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Auditory front-end in DTW word recognition 

under noisy, reverberant and multi-speaker conditions. 

Kazuaki Obara and Tatsuya Hirahara 

ATR Auditory and Visual Perception Research Laboratories, 

Seika-cho, Soraku-gun, Kyoto 619-02, Japan 

Abstract: 

In this report three front-ends, a fixed Q cochlear filter (FQF), an adaptive Q 

cochlear filter (AQP), and a Bark DPT (DPT), are compared for use as the 

front-end of a DTW system. The FQP is a conventional cascade/parallel type 

cochlear filter which simulates the asymmetrical filtering characteristics of a 

basilar membrane system. The AQP is a nonlinear cochlear filter which simulates 

three level-dependent characteristics of a basilar membrane system [T. Hirahara 

et al., Proc. ICASSP, 496-499 (1989)]. The DPT front-end generates 64-channel 

Bark scale coefficients based on a 512-point DPT magnitude spectrum. These 

three front-ends have 64 channels covering the frequency range from 1.5 to 19.5 

Bark. Recognition performance for clean speech, speech degraded by adding 

noise and/or reverberation, and under multi speaker conditions, are compared. 

Pour signal-to-noise ratios, S/N=00 (clean), 40, 20 and 10 dB, are set by adding 

different levels of pink noise to speech data. Por reverberant speech, the impulse 

responses obtained in the ATR reverberation room, RT=0.2 and 1.1 seconds, 

were convolved with speech data. Speech data used in the experiments were 216 

phoneme-balanced Japanese words uttered by 2 male and 2 female speakers. A 

standard dynamic time warping (DTW) system was used as a back-end. The 

experiments results are as follows: (1) Por clean speech, AQF performance is 

equal to that of DPT. (2) Por noisy speech, AQP performance is equal to that of 

PQP but more robust than that of DPT. (3) Por reverberant speech, AQF is 

affected more than DPT but the performance is better than that of FQP. (4) For 

speaker variation, AQP gives better performance than do FQF or D百.While 

the advantage of the AQP front-end is small with an HMM back-end [T. Hirahara 

et al. Proc. ICSLP, 381-384 (1990)], these results show that the AQP can be a 

better front-end for a DTW recognition system. 
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1. Introduction 

There have been many attempts to build an auditory model that simulates the 

signal processing which occurs in the auditory periphery, and to use the model as 

a recognition front-end. The underlying hypothesis of these studies is that if the 

model is designed properly, spectrum representation can be superior to that of a 

traditional spectrum. From this viewpoint, some recognition experiments have 

been made. M. Hunt et al.[1986,1988] and J. Cohen[1989] showed that their 

auditory model can outperform traditional front-ends. However other studies did 

not always show the superiority of the auditory front-ends (E. Zwicker et 

al.,[1979], M. Blomberg et al.[1982,1984], H. Hamada et al.[1989], R. Patterson et 

al.[1989], T. Hirahara[1990], S. Kajita et al.[1991]) Thus, the use of an auditory 

front-end has not been accepted widely in the automatic speech recognition field. 

We have built an adaptive Q cochlear filter which functionally simulates level 

dependent filtering characteristics of the basilar membrane (T.Hirahara et 

al.[1989]). In a previous study, recognition performance of the adaptive Q 

cochlear filter front-end was examined using an HMM back-end (T.Hirahara et 

al.[1990]), and LVQ2 back-end (T.Hirahara et al.[1991]) but the results were not 

satisfactory. One possible reason is that the modem stochastic pattern classifiers, 

such as HMM or L VQ2, are so poweザulin classifying patterns that the feature 

extraction of the adaptive Q cochlear filter front-end might not have advantage, 

and another possible reason is that, owing to the HMM or LVQ2 back-end 

constriction, the original 55 channel feature vectors produced by the the adaptive 

Q cochlear filter front-end were merged into 16 channels, so feature vectors were 

not fully utilized. 

In this report a DTW back-end was used to evaluate the performance of the 

adaptive Q cochlear filter front-end without merging the feature vectors. 

Recognition performance of the adaptive Q cochlear filter front-end (AQF) in a 

DTW word recognition system was compared with fixed Q cochlear filter front-

end (PQP) , and bark scale DPT front-end (DPT) under noisy, reverberant and 

multi-speaker conditions. 
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2 Speech data 

2.1 speech database 

In the word recognition experiments, 216 phoneme-balanced words from the 

A TR speech database were used. These words were uttered two times by 2 male 

and 2 female speakers, and sampled at 20 kHz with 16-bit accuracy. The first 

utterance was used as a template and the second utterance was recognized. 

2.2 Noisy speech 

Noisy speech was made by adding pink noise to clean speech. The signal-to-

noise ratio (SIN) was defined by global S/N, i.e. 

SIN =10• log ( Total Energy of the Word 

Total Energy of the Noise 
） 

Different noise was added to each word. SIN was set to 40, 20 and 10 dB. 

2.3 Reverberant speech 

Reverberant speech was generated by making a convolution of clean speech and 

a reverberation impulse response obtained from a variable reverberation room as 

shown in Fig.I. The reverberation impulse responses are shown in Fig.2. The 

reverberation time were 200 and 1070 ms respectively. The length of 

reverberation speech was set equal to that of clean speech. 

3. Front-ends 

In this study 3 front-ends were used, i.e. adaptive Q cochlear filter (AQF), 

fixed Q cochlear filter (FQF) and Bark scale DFf (DFf). 

For a long time, basilar membrane was considered to be passive linear filter, but 

recently, adaptive filtering・of the basilar membrane has been confirmed. 

(Johnstone, et al.[1986]) The filtering Q of the basilar membrane becomes high 

when the sound pressure level of input speech is low, and low when the sound 

pressure level of input speech is high. 
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We have developed an adaptive Q cochlear filter which simulates these level 

dependent filtering characteristics of the basilar membrane. To evaluate the 

performance of the AQF in DTW word recognition, we compared its 

performance with the other two: FQF and DFT. 

3.1 Fixed Q cochlear filter 

The block diagram of the fixed Q cochlear filter (FQF) is shown in Fig.3. The 

FQF is composed of a NOTCH-BPF (Band Pass Filter) combination, which 

sim~lates asymmetrical filtering characteristics of the basilar membrane: A steep 

high cut-off and a gradual tail at lower frequency. In this study the Q of the BPF 

was set to 5.0. 

3.2 Adaptive Q cochlear filter 

The adaptive Q cochlear filter is composed of a NOTCH-BPF combination and 

adaptive Q circuits connected to each BPF output as shown in Fig.3. The adaptive 

Q circuit consists of a second order low pass filter (LPF) whose Q is determined 

by a Q decision circuit (Hirahara[1989]). The Q decision circuit determines the Q 

using the output power of the BPFs, that is, the Q of LPF becomes high when the 

output power of BPF is low, on the other hand the filtering Q of the LPF 

becomes low when the output power of the BPF is high. 

This AQF has the following features. 

1) Level dependent frequency selectivity. 

2) Level dependent nonlinear reduction of the relative gain. 

3) Level dependent resonance frequency shift. 

The advantage of the third feature is not yet clear, the first two features seem 

to be useful for speech feature extraction because the signal-to-noise ratio of 

weak components is improved by increasing both the gain and the Q of the filter 

channel. Thus, weak consonants and higher formants are enhanced and 

spectrograms obtained by AQF are much more distinct than those of FQF or 

會
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DFT. In addition, abrupt spectral changes are also enhanced because of the lag of 

Q Adaptation. These advantages of the AQF seem to be effective for the front-

end of a speech recognition system. 

To determine the control parameter of the adaptive Q circuit, preliminary 

experiments were conducted under a noisy environment. The relationship 

between adaptive Q control parameter and word recognition performance are 

shown in Fig.4. 

In these experiments, 56 words were selected from the speech data mentioned 

before, and performance was measured using the DTW (Dynamic Time 

Warping) word recognizer. Changing the Q control from [a] to [e] as shown in 

Fig.4, recognition performance of noisy speech was improved, while 

performance of clean speech was not changed. According to this preliminary 

experiment, the parameter of the adaptive Q circuits was determined. 

3.3 DFT front-end 

A Bark scale DFf front-end (DFf) was also used to evaluate the performance 

of the two cochlear filter front-ends. A feature extraction from the DPT is 

summarized in Fig.5. 

Input speech was 20ms Hamming windowed and a 1024-point F町 computed

every lOms. Then a 512-channel DFf power spectrum was obtained and 

transformed into 64-channel bark scale coefficients. This transformation was 

done by summing up the D町 powerspectrum components in each bark scale 

energy band. Finally, all coefficients were transformed into logarithmic values. 

The center frequency of each Bark channel , CH[ n ] , was set using the following 

equation: 

CH[ n] = 1.5+ (19.5-l.5)/63*n ; n = 0 to 63 

For each channel, energy band was set to (19.5-1.5)/63 

To convert Hz frequency to Bark frequency, the following equations were 

used (Seneff [1986]) : 
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0.01 *f 

Bark (f) = 0.007*f+ 1.5 

6.0*ln (f)-32.6 

0 <= f < 500 

500.0<= f < 1220 

1220<= f 

3.4 Output of the three front-ends 

Output of the three front-ends are shown in Fig.6. The utterance is [ikioi] in 

Japanese by male speaker (MST). Comparing cochlear filter (FQF and AQF) and 

DFf, the cochlear filter gives a relatively smooth spectrogram. This is because 

the frequency selectivity of the cochlear filter is lower than that of DFf at low 

frequency. Comparing AQF and FQF, AQF gives clearer spectrograms than does 

FQF at low energy level. This is because of the level dependent filtering 

characteristics of AQF, i.e. level dependent adaptive band width control and level 

dependent relative gain control. For example, the spectrum of weak consonant, /k 

/, is much clearer. 
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4. Word recogn1hon experiments 

The experimental diagram is shown in Fig.7. Frame rate and frame length are 

set to 10 and 20 ms respectively. All the 3 front-ends have 64 channels and each 

channel has the same center frequency and the same energy band width. In this 

study, dynamic time warping (DTW) was used as the back-end. The adjustment 

window was set to lO(Shikano, et al.[1982]).The dynamic programing algorithm 

used in this study is summarized in Appendix. A 

4.1 Performance under a noisy environment. 

Templates were clean speech, words to be recognized were noisy. For each 

front-end, Average performance of the four speakers is shown in Fig.8. Filled 

circles represent the performance of AQF, open circles represent FQF and open 

squares represent DPT. 

When the SIN was high (S/N=40dB), AQF showed almost the same 

performance as DFT. When SIN became low (S/N=lOdB), the performance of 

AQF and FQF were better than that of DFT. One possible explanation is that the 

feature extraction of the cochlear filter is smoother than that of DFT, so the 

spectrum change caused by noise is smaller in the cochlear filter than in DFT. 

4.2 Performance under reverberant environment. 

Templates were clean speech, words to be recognized were reverberated. For 

each front-end, average performance of the four speaker is shown in Fig. 9. 

Filled circles represent the performance of AQF, open circles represent FQF and 

open squares represent DFf. 

When the reverberation time was not overly long (R T=200 ms), the 

performance differences of the three front-ends were small. But when 

reverberation time became long (RT=1070 ms), the order of performance was 
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DPT, AQF and FQF. This means that a front-end with a high Q, i.e. high 

frequency selectivity, is affected less than a front-end with a low Q. 

4.3 Performance under multi-speaker conditions. 

One speaker was used as a template and the other three speakers were 

recognized. Changing the template speaker, the experiments were repeated four 

times. The results for three front-ends are shown in Fig. 10. For each template 

speaker, the left bar shows the performance of AQF, the middle bar shows FQF 

and the right bar shows DFT. Each bar shows the average performance of three 

speakers. 

In this experiment, AQF showed better performance than did FQF and DFT. 

A possible reason for this result is that the level dependent filtering 

characteristics of AQF play an important role in multi-speaker conditions. 

Furthermore, the performance of FQF is better than that of DFT. A possible 

reason for this result is that smooth feature extraction by cochlear filters gives 

less spectrum change for different speakers than does DFT. 

4.4 x2 test of the performance 

A x2 test was used to confirm the statistical significance of the experiment 

results. Calculation procedures of the x2 test are summarized in Appendix B. 

The test results are summarized in Fig.11. The level of significance was chosen at 

P<= 0.05. 

To summarize the x2 test results, 

Under noisy environment, 

1) The performance of AQF is superior to that of DPT. 

2) The performance of FQF is superior to that of DFT. 

Under reverberant environment, 

3) The performance of DFT is superior to that of AQF. 

4) The performance of DFT is superior to that of FQF. 
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5) The performance of AQF is superior to that of FQF. 

Under multi speaker conditions, 

6) The performance of AQF is superior to that of DFf. 

7) The performance of AQF is superior to thaf of FQF. 

5 Summary and conclusion. 

In this report the Adaptive Q cochlear filter in DTW word recognition was 

evaluated under noisy, reverberant and multi speaker conditions. Results are 

summarized as follows, 

(1) Under noisy environment, Performance of AQF was as good as 

that of FQF but better than that of DFT. The possible reason is that, as 

frequency selectivity of cochlear filter is lower than that of DFT at the 

low frequency, feature extraction of cochlear filter (AQF and FQF) is 

smoother than that of DFT. For this smooth feature extraction, 

spectrum change caused by noise can be less than that of D四

environment, ・performance (2) Under reverberant of AQF was 

affected more than that of DFf but was better than that of FQF. These 

results show that a front-end with a high Q is less affected under 

reverberant environment. 

(3) Under multi speaker conditions, AQF showed better performance 

than did FQF and DFf. The possible explanation is that the level 

dependent filtering characteristics of AQF play an important role in 

the multi-speaker conditions. 

(4) Above results were checked using x2 test. 

To conclude the study, the AQF front-end can be a better front-end for 

DTW word recognition system. 
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x2 test results (Condition: S/N variable) 

AQF-FQF FQF-DFT DFT-AQF 

SN40 AOF>FOF DFT>FOF 一

SN20 
一

FOF>DFT 一

SN10 
一

FOF>DFT AQF>DFT 

x2 test results (Condition: Reverberation variable) 

AQF-FQF FQF-DFT DFT-AQF 

R1 AOF>FOF DFT>FOF 
一

R6 AOF>FOF DFT>FOF DFT>AOF 

x2 test results (Condition: Multi Speaker variable) 

AQF-FQF FQF-DFT DFT-AQF 

AOF>FOF 一
AOF>DFT 

(5 % Significant level) 

Fig. 11 chi-square test result of the experiment results 
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Dynamic Time Warping Algorithm 

Initialize: 

G(l, 1) == 2. 0• D(l, 1) 

G(l,j) == G(l,j-1) + D(l,j) ;2 s j < r / 2 

G(i,1):==G(i-1,l)+D(i,1) ;2si< r/2 

G(l,j)==oo ;r/2<j臼

G(i, 1) == oo 

Iteration: 

;r/2<j~r 

G(i,j-1) + D(i, j) 

G(i, j) = min I G(i-1,j-1) + 2• D(i, j) 

l G(i -1, j,) + D (i,j) 
(i,j); 2 sis Iend,2 s j s Jend 

MatchingScore: 

S(A;B)=min{G (i, j) / (i + j)} 
(i,j) :end region 

Appendix A Dynamic programing algorithm used in this experiments. 
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Correct Error Samples 

Experiment A Ac Ae At =Ac+Ae 

Experiment B Be Be Bt=Bc+Be 

if 

Ac+Bc Ae+Be T=At+Bt 

X 2 = 
(Be・Ae Ac・Be) 2・T 

At・Bt・(Ac・: + Be')・(Ae + Be) 

At:Total Sample of Words in experiment A 
Ac:Correct Sample Number in exp_eriment A 
Ae:Error Sample Number _of experiment A 

Bt:Total Sample of Words in experiment B 
Bc:Correct Sample Number in experiment B 
Be:Error Sample Number in experiment B 

T: Total sample number(At+Bt) 

2 
X >= 3.841 Performance difference is Significant 

else Performance difference is NOT Significant 

Appendix B X2 test of the recognition performance of the two frontend. 
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