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Abstract 
This paper deals with spatio-temporal oriented filters applied to motion 

analysis in image sequences. As velocity corresponds to orientation in 
the three-dimensional space) oriented filters are of the highest importance. 
Adelson and Freeman[l} have shown that the orientation which gives the 
greatest output for these filters gives the slope of the contour, so the velocity 
in the 3D case. Our approach will consist of two steps; first the theory and 
the use of these oriented filters will be presented in the two-dimensional 
case applied to traditional edges detectors. We will compare the different 
approaches and show the importance of edge's orientation detection. As a 
second step, this formalism of oriented filters will be generalized to the 3D 
case and a discussion about their use in motion analysis will be presented. 

This paper was prepared and researched at ATR as part of a six month 
internship from INT) Paris, France. The research was performed under 
the direction of Ed Gamble with the support of K. Arimura and K. Ueno. 

1 Facilities Overview 

Before beginning the discussion of oriented filters we present a very brief overview of 

ATR and the Connection Ma~hine. 

1.1 The ATR Research Center 

ATR, Advanced Telecommunications Research Institute International, was estab-

lished on March 22, 1986 with support from various sections of industry, academia 
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and government. It was created just after the privatization of NTT and a strong 

collaboration between NTT and ATR exists. In the spring of 1989 the research labo-

ratory moved from Osaka to the new Kansai Science City in Kyoto Prefecture. ATR 

is made up of the following four corporations. 

ATR Auditory and Visual Perception Research Laboratories Psychologists, 

physiologists and engineers are working on the basic mechanisms of perception and 

cognition in the human senses of sight and hearing. This laboratory is composed of 

three departments which perform research in the following areas: 

Visual Perception Department: Basic mechanisms of visual perception, charac-

ter and pattern recognition, and scene analysis and understanding. 

Cognitive Processes Department: cognitive processes for visual information, 

parallel computing principles, and learning and motor theories of perception. 

Hearing and Speech Perception Department: Auditory models, speech per-

ception and recognition. 

ATR Interpreting Telephony Research Laboratories Researchers in this lab-

oratory are all working on an automatic interpreting telephone which would make it 

possible for speakers of different nationalities to converse using different languages. 

Research topics include: speech recognition, speech synthesis, research on the inter-

face between speech and language, and machine translation. 

ATR Communication Systems Research Laboratories Research is based on 

a human-oriented intelligent communication system: communications with realistic 

sensations, nonverbal interfaces, automatic generation of communication software and 

security. 
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ATR Optical and Radio Communications Research Laboratories The mem-

bers of this laboratory performs research on optical and electronic devices related to 

optical intersatellite communications and "Key Technologies" for future mobile com-

munications. 
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Japan's economic growth has mainly been based on the development of applied 

technology. It is one of their goals to promote basic technological research and the 

exchange of researchers and information between research institutions in Japan and 

abroad. 

Personally, I worked for 6 months as a researcher in the ATR Auditory and Visual 

Perception Research Laboratories, in the Visual Perception Department. My main 

interest is computer vision and my research subject was on the "Applicability of 

Oriented Filters to Edge Detection and Motion Analysis" as reported in this paper. 

In order to study real-time processing and to allow for efficient computation, we used 

a Connection Machine. 

1.2 The Connection Machine 

The Connection Machine is a data parallel computing system. The main idea is to get 

rid of Von Neumann architecture (two part design in a computer: the memory and the 

processing) and to build a computer in which memory and processing are combined. 

The Connection Machine is made up of a large number of tiny processor/memory 

cells connected by a programmable communication network. Local computations are 

performed in the processing cell associated with a cell of storage where the data are 

stored. All the cells are connected in a programmable pattern. Because thousands 

or millions of processing cells work simultaneously, the computation proceeds much 

more rapidly than on a conventional machine. 

Nowadays different versions of Connection Machines exist: from the CM-1 to the 

newest CM-5. These machines differ by the number and type of processors, by the 

interconnectivity of the processors, and thereby by the processing speed. The one 

we used is the CM-2 which has a maximum of 65536 processors/memory cells. It 

has a peak instruction rate of about 10 Gigaflops. In the configuration at ATR, the 

Connection Machine had 16k processors each with 256k bits of memory per processor. 

2 Introduction 

In computer vision the study of visual motion is of the highest importance. Mo-

tion provides meaningful information about the perception of space and the external 
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environment. Changes in an image due to motion of objects can be related to the 

structure of the objects in space. For example we can determine the positions of 

points in the space by their observations in a sequence of images. 

The applications of dynamic scene analysis cover a broad range of fields, for ex-

ample: 

• in medicine the automatic analysis of image sequences of the human heart is 

used to establish diagnosis after heart surgery, 

• in meteorology the study of satellite images provides information about the 

movements of atmospheric disturbances, 

• in a military field, analysis of image sequences are used to recognize and track 

targets, 

• in robotics three dimensional vision and in particular motion in 3D are of sig-

nificant importance; in this area it is necessary to control the visual space in 

order to locate, track and avoid mobile objects, 

• survaillence, guidance, traffic monitoring, autonomous navigation are others 

applications for which 3D motion information is of the greatest importance. 

Many researchers have been interested in the psychophysical study of visual mo-

tion. Some of them outlined the presence of motion-sensitive cells in the primary 

visual cortex which are directionally selective and tuned to spatiotemporal frequen-

cies (Andersen and Siegel[2], Adelson and Bergen[3], Poggio and Reichardt[4]). In 

order to detect this spatiotemporal orientation, Adelson and Bergen[3] have proposed 

spatiotemporal oriented filters named motion energy filters. The use of this kind 

of filters is motivated by the fact that image motion is characterized by orientation 

in space time domain. 

As the velocity of an object corresponds to orientation in space time domain, 

3D oriented filters, two-dimensions for space plus one for time, are efficient in velocity 

determination and in motion analysis. 

Our main task is to study the applicability of 3D oriented filters to motion 

analysis. In order to reach our goal, we will as a first step towards a more com-

prehensive analysis present the theory, design and use of these oriented filters in 
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two-dimensions; we will apply these 2D oriented filters to edge detection and 

we will compare them to other known edge detectors. After this experience with 2D 

oriented filters, we will study them in the 3D case and we consider their applicability 

to analysis of motion in temporal image sequences. 

It is very interesting to apply the oriented filters to the two-dimensional case 

because edge detection is one important task in image segmentation. In this field 

the main task is to separate the components of an image in order to analyze and 

recognize them. The components correspond to the physical objects in the scene. 

The gray-level values have two basic properties: discontinuity and similarity. The 

discontinuities occur at the boundaries of the objects where the intensity is assumed 

to change abruptly. The objects are supposed to have homogeneous surfaces that 

means regions of constant or smoothly varying intensity. But these assumptions are 

not always valid so many errors occur in boundary detection. Problems arise when 

physical boundaries have similar surfaces, when surface texture exists, and naturally 

when noise is present. Most often images contain a variety of edges; these edges have 

different length and contrast. But what is more important is that they occur at any 

orientation and consequently an efficient edge-detection procedure has to be able to 

distinguish intensity changes at different angles. This motivates the use of oriented 

filters for edge detection. 

In this paper we present the applicability of oriented filters to the two dimensional 

case as edge detectors and to the three dimensional case in motion analysis. In the 

first part we review the traditional edge detectors (Canny, Laplacian) then we present 

the theory, the design and the use of oriented filters applied to the edge detectors. In 

the last part we dis~uss the applicability of these steerable filters to motion detection 

(via the concept of 3D oriented filters) and the limitations we encountered. 

3 Traditional Edges Detectors 

3.1 Introduction 

One common assumption in image analysis is that abrupt intensity changes occur 

at objects boundaries. It is for this reason that edge detection is of fundamental 
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importance in image analysis. For our analysis we idealize an edge as a step function 

which has a magnitude and a direction. (Other types of edges exist e.g.'roof edges', 

we consider only step edges in this discussion). 

We will use the following properties of a step function in order to detect the edges: 

an abrupt intensity change gives rise to a peak when we consider its first derivative 

and to a zero crossing when we consider its second derivative. These properties are 

illustrated Figure 1. 

A suitable filter is the two dimensional is the Gaussian distribution: 

G(x,y) =~ 戸1 -(丑＋炉）/2u2 ． (1) 

There are 3 reasons for using the Gaussian: 

• it smoothes the image so it decreases the influence of noise (due to the sampling 

system, transmission channel, texture variations, etc). The space constant of the 

Gaussian (J'is used to modify the smoothing (the more smoothed we want the 

image to be, the larger should be the value ofび）. The Gaussian distribution has 

the property to be smooth and localized in both spatial and frequency domains. 

• the first and second derivative of the Gaussian are easy to compute analytically 

which allow us to detect peaks in the first derivative and zero crossings in the 

second derivative. 

• the Gaussian is separable and due to the Central Limit Theorem it can be 

composed of many'smaller'functions; the Gaussian is efficient to compute. 

The edge detection procedure requires a two stage process: First, we have to 

smooth the input image (with a Gaussian, for the reasons we exposed previously) in 

order to eliminate the displacement errors but while also preserving the discontinuities 

and second, we have to detect the edges. The second stage is simply Canny's non-

maximum suppression and hysteresis[5] applied to maxima in the gradient magnitude 

or zero crossings detection applied to the Laplacian. 

The mathematical property of the convolution allows us to use the different paths 

for computation of the Gaussian derivatives. These paths are illustrated below with 

the following notion: convolving the image, I, with a Gaussian, G, is G * I, taking 
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Figure 1: From the top of the figure to the bottom: an example of an object repre-
sented as a light bar, a smoothed cross section of it along the x axis, its first derivative 

(edges occur at the locations of the maxima) and its second derivative (edges occur 
at the locations of zero-crossings). 
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the first derivative is▽ (G * I), and taking the second derivative is▽ 2(G * I). This 

notion: 

I竺 (I*G)▽工ぐ▽(I* G) or▽ 2 (I* G) 

I▽立2 (▽ I) or (▽勺）~(▽I* G) or (▽ z1 * G) (2) ヽ

I 
(*▽ G)or(*▽知）

一→ U*▽ G) or (I*▽匂）

The choice of a computational path is based upon computation efficiency and con-

ceptual simplicity. 

3.2 With the First Derivative 

We now consider the use of the first derivative for the computation of intensity edges 

in images. First we describe techniques for smoothing the image; that is followed by 

a description for computation of the gradient and extraction of the edges. 

3.2.1 Smoothing the Input Image 

They are many different ways to smooth an image with a Gaussian kernel: 

• using the binomial convolution; iterated application of the mask: [1 2 1] along 

the x axis on the input image to simulate the smoothing with the Gaussian 

along this axis. Smoothing with a 2D Gaussian is just iteratively applying the 

mask along the two axes x and y. 

• using the Fourier Transform; according to the property of the convolution, 

smoothing an image with a Gaussian can be computed by taking the Fourier 

Transform of the input image and of the Gaussian, multiplying both and taking 

the inverse Fourier Transform of the result, (I* G) {=⇒ Fー1(:F(I) .:F(G)) where 

:F denotes the Fourier transform and ;:-1 is the inverse Fourier transform. 盲

The binomial convolution is an approximation method that works well if the Gaussian 

び islarge; the Fourier transform is of course exact. 
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3.2.2 Gradient of the smoothed image 

The gradient of the smoothed image S(x,y) = (I* G)(x,y) is defined as a two 

dimensional vector: 

▽ [S(x,y)] = [: l・ 
This vector points in the direction of maximum rate of change in S(x,y), it is a vector 

perpendicular to the contour. The gradient can be computed in different ways: 

1. using Sobel operators: ▽ y is computed by applying the following 3x3 mask 

averaging 

dif J erentiation 
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0
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A similar mask for▽ x can be easily found by rotating the above mask by 90 

degrees. These masks compute both a differentiation and a local averaging. 

2. using simple derivative operators: 

―

―
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1
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3.2.3 Detection of the Maxima of the Gradient 

As we have shown previously in Figure 1, the edges occur at the locations of peaks 

in the gradient of the smoothed image. In order to find the edges, we have 

to detect maxima in the magnitude of the gradient of the smoothed im-

age. To detect maxima we use the direction of the gradient which is given by: 

arctan (▽ y/▽ x). A point is a local maximum if it is a maximum in the di-

rection of the gradient. We compare its value to those of its two neighbors located 

in the direction of the gradient. 

Edge detection is improved if weak edges are eliminated. Simple thresholding 

of some measure of edge strength is insufficient because if the threshold is too high 
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few edges exist and if the threshold is too low too many edges exist. Canny has 

proposed hysteresis thresholding to improve the extraction of edges. The main 

idea of hysteresis thresholding is to use two thresholds. At a certain location in the 

image, if the value of the magnitude of the gradient is above the highest threshold, we 

are sure that it is a point of the edge; if it is below the lowest threshold we are sure 

that it is not a point of the edge. If the value of the magnitude of the gradient is 

between the two thresholds, we look at the neighborhood of the considered point. If 

one of its neighbors is still a point of the edge, the point itself becomes part of the 

edge and we continue linking all the edges with this procedure. This allows us to get 

filled, linked edges and to eliminate the false edges. See Figure 2 for a illustration 

and further description. 

The thresholds are computed using a histogram of the values of the magnitude 

of the gradient. Canny has proposed that the'true'edges in a noisy image (white 

Gaussian noise) represent 20% of the points and that 20 other percent are possible 

edges pixels. The highest threshold is given by the value of the magnitude of the 

gradient when 80% of the points are'eliminated'and the lowest threshold when 60% 

of the points are'eliminated'. These assumptions are not valid if the input image is 

not noisy or if it is highly textured; that is the noise is not spatially white, Gaussian 

n01se. 

3.3 With the Second Derivative 

Edge detection with the second derivative will be considered next. Smoothing of the 

image is identical to that described in the previous section. We begin here with a 

description of the computation of the second derivative. 

3.3.1 Laplacian of the smoothed image 

The Laplacian of the point S(x,y) of the smoothed image is given by the following 

expression: ▽ 2[S(x,y)]= a2s a2s 
戸＋亨.The Laplacian can be easily computed by using 

one of th~following 3x3 masks: 
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a) b) 

c) d) 

e) 

Figure 2: a) Input image, b) Smoothed image (with a Gaussian of O'= 1.5), c) 
Gradient of the smoothed image, d) First stage of edge detection, e) Edge detection 

after Canny's thresholding hysteresis 11 



I~ —: ~I·I : -2~: I 
These masks are derived based upon the discrete approximation to a Laplacian on a 

rectangular lattice of points. 

3.3.2 Zero Crossings Detection 

In the case of the second derivative the locations of the edges occur at the positions 

of the zero crossings (that means where the value of the function passes from 

positive to negative or from negative to positive depending on the sign of the slope 

(Figure 1). In order to improve the zero crossings detection we compute the gradient 

of the Laplacian (only the zero crossings which have a high value for their gradient 

correspond to edges). A point is considered part of an edge if one of its neighbors has 

an opposite sign and if the value of its gradient is above a certain threshold. This 

procedure allows the elimination of false edges. 

The filters we applied in this section, first and second derivatives of Gaussians, 

are both fixed orientation filters. However, edges in an image have an orientation 

which has to be determined in order to enhance the detection and to give some more 

information for motion analysis. The notion of oriented filters is fundamental. 

4 Theory of Oriented Filters 

Our main goal is to accurately compute edges and their orientation. This could be 

accomplished by applying a filter optimized for each and every orientation but this 

approach would be computationally prohibitive. Adelson and Freeman[6] have shown 

that a filter of any orientation can be synthesized as a linear combination 

of basis filters which are rotated versions of itself. We now will review the 

mains ideas of their work. 

A function of orientation 0 can be written as a linear combination of rotated 

versions of its elf: J0 (x, y) =区似朽 (0)f8i(x,y) where kj (0) are the interpolation 

I 

＇ 
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a) b) 

c) d) 

Figure 3: a) Input image, b) Smoothed image (with a Gaussian ofび=1.5), c) 

Laplacian of the smoothed image, d) Zero-crossing detection 

functions and f6i (x,y) are basis filters. Convolving the image with this oriented 

filter f6 (x, y) is just convolving it with the basis filters, multiplying the results by the 

correct interpolation functions (with a value dependent on the angle 0) and adding 

the results. 

Two important questions must be resolved: how many basis filters are necessary 

to steer the function in any orientation and what is the expression of the interpolation 

functions? Freeman and Adelson have presented two theorems which will allow us to 

answer these questions. 
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• Theorem 1. If the function f can be written as a product of a windowing 

function Wand a Nth order polynomial PN, (2N + 1) basis filters are necessary 

to synthesize f rotated to any angle. f(x,y) = W(x,y)恥 (x,y) if恥 contains

only odd or even terms in x and y, (N + 1) basis filters can synthesize f rotated 

to any angle: j8 (x, y) 

• Theorem 2. If f is any function which can be expanded in a Fourier se-

ries in polar coordinates: J (r, <p) = E1:=-N an (r)戸 wherer =嘉戸下

and tan <p = y / x, then the interpolations functions kj (0) from J0 (x, y) 

E似朽(0)炉 (x,y) are solutions of the following system: 

ー 1 1 

e i0 e i01 e 沿2

e iN0 iN01 iN02 e e 

ー

ぎM

e iN0M 

粕 (0)

始 (0)

KM(0) 

This gives us a general formalism; we will apply it to a few examples for the first and 

second derivatives. 

5 Application of oriented filters to edge detection 

As we did in the first part of this report, we will consider the first and second deriva-

tives of the Gaussian distribution and we will now present their expression tuned 

to any direction. As it is well known, derivatives of the Gaussian are steerable in 

orientation. 

5.1 Using the first derivative of a Gaussian distribution 

Our main goal in this section is to find the orientation of the contour; using the 

first derivative of the Gaussian, we have to find the orientation知 forwhich the 

filter gives the greatest output. The different steps of the procedure are as followed: 

Step 1. convolution of the image with the first derivative of the Gaussian tuned 

to any direction; according to Adelson and Freeman's theorems that means 
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convolution with only the basis filters and multiplication by the interpolation 

functions. 

Step 2. determination of the orientation知 whichgives the maximum output for the 

filter, j8M: j8M (x,y) = I: 鉛朽（知）炉 (x,_y)for J() being the first derivative 

of the Gaussian. 

知 isgiven by the derivative of the filter output along 0: 0 /五髯凶 =0

Step 3. Computation of the filter response for the maximum orientation. 

Step 4. Detection of the local maxima in the perpendicular direction of the maxi-

mum orientation. Followed by thresholding with hysteresis and edge linking. 

We now consider these steps in detail. 

Step 1. The preliminary step consists in finding the number of basis filters and 

the expression of the interpolation functions which synthesize the first derivative of a 

Gaussian in any direction. The well known expression of a 2D Gaussian distribution 

IS: 

1 -(丑＋炉）/20-2 G(x,y) =~e (3) 

Considering its first derivative along the x axis, we get: 

aa (x,y) ＝二ー（丑＋炉）/2び2

釦 ％が
e = Pi(x,y)W(x,y). (4) 

It is written as a 1st order polynomial Pi(x,y) = -x/2后び timesa windowing func-

tion: W_(x, y) = e―（丑＋炉）/20-2. Theorem 1 can be applied and by consequence two 

basis filters can synthesize the first derivative of the Gaussian distribution in any 

direction for this two dimensional case. 

Gf゚(x,y)=}く1(0)G名1(X'y) + I{ 2 (0) Gf 2 (X'y) . (5) 

An obvious choice for 01 and 02 is respectively 0°and 90°so that: 

Gf゚(x,y)= K1(0)G~ ゚ (x,y)+ K2(0)G『°゚(x,y). (6) 
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The two basis function can be computed in a traditional way, for example with Sobel 

operators and are defined by G『(x,y)=当¥11and by G『°゚(x,y)=翌戸
The expressions of the interpolation functions are given by the second theorem. 

In polar coordinates we get: 

噂゚ (r,cp) = 
-r cos cp -r2 /2a2 -re―r2 /2a2 i1> + e―袖

21rび4 e = 21rび4 (2)  (7) 

This is the expression of the :first derivative of a Gaussian expanded in its Fourier 

series: 
N 

f(r, </>) = I: an(r)inef> 
n=-N 

(8) 

with N = 1. 

The 2 interpolation functions are solutions of the following system : 

e"゚＝（ざ,,i'') (口） (9) 

with化=0°and恥=90°. Resolving the system gives us: I<1 = cos 0, I<2 = sin 0 for 

0 increasing clockwise and, from Equation 6, 

噂゚ =cos 0Gf + sin 0Gi0゚ (10) 

Thus, the first derivative of the Gaussian is now steerable in any direction. Smoothing 

the input image with this oriented filter is simply given by 

(I* Gf゚） = cos0(G『*I)+sin0(Gi0゚*I) (11) 

Due to the property of the convolution, convolving the input image with the filter 

tuned to any direction is the same as convolving it with the basis filters and multi-

plying the results by the correct weights and adding. 

-＇, 

Step 2. The orientation which gives the greatest filter's output is given by the first 

derivative along 0 of the expression of (Gf * I). The solution of this derivative set to 
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a) b) 

Figure 4: Basis filters for the first derivative of the Gaussian: a) G『,b) G『°゚

zero is the value of the maximum orientation 0M: 

d(Gr * I) d}くI d}も
釧 =(Gf * I)-—+ (Gia゚*I)-=0 

d0 d0 d0 
(12) 

where only}く1and}く2depend on 0 as given following Equation 9. For these K1  and 

Iく2the solution to Equation 12 is 

知=tan―1 信 ~゚o:J) . (13) 

Step 3. In order to detect the edges, it is necessary to compute the filter's response 

for the maximum orientation at each point of the image. This is simply 

G仔=}立（如）(G1゚*I)+}も（如）(Gi0゚*I) (14) 

Step 4. The final step of edge detection in this procedure is the same as with 

Canny's algorithm. The local maxima are detected after comparison with their neigh-

bours situated in the direction perpendicular to the maximum orientation. A hys-

teresis thresholding is used to improve the detection of maxima and by consequence 

to improve the edge detection. As previously the final step consists of linking the 

edges. 
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In what follows we continue the discussion of oriented filters as applied to edge 

detection and present the use of these oriented filters with the second derivative of 

the Gaussian distribution. 

5.2 Using the Second Derivative of a Gaussian Distribution 

We will now use the second derivative of the Gaussian tuned to any angle (as 

we did previously with the first derivative) to compute the orientation of the contour 

and we will compare the two methods. The procedure consists of two steps: first 

convolving the input image with the second derivative of the Gaussian tuned to any 

direction and second; find the orientation which gives the "best" zero crossing. 

Step 1. Convolving the input image with the second derivative of the Gaussian 

tuned to any angle consists in convolving it with the basis filters which are rotated 

versions of this function and multiplying the results by the proper weights. Applying 

Adelson and Freeman's theorems gives the basis filters and the interpolation functions. 

The expression for the second derivative of a Gaussian along the x axis is 

噂゚ (x,y)=
舒G(x,y) 1 x2 -(丑＋炉）/2び2

8丑
=―(--l)e 

21ra4 a2 
. (15) 

This is the expression of a windowing function W(x, y) = e-(正ザ）/2u2 times a second 

order polynomial P2(x, y) =~ 追；— 1). By consequence, Adelson and Freeman's 

theorem 1 gives the number of basis filters needed to synthesized this function to any 

direction as three. Consequently, the second derivative of the Gaussian distribution 

can be synthesized to any direction using 3 basis filters: 

噂゚ (x,y)=}も(0)G~1+}も(0)Q~2 十応(0)G~3. (16) 

An obvious choice for 01, 02 and 03 is respectively 0°, 45°, 90°. These basis functions 

can be easily computed; they correspond respectively to the second derivative of the 

Gaussian along x axis, 45°axis and y axis. For example they can be computed with 
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a) b) 

c) d) 

e) f) 

Figure 5: a) Input image, b) smoothed image (with a Gaussian ofび=1.5), c) 
orientation which gives the greatest output, d) value of the first derivative of the 
Gaussian for these maximums orientations, e) first stage of edge detection, f) edge 
detection after hysteresis thresholding. 19 



Sobel operators (applied twice times to get the second derivative): 
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With these basis angles the expression to synthesis the second derivative of the Gaus-

sian along any orientation is 

噂゚ (x,y)=柏 (0)G『+}も(0)G庁＋応(0)G閉゚．

According to Adelson and Freeman's second theorem, the interpolation functions 

are solutions of the following system: 
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Considering the real and imaginary parts this system becomes: 

｛二。~~+!:~:::く。:+}らcos2島＋給cos20, 

sin 20 =}く1sin 201 +}く2sin 2島十 Iく3sin 203 

(18) 

(19) 

For the previous choices for 01, 02 and 03 as 0°, 45°and 90°the system becomes: 
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and resolution of this simple system produces 
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so that given these weighting functions and Equation 17 the convolution of the input 

image with the tuned second derivative is 

(G名゚*I)= lく1(0)(Gf*I)+ Jく2(0)(Gi50*I)+ K3(0)(G~00 * I). (22) 

This equation shows that it is just necessary to convolve the input image with the 

basis filters and to multiply the results by the interpolation functions to synthesize 

the response at any orientation. 

Step 2. When smoothing with a second derivative, the edges occur at the locations 

of the zero crossings. The orientation of the contour is given by the "best" response 

of the filter tuned to a certain orientation. But for a zero-crossing the response is 

not an extrema. Consequently the important problem is how to find the "best zero 

crossing"? Should the gradient about the zero-crossing be used as an estimate of the 

zero-crossings strength and for subsequent thresholding? 

To address the above questions, Adelson and Freeman have proposed the use of 

the Hilbert Transform. They have defined the notion of "energy filters" as being 

the summation of the squared second derivative of the Gaussian tuned to any angle 

and the squared Hilbert transform of this second derivative tuned to any angle: 

恥(0)= [G『+[H肝 (23) 

We will now review some definitions and properties of the Hilbert Transform of a 

function. The Hilbert Transform is a filter with transfer function -i sgn(f). where 

sgn(f) is the function 

sgn(f) = { +I if J 2: 0 
-1 

. 
otherwise 

21 



a) b) 

c) d) 

e) f) 

Figure 6: Second derivative of a Gaussian tuned to any direction: a) 0°, b) 30°, c) 

45°, d) 60°, e) 90°, f) 135°. 

22 



As the Inverse Fourier Transform of -i sgn(f) is vp(l/1rx), taking the Hilbert Trans-

form of a function g is convolving it with vp(l/1rx) in the spatial domain: 

HT(g(x)) = g(x) = g(x) * vp巳）= I_「OO且立占．
7rX 7r -oo X - T 

(24) 

The notation vp corresponds to the principal value according to Cauchy, that is 

1 
< vp(-) , </> > = lim j e </>(t) ―dt+ lim 

+co </>(t) 

t e→ o- -co t e→ o+l tdt, 
(25) 

and the integral of equation 24 must be considered as a Cauchy's integral: 

「OO立む=lim je:+x .!!.1!. 土占+lim j+oo互立占. (26) 
—oo X-T  e: → o- —oo X-T  e: → o+ e:+x X - T 

The Hilbert transform has an interesting property: a filter and its Hilbert trans-

form constitute a quadrature pair of filters. The two filters have the same frequency 

response and they are in quadrature. For example if we consider the second derivative 

of the Gaussian along the x axis and its Hilbert transform, we show in Figure 7 that 

their respective Fourier transforms have the same magnitude. 

Adelson and Freeman have used this quadrature pair of filters to detect edges; after 

having computed the dominant orientation 0d which gives the maximum response 

for the quadrature pair (Gぶ閏） (where Hg is the Hilbert transform of the second 

derivative of the Gaussian G~tuned to any angle 0), they have computed the value 

of the energy for this dominant orientation: 

恥恥） = [G~ 平+[Hg叩 (27) 

They have shown that a point is a point of the edge if the energy E2(0d) is a local 

maximum in the direction perpendicular to the local orientation 0d and they have 

used Canny's algorithm to threshold the maxima and to enhance the edges. 

Also, they have shown that it is possible to make a good approximation of the 

Hilbert transform of the second derivative of the Gaussian by using a third order 

polynomial times a Gaussian. They applied their theorems to this approximation of 

the Hilbert transform and found that four basis filters are necessary to synthesize the 
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a) 

c) 

b) 

d) 

Figure 7: The second derivative of a Gaussian and its Hilbert transform have the 
same energy spectrum. a) Second derivative of a Gaussian along the x axis, b) its 
Hilbert transform, c) the magnitude of the Fourier transform of the seconde derivative 
of the Gaussian (a), and d) the magnitude of the Fourier transform of the Hilbert 
transform. 

Hilbert transform of the second derivative of the Gaussian along any angle.'l;'hese 

basis filters are rotated versions of the Hilbert transform. The interpolation functions 

can be computed with Adelson and Freeman's second theorem. 

In using the quadrature pair of filters, we get rid of our previous problem of "best 

zero crossings" detection; now as Adelson and Freeman have shown, the edges occur 

at the location of the local maxima of the energy for the maximum orientation; so it 

瓜
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is just an usual problem of maxima detection. 

As we have shown previously, the second derivative of the Gaussian can be syn-

thesize as a linear combination of three basis filters given in Equation 17. According 

to Adelson and Freeman, the Hilbert transform can be synthesize to any angle as a 

linear combination of four basis filters: 

H0゚ ＝み(0)H0゚ ＋み(0)H4s゚ ＋み(0)が°゚ +J4(0)H13so (28) 

These basis filters, the Hilbert transform of the second derivative of the Gaussian 

along 0°, 45°, 90°and 135°can be computed in finding mathematically the expres-

sion of the Hilbert Transform of the second derivative of the Gaussian in polar 

coordinates (r, ¢), so in all the space, and to compute it for certain values of¢ 

(¢= 0°,45°, 90°, 135°). 

Inspection of Figure 7 shows that the Hilbert transform is very similar to the 

:fi rst derivative of a Gaussian. In the vicinity of an edge the dominant term in the 

energy measure of Equation 27 will be very similar to the first derivative; the second 

derivative is small, in fact it is a zero-crossing. Unlike Freeman and Adelson, if the 

phase information is not used, then the first derivative provides a suitable technique 

for oriented edge detection; fewer basis filters are required and computation of the 

Hilbert transform is not required. In this early analysis, the use of Hilbert transforms 

has not be further employed. 

6 Oriented filters in motion analysis 

Motion information is of the greatest importance in image segmentation, reconstruc-

tion of object shape, scene analysis, moving objects tracking, etc. The determination 

of this information does not depend on the knowledge of the shape of the object but 

only on the changes of intensity over time in image sequences. The dynamic scene 

segmentation consists in partitioning the image into moving regions and stationary 

ones. 

Some physiological studies have shown the existence of directionally selective cells 

in the primary visual cortex. These cells respond to stimuli moving in one particular 
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Figure 8: A moving bar in 2 dimensions corresponds to a slanted slab in 3 dimensions 

and its velocity is the slope of the edge of the object 

direction regardless of the sign of the contrast (if it is a directionally asymmetric cell, 

it's response will depend on the sign of the contrast). Shapley, Reid and Soodak[7] 

have shown that these cells can be considered as linear spatiotemporal transducers 

but they have also shown the existence of non-linear spatial interactions. 

Adelson and Bergen[3] as well as Watson and Ahumada[S] have been working 

on spatiotemporal linear systems. The main idea of their work is that motion is 

characterized by orientation in space time domain: x and y for the two spatial 

dimensions plus t for the temporal dimension. If we consider a bar moving to the 

right along the x axis as shown in Figure 8, in the space time domain it is similar to 

a slanted slab; the slope of the edges in the (x,t) domain corresponds to the velocity 

of the bar along the x axis and the slope of the edges in the (y,t) domain corresponds 

to the velocity of the bar along y axis (which is zero in our example). 

So finding the velocity of the moving object is finding the orientation of the edges in 

the spatiotemporal domain. We just have to design a spatiotemporal impulse response 

as we did in the spatial domain. If the spatiotemporal response can be expressed as 

a temporal impulse response times a spatial impulse response, the spatiotemporal 

response is separable; it is the case in most of the cells in the cortical area. 

Adelson and Bergen[3] used oriented Gabor filters because these filters can 
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detect rightward motion to leftward motion (but any other kind of oriented function 

can be used so in particular the oriented filters described previously; but as we review 

their research, we consider Gabor filters. All the following considerations can be 

applied to the oriented filters described in the previous section). 

Adelson and Bergen[3] defined the notion of spatiotemporal energy; this energy 

is the sum of the squared outputs of two Gabor filters in quadrature, one sine phase 

filter and one cosine filter. The expression of a one-dimensional sine phase Gabor 

filter is given in the following formula; it is just a sine wave times a Gaussian window 

(same with the cosine wave instead of the sine wave in the case of the even Gabor 

filter): 

g(t) = 1 --t2/2u2, 

マ e (29) 

In 3 dimension this equation becomes: 

1 
2 2 2 

g(x, y, t) = 1,..,_、:>./2_ - -e 
-(~+均＋＃）

t sin (21rwx0X + 21rwy0Y + 27rWt0i). (30) 

The spatiotemporal oriented filter responds to one direction of motion and its 

response oscillates with the contrast. The spatiotemporal oriented energy responds to 

one direction of motion but its response does not oscillate with the contrast and the 

opponent energy which is a combination of leftward and rightward oriented filters 

response gives an output for both direction regardless of the contrast. 

These energy models can not resolve the aperture problem. In such a case 

(see Figure 9), when we visualize only a part of a moving object without having any 

information about the corners, the extremities of it, the possible values for its velocity 

constitute a plane; so an infinite number of different orientations in the space time 

domain. 

A very basic approach of the first level of motion detection can consist in apply-

ing an "edge detector procedure" in the space-time domain. In an image sequence 

containing a moving object, along t axis, the intensity of some points in the image 

change (as it does for a boundary in space). As it is possible to detect edges in an 

spatial image, it is possible to detect moving part and stationary parts in an sequence 

of images. The procedure consists in convolving the sequence along the time axis with 

a low pass causal filter, take the derivative and find the maxima exactly as we did in 
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Figure 9: An illustration of the aperture problem. In a small region only the per-
pendicular component of velocity can be determined for the motion of a straight 

edge. 

the spatial domain. A second step will consist in using the orientation determination 

and in trying to resolve the ill posed aperture problem. 
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