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Abstract 

We have investigated the relation between static stability of a limb and the 

equilibrium-point hypothesis. Mathematically, the equilibrium-point control 

is equivalent to establishing a mapping between the command signals delivered 

to the muscles and the equilibrium configurations of a limb. A condition for 

this mapping to be possible is that the limb is stable across the workspace. 

We analyzed how this condition may be translated into precise biomechanical 

constraints for single-and multi-joint limbs. The satisfaction of these con-

straint is necessary for the equilibrium-point hypothesis to be a viable control 

paradigm. 

冒
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Stability Constraints for the Equilibrium-Point Hypothesis 

In order to generate purposeful motor behaviors, the brain must be able 

to perform and represent a variety of tasks ranging from the maintenance of 

posture to the generation of planned trajectories and the control of interactions 

with the environment. A number of investigators (Feldman, 1966; Kelso & 

Holt, 1980; Bizzi, Accornero, Chapple & Hogan, 1984; Hogan, 1984; Mussa-

lvaldi, Hogan & Bizzi, 1985) have suggested that the ability to maintain stable 

postures may be a building block for more complex behaviors. This idea is 

usually referred to as the equilibrium-point hypothesis. 

The equilibrium-point hypothesis is based upon the observation that mus-

cles behave like tunable springs (Rack and Westbury, 1969). At any fixed level 

of neuromuscular activation, the isometric tension developed by a muscle is 

a function of the muscle's length. Furthermore, the muscles acting upon a 

joint are organized in agonist/antagonist configurations. Thus, at any level of 

neuromuscular activation a limb's equilibrium configuration is achieved when 

the opposing torques generated by agonist and antagonist muscles cancel each 

other. If the limb is displaced by some external perturbation, the elastic mus-

de properties generate a net restoring torque which tends to bring the limb 

back to the original posture. 

According to the equilibrium-point hypothesis, the central nervous systems 

generates movements by a gradual change in the equilibrium posture: at all 

times during the execution of a movement the neuromuscular activity defines a 

stable posture which acts as a point of attraction in the configuration space of 

a limb (Hogan, 1984). We investigated this crucial relation between postural 

stability and the equilibriu血pointhypothesis. Our findings indicate that the 
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spring-like behavior of the muscles is not sufficient to ensure the stability of a 

limb at equilibrium. Limb stability is critically influenced by the geometrical 

arrangement of the muscles and, in particular, by their position-dependent 

moment arms. In this respect, the equilibrium-point hypothesis is a falsifiable 

theory: it is a viable control hypothesis if and only if some specific geomet-

rical constraints are satisfied by the biological design of the musculoskeletal 

system. We investigated these geometrical constraints both analytically and 

by designing mathematical models of single-joint and multi-joint limbs. 

B-

Static Stability and Stiffness Eigenvalues 

A limb is at an equilibrium posture when it is at rest, no external force acts 

on it and the net torque produced by the muscles is zero. An additional char-

acterization of posture is offered by the concept of static stability. In general, a 

limb is statically stable when the pattern of torques induced by an externally-

imposed displacement tends to restore the equilibrium posture. This concept 

is more rigorously defined by a condition on the stiffness tensor. Let the limb 

kinematics be described by a set of N generalized coordinates, qぃq2,・ ・ ・,qN・

With th't t' 1s no a 10n, a configurat10n of the limb is an array, q = [ T 
Qi, q2, ・ ・ ・, q刈．

Accordingly, a generalized force is the vector Q = [Q1, Q2, ... , QN『.In a first 

approximation, biological limbs can be described as open chains of segments 

connected by rotational joints. In this case, the generalized coordinates are 

joint angles and the generalized forces are joint torques. The stiffness tensor in 

generalized coordinates, R, transforms an infinitesimal change of configuration 

into a change of generalized torque: 

dQ = Rdq (1) 
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This tensor is numerically represented by a N x N square matrix, R: 

[Rい詈・
A necessary and sufficient condition for local stability about an equilibrium 

configuration is that all the eigenvalues of R have a negative real part (Ogata, 

1970). We will restrict our analysis to statically conservative systems. For this 

type of systems, the stiffness tensor is symmetric and has real eigenvalues.1 

Therefore, the requirement of stability is reduced to the condition that all the 

eigenvalues of R are negative. 

The restriction to statically conservative systems is consistent with the ob-

servation of symmetry in the stiffness tensor measured during the maintenance 

of multi-joint arm posture by human subjects (Mussa-Ivaldi et al., 1985). The 

symmetry of the stiffness tensor is relevant to the stability of an arm in contact 

with a mechanically passive environment (Colgate & Hogan, 1989). Loosely 

speaking, a system is passive when it cannot deliver more energy than what 

it has received. Recent theoretical investigations have demonstrated that a 

necessary and sufficient condition for coupled stability with a passive environ-

ment is that the arm itself behaves as a passive system at any fixed value of 

the motor commands (Colgate, 1988). An arm with a non-symmetric stiffness 

would not act as a passive system: it would either absorb or generate mechan-

ical work in a quasi-static cyclical motion. 2 

Stiffness Transformations 

Muscles are the controllable source of effort and stiffness for biological 

limbs. In a static (isometric) condition, muscles behave like tunable springs 

(Rack & Westbury, 1969). At any level of neuromuscular activation the iso-
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metric force developed by a muscle is a function of the muscle's length. For 

a wide range of physiological lengths, the tension developed by a muscle dur-

ing a stretch counteracts muscle's elongation ("muscles pull") and increases 

in amplitude with increasing stretch amplitudes. This behavior is tunable be-

cause a change in neural activation affects the length-tension curve smoothly, 

without drastically changing its shape. Mathematically, these observations are 

summarized by stating that the isometric tension, f developed by a muscle is 

a continuous differentiable function of the muscle's length, l, and input, u: 

f = f(l, u). (2) 

Also, for a wide range of lengths the muscle stiffness, k =絣 isnegative. 

Several muscles act on each joint in an agonist/antagonist configuration. 

Geometrically, the contribution of the muscles to the joint stiffness matrix is 

derived from a coordinate transformation. Let us consider a set of M muscles 

operating on N generalized coordinates (M > N). The lengths of these mus-

des define an M-dimensional space in which a generic point is given by the 

array l = [li, 12, ... , IM『.The kinematics of the limb determines a value of l 

for each value of q through the map: 

l = </>(q) (3) 

The local Jacobian of this map, μ=碧 isa rectangular, M x N matrix whose 

element i,j defines the moment arm of the i-th muscle with respect to the j-th 

joint angle. 

Given a vector of muscle forces, J = [11, fか．．．，加］互 thecorresponding 

joint torque vector, Q, at a configuration q is obtained as 

Q =μ(q)げ (4) 
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Taking into account (a) the dependence of muscle forces upon length (Equa-

tion (2)) and (b) the muscle kinematics (Equation (3)), the joint stiffness is 

derived by applying the chain rule to Equation (4). Symbolically, we may 

write: 

R=竺迅［＋虻．
oq =μ oq oq f 

Introducing the N x N matrix,, 

M がlk
凰，j=L—

k=l Oq沿qj
fk・

(5) 

(6) 

and the M x M muscle-stiffness matrix, k, 

[)Ji 
[kkj =可 (7) 

Equation (5) becomes: 

R=μTkμ+,. (8) 

The two terms on the right side of this expression represent, respectively, a 

linear transformation of the muscle-stiffness matrix and a correction term. 

This last term accounts for the non-linearity of the muscle-kinematics. The 

muscle-stiffness matrix, k, represents the explicit dependency of muscle tension 

upon muscle length. 

The matrix I represents the "geometric stiffness" induced by the muscle 

kinematics. Equation (6) shows that this geometric stiffness vanishes in two 

cases: (1) when the muscle moment-arms are constants (that is when the mus-

cle kinematics is linear) and (2) when all the muscle operate at their rest length 

(that is when all the Ji's are zero). If neither condition is met, then one should 

assume that the geometric stiffness provides a significant contribution to the 

net joint-stiffness. In particular, the geometric stiffness can either increase or 
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decrease the margin of stability determined by the muscle-stiffness matrix. 

Computational Consequences of Static Stability 

The geometric stiffness plays an important role not only with respect to 

the control of movements and postures but also with respect to computation. 

In particular, here we will consider the role of static stability with respect 

to the equilibrium-point hypothesis (Feldman, 66; Hogan, 1984). According 

to this hypothesis, goal-directed movements at moderate speed are planned 

and implemented by the central nervous system as time-sequences of stable 

equilibrium postures. More formally, the equilibrium-point hypothesis can be 

stated as follows. The net effect of the muscles'spring-like behavior is to induce 

a static dependency of the joint torque, Q upon the configuration, q and upon 

the control input, u. That is, by combining the length-tension relations (2), 

the muscle kinematics (3) and tension-torque transformation (4) one obtains 

a single map from q and u to Q: 

Q(q,u) =μ(qf J(</>(q),u)・(u EU, q E Q). (9) 

Under precise conditions, the equilibrium equation, 

Q(q,u) = 0 (10) 

defines a map, g(•) from the input, u, to an equilibrium configuration, q0: 

q。=g(u) 

qo E Q , u EU 

Q(qo, u) = 0. 

(11) 

(12) 

(13) 

According to the fundamental theorem on implicit functions (Sokolnikoff & 

Redheffer) a necessary and sufficient condition for such a map to exist within 
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a region A C Q x U is that the determinant of the joint stiffness tensor J叫'oq' 
is different from zero in A. If one of the stiffness eigenvalues changes its sign 

at a point P in A, so does the determinant of R and the map g ceases to be 

defined at P. In contrast, if all the stiffness eigenvalues remain negative in the 

entire region, A, then the function g is uniquely defined across that region. In 

this case, g maps the control variable u into a set of stable equilibria. If the 

control input is given as a function of time, u(t), then the image of u(t) under 

g is an equilibrium trajectory, that is a time sequence of stable equilibria, q0(t). 

We want to stress that the above discussion refers to a multi-joint mecha-

nisms operated by a number of actuators which may well exceed the number 

of joints. Thus, the geometrical value of the equilibrium-point hypothesis is 

given by the possibility of mapping a high-dimensional control vector, u, into 

a low-dimensional variable which corresponds to a configuration. Remarkably, 

the condition for such a transformation to exist is entirely expressed by a 

tensor whose rank cannot exceed the dimension of the configuration space. 

Is the equilibrium point hypothesis a necessary consequence of muscles' 

spring-like behavior? To answer this question, one must take a closer look at 

equation (8) which relates the joint stiffness, R to the muscle stiffness matrix, 

k. The fact that muscles operate as "pulling springs" can be expressed by 

stating that throughout the limb configuration space the eigenvalues of the 

matrix直kμareall negative. However, the net joint-stiffness matrix is also 

influenced by the geometric stiffness, 1 which arises from the variability of the 

muscles'moment arms. 

This _geometric stiffness may generate mechanical instability within large 

regions of a limb's workspace. Within any such unstable regions the equilibrium-



Stability Constraints 10 

point hypothesis is not a viable control scheme for generating movements and 

for maintaining limb postures. Thus, the equilibrium-point hypothesis cannot 

be considered as a mere consequence of the muscles'spring like behavior: the 

stability of a limb is affected by a geometrical factor which is not univocally 

related to the intrinsic muscle mechanics. This conclusion is illustrated by the 

following single-joint control example. 

A Simple Example 

To show how static instability can be induced by geometrical factors let 

us consider a simple single-joint mechanism (Figure 1): a planar pendulum 

operated by a pair of opposing springs (S1 and S2). The first spring, S1, is a 

controllable element whose force-length relation is given by Hooke's law: 

Ji=}も(l1-u) (14) 

where K1 is the stiffness constant and u is the (controlled) rest-length. The 

second spring, S2, is also governed by Hooke's law but has fixed stiffness and 

rest-length parameters }も and入：

!2 =}も（ら一入）．

＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋ 

FIGURE 1 NEAR HERE 

++++++++++++++++++++ 

(15) 

In the following discussion we will assume that both springs act as pulling 

elements and that the constants, J, く1and J<く2are negative. The springs are 

connected to the pendulum at a common insertion point, I. The length of 
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each spring is the sum of a fixed offset, L, plus a variable segment (W  and 

窃）• Hence, the muscle-kinematics is given by the equations: 

庫）＝（加＋諏戸2可諏cos(q))½+ L (16) 

ら(q)=霊＋虚2_2可諏cos(q))½+ L (17) 

For any pendulum configuration, q, the equilibrium condition is: 

Q(q,u) =μ1(q)fi(l1(q),u) +μ2(q)h(ら(q))= 0 (18) 

where we have introduced the moment armsμ1 =総 and胆＝警 In

this simple system, with a single controlled element, the control variable, u, 

corresponding to each equilibrium configuration can be derived by replacing 

the expressions (14) and (15) for J1 and h in equation (18): 

四(q)}も
u(q) = li(q) + (し (q) —入）．

μ1(q)}く1
(19) 

Using equations (8) and (19), the joint stiffness at equilibrium as a function 

of the angle, q, is: 

8μ1 8μ2 
R=µ~ 粕＋叶Iも＋ーJi(q,u(q))+-h(q). (20) 

8q 8q 

r‘
 

The last two terms on the right-hand side represent the geometric stiffness, 

1, of the joint. Unlike the first two terms, they may assume a positive value 

and lead to a positive value of R, that is to an unstable behavior of the 

pendulum. This case is demonstrated in Figure 2B. The solid line represents 

the joint stiffness, R, at different equilibrium configurations with the following 

choice of geometrical and mechanical parameters: }も＝ー1,}も＝ー0.8,

入=0.4, 諏＝亭＝可=1, L = 0.5. With this choice of parameters, 
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the equilibrium is stable (R < 0) at pendulum configurations ranging between 

72°and 180°. The joint stiffness is zero at 72°(Figure 2A). Between 72°and 

0°the joint stiffness at equilibrium is positive. No fixed value of the control 

input can be used to maintain a stable posture within this latter range. 

++++++++++++++++:++++ 
FIGURE 2 NEAR HERE 

++++++++++++++++++++ 

The solid line in Figure 2C is a plot of the control variable, u, at dif-

ferent equilibrium angles as derived from equation (19). This curve has a 

non-monotonic shape, with a maximum at 72°. Therefore, the equilibrium 

configuration cannot be expressed as a single-valued function of u in the entire 

range of motion of the mechanism. This is a simple illustration of a case in 

which the equilibrium condition equation (10) cannot be used to define im-

plicitly a map from the control input to the equilibrium configuration.3 This 

result demonstrate that for a simple system operated by spring-like actua-

tors the equilibrium-point control may not be a viable strategy for generating 

movements and for controlling stable postures. 

However, a simple correction of the system's design may lead to a mechani-

cal behavior that is appropriate for the equilibrium-point control. To this end, 

in our example (Figure 2A, dashed line) it is sufficient to move the insertion 

of the spring S2 at a new point, I', which is located midway between O and J 

（可=½). With this geometrical correction, the equilibrium is stable in the 

entire range of mo_vement (Figure 2B, dashed line) and the control variable is 

a monotonic function of the equilibrium angle (Figure 2C, dashed line). In the 
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following sections we will apply the same approach to the anatomical analysis 

of the primate's upper-limb. 

A Planar Model of the Monkey's Arm 

In the preceding section we have discussed a specific mechanical system 

which may become inherently unstable by virtue of a geometrical nonlinearity. 

But, what if instead of such an artificially simple mechanism we were to con-

sider a complex multi-joint system, such as a biological limb, operated by a 

multitude of viscoelastic elements? Is it reasonable to expect that "on the av-

erage", the spring-like properties of a large ensemble of muscles are sufficient 

to remove such appearingly occasional instabilities? To address these ques-

tions we have simulated the control of equilibrium postures in a more complex 

mechanism, which incorporated some of the biomechanical characteristics of 

the primate's arm. The results of our investigation demonstrate that an in-

crease in the system complexity and in the number of spring-like actuators 

does not lead to better stability properties. 

The Model Structure 

Kinematics. We considered a 2-joint arm, restricted to move in the hor-

izontal plane. The torso, upperarm and forearm links were modeled as rigid 

segments, interconnected by the shoulder and elbow joints. The relative angles 

of rotation were q1 E [-45°, 90°] for the shoulder and q2 E [300, 135°] for the 

elbow. The kinematics of the model muscles were defined so as to approximate 

the geometry of the major arm muscles of the rhesus monkey (Table 1). A to-

tal of 17 muscles, including shoulder, elbow and two-joint flexors and extensors 

have been included in this model. Geometrically, each model muscle acted on a 
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one-dimensional line joining the attachment points. The kinematic constraint 

imposed by the joint was modeled as a pulley. According to the configuration 

of the limb, a model muscle could either act on a straight segment between 

the points of origin and insertion or it could be partially wrapped around the 

joint pulley (Figure 3). 

＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋ 

TABLE 1 and FIGURE 3 NEAR HERE 

＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋ 

The kinematics of the hand were described by a pair of cartesian coordi-

nates, x and y, defining the position of the distal extremity of the outer link 

with respect to the shoulder joint. These coordinates were derived from the 

joint configuration, (qぃq2),as: 

{ x~11 cos(q1) +らcos(q1+ q2) 

y = l1 sin(qリ＋らsin(q1+ q2) 
(21) 

where li and !2 indicate the lengths of the upperarm and of the forearm re-

spectively. 

Muscle Mechanics. Mechanically, a prominent feature of muscle behav-

ior at steady-state is the increase of force which results both from an increase 

in muscle length and an increase in neuromuscular input (Rack & Westbury, 

1969). This mechanical behavior is analogous to that of a tunable spring. In 

our model we assumed that the model muscles followed a linear length-tension 

relationship (Hooke's law) for each value of the control input, u, that is: 

f = K,(u) (l -l0(u)) u E [O, l]. (22) 
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This is a strong simplification of the actual muscle behavior. However, data 

obtained by Zeffi.ro (1986) in the intact behaving monkey, indicate that Equa-

tion (22) may be taken as a valid first-order approximation of muscle mechanics 

for a wide range of muscle lengths. 

The joint torque, Q = (Q1, Q2), and the joint stiffness, 

R=[二:l
are derived from the muscle stiffnesses, the muscle operating tensions and the 

matrix of moment arms, [μ(q)kj =紐， asindicated by equations (4) and (5). 
To derive the hand stiffness, K, corresponding to the joint stiffness, R, we 

took the derivative of the transformation from the joint torque, Q = (Q1, Q2), 

to the hand force, F = (fエ'F11):

Q=げ(q)F (23) 

where, J(q), is the jacobian of the kinematic transformation (21). Thus, for 

those regions were J (q) is invertible: 

with 

J{ = (JT戸(R-f)J-1

r= [~ 凡＋紐F,
一凡+_§:_jj_p 
oq1 oq2 oq1 oq2 Y 

玉 F己辛Fy
尉＋紐F,l 

(24) 

(25) 

Control. The control input to each of the model muscles was a continuous 

real-valued variable, u, ranging between a "resting" value (0) and a maximum-

activation value (1). As indicated by Equation (22), this variable determined 
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uniquely the stiffness and the rest-length of the corresponding model muscle. 

For sake of simplicity we modeled the dependency of the stiffness and rest-

length upon the input variables as linear relationships: 

K(u) 

lo(u) 

Au+B 

Cu+D. 

(26) 

(27) 

Common sense about muscle mechanics dictates that as the activation variable 

increases from O to 1, the stiffness should increase (in absolute value) and 

the rest-length should decrease, corresponding to muscle shortening (Rack & 

Westbury, 1969; Ze:ffiro, 1986). 

Model Parameters 

The geometrical and mechanical parameters used in the model were es-

timated by post-mortem dissections in a rhesus monkey (Macaca mulatta). 

Planar projections of the arm and shoulder girdle complex were obtained by 

top-down x-ray imaging of the.thoracic cage and arm of the monkey, fixed in a 

typical configuration used by alive monkeys during horizontal arm movements 

(Dornay, 1991a, 1991b). The torso link was modeled as an imaginary line seg-

ment connecting the two shoulder joints. The upperarm link is an imaginary 

line segment connecting the shoulder and elbow joints. The forearm link is the 

line segment passing from the elbow through the wrist till the center of the 

hand. The lengths of the upperarm and of the forearm links were measured 

to be 15.5cm and 20.2cm respectively. 

The muscles listed in Table 1 were exposed and their centers of attachments 

were marked by drilling metal screws into the bones. The (x, y) coordinates 

of the muscle attachments were estimated from the x-ray projections of the 書
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metal screws.4 From the x-ray projections, we also estimated the radii of the 

model pulleys around the joints (Shoulder: 1 cm for all the muscles; Elbow, 1 

cm for the flexors and 1.5 cm for the extensors). The volumes of the muscles 

were measured by water displacements. Table 2 lists the volumes and the 

coordinates of attachment for the 17 muscles used in this model. 

We used these geometrical data to estimate the control parameters A, B, 

C and D of equations (26) and (27). These control parameters were estab-

lished in three steps. First, we arbitrarily set the minimum rest-length of each 

muscle (D) to be 99% of its両nimumphysiological length (Table 2).5 Second, 

we estimated the control parameters from the length-tension data obtained 

by Zeffiro (1986) for the triceps medialis of the intact rhesus monkey (muscle 

number 11 in our database). Third, we scaled these triceps parameters accord-

ing to the rest-lengths and cross-sections of the other muscles. A simplified 

physiological cross-section, a (An, Hui, Morrey, Linchield & Chao, 1981) was 

calculated for each muscle by dividing its volume by its minimum rest-length. 

Thus, the control parameters for all the model muscles were computed from 

the following expressions: 

A 
びiDu 

・= 
び11Di 
A11 

Bi 
びiDu 

・= 
び11Di 
Bu 

C11 
Ci= -Di 
D11 

with i = 1, ... , 17. The above equations correspond to the hypothesis that 

muscles are composed of sarcomeres with identical mechanical properties. On 

one hand, the stiffness of a muscle is directly proportional to the number of 

sarcomeres in parallel and inversely proportional to the number of sarcomeres 
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in series. On the other hand, at any level of activation, the rest-length of a 

muscle is given by the sarcomere's rest-length multiplied by the number of 

sarcomeres in series. The physiological cross-section provides an estimate of 

the -number of sarcomeres in parallel. The number of sarcomeres in series was 

assumed to be proportional to the minimum rest-length, D. 

+++++++++++++++++++ 
TABLE 2 NEAR HERE 

+++++++++++++++++++ 

The Simulation Algorithms 

To simulate the mechanical behavior of the model arm we used a software 

package developed by J. McIntyre on a Symbolics 3600 Lisp Machine. The 

software was further enhanced by the combined efforts of J. McIntyre and 

M. Dornay. Given a planar mechanism, this package was designed to solve 

both direct and inverse statics and kinematics problems. Mathematical de-

tails about the algorithms can be found in (Mussa-Ivaldi, Morasso, Hogan & 

Bizzi, 1991; McIntyre, 1990). Here we give a brief qualitative outline of the 

computational principles implemented by this software. 

Direct Problems. Computationally, the arm model consists of a set of 

equations interacting with two types of input/output processes: the control 

processes and the environment. On one hand, the control processes specify 

a set of control variables, 叫， whichdetermine the stiffness and rest-length 

of each muscle. On the other hand, the environment can act on the system 

either as an impedance or as an admittance. In the former case, the arm 

provides a position output to the environment and receives a force input from 
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the environment. In the latter case the input/output relations between the 

arm and the environment are reversed: the arm receives a position input and 

generates a force output. In a direct problem, the control and either the force 

or the position variables are specified as inputs to the arm. The problem is 

to determine the other variable as output to the environment. There are then 

two distinct types of direct problems: 

• Given the control and the force variables, determine the position vari-

able. A particular case of this problem is that of finding the equilibrium 

position corresponding to a given control pattern. In this case, it is im-

plicitly assumed that the environment imposes a constraint of zero force 

on the model arm. 

• Given the control and the position variables, determine the force variable. 

An example is the problem of finding the force exerted by the hand at a 

workspace location with a given set of control inputs. A strictly related 

direct problem is that of determining the stiffness tensor corresponding 

to given control and position variables. 

One important aspect of these direct problems is that they are all well-posed-

that is they can be uniquely solved-regardless of the redundancy of degrees 

of freedom in the model arm. 

Inverse Problems and the Backdriving Algorithm. Inverse problems 

arise when one tries to determine the control variables corresponding to given 

values of both force and position variables at the interface with the environ-

ment. For a redundant system such as our model arm, these inverse prob-

lems are ill-posed and their solution is not unique. For example, consider the 



Stability Constraints 20 

problem of finding the control variables corresponding to a given equilibrium 

position of the arm. In this case both the position and the force (zero) at the 

interface with the environment are specified. It is evident that with a redun-

dant system of muscles, there are infinite patterns corresponding to the same 

equilibrium position. In order to derive a unique solution it is necessary to 

impose some extra constraint, such as an optimization principle. 

Our software implemented a specific optimization principle, the backdriv-

ing algorithm which corresponded to a process of adaptive control. Briefly, 

backdriving the arm from a current equilibrium position to a new equilib-

rium position is equivalent to performing the following two steps: 1) impose a 

passive displacement of the arm to the new position and 2) reset the control 

variables so as to eliminate the induced elastic forces. Clearly, in the pas-

sive displacement the system moves to a configuration of minimum potential 

energy. Then, the active change (step 2) is equivalent to finding the input 

pattern which minimizes the change in potential energy with respect to the 

previous equilibrium. 

The Model Arm Has Unstable Behaviors 

To investigate the stability of our model arm, we started by setting all the 

control parameters (Equations (26) and (27)) to the same value (0.5). With 

these control parameters, the arm was at equilibrium in the position shown 

in Figure 4-A. Then, while keeping constant the control inputs, we calculated 

the joint stiffness as a function of the hand location in the workspace.6 The 

dark dots in Figure 4 indicate locations at which the joint stiffness was unsta-

ble. The light dots indicate locations at which the stiffness was stable. It is 

apparent that with this choice of parameters there was a significant region of 
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instability. Similar unstable regions were observed with other control patterns. 

＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋ 

FIGURE 4 NEAR HERE 

++++++++++++++++++++ 

Next, we considered the effect of varying the degree of muscle coactivation 

upon the size of the unstable region. Figures 4-B and 4-C, show the regions of 

instability with all the control parameters equal to 0.2 and 0.8 respectively. As 

the degree of coactivation increased, so did the region of i、nstability.Contrary 

to what one might have expected, coactivation made the limb more unstable. 

This counterintuitive finding is explained by observing that the essential source 

of instability for the arm is the geometric stiffness, 1, in equation (8). Since 

muscles always pull (Jiく 0),the sign of the components of 1 (see equation(6)) 

can be either positive or negative according to the sign of the derivatives of the 

ュmoment arms If these derivatives are negative, then the corresponding 'oq没q;.

contributions to 1 are positive and the stability margin is decreased. By 

increasing the activation of a muscle whose moment-arm derivative is negative 

the margin of stability is further reduced. 

Summing up our results indicate that a) with all the tested values of the 

control parameters, the model arm had a wide region of instability; b) the 

region of instability was increased by increasing the level of coactivation. This 

unstable behavior had a dramatic impact on the possibility to map a desired 

equilibrium location into a _set of control variables-that is on the possibility of 

implementing an equilibrium-point control. Using the backdriving algorithm, 

we tried to set the arm at a number of new equilibrium locations (locations 
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a, b, c, d and e in Figure 4-A). The algorithm succeeded in finding the con-

trol patterns for the locations a and e, which fell within the stability region. 

However, it failed to find the appropriate controls for the positions b, c and d 

which lied inside the unstable region. 

Stability Can Be Achieved by Simple Geometrical Modifications 

Our first approximation of the monkey's arm geometry, led us to a model 

with unstable behaviors. This instability is not only undesirable for the 

equilibrium-point control but it is also scarcely plausible in physiological terms: 

primates are capable of maint1:1,ining stable arm postures even after deafferenta-

tion (Taub, Goldberg & Taub, 1975; Bizzi et al, 1984). If stability is an im-

portant functional requirement, then it is possible to proceed in one of two 

alternative directions: 1) with the current model structure, try to choose only 

those motor commands which ensure postural stability or 2) modify the model 

structure in such a way that any motor command is guaranteed to generate 

a stable posture. _The first approach leads to the complex (and not always 

possible) task of implementing ad hoc computational procedures capable of 

avoiding unstable control patterns. In contrast, the second approach relieves 

the motor controller from such a computational burden. 

In order to correct the structure of the model, we examined the contribution 

of each muscle to the joint stiffness matrix, R. In our model, two conditions 

were always satisfied by the joint-stiffness matrix, R: 1) R was symmetric 

(R1,2 = R2,1),7 and and 2) The diagonal stiffness terms, R1,1 and R2,2, were 
larger (in absolute value),8 than the two-joint term, R1,2. If the above two 

conditions are satisfied, it can be proved (Dornay, 1991a) that a necessary and 

sufficient condition for a stable joint stiffness is having stable (or negative) 
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diagonal components, (R1,1 ＜ 0 and R2,2 ＜ 0). Therefore we only needed 

to consider the contributions of the muscles to the two diagonal components, 

R1,1 (shoulder stiffness) and R2,2 (elbow stiffness). Making use of Equation (5), 

these components can be expressed as 

｛加~,::に汀1,i
R2,2 = I: 已r2,i

(28) 

where we have introduced the angular muscle stiffnesses 

rl.i =μ1,i紐+X1,di 
r2,i =恥紐 +x2,ふ・

9

ノ
｀
‘

(29) 

with 

8μ1,i 
Xi,1 =―  
如
如，i

Xi,2 =――. 
知

The angular stiffnesses summarizes the contribution of each muscle to the 

shoulder and elbow j'oint stiffness. The coefficients, Xi,i and x2,i play a major 

role in establishing the margin of stability of a muscle. 

This point is illustrated in Figure 5 which shows the variation of the param-

eters related to the muscle pectoralis major capsularis, as the shoulder angle 

changes from -45°to 90°. The model geometry of this particular muscle is 

also illustrated in Figure 3. The top-left panel of Figure 5 shows the plots for 

the muscle length, l, the moment-arm, μ=易， andthe coefficient x =聾

In the first part of the shoulder-joint range, q E [-45°,+11°], the muscle is 

wrapped around the joint-pulley (Figure 3). Accordingly, the moment-arm 

is constant and x = 0. In this initial range the force and the torque change 
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linearly and the angular stiffness is constant and negative. The muscle con-

tributes to stability. When the muscle becomes unwrapped from the pulley, 

the moment arm starts suddenly to increase (in absolute vaue) and X jumps 

to a large negative value. At this point, the tension developed by the muscle is 

sufficiently large to induce a positive angular stiffness, for all the values of the 

control input. The muscle contributes to instability. As the joint angle keeps 

increasing, the rate of change of the moment arm and the muscle tension de-

crease. At q = 48°the geometric stiffness contributed by xf becomes smaller 

than the "intrinsic stiffness", μ 給 Asa consequence, the muscle contributes 

again to joint stability between 48°and 90°. 

++++++++++++++++++++ 
FIGURE 5 NEAR HERE 

++++++++++++++++++++ 

A simple geometric modification that was sufficient to eliminate the in-

stability of pectoralis major scapularis is shown in Figure 6. We changed the 

effective origin and insertion so as to keep the muscle in closer proximity to the 

joint. As shown in Figure 7, with this modification, the moment arm remains 

constant for a larger range. As the muscle becomes unwrapped, the muscle 

tension is small enough to maintain the angular stiffness at a negative value. 

Remarkably, this modification corresponded to a closer similarity between the 

model arm and the actual musculoskeletal geometry. Real muscle, such as the 

pectoralis major, do not connect the actual attachment points in a straight 

line, as we supposed in the initial model. Instead, connective tissues constrain 

the line of action of a muscle and shift its effective origin and insertion towards 
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the center of the joint, a situation that is captured by the modified geometry 

of Figure 6. 

Interestingly, this analysis provides a rationale for the apparent lack of 

efficiency of the biological design. By keeping the muscles close to a joint, 

their mechanical advantage is reduced. However, at the same time the stability 

range is substantially increased. 

++++++++++++++++++++++++++ 
FIGURES 6 and 7 NEAR HERE 

++++++++++++++++++++++++++ 

We repeated the above stability analysis for all the 17 muscles in the model. 

Then, we modified the effective origins and insertions of these muscles so as 

to ensure joint stability for every possible value of the control inputs. With 

this modification, the instable regions of Figure 4 were completely removed. 

As a consequence, the backdriving algorithm became successful in deriving 

a control pattern for any desired equilibrium position. For example, Figure 

8 shows the outcome of the backdriving algorithm as the hand posture was 

smoothly shifted from an initial to a final position (Figure 8-A and 8-B). This 

equilibrium-point trajectory transversed a region that was unstable before the 

geometric modification of the model muscles. The control signals correspond-

ing to the equilibrium-trajectory are shown in Figure 8-C. In this as in all 

other tested trajectories, each signal varied continuously from an initial to a 

final value. Thus, by removing the instabilities from the model arm it was 

possible to establish a continuous mapping between equilibrium positions and 

muscle-control variables. 
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++++++++++++++++++++ 
FIGURE 8 NEAR HERE 

++++++++++++++++++++ 

Summary and Conclusions 

26 

We have investigated the relation between static stability of a limb and the 

equilibrium-point hypothesis. Mathematically, the equilibrium-point control is 

equivalent to the establishing of a mapping between the command signals de-

livered to the muscles and the equilibrium configurations of a limb. A condition 

for this mapping to be possible is that the limb is stable across the workspace 

or, more precisely, that the limb's stiffness has only negative eigenvalues. We 

analyzed how this conditions may be translated into precise biomechanical 

constraints for single-and multi-joint limbs. 

Our results indicate that the viscoelastic properties of the muscles do not 

provide a sufficient condition for the equilibrium point hypothesis to be appli-

cable. In fact, one can design single-and multi-joint systems having inherent 

unstable behaviors in spite of the fact that they are operated by viscoelastic 

muscle-like actuators. The instability of such systems arises from the fact that 

the moment-arms of the actuators about the joints depend upon the joint an-

gles. This variable moment arms introduce an unstable stiffness component 

which may overshadow the stability provided by the viscoelastic properties of 

the actuators. 

We studied the relations between limb stability and biomechanical con-

straints by developing a computer model of the primate's arm. We adopted 

a commonly used simplification of muscular geometry: each model muscle 
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acted along a straight line joining the centroid of the origin to the centroid 

of the insertion (Amis, Dowson & Wright, 1979). Clearly, this geometrical 

representation is just a coarse approximation of the actual muscle kinematics. 

However, it provided us with a model in which the muscles's moment arms 

changed as a function of the joint angles in the same direction as the actual 

muscles's moment arms. For this reason, the straight~line geometry consti-

tutes a significant improvement with respect to the more commonly adopted 

assumption of constant moment arms. 

We estimated the origins and insertions of the model muscles by dissection 

and x-ray imaging of 17 arm muscles in a rhesus monkey. Then we simulated 

the stability of the arm model with a variety of command inputs. Our results 

indicated that the straight-line muscle kinematics lead to the postural insta-

bility of the model arm in a large region of the arm's workspace. Remarkably, 

this instability was neither removed, nor reduced by muscle coactivation. On 

the contrary, we found that muscle coactivation increased the region of insta-

bility. One, and perhaps the only, effective way to remove instability from our 

model was to modify the effective origins and insertions of the model muscles. 

More specifically, this modification corresponded to approximate the mechan-

ical action of the tendons and of the connective tissues which in the actual 

arm keep the muscles in the proximity of the joints. This result suggests that 

a simple design constraint rather than a dedicated control process is sufficient 

to ensure stability to the limb. One should observe that the same design factor 

which ensures stability-the closeness of the muscles to the joints-is also re-

sponsible for a decrease of the joint torque that a muscle can generate. Thus, 

we believe that we have found a rationale for an apparent lack of "efficiency" 
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in the biological design. 

The elimination of the possible sources of instability in the mechanical 

structure of the arm is crucial for solving the computational problems associ-

ated with the equilibrium-point hypothesis. For example, we considered the 

task of deriving a pattern of muscle activations which generates a desired equi-

librium configuration of the arm. With a set of 1 7 muscles, this problem was 

severely ill-posed: the same equilibrium configuration could be achieved by in-

finite patterns of muscle activations. A solution to this problem can be found 

by minimizing the changes in potential energy associated with the transition 

to a new posture (Mussa-Ivaldi, Morasso & Zaccaria 1988; Mussa-Ivaldi et al., 

1991). Our results indicate that this minimum-energy principle can effectively 

be implemented by a simulation algorithm only after all sources of instability 

have been removed from the anatomical model. The inability to derive appro-

priate command patterns in the presence of structural instabilities is a further 

demonstration of the crucial role played by the biological design with respect 

to information processing in motor control. 

9
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Notes 
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1. A system is said to be statically conservative when the generalized force 

at rest can be expressed as the gradient of a scalar potential function, 

U(q) Th" . 1s condition 1s equivalent to requiring that = 竿竺
8qj 8q; . 

2. This is a direct consequence of Stokes'theorem. A non-symmetric stiff-

ness corresponds to a force field with non-zero curl. According to Stokes' 

theorem, the work around a close path is given by the net flux of the 

field's curl across the surface enclosed by the path. 

3. In this case, the fact that the opposite map (from equilibrium angle 

to input) is defined is merely a consequence of the lack of redundancy 

in this ad-hoc example: there is a single configuration variable and a 

single controlled element. If there were more controlled elements than 

configuration variables (as is the case with musculoskeletal systems) the 

mapping between q and u would have been ill-defined in both directions. 

4. Each model link connected a proximal joint with a distal joint. A~us­

cle's origin was referred to a Cartesian system centered at the distal 

joint. A muscle's insertion was referred to a Cartesian system centered 

at the proximal joint. For both Cartesian systems, the x axis included 

the segment joining the proximal to the distal joint (the link axis) and 

was oriented from proximal to distal. When all the joint angles were 

0 degrees, the y axes were all parallel and pointed to the anterior di-

rection. For a more detailed account of the attachment geometry see 

Dornay (1991a). 

5. That is, the minimum length which could be assumed across the workspace. 
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This setting assured that the muscle always had some (small) residual 

tension. 

6. A necessary and sufficient condition for hand stability at equilibrium is 

that the joint stiffness is stable (Dornay, 1991 b). 

7. The symmetry is derived from the fact that there are no control coupling 

between muscles spanning different joints. For proof see Dornay (1991 b). 

8. This feature was in agreement with the joint stiffness matrices mea-

sured in human subjects (Mussa-Ivaldi et al., 1985; Flash & Mussa-Ivaldi, 

1990). 

曇
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Table 1. The Dissected Muscles 

＃ Muscle Origin Insertion Function 

1 Latissimus Dorsi Vertebrae Humerus Shoulder Extensor 

2 Posterior Deltoid Scapula Humerus Shoulder Extensor 

3 Teres-Major Scapula Humerus Shoulder Extensor 

4 Teres-Minor Scapula Humerus Shoulder Extensor 

5 Infra-Spinatus Scapula Humerus Shoulder Extensor 

6 Pectoralis Major Capsularis Clavicula Humerus Shoulder Flexor 

7 Pectoralis Major Sternalis Sternum Humerus Shoulder Flexor 

8 Anterior Deltoid Clavicula Humerus Shoulder Flexor 

， Coraco Brachialis Scapula Humerus Shoulder Flexor 

10 Triceps Lateralis Humerus Ulna Elbow Extensor 

11 Triceps Medialis Humerus Ulna Elbow Extensor 

12 Brachialis Humerus Ulna Elbow Flexer 

13 Brachio-Radialis Humerus Radius Elbow Flexor 

14 Pronator Teres Humerus Radius Elbow Flexor 

15 Triceps Longus Scapula Ulna 2-Joint Extensor 

16 Biceps Brevis Scapula Radius 2-Joint Flexor 

17 Biceps Longus Scapula Radius 2-Joint Flexor 
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Table 2. Muscle Parameters. 

Muscle Origin Insertion Volume D 

(cm) (cm) (cmり (cm) 

1 Larissimus Darsi (-5.5, -10.0) (2.1, LO) 50.0 11.9 

2 Posterior Deltoid (0.8, -4.4) (5.2, 1.5) 21.3 4.28 

3 Teres-Major (-0.2, -6.4) (2.8, 0.5) 25.3 5.35 

4 Teres-Minoi: (0.2, -5.0) (0.8, 0.6) 4.75 4.87 

5 Infra-Spinatus (-0.2, -4.8) (0.8, 0.6) 26.4 4.76 

6 Pectoralis Major Capsularis (-4.8, -0.8) (2.7, 1.5) 37.0 4.76 

7 Pectoralis Major Sternalis (-5.5, 1.3) (2.7, 1.5) 33.0 4.19 

8 Anterior Deltoid (-2.4, -2.0) (5.2, 1.5) 15.1 7.18 

， Coraco Brachialis (-1.6, -1.0) (6.0, 1.5) 4.3 6.90 

10 Triceps Lateralis (-12.2, 0.2) (-0.8, -1.6) 45.8 12.3 

11 Triceps Medialis (-5.6, -0.2) (-0.8, -1.6) 26.5 5.86 

12 Brachialis (-5.7, 0.7) (2.3, -0.3) 15.2 4.39 

13 Brachio-Radialis (-5.0, -0.2) (16.5, 0.8) 24.4 13.3 

14 Pronator Teres (-1.2, -0.5) (9.3, 0.3) 9.5 8.76 

15 Triceps Longus (0.4, -2.2) (-0.8, -1.6) 45.8 13.6 

16 Biceps Brevis (-1.6, -1.0) (2.7, 0.5) 28.0 14.0 

17 Biceps Longus (-0.73, -1.5) (2.7, 0.5) 26.5 14.6 
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Figure Captions 

Figure 1. A planar pendulum operated by a pair of opposing springs. q is the 

joint angle of the pendulum. 
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Figure 2. Stability analysis of the planar pendulum. R is the joint stiffness, 

and u is the control input to the tunable (left) spring. The solid lines show 

that the system is not stable for joint angles from 0°to 72°. The dashed lines 

show that the system becomes stable when the attachment of the right spring 

is moved from I to I'. 
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Figure 3. Initial geometric model of the shoulder flexor muscle pectoralis 

major capsularis. The muscle originates from the torso link at a. The insertion 

of the muscle to the upperarm link is marked as b (q = -45°) or c (q = 90°). 

The joint angle affects the muscle length and whether it is wrapped around 

its pulley at the joint (b) or is unwrapped (c). 



Stability Constraints 39 

Figure 4. Initial hand stability. When the control input to each muscle was 

0.5, the hand was stable at the equilibrium position shown in panel A. (S 

marks the shoulder joint, E the elbow, and the big open circle shows the hand 

position). This equilibrium position was used as a starting point for simulating 

various hand movements. Using the backdriving algorithm, the hand could be 

moved to points a and e, but not to points b, c and d. The failure was 

because the hand stiffness became unstable during these movements. To get 

an insight, we plotted the joint stiffness as a function of the hand location in 

the workspace. A: all the control inputs are 0.5. B: all the control inputs are 

0.2. C: all the control inputs are 0.8. The dark dots indicate locations where 

the joint stiffness is unstable, while the light dots indicate stable locations. 
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Figure 5. Initial stability analysis of pectoralis major capsularis. A flexion 

movement is shown in which the shoulder angle changes from -45°to 90°. 

In the Geometry panel, the muscle length, l, decreased from 8.7 cm to 4.8 

cm. The moment arm of the muscle around the shoulder joint,μ, was initially 

constant at -1 cm * radian-1, but at q = 11°it started to decrease, eventually 

reaching its final value of -2.9 cm* radian-1. The moment arm derivative,x, 

was zero at the first stage of the movement, jumped to -1.8 cm * radian-2 

at q = 11°, and then started to increase, reaching a final value of -0.75 cm 

* radian-2. In the Force, Torque and Stiffness panels, the behavior of the 

muscle is shown for six different control inputs u. 
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Figure 6. Stabilized geometric model of the shoulder flexor muscle pectoralis 

major capsularis. The initial geometric model was described in Figure 3. The 

muscle's line of action is constrained by connective tissues represented by the 

effective origin d and the effective insertion e or f. 
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Figure 7. Final stability analysis of pectoralis major capsularis. The same 

analysis described in Figure 5 was repeated using the "corrected" geometry 

shown in Figure 6. The muscle length, l, decreased from 9.1 cm to 6. 7 cm. The 

moment arm of the muscle around the shoulder joint,μ, was initially constant 

at -1 cm * radianー1,but at q = 70°it started to decrease, eventually reaching 

its final value of -1.2 cm * radianー1.The moment arm derivative,x, was zero 

at the first stage of the movement, jumped to -0.5 cm * radian-2 at q = 70°, 

and then started to increase, reaching a final value of -0.39 cm* radian-2. 
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Figure 8. A typical equilibrium-point trajectory. The chosen hand path is a 

straight line with 26 intermediate points. A control input to the 17 muscles 

is specified for each intermediate point, defining it as an equilibrium point. 

The neural control input profiles for all the muscles is very smooth. When 

the input to a muscle reaches a minimum (0) or a maximum (1), it stays 

there as long as the backdriving algorithm expects it to decrease or increase, 

respectively. In this case other muscles take over and produce the needed 

change in torque. The 13th muscle shows this behavior in the middle of the 

movement. S = shoulder, E = elbow, D = double joint muscle, e = extensor, 

f = flexor muscle. The serial numbers refer to Table 1 and Table 2. 
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