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1. CONTEXT AND OBJECTIVE 

Three dimensional (3D) maps are often of the utmost importance in robotics, and their accuracy is crucial to the 

realization of many robotic tasks, such as object recognition, object pose estimation and navigation. The automatic 

generation of such maps with the sole use of vision is therefore of considerable interest to the field of robotics in 

general and has great potential for industrial applications. 

The map generation problem has been solved in principle by the various "structure from X" paradigms (structure 

from motion, from stereo, from shading etc). We say''in principle" because nearly all the existing methods 

assume that the parameters of the vision system are known with arbitrary precision and that all information are 

perfectly certain. As it became obvious that one cannot expect from a user/experimenter/measuring instrument to 

provide such arbitrarily precise and certain information about the system and its relations to its surrounding world, 

researchers have started to tackle the issue of uncertainty representation and management4•14. 

In this work, we selected binocular stereoscopy as our sensor of 3D information, because it is relatively cheap in 

hardware, easy to handle and still reasonably accurate due to the fixed architecture of the 2 cameras. Monoscopy or 

trinocular stereoscopy could be used as well and the former is being investigated by a researcher at ATR (Shinjiro 

Kawato). 

As is well-known in stereo-vision, the map obtained from any single stereo-pair is typically of poor reliability 

and incomplete due to the limited visual field. The "quality" of the 3D information extracted from a single pair 

depends on the various parameters (baseline distance, distance from the cameras to the scene etc) and the precision 

with which they are known, but no matter how well we calibrate our system, there is a limit to the precision we can 

obtain and there are sources of error that cannot be controlled or easily removed (the sensor noise in the cameras, 

for instance). Therefore, a method is needed that exploits this noisy information in a certain optimal way without 

forcing the user/experimenter to provide arbitrarily precise or accurate information regarding the hardware. 

It has been widely acknowledged that a key to robustness and precision is to integrate the information contained 

in several image pairs taken at various locations in the scene1 (see fig.1). Difficulties arise when one realizes that the 

3D information extracted from the stereo-pairs is in general both redundant and complementary at the same time: 

this excludes all set-theoretic integration schemes, such as intersection or union. 
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Fig.1. Integration of multiple stereo pairs of images of a 3D scene 

We believe that insufficient insight into the sources of error in stereo-vision and the lack of a sufficiently powerful 

mathematical formalism to model these errors have hampered progress in this direction. We propose here a new 

method and we show how it leads to increased accuracy of the 3D map of the scene in spite of all the sources of 

error. 

2. THE "RANDOM CLOSED SET" APPROACH 

2.1 Imprecision, uncertainty and Random Closed Sets (RACS) 

Let us take a closer look at the sources of error in our stereoscopic vision system described in fig.2. 
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Fig. 2. Stereoscopic vision system 

One obvious source of error comes from the fact that we work with digital images: due to the limited resolution 

of the cameras, one point in (3D) space does not project onto an infinitely accurate point on the image planes, but 
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onto a picture element (pixel), assuming the cameras are focused (if not, the Point Spread Function may spread over 

adjacent pixels as well). 

Another source of error is our limited knowledge about the system geometry: all the parameters are measured 

using physical instruments and are only known to within a certain precision. Calibration procedures are generally 

used to measure these parameters, such as the focal length of each camera, the baseline distance between them, the 

orientation of the two optical axes with respect to world coordinate axes, the vergence angle etc. But no matter how 

well calibration is performed, errors will not disappear completely. Also, these parameters may deviate or fluctuate 

from their estimated value as the cameras move around in the scene. For instance, the pitch angle may be affected 

by small irregularities on the ground, the cameras may shake slightly etc. 

The location of the cameras with respect to a fixed origin is also difficult to measure without heavy and costly 

equipment. In most practical applications, one cannot reasonably expect to measure the location with a precision 

better than a few millimeters. 

All the above errors are deterministic in that they are entirely predictable and that one can actually give 

boundaries inside which the parameters are certain to lie. For instance, one can be certain to know the focal length 

of each camera to within 10%, or the location to within 1cm. We call these errors imprecision, and it is clear from 

the examples above that imprecision is a set-theoretic concept, i.e. it can be modeled by set theory. It is in fact a 

generalization of the classical "error intervals" in physics where the imprecision sets need not be intervals of the real 

line but can be any (closed) subset of a suitable representation space U. 

Given a left-right match, i.e. a disparity vector at a certain feature point in the images, one can actually calculate 

the combined influence of all these sources of imprecision. The resulting 3D closed set quantifies the final imprecision 

of 3D point locations in the scene (fig.3). 

In contrast, some errors in stereo-vision are random in nature: the sensor noise in the cameras, the errors in 

matching features from the left and right images…We call such errors uncertainty because one cannot be certain 

that the information is not erroneous. Uncertainty is a probabilistic concept, i.e. it is modeled within the framework 

of general Probability Measure theory. 

Almost all approaches to uncertainty in computer vision up to now have used random point variables, i.e. 

measurable mappings taking value in the representation space U itself1•13. The reasons are both historical and 

practical (computational cost) but by no means theoretical: general Probability Measure theory can handle random 

variables valued in any abstract measurable space. 

And indeed, since stereo-vision is both inherently imprecise and uncertain, we argue that a Random Set theory 

is needed, i.e. we must work with random variables valued in the power set P(U) of the representation space. 

Furthermore, we argued11 that a notion of topology is needed so as to distinguish the experimentally accessible sets 

from abstract entities of general Set theory whenever the representation space is uncountably infinite. Indeed, it is 

not possible to experimentally distinguish between a closed interval [a, b] of況， forinstance, and the open interval 

]a, b[ obtained by removing the two boundary values a and b. And although mathematics allows us to construct such 

abstract entities as a sphere containing only half its boundary while the other half belongs to its complement, we 
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Fig.3. 3D imprecision set resulting from digitization and focal length imprecision (/1~f~'2) 

argue that experimenters have no use of such''monsters" and that one should discard them from the set of useful 

entities. One can explicitly discard all the open sets of a topological space to keep only the closed sets, for instance. 

What we end up with is precisely the Random Closed Set (RACS) theory5•15•2. We proposed11 to use this theory as 

the general mathematical frainework for solving problems that involve both imprec1S1on and uncertamty. 

Although Random Closed Sets X are defined rigorously on a u-algebra of events of the form 

"X hits O and misses K" for all opens O and compacts K of U , a fund皿 entalresult, known as the Choquet 

theorem15, insures that Xis in fact entirely determined by its hitting functional Tx : Tx(K) = Prob(X hits K), 
which is a Choquet capacity of infinite order defined on the compact subsets K of U. This is very nice since in 

practice we do not want to deal with all the open sets, which are not even bounded in general!. What the Choquet 

theorem tells us is that it is sufficient to work with the compact subsets of U. 

We have investigated9•11 the connections between the RACS theory and other formalisms commonly used in 

Artificial Intelligence (AI), and found a very strong link with the Dempster-Shafer theory, also known as the theory 

of Belief functions. Indeed, the hitting capacity of an almost surely non-empty RACS is a Plausibility functions in 

the sense of Shafer16. This connection will be particularly useful to interpret our results in terms of Plausibility and 

Belief and to extend the approach to AI problems, including object recognition in the presence of uncertainty. .
¥
)
I
 2.2 Data RACS and visual RACS 

For every disparity vector in a stereo-pair (Li, Rt) obtained at location i, we compute the 3D imprecision set from 

the known sampling step (pixel size), imprecision in the geometry parameters and iri the system location. The union 

of all these 3D sets for all disparity vectors obtained in stereo-pair i is the Data Setふ forthis pair. Also associated 
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I with location i is the visual field V;, i.e. the set of all the points in the scene that are visible from both earner邸

As we (randomly) move our system around in the scene, we get a number of Data Sets {Xi}f=1 and corresponding 

visual fields {V;}恥.We邸 sumethat the latter are realizations of a visual RACS V and the former of a data RACS 

X. Note that X CV. 

2.3 An octree of structurmg elements 

To estimate the probability distribution of X, the Choquet theorem tells us that it suffices to estimate the 

probability that it hits (intersects) any compact subset of U. Since the features are 3D points, U =炉 andthe 

compact subsets are the closed bounded subsets in the Euclidean space. 

Since in general there are an (uncountably) infinite number of compacts Kin U, we cannot expect to determine 

X entirely in the sen~eof the Choquet theorem. Instead, we select a finite family of compacts that play 

the role of structuring elements and "probe" our data with these analysis tools, as suggested by Mathematical 

Morphology15. The choice of these structuring elements is an active process that requires the commitment of the 

experimenter/engineer. Serra15 classified the main structuring elements of炉 accordingto their convexity and 

isotropy properties. Closed balls in祀 arenatural elements to probe a priori isotropic data and are therefore good 

candidates for our problem. They do not allow efficient calculations on computers though and we preferred cubes to 

balls, in spite of their anisotropy. 

It is natural to include in this family compacts sets of different sizes, as this will allow a multiscale analysis of 

our data. We opted for a tree of 3D closed cubes, called octree, as it allows for a very concise representation of the 

space汽especiallywhen the scene is "almost empty", which is often the case in practice. Let { Cj} be the octree of 

cubes. 

2.4 Statistical estimation 

What we directly estimate from Xi and V; is the joint probability that X hits C; and that C; is visible from the 

(random) robot location: 

Prob(X hits Ci and Ci C V) (1) 

However, we are interested in the location of scene features independently of the particular motion of our robot, i.e. 

we are interested in the probability that X hits a visible C;: Prob(X hits C; IC; C V). This is readily obtained by: 

Prob(X hits Cj ICj C V) = Prob(X hits Ci and Ci C V) 
(2) 

which can be statistically estimated by dividing the number of times the Data Sets Xi hit C; by the number of 

times C; is included in¼. 

The resulting estimated distribution is then compared to a threshold r quantifying the a priori amount of 

uncertainty, i.e. reflecting the overall quality of the matching procedure. T is a constant of the vision system and 

can be determined beforehand independently. Obviously, if matching is perfect, T = l and the previous approach 

merely extracts the intersection of the data sets (up to the resolution of the octree), hence providing the strongest 

integration. In the extreme case when matching is completely random, T = 0 and the previous approach yields the 
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union of all the data sets, i.e. their weakest integration (which is the best we can do). Between these two cases, the 

data sets are combined in such a way that the influence of any erroneous matching will statistically tend to zero 

while the sets generated by correct correspondences will tend to accumulate in space. 

3. EXISTING APPROACHES TO UNCERTAINTY MANAGEMENT 

A recent survey on multisensor integration that tackles the issue of uncertainty representation in intelligent 

systems can be found in [4]. 

3.1 Uncertainty ellipsoids . 

"Set membership" approaches8•14 model uncertainty using simple convex sets of the Euclidean space, such as 

hyperellipsoids or strips (the latter being unbounded). The advantage of using those simple shapes is that one can 

represent them using only a few par皿 eters.

The key assumption is that the actual points lie in their respective "uncertainty set" with absolute certainty. If 

this is the case, then a simple intersection operation should be suitable to integrate the information. However, since 

the intersection of two ellipsoids or even two strips need not be an ellipsoid nor a strip, computational complexity 

makes the problem intractable if the number of data sources is large. To avoid this problem, algorithms have been 

devised that compute a "tight uncertainty bound" providing a reasonable approximation of the intersection. 

The connection with our RACS approach is clear: what the authors14 call "uncertainty" is labeled "imprecision" in 

our work, and this "set membership method" simply assumes that there is no uncertainty at all, but only imprecision 

in the data. Hence, the intersection operation. If the information is potentially erroneous, which is always the case 

in practice, this over-optimistic approach will fail, no matter what algorithm is used to approximate intersection. 

Some researchers8•14 have suggested to monitor the intersection procedure and discard any "outlier" that do not 

intersect with the "consensus" represented by the already integrated information. Even when outliers are scarce and 

sufficiently conflicting so as to make the discarding decision easy, this method introduces an order-dependency that 

is not suitable to many problems. 

Another difficulty with this method is what is known as the registration (or correspondence) problem: to integrate 

the information acquired at time t1 and t2 (or location£1 and£2), one must explicitly tell which ellipsoid of time 

t1 corresponds to which ellipsoid at time t2. If we extract hundreds of points at each instant or location, all the 

ellipsoids may overlap each other in space, making this correspondence problem extremely difficult. In contrast, no 

such registration is necessary in our RAGS-based approach. 

3.2 Kalman filtering 

The Kalman filtering method goes one step further into generalization. Instead of dealing with ellipsoids, we can 

assume that the errors are random (point) variables of the sp邸 eU with Gaussian distribution of given covariance 

matrices, and additive to the signal. By doing so, the errors are not assumed to lie with certainty within a fixed 

bounded set anymore. Now if we restrict ourselves to linear combinations of the distributions, Kalman filtering 

provides the "optimal" fused distribution in the form of the minimal variance estimate of the fused data (in the 
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context of Bayesian inference). This amounts to combining the uncertam data mto a minimal "volume" Gaussian 

probability distribution. The method has been extended to non-linear filtering1. 

Although not required from a purely theoretical point of view, the Gaussian assumption is crucial in practice . 

as it leads to covariance matrix computations, which are much more tractable than 3-dimensional probability 

distributions. However, the errors in stereo-vision are not Gaussian and can hardly be approximated by Gaussian 

distributions, as is clear for zero-disparity points: such points lie in unbounded polyhedra that extend to infinity 

and trying to fit a Gaussian, which amount to finding a center and a variance, seems simply hopeless… 

Furthermore, Kalman filtering approaches do not solve the registration problem mentioned above, as they assume 

that we are given all time correspondences for the features. 

3.3 Certainty grids 

Certainty grids6•7 have become very popular in robotics recently and there is a clear connection with our work. 

The starting point is the same, namely the desire to avoid the oversimplification of uncertainty typical of the above 

methods. The basic assumption is that, once all errors are properly modeled, it should be easy to reduce them. In 

that respect, the RACS approach and the certainty grid method coincide. 

However, the latter is fundamentally heuristic: the authors6 do not recognize the generality of the concept of 

structuring elements and stick to grid representations. They cannot handle cases where the structuring elements 

overlap in space. More importantly, they make the mistake of considering each box in the grid as independent from 

all other boxes, so that the occupancy certainty of all the boxes are statistically independent. 

Finally, since they use a standard Bayesian updating scheme, they cannot represented ignorance fully: they must 

assume prior distributions or use maximum entropy considerations. For instance, taking an occupancy certainty of 

0.5 for all boxes in the grid as a prior distribution, as suggested6 when no information a priori is known, leads to 

the following absurd result: if one groups the boxes 2 by 2, hence representing the data at a coarser resolution, one 

gets a grid which is almost surely occupied everywhere although we know nothing a priori! 

In contrast, we do not need prior information in our RACS approach and ignorance can be fully represented by 

means of the hitting capacity. 

4. AN IMPLEMENTATION 

4.1 Overview of the system 

The RACS approach described above was implemented at the Visual Perception Department of ATR on the 

following hardware: 

• an SIMD massively parallel super-computer, the Connection Machine CM-2 (Thinking Machines Corp.), with 

2 seque~cers of SK processors each, which gives a total number of 16384 processing units. To each processor is 

attached a memory of 256K bits. A front-end workstation provides the programming/debugging environment 

(C language augmented with parallel instructions) and the user interface. 

• a Unix workstation SPARC-2 (Sun Microsystems Corp.), on which runs the software package AVS (Application 

Visualization System) that provides a''user friendly" interface and 3D rendering capabilities. 
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• a computer-controlled rotating table CPC-3DN (Chuo Seiki Corp.) 

• 2 CCD cameras (Panasonic). 

• an image grabbing board and software Videopix (Sun Microsystems Corp.). 

The system is composed of following programs: 

• a program stereo.c implementing a stereo-vision algorithm. This program extracts a number of feature points 

in both the left and right images using either a Sobel or a Moravec filter, then matches those points using a 

standard window-based normalized cross-correlation technique. The disparity (vector) field originating from 

the left image is merged with that computed from the right image and the result is checked for consistency {the 

information coming from both images should be compatible wherever they overlap). Finally each disparity 

vector is used to produce a 3D data set represented as a 14 face polyhedron. For each stereo-pair i of images, 

a file data; is produced that contains the visual field at location i and all the data sets (polyhedra) computed 

from all the vectors in the disparity field of this pair. The output of program stereo. c is as many files as there 

are stereo image pairs. See appendix A for a detailed description of how the data sets are computed and 

represented in computer memory. This program runs entirely on the Connection Machine and its front end. 

• a program tree.c implementing an octree algorithm. The inputs are the files produced by stereo.c, i.e. 

polyhedra in space. The output is a file containing the octree, i.e. a list of cubes of various locations and sizes 

along with 2 (integer) counters: a visibility counter, i.e. the number of times the cube was visible from the 2 

cameras {lied inside the visual field), and a hit counter, i.e. the number of times the cube was hit (intersected) 

by the data set polyhedra. Note that hit counter~visibility counter. If the depth of the octree is set to 7, 

we get a maximum number of 2 Mega virtual processors (nodes) at the deepest lay~r, if the tree is full. In 

practice, only about 10%-30% of this number is necessary to represent typical scenes in the octree. This is 

because indoor or outdoor scenes usually contain a lot of empty space. This program runs entirely on the 

Connection Machine and its front end. 

• a program octree_to_geom.c that converts the octree into an AVS "geometry" data type. The resulting {3D) 

geometry can then be given as an input to the A VS geometry renderer that performs HSR {hidden surface 

removal) and complete rendering, and which enables the user to interactively manipulate the octree in space 

with the mouse/keyboard. The resulting rendered (2D) image can then be processed using any of the image 

processing modules available in the AVS standard library. For example, a "pixmap" can be produced which 

can be dithered and written into Postscript format for printing. 

• finally, an A VS network that connects all the above programs. This network is shown in fig.4. Refer to 

appendix B for a short introduction to programming in the AVS environment. 

~
 

4.2 Experimental setting 

Sequences of stereo image pairs were obtained by regularly rotating 3D objects in front of the two (fixed) CCD 

cameras and by grabbing the left and right images at various angles (fig.5). 
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fig.4. AVS network 

For the DIAMOND sequence presented below, we rotated a simple block 360 degrees and grabbed image pairs 

every 12 degrees, which produced a total number of 30 pairs, diamond.O to diamond.29. 

The stereo. c program was designed for a fixed scene/mobile robot setup since our system will eventually be used 

for mobile robot navigation purposes. The inputs are the parameters of the motion of the 2 cameras, i.e. translation 

and orientation angles (yaw, pitch), as well as the camera parameters (focal length, baseline), and the precision in 

all those measurements. In our experimental mobile scene/fixed robot setup, inputs are the distance between the 

rotation axis and the cameras, the angle of rotation on the rotating table and the camera parameters as well as their 

precision. The conve付 motionAVS module handles the conversion between those two (equivalent) types of motion. 
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fig.5. Experimental setting for sequence DIAMOND 

Since our purpose is to show that we can incre邸 ethe quality of the 3D information by integrating the various 

data in a suitable way, we did not make great efforts to calibrate our camer邸 andme邸 ureall the geometrical 

parameters involved in our system. Only the relative improvement of the 3D map is meaningful here, not its absolute 

quality. 

Figure 6 shows the parameter values for modules convert motion and stereo CM. The focal length was known to 

within 7%, the yaw with a precision of 0.005 degrees, the baseline 0.5mm and the 3D location of the system with a 

precision of 5mm. 

Figures 7 and 8 show respectively the 1st (diamond.O) and 6th (diamond. 5) image pairs of sequence DIAMOND. 

Figures 9 to 12 show various views of the distribution of the hitting Choquet capacities estimated in the octree. 

Each cube C of the octree has a "color" that represents the probability that the Data RACS X hits C given that C 

is visible from the 2 cameras. To give a better idea of this 3D distribution, we either rotate it in 3D or threshold it 

at various levels between 0.0 to 1.0. Note that computer graphics rendering (shading and hidden surface removal) 

was performed so that we can better see the individual cubes that form the octree. 

Figure 9 shows various views of the hitting capacity obtained by using one image pair only (1st image pair 

diamond.O). The only "color" here is 1.0 since the cubes are either hit once or missed. As expected, there is no 

information at the "back" of the block since we cannot see it from location 0. Also, notice the amount of imprecision 

and noise in the 3D map. 

v,',`
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Figure 10 shows various views of the hitting capacity obtained by using 15 image pairs (image pair diamond.Oto 

diamond.14), i.e. 180 degrees around the block. Observe that we improved the map compared to figure 9, since both 
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Fig.6. Parameter values for modules convert motion and stereo CM 
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fig. 7. Sequence DIAMOND: pair 0, left and right images 

fig.8. Sequence DIAMOND: pair 5, left and right images 

completeness and precision increased. As can be expected, only the half of the block is present since the rotation is 

not complete yet. 

Figures 11 and 12 show various views of the hitting capacity obtained by using 30 image pairs (image pair 

diamond.Oto diamond.14), i.e. 360 degrees around the block scene. Observe that we improved the map compared 

to figure 10, since both completeness and precision increased. 
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By comparing figures 9, 10 and 11-12, it is clear that integration succeeded in decreasing imprecision {the 
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Hitting' 
threshoJ: 

Hitting capacity (1 view) 
threshold 1.00, volume 0.000872 

fig. 9. Hitting capacity using only the image pair of fig. 7 

apparent volume of the distribution), removing errors (noise in 3D map) and increasing the completeness of the 3D 

map. 

This is more apparent on figure 13, which shows the volume of the distribution thresholded at r plotted against 

the threshold r. We selected 6 subsets of image pairs from the original 30 pairs diamond.O, …， diamond.29, in a way 

that guarantees constant redundancy of the information: every feature in the scene is seen with equal frequency in 

all the 6 experiments. Hence, the curve marked "2 views" uses pair O and pair 14; the curve marked "3 views" uses 

pairs 0, 9, 19; the curve marked 5 views uses pairs 0, 6, 12, 18 and 24 etc. The curve marked "30 views" uses all 

image pairs. The curves are constructed by thresholding each distribution at various r, measuring the volume of the 
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Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

fig.10-1. Hitting capacity using 15 image pairs (180 deg) 

Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

叫 IIII II・。しい如,.,,.

Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

.. 

fig.10-2. Hitting capacity using 15 image pairs (180 deg) 

threholded octree and plotting this volume against T for all 6 experiments. 

Figure 13 clearly shows that the more image pairs we use, the better the precision becomes, as can be expected 

intuitively. The figure also shows that the more views we integrate, the smaller the improvement that can be 

expected from further integrating additional views. In other words, the behavior of our system is asymptotic: the 

improvement beyond 15 views is negligible especially when compared to the additional amount of computation 

u
．

ぐ

"．
9
.
I
 

9
』

14 



I 

Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

Hitting capacity (15 views) 
threshold 0.52, volume 0.000409 

fig.10-3. Hitting capacity using 15 image pairs (180 deg) 

Hitting capacity (30 views) 
threshold 0.25, volume 0.001101 

Hitting capacity (30 views) 
threshold 0.30, volume 0.000936 

fig.11-1. Hitting capacity using 30 image pairs (360 deg) at various thresholds 

required. 

Since our scene is fairly simple, the asymptote is reached early: only a small number of views is sufficient to 

completely describe the scene and reduce imprecision. However, one might expect that this asymptote will be higher 

for a more complex scene. 

5. CONCLUSION AND FUTURE WORK 
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Hitting capacity (30 views) 
threshold 0.35, volume 0.000709 

Hitting capacity (30 views) 
threshold 0.40, volume 0.000554 

fig.11-2. Hitting capacity using 30 image pairs (360 deg) at various thresholds 

Hitting capacity (30 views) 
threshold 0.45, volume 0.000492 

Hitting capacity (30 views) 
threshold 0.50, volume 0.000376 

fig.11-3. Hitting capacity using 30 image pairs (360 deg) at various thresholds 

We have proposed a new approach to the reconstruction of 3 dimensional scenes from multiple data. The 

information extracted from any stereoscopic image pair is inherently imprecise and uncertain and therefore a 

mathematical fr皿 eworkthat can model both imprecision and uncertainty is required. Due to the limitations of the 

random point approach, most of the methods proposed so far cannot fully represent imprecision and uncertainty. 

These 2 forms of error get mixed into a (3D) probability density function and most methods are compelled to make 

unrealistic assumptions about the prior probability distribution of disparity vectors or even of the 3D scene features. 

We have proposed to use the Random Closed Set theory for this purpose. The resulting integration method 
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Hitting capacity (30 views) 
threshold 0.55, volume 0.000312 

fig.11-4, Hitting capacity using 30 image pairs (360 deg) at various thresholds 

Hitting capacity (30 views) 
threshold 0.65, volume 0.000125 

Hitting capacity (30 views) 
threshold 0.60, volume 0.000187 

饂
響

fig.11~5. Hitting capacity using 30 image pairs (360 deg) at various thresholds 

makes no assumption whatsoever about the noise/errors and does not require prior registration of all the feature 

points in time. Experimental results have confirmed that one can decrease both imprecision and uncertainty at the 

same time while increasing completeness in the final map, provided that all sources of error are duly investigated 

and suitably represented. 

Further theoretical and experimental work needs to be done so as to quantify more precisely the performance of 

the proposed method, and in particular to determine how and in what extent the complexity of a scene determines 

the optimal number of 2D views that must be processed in order to describe it accurately. 
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Hitting capacity (30 views) 
threshold 0.75, volume 0.000032 

Hitting capacity (30 views) 
threshold 0.80, volume 0.000014 
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fig.11-6. Hitting capacity using 30 image pairs (360 deg) at various thresholds 

Hitting capacity (30 views) 
threshold 0.85, volume 0.000010 
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fig.11-7. Hitting capacity using 30 image pairs (360 deg) at various thresholds 
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APPENDIX A 

Representation and construction of the Data and Visual sets 

A.1 Representation of the Sets m computer memory 

The Data Sets X;,j for time t; and at image location j, and the Visual Sets½for time t; are approximated by 

3-dimensional convex polyhedra: 14-face polyhedra for the Data Sets X;,j and 8-face polyhedra for the Visual Fields 

l,'i. Thus, they can be represented as the finite intersection of half-spaces. These half-spaces are defined by their 

boundary plane and an arbitrary rule for selecting one of the 2 half-spaces defined by the Sa.Ille plane. 

We chose a computationally efficient representation for half-spaces: a pair consisting of a (3D) normal vector ii 

and a 3D point P. This pair defines a positive half-space E+ and a negative half-space E-, by: 

1::+ = { M E U, PM・ii ;?: 0} 

E-={MEU, PM-iisO} 

Thus we must add to our representation 1 bit of information to specify the sign of the half-space defined by n and 

P (this is computationally cheaper that keeping only the positive half-spaces at the cost of changing the sign of ii). 
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Therefore a Data set X,,; is represented by a set of (14) triplets (和，Piか叩）：

X;,; = n:Et7;,;(和，P;,;)

The global Data Set X; at time t; is the union of all the polyhedra at different image location j: X; = LJ; X伍

A.2 Construction of the Data Sets 

A.2.1 Construction of the generic Data Sets 

The generic Data Sets are the data sets obtained when the only source of imprecision is sampling (digitization). 

Note that x1 2:: Xr since the optical axes of the 2 cameras are assumed parallel (no vergence). 

Let x1, Xr, 6 = x1 -Xr > 0, y,f, b, a, /3, L be the horizontal coordinate on the left and right image and their 

difference (disparity), the vertical coordinate, focal length of the 2 cameras, the baseline, the yaw, the pitch 

angles and camera location respectively. Then a generic Data Set is defined by the following 6 faces (in Camera 

Coordinates): 

Face 0: furthest left vertical plane (defined only when 6 > 0). 

（ガ(f,o,—叫， P(-b/2,0, 0), +)  

Face 1: closest right vertical plane. 

（ガ(f,0, -x1 -1), P(-b/2, 0, 0), -)  

Face 2: closest left vertical plane. 

（ガ(f,0,-xr), P(b/2,0,0), +)  

Face 3: furthest right vertical plane (defined only when 6 > 0). 

（月(f,0, -xr -1), P(b/2, 0, 0), -)  

Face ,I: plane below set passing through Li, 

（ガ(O,f,-y), P(O,O, 0), +)  

Face 5: plane above set passing through Li. 

(ii(O,f, -y -1), P(O, 0, 0), -)  

To obtain a World Coordinate representation, we must rotate ii and P of every face by a and (3 and translate 

the result by OL;. Note that translation only applies to P (not ii). 

A.2.2 Construction of the actual Data Sets 

The actual Data Set must take into account the imprecision in the parameters f, b, a, L: 

focal length : Ji S f S'2 

baseline : b1 S b S b2 

r

.

1
島

yaw : a1 ::; a ::; a2 

camera location: Li E S(ri, Li) (sphere of radius ri and centered at Li) 

Face 0: furthest left vertical plane (defined only when o > 0). 
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, I 

• if X/ > 0: (n(h, o, -x1), P(-b2/2, o, 0), + )  

• if x1::; 0: (ii(/1, 0, -x1), P(-b2/2, 0, 0), +)  

• Rotation by a2 and /3. 

• Translation by OLi, Dilation by sphere S(ri, 0). 

Face 1: closest right vertical plane. 

• if X/ > -1: (ii(/1, o, -X1 -1), P(-bi/2, 0, 0), - )  

• if x1::; -1: (ii(h, O, -x1 -1), P(—bi/2, 0, 0), - )  

• Rotation by a1 and /3. 

• Translation by OLi, Dilation by sphere S(ri, 0). 

Face 2: closest left vertical plane. 

• if Xr > 0: (ii(h, O, -xr), P(bi/2, 0, 0), + )  

• if Xr ::; 0: (ii(/1, O, -Xr), P(bi/2, O, 0), + )  

• Rotation by a2 and /3. 

• Translation by OL1, Dilation by sphere S(r1, 0). 

Face 3: furthest right vertical plane (defined only when 6 > 0). 

• if Xr > -1: (ii(/1, 0, -Xr -1), P(b2/2, 0, 0), - )  

eifxr::;-1:(ii(h,0,-Xr-l), P(b2/2,0,0), -)  

• Rotation by a1 and /3 . 
... 

• Translation by OLi, Dilation by sphere S(ri, 0). 

Face ,I: plane below set passing through Li (approximation). 

• if y > 0: (ii, P(O, O, 0), +)  where ii is the cross product of ii1 (!!.l. 苧.r..,y, f 2) rotated by a1, /3 

and元（乎+l,yふ） rotated by a2, /3. 

• if y :,; 0: (ii, P(O, 0, 0), +)  where ii is the cross product of佑(=.l.芋.r..,yふ） rotated by a1, /3 

and元（乎+1, y, Ji) rotated by a2, /3. 

• Translation by 0五 Dilationby sphere S(ri, 0). 

Face 5: plane above set passing through Li (approximation). 

• if y > -1: (ii, P(O, 0, 0), -)  where ii is the cross product of元(El.千，y+lふ） rotated by 

01,/3 and和（乎+l,y+ 1ふ） rotated by a2, /3. 

eify:,; ー 1: ( ii, P(O, 0, 0), - ) where ii is the cross product of祖(E.1.苧乞y+ l, /2) rotated by 

a1, /3 and ii.2(翌+1, y + lふ） rotated by a2, /3. 

→ 
• Translation by OL1. Dilation by sphere S(ri, 0). 

Face 6: vertical plane perpendicular to (Lゎx)at the left of the set. 

• if Xr > 0: (n(l, o, 0), P(b1 ・（紐—合）， 0,0), +)  

• if x1::; 0 (defined only when 6 > 1): (n(l,0,0), P(b2・（表ー合），0,0), +)  

• if Xr ::; 0 and x1 > 0 and X/ + Xr > 0 (defined only when 6 > 0): (月(1,0, 0), P(b1・（号一

½),0,0), +)  
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• if Xr S O and X1 > 0 and X/ + Xr S O (defined only when o > 0): (ii(l, 0, 0), P(b2・（弓一

½),0,0), +)  

• Rotation by 02 and /3. 

• Translation by OL;. Dilation by sphere S(r;, 0). 

Face 7: vertical plane perpendicular to (L;, x) at the right of the set. 

• if Xr > -1 and x1十 Xr> 0 (defined only when o > 1): (ii(l,0,0), P(b2・（だT-½), 0, 0), -)  

• if年＞ー1and x1 + Xr SO (defined only when o > 1): (ii(l, 0, 0), P(b1 ・ (f.!:r-½),0,0), -)  

eifx,s-1: (n(l,0,0), P(b1・(岩や→），0,0), -)  

• if Xr S -1 and x1 > -1 and x1 + Xr > 0 {defined only when o > 0): (ii(l, 0, 0), P(b2 ・(~井一

½),0,0), -)  

• if Xr S -1 and x, > -1 and x1 + Xr SO (defined only when o > 0): ( n(l, 0, 0), P(b1・（弐旦＿

合），0,0), _・) 

• Rotation by a-1 and /3. 

• Translation by OL;. Dilation by sphere S(r;, 0). 

Face 8: horizontal plane below set. 

• if y > 0: (ガ(0,1, 0), P(O, bi・F-tf,O), + )  

• if y::; 0 (defined only when 6 > 1): (月(0,1, 0), P(O, b2・6,0), +)  

• Rotation by {J. 

• Translation by OLi. Dilation by sphere S(ri, 0). 

Face 9 : horizontal plane above set (defined only when 6 > 1). 

• if y >ー1:(n(O, 1, 0), P(O, b2・ 告，0), - )  

• if y::; -1: (n(0,1,0), P(O,b1・ 畢 0), - )  

• Rotation by {J. 

• Translation by 0む.Dilation by sphere S(ri, 0). 

Face 10: vertical plane at left of object passing through Li (only defined when 6 > 0). 

• if Xr > 0 : (ガ(!2,0,—乎）， P(0,0,0), ・+) 

• if Xr ::; 0 : (ガ(!1,0, —乎）， P(O,0, 0), +)  

• Rotation by a2 and {J. 

• Translation by 0五 Dilationby sphere S(r;, 0). 

Face 11: vertical plane at right of object passing through Li (only defined when 6 > 0). 

• if X/ > -1 : (tt(f1, 0, -乎 -1), P(0,0,0), - )  

e if X/ ::; ー 1: (ガ(h,0,-手-1), P(O, 0, 0), - )  

• Rotation by a1 and {J. 

• Translation by OLi. Dilation by sphere S(ri,O). 

Face 12: closest vertical plane approximating a1 -a2 curve (defined only when a2 -I al). 

l~.I 
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（ it, P1, +)  where ii is the cross product of n1(0, 1, 0) with P2P1 and P1 is P'(b1 . (:Ll.±!. —l b . o+l 2), 1 

'fh,b1・命） rotated by a1 and f3, and P2 is P'rotated by a2 and f3. 

• Translation by OLi, Dilation by sphere S(r;, 0). 

Face 13: furthest vertical plane approximating a1 -a2 curve (defined only when a2 # al and o > 1). 

(ii, P1, -)  where ii is the cross product of佑(0,1, 0) with P2P1 and Pi is P'(b2・（丑ーら），b2・

占，b2・セ） rotated by a1 and f3, and P2 is P'rotated by a2 and f3. 

• Translation by OL;. Dilation by sphere S(ri, 0). 

A.3 Construction of the Visual Fields 

A.3.1 Construction of the generic Visual Fields 

The generic Visual Fields are the visual fields obtained when the only source of imprecision is sampling 

(digitization). They are determined by the location L; and orientation a, (3 of the cameras and are data-independent 

(they do not depend on x1, Xr, y and 8 of the image features). 

Face 0: (closest) right vertical plane. 

（ガ(f,0, -(Size/2 -1 + 1)), P(-b/2, 0, 0), -)  

Face 1: (closest) left vertical plane. 

（ガ(f,0, -(-Size/2 + 1)), P(b/2, 0, 0), + )  

Face 2: plane below set passing through L;. 

（ガ(0,f, -(-Size/2 + 1)), P(O, 0, 0), +)  

Face 3: plane above set passing through L;. 

（ガ(O,f,-(Size/2 -1 + 1)), P(O, 0, 0), - )  

Face 4: closest vertical plane perpendicular to (Li, z). 

（ガ(0,O, 1), P(O, 0, ~ 痴）），＋）

To obtain a World Coordinate representation, we must rotate ii and P of every face by a and /3 and translate 

the result by OLi, Typical values for size and bMAX are 512, and 64 or 128 respectively. 

A.3.2 Construction of the actual Visual Fields 

The actual Visual Field must take into account the imprecision in the parameters f, b, a, L. 

Face 0: (closest) right vertical plane. 

( n(h, o, -(Size/2 -1 + 1)), P(一妬/2,0, 0), - ) 

• Rotation by a2 and /3. 

• Translation by 0む.Erosion by sphere S(ri, 0). 

Face 1: (closest) left vertical plane. 

（月(!2,0,-(-Size/2+1)), P(b2/2,0,0), +)  
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• Rotation by a1 and {3. 

• Translation by 0む.Erosion by sphere S(r;, 0). 

Face 2: plane below set passing through L; (yaw a2). 

(ii(O,h,-(-Size/2+ 1)), P(O,O,O), +)  

• Rotation by a2 and /3. 
→ 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Face 3: plane below set passing through L; (yaw at). 

(ii(0,/2,-(-Size/2+1)), ?(O,O,O), +)  

• Rotation by a1 and /3. 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Face 4: plane above set passing through L; (yaw a2). 

(ii(O, h, -(Size/2 -1 + 1)), P(O, 0, 0), -)  

• Rotation by a2 and /3. 
→ 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Face 5: plane above set passing through L; (yaw a1). 

(ii(O,h,-(Size/2-1+1)), P(0,0,0), -)  

• Rotation by a1 and /3. 
→ 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Face 6: closest vertical plane perpendicular to (L;, z) (yaw a2). 

（ガ(0,0, 1), P(O, 0, 4痴）），＋）

• Rotation by a2 and /3. 
→ 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Face 7: closest vertical plane perpendicular to (L;, z) (yaw at). 

(ii(O, 0, 1), P(O, 0, 4痴）），＋）

• Rotation by a1 and /3. 
→ 

• Translation by OL;. Erosion by sphere S(r;, 0). 

Although very simple and easy to read and understand, the above representation of polydra by half-spaces defined 

by (ii, P(x, y, z), + /-) is not optimal in terms of memory space: there are 7 degrees of freedom whereas : ~ 

the optimal number is 4. Thus we make the representation more compact by imposing OP = ii, i.e. by making ¥ 

OP perpendicular to the plane and making the modulus of ii be the distance from the plane to the origin. This 

representation is not complete however and there are cases when it cannot be used: whenever the origin O belongs 

to the plane, i.e, when the origin O lies at the boundary of the polyhedron. In such cases, a warning is issued by 

the program and the user is asked to move the origin to another (arbitrary) location. 
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APPENDIX B 

Programming in the AVS environment 

The basic computing unit in AVS is the module. Modules are dragged from their library to the network workspace 

using the mouse and their inputs/outputs are connected by pressing the appropriate button on the mouse. Fairly 

complicated networks can be built in this manner, including incrementations, loops, animations and so on. 

In addition to the standard library of modules provided with the AVS package, the user can create new modules 

written in C (or Fortran) and add them into his own library. An attractive feature of AVS is that modules can be 

executed on remote machines. For example, one can easily create modules that are run on the Connection Machine 

{and its front-end computer), modules that use special hardware installed on remote machines (e.g. CD cameras, 
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frame grabber, computer-controlled tables etc), and integrate all inputs/outputs into a single AVS network. Refer 

to the AVS User's guide and the A VS Developer's guide for more information on how to use AVS and how to write 

new modules. 
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1••··················••**······················································ . . 
＊心 exampleAVS module * 
• integer to string conversion• 會＊
＂＊＊＊＊．．．．．．．．．．．．．．．．．．．．．．．．．．．會＊＊＊＊● ..................................... ● ＊／ 

I* include file● *I 
tinclude <stdio.h> 
tinclude <avs/avs.h> 
tinclude <avs/field.h> 
tinclude <avs/flow.h> 
肴include<my !unctions and macros. h> - --
/* Used for入vsme●●age() */ 
static char !ile_version[J -"@(t)integer_to_string.c Quinio 92/02/24"; 

/******************************************************************************/ 
AVSinit modules() 
（ 

int integer_to_string(): 

AVSmodule !rom desc(integer to● tring l: - - --
1••···········································································•1 
static 
integer to string() 
I 

int param; 
int integer to string init (); 
int integer to string compute() ; 
int integer_to_string_destroy (); 

/* Set the module name*/ 
入vssetmodule name("integer to string", /* type of module*/ MODULE_MAPPER); 

/* Create the input port•/ 
入vscreate_input_port(/*pert name•/ "integer•, /• AVS type*/ "integer", 

/* specify is required or optional•/ REQUIRED); 

/* Add parameters as needed、andconnect them to widgets*/ 
／＊ 

param -AVSadd_parameter("parameter name", "string•, string, "", ""); 
AVSconnect_widget (param, "typein") ; 

*I 

/* create the output port*/ 
AVScreate output_port(/* output port name*/•string", /* AVS type*/•string"); 

/* Set the (optional) init procedure*/ 
AVSset_init_proc(integer_to_string_init) ; 

/• Set the compute procedure•/ 
AVSset compute proc (integer to string compute) ; - - -- -
/* Set the (optionaJ.) destroy procedure*/ 
AVSset_destroy_proc (integer_to_string_destroy) ; 

1••··········································································•·1 
static 
integer to string compute(integer, string) 

int integer; 
char••string; 

I• this is the•compute• function of the module; it is run everytime an 
input or parameter is changed• I 

char the string[ MISC BUFFER SIZE]; 

sprintf (the string, "ヽd", integer) : 
•string -the_string; 

I* Indicate success *I 
return(l); 

/******************************************************************************/ 
static 
integer to string init () 
（ 

/* this is the'init'function of the module: it is run once when the 
module is dragged onto the network workspace*/ 

/** ******•••••• • • •••••• • • •••• • *** ***• •• ••• •• •• • ***********••••• •• ***• • • •• ••••••I 
static 
integer to string destroy() 
｛ 

/* this is the'destroy• function of the module; it is run once when the 
module is "hammered" (destroyed) */ 

fig.10: an example AVS module written in C 
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