at the functional standard posture where the shoulder angle is 45 

degrees and the elbow angle i~70 degrees. 

Figure 5: 

Target positions for point-to-point movements in a horizontal plane at the shoulder level. 

Figure 6: 

Stiffness ellipses predicted during movements in a horizontal plane. A 750-msec movements: (a) 

T2-T6; (b) T2-T5; (c) T3-T6; (d) T4-Tl. B 500-msec movements: (a) T2-T6; (b) T2-T5; (c) T3-T6; 

(d) T4-Tl. 
遍
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Figure 7: 

Virtual trajectories and tangential velocity profiles predicted during point-to-point movements in a 

horizontal plane. Solid line: desired. Dashed line: actual. Dotted line: virtual. A 750-msec 
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movements: (a) T2-T6; (b) T2-T5; (c) T3-T6; (d) T4-Tl. B 500-msec movements: (a) T2-T6; (b) 

T2-T5; (c) T3-T6; (d) T4-Tl. 

Figure 8: 

Virtual trajectories predicted in joint coordinates. Solid, dashed and dotted lines show the desired, 

actual, and virtual trajectories, respectively. A 500-msec T2-T6 movement. B 500-msec T4-Tl 

movement. 

Figure 9: 

Motor commands to six muscles during T2-T6 750-msec movement. Solid curves: sum of the ISM 

and IDM outputs. Dotted curves: ISM output. 

Figure 10: 

Virtual trajectories predicted from the parameters that the at-rest shoulder stiffness is 6.44 N-m/rad 

and the at-rest elbow stiffness is 5.0 N-m/rad. Solid, dashed and dotted lines show desired, actual 

and virtual trajectories, respectively. A 750-msec T2-T6 movement. B 500-msec T2-T6 

movement. 

Figure 11: 

Virtual trajectories predicted from the parameters that the at-rest shoulder stiffness is 21.6 N-m/rad 

and the at-rest elbow stiffness is 16.8 N-m/rad. Solid, dashed and dotted lines show desired, actual 

and virtual trajectories, respectively. A 750-msec T2-T6 movement. B 250-msec T2-T6 

movement 

Figure 12: 

ISM control using the straight desired trajectories based on the minimum-jerk model. Solid, dashed 

and dotted lines show the desired, actual, and virtual trajectories, respectively. A 750-msec 

movements: (a) T2-T6; (b) T2-T5; (c) T3-T6; (d) T4-Tl. B 500-msec movements: (a) T2-T6; (b) 

T2-T5; (c) T3-T6; (d) T4-Tl. 

Figure 13: 

A new computational scheme for learning control of arm movement which integrates the virtual 

trajectory control hypothesis and the feedback-error-learning scheme. VTP stands for the virtual 

trajectory planner, which calculates the necessary virtual trajectory while receiving the desired 

trajectory. Other notations are similar to those in Fig. 1. However, the feedback controller FC is 
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Virtual trajectory predicted by inverse models 

designed in the Cartesian coordinates, and can be designed as the most simple PID feedback 

controller because the inverse kinematics problem needs not be addressed here. Correspondingly, 

because the input and the output of VTP are represented in the common Cartesian coordinates, it 

does not need to address the coordinate transformation problem from the Cartesian coordinates to 

the joint, muscle, or motor-command coordinates. However, VTP actually solves the inverse 

dynamics problem. 
＇ 

Table 1: 

Arm parameters. 

Table 2: 

Moment arms: a1 for shoulder flexor; a2 for shoulder extensor; a3 for elbow flexor; a4 for elbow 

extensor; a5 and a6 for double-joint flexor; a7 and a8 for double-joint extensor. 

Table 3: 

Muscle parameters. The parameter r in Eq. (8c) is expressed as the joint angle in Eq. (10) 

corresponding to the rest length change with the motor command. The parameter lm -l。inEqs. (8c) 
and (10) is expressed as the angle corresponding to the difference between lm and l。•

尋
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Table 1 Table 2 
M L Lg I 

(kg) (m) (m) (kgmり a1,a2 a3,a4 as,a6 a1,a8 

Link I I 1.59 0. 3 0.18 0.0477 Moment Arm(cm) 4.0 2.5 2.8 3.5 

Link 2 I 1.44 0.35 0.21 0.0588 

Table 3 
Angle 

k K。 b b。 r corresponding 
to Im-lo 

(N / m) (N / m) (Ns / m) (Ns / m) (Deg.) (Deg.) 

Shoulder Flexor 1621.6 810.8 108.1 54.1 -40° 180° 

Shoulder Extensor 1621.6 810.8 108.1 54.1 40° -90° 

Elbow Flexor 1621.6 810.8 108.1 54.1 -40° 180° 
ヽ

Elbow Extensor 1621.6 810.8 108.1 54.1 40° -40° 

2 -Joint Flexor 1621.6 810.8 108.1 54.1 -40° 360° 

2-Joint Extensor 1621.6 810.8 108.1 54.1 40° -130° 
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