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Abstract 

Although many pattern classifiers based on artificial neural networks have been 

vigorously studied, they are still inadequate from a viewpoint of classifying dynamic 

(variable-and unspecified-durational) speech patterns. To cope with this problem, the 

generalized probabilistic descent method (GPD) has been recently proposed. GPD not only 

allows one to train a discriminative system classifying dynamic patterns, but also possesses 

a remarkable advantage, namely the learning optimality guaranteed in a sense of 

probabilistic descent search. A practical implementation of this theory, however, remains to 

be evaluated. In this light, we particularly focus on evaluating GPD in designing a widely-

used speech recognizer based on dynamic time warping distance-measurement. We also 

show that a design algorithm appraised in this paper can be considered as a new version of 

learning vector quantization, which is incorporated with the dynamic programming. 

Experimental evaluation results in tasks of classifying syllables and phonemes clearly 

demonstrate the GPD's superiority. 
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1. Introduction 

Applying artificial neural networks (ANNs) to classifier design has attracted 

considerable interest in the speech recognition field [l-5]. In particular, due to the 

inadequacy that most ANNs such as the multi-layer perceptron are originally suited in tenns 

of structure to handling only a static (fixed-dimensional) vector, developing a satisfactory 

method of treating a dynamic speech pattern has been one of the most important research 

topics in this field. In this light, various new network structures have actually been studied: 

e.g., time delay neural networks [1] and a shift-tolerant learning vector quantizer [2]. 

However, compared with the conventional speech recognition approach using the dynamic 

time warping (DTW) philosophy, the new ANN-motivated approach is not necessarily 

adequate for representing such dynamics. 

An effort to increase the discriminative capability of conventional DTW speech 

recognizers should thus be a promising alternative to the above ANN approach. These 

recognizers are usually designed so that class identity, e.g., design sample distribution, can 

be represented properly. Such a design, without considering classification directly, can not 

necessarily produce high classification power as a result. Thus, various kinds of 

improvement have actually been studied in this design framework (e.g. [6]); however; they 

unfortunately result in no significant advancement mainly because they all are based on 

heuristics and not on rigorous theoretical considerations. Motivated by this concern; one of 

the authors and his colleagues proposed a new discriminative learning theory, namely GPD, 

as one solution to this current difficulty [7-8]. GPD is a novel learning framework 

formalized by generalizing the classical probabilistic descent method which was developed a 

quarter of a century ago [9], and includes a family of new discriminative training ideas for 

various kinds of classifier structures. However, due to its intrinsic generality and 

complexity of formulation, careful evaluation of implementing GPD still remains an 

emerging research question, though very recently several evaluation studies have actually 

ー



been started [10-12]. This paper is intended to show the results of our research which is a 

continuation of this evaluation. 

There are two main DTW approaches: one is based on a DP-based distance classifier 

(DPC) and one is based on a hidden Markov model (HMM). Comparing DPC and HMM, 

distance calculation which is time-consuming, but indispensable in DPC, is often criticized. 

Such criticism, however, holds true only in the scheme of traditional sequential 

computation. Remarkable progress in recent parallel computation and hardware 

technology, such as the advent of a fine-grained parallel machine, would remind one of the 

usefulness of a pattern classifier consisting of simple distance calculation (e~g., [13]). 

Thus, in this paper, we selected DPC, which has long been studied in speech recognition, 

as our implementation framework. 

One of main goals in this paper is to evaluate a GPD-based discriminative training 

algorithm in designing a multi-reference DPC. We first introduce a somewhat complicated 

but general training rule based on the full knowledge of GPD; this rule is referred to as the 

G-rule. Detailed evaluation of the G-rule will be presented separately [12]. However, to 

increase awareness on application possibilities, we particularly focus on evaluating a more 

practical and simpler algorithm which can be defined as an extremely simple case of the G-

rule; this simple algorithm is referred to as the S-rule. Experimental results using this S-

rule actually demonstrate that GPD greatly contributes to increasing classification accuracy. 

Interestingly, it is also shown that the S-rule can be viewed as an idea of learning 

vector quantization (L VQ) generalized so as to be suited to the use of DP. An alternative to 

such integration of L VQ and DP would occur to anyone recalling several intuitive hybrid 

ideas developed by combining existing algorithms (e.g., [6, 14-15]). However, without 

doubt, the theoretical appropriateness of a new algorithm should be proved. It is here 

worthwhile noting that GPD-based rules are guaranteed to be optimal from the viewpoint of 

a probabilistic descent search because each of them fundamentally inherits all properties of 

GPD. 
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This paper is organized as follows. Section 2 will be used to introduce the G-rule in 

detail. In Section 3, we will fi江stpropose the S-rule by simplifying the G-rule and next 

show that the S-rule can be treated as a generalized L VQ to categorize dynamic patterns. In 

Section 4, we will show the experimental results on two tasks: English isolated syllable 

classification and classification of Japanese phonemes extracted from word utterances. The 

P叩perwill be concluded in Section 5. 

2. GPD training for multi-reference DPC; G-rule 

Two ideas, DTW and DP, are often used to represent the same technique in speech 

recognition. However, for clarity we will define these two ideas before starting our main 

discussion. In this paper, we define DTW as a general concept of nonlinear time warping 

which allows one to treat any possible, reasonable, time-alignment path between an input 

and a reference; on the other hand, we define DP as one specific class of DTW-based 

algorithms, which is usually pursued by the dynamic programming best-path search. 

We here present the G-rule by accurately following the GPD formalization for a multi-

reference DPC [7-8, 10-11]. Consider an M-class taskら (m= 1,2, …, M). We assume 

that a speech utterance x is a variable but finite length sequence of acoustic feature vectors. 

Each acoustic feature vector has a fixed dimension (S), usually consisting of coefficients 

based on the linear predictive coding or the Fourier transform. xt denotes the t-th acoustic 

feature vector (frame) of x. We also assume that a classifier consists of a set of reference 

vectors 

A={入m={点},b = 1,2, …，Bm, and m = 1,2, …，M}, (1) 

b where rm denotes the Cm's reference pattern b-th closest to x, and Bm is the number of 

b reference patterns for Cm. rm is also a variable but finite duration (n sequence of acoustic 

feature vectors. 

We consider a sequential, or adaptive, training scheme where a classifier is adjusted by 

a small amount every time a single training token is given. According to the GPD idea, we 
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introduce the following measurable distances. First, to measure the degree to w面chx 

belongs to Cm, a discriminant function, or a class distance, is defined by 

品 (x;A)=[国{n(x,点）｝―-r/-. (2) 

where v(x, r!) is called a reference distance between x and r!, and s is a positive number. 
The reference distance is also defined in the same fashion as (2); 

v(x, 点）＝旦｛叫x,r!)ド『1/S, (3) 

where D0(x,r!) is a path distance accumulated along the 0-th best (smallest distance) path 

selected by the DP-matching between x and r! among all the possible 0 paths. Here, the 

path distance is decomposed as 

T 

叫x,r!)= I, w!,ro~,e, , 
t=l 

b where wm,t is a weighting factor corresponding to the t-th frame of r!, 乾，81is a local 

(4) 

distance between the t-th frame of r! and the corresponding frame St of x along the 8-th 

best path. For simplicity, in this paper we treat the weighting factor as a non-trainable 

constant, though it was trained in [10, 12]. There are many possible ways of measuring the 

local distance, but by way of example we use here the Euclidean distance 

心＝占（土，s-X9戸，S了， (5) 

b b where r and x are the s-th elements of r and x respectively, and x is the m,t,s e戸，s m,t 0m,b 0m,b 

frame of x corresponding to r!,t along the 0-th best path. 

There are again many possibile of decision (classification) rules, each using the class 

distances, and we here simply choose the following rule 

if i = argmin{ gj(x;A)}. 

Our target is to train A such that misclassifications can be minimized given this decision 

C(x)= Ci, (6) 

rule. To perform this training, classification results should be embedded in a functional 

form which some reasonable optimization method, such as the gradient search, can treat 
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properly. In fact, GPD demonstrated that there were many possible ways for this 

embedding to take place. In particular, we here use the misclassification measure 

叫x)= g,(x;A)-[土聾j(x;A)}―μ『1/μ (7) 

whereμis a positive number, for a given training token x e Ck. One notes that a larger 

叫x)implies a more definite misclassification of x and a negative dk(x) implies a correct 

classification. 

A general form of cost function is next given as 

lk(x;A) = lk仇(x;A)), (8) 

where l k is a monotonically increasing, differentiable function. It is worthwhile noting that 

the selection of l k leads to various implementations of training criteria, but the following 

function 

1 
“屯(x;A))=~'J , ... -.¥,o¥, a.>0 (9) 

properly approximates the most important classification criterion, namely, the minimum 

classification error criterion (See [16]). In this light, we will use Eq. (9) in the discussion 

below. 

GPD guarantees that adjusting A by -EU▽ん(x;A),where E is a small positive 

number and U is a positive definite matrix, leads to at least a locally optimal minimum error 

classifier in a probabilistic sense; this convergence property was the main result of the 

original probabilistic descent method [9]. An actual adjustment rule in our situation is given 

by 

b b b 
rm,t,An+ 1) = rm,t,An)-2EnVkWm沖m'I'→m• 

b 
C討四m,t

r!,t,An+l)=r!,t,An)+2 K諌m叱託m•
M-l 

form ;t. k, 

form= k, } 
(10) 

where 

Vk = fi(dk(x;A)) = alk(dk(x;A)){l-iり：(dk(x;A))}, 
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$m~[: 屡1鳳：：図n—誓'
1+~ 

'Vm~[~ 恥(x,r!)}―']て，

％＝いここ;:i)land 

ふ`じ鸞:1?『］詈
Eq. (10) gives the complete G-rule procedure. Although we only consider handling 

dynamic patterns in this paper, our result is also applicable to static vector classification 

because a static vector is merely a血 itedcase of a dynamic pattern. 

3. Simplified training; S-rule 

Eq. (10) illustrates that all the reference vectors will be adjusted along all the time 

warping paths every time a single training token is given. However, the computation of all 

these possible cases would be very time-consuming, and a reasonable way of simplifying 

Eq. (10) should be attempted. 

There are obviously various possibilities in implementing Eq. (10), due to the selection 

of the parameters such asμ. In this section, we particularly consider an extremely 

simplified case of G-rule, by settingμ, 砧→ oo. This kind of extreme simplification was 

discussed in [7] for the case of classifying static vectors and, in fact, a crucial link between 

L VQ and GPD was revealed. The extreme setting results in the following manifolds. 

屯(x)""gk(x;A)-gi(x;A), 

where Ci (i t:-k) is the most probable among the incorrect classes. 

(11) 
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品 (x;A)""n(x,r!) 

n(x,r!) ""Di(x,r!) 

(12) 

(13) 

Here, one should note the following three points: 1) due to Eq. (11), only two classes, the 

correct class and the most probable among the incorrect classes, concern the classification 

decision; 2) each class distance is represented by only the reference closest to the input 

among the same class references; 3) the reference distance is measured along only the 

corresponding best path usually selected using the DP-based minimum search operation. 

Eq. (10) is then reduced into 

r~,t,An+ 1) = r!,r,An)-2e凸 Wら（土，s(n)-x1「,1,s}

r~,t,An+l) = r!,r,An)+2eふ心（ヰ，t,s(n)-x『,1,s),

r b m,t,s(n + 1) = r 
b 
m,t,s(n), 

form= k, 

form= i, 

otherwise, 

(14) 

where n is a discrete time index in training, En is a small positive number, and 

1が=er11 . 
0=1 

The optimality of probabilistic descent search requires En to meet the conditions in [9], 

originally based on the stochastic approximation philosophy. However, these conditions 

(assuming infinite training repetition) are actually never realistic. Thus, we reasonably 

approximate En as 

En= E。(1―長），
where E。isa positive small number and N is a large prescribed positive constant 
We next consider the simplification of the derivative form of the loss vk. The form vk 

(15) 

is originally a symmetric function of dk(x), i.e. unimodal around an actual class boundary. 

See Figure 1. Taking account of the fact that the learning-when-incorrect is essential for 

minimizing misclassifications on training data, we replace v k by the following step function 
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P1 =O 色

(a) 

Vk 

Ct) 

Vk 

＠ 

Pi_ =-P2 色

(b) 

Figure 1. Derivative form of loss (vk) and its approximation (ro). The form ro in (a) is 

designed to minimize misclassifications over training data, and the fonn ro in (b) is 

expected to create a robust class boundary for unlmown data. The ordinate is here 

normalized. 

P2 

Figure 2. The fonn of loss (thin line) and a sample of its approximation (thick line). 
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1, P1く屯(x)< P2, 
co={。， otherwise,

(16) 

where p1 is zero and p2 is a positive constant. One may note that co formally corresponds 

to the derivative of a piece-wise linear step function approximating the smooth sigmoid loss 

(See Figure 2). Eq. (14)・ 1s now revised to 

r~,t)n + 1) = r~,t,s(n)-2聾Wん（ヰ，t,sCn)-xl「,1,s),

r~,t,s(n + 1) = r~,t,sCn) + 2Enro心(r~,t,sCn)-x1~·1,s), 

心，s(n+ l) = r!,t,sCn), 

form= k, 

form= i, 

otherwise. 

(17) 

We define here the rule in Eq. (17) as the S-rule. 

The above discussion would already suggest that the L VQ adjustment philosophy 

underlies the S-rule. We discuss the S-rule in the view of a generalized LVQ in the 

remainder of this section. Consider the case in Figure 1 (a). Eq. (17) then implies that the 

adjustment occurs only for the misclassification that incurred around the actual class 

boundary. It is now obvious that the function ro substantially works as the vector space 

window ofLVQ [17]. We then call the function ro a space window hereafter. One should 

note here that the adjustment strategy of Eq. (17) at each frame position is equivalent to the 

modified version ofLVQ2 [18]. Our simplification eventually leads to the following; an 

extremely simple GPD training rule for DPC, namely the S-rule, is equivalent to the 

generalized idea of performing the LVQ training along the DP best path between a dynamic 

input and the closest reference pattern. 

4. Experiments 

Experiments were conducted on two sets of isolated speech tokens: 1) English E-

rhyme letters (E-set), and 2) Japanese phonemes (P-set). 
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Table 1. Acoustic feature extraction conditions for E-set. 

sampling frequency 6.67.kHz 

time window 45msec Hamming, 15msec shift 

acoustic feature vectors 24-dimension 

(12-dim LPC cepstrum& 12-di111 delta c~pstrum) 

4.1 E-set 

The E-set is the task of classifying nine English E-rhyme letters, i.e. {b, c, d, e, g, p, 

t, V, z}. Speech tokens were recorded over telephone lines by one hundred untrained 

speakers: 50 female and 50 male speakers, which were then converted to acoustic feature 

vectors using the conditions shown in Table 1. Each speaker voiced each E-rhyme letter 

twice, once for training and once for testing. Due to their high confusability because of the 

common following sound / i: /, this task has long been used as a good framework to 

evaluate many different classifiers. Actually it was reported that one of the baseline 

systems, namely, a system consisting of continuous HMMs (5-component mixtured 

Gaussian distributions, 5-state left-to-right structure, and no skip) produced only 61.7% on 

unknown testing data (80.2% on training data) [14]. 

There are many possible ways -selecting the system size, or the number of references. 

By way of example, we used the following two classifiers: one consisting of only one 

reference pattern per class (Rl) and one consisting of three reference patterns per class 

(R3). Each classifier was frrst initialized using the modified k-means clustering method; 

two versions of this clustering idea, the minimax method and the pseudo-average method, 

were adopted for the sake of reliable comparison [19]. We then ran twenty epochs (one 

epoch = one full presentation of the training data) of the S-rule training for each classifier. 

Figure 3 shows a typical training curve, i.e., a recognition rate over training data vs. 

an epoch. This curve demonstrates that the S-rule can achieve a very high discriminative 

power, quickly and steadily. 

}
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Figure 3 .. A typical training curve on the E-set task. The recognition rate on training 

data rises quickly and smoothly. 

Table 2. Recognition rates in the E-set task. 

Initial Reference 

Clusterin且Methcx:l

Number 

of Refs. 

．． 
m皿max

.. 
mmnnax 

Rl 

Rl 

Before/ After 

S-rule Trainin~ 

before 

after 

Results 

Trainin~ 

56.7% 

99.0% 

Results 

Testin且

55.0% 

74.2% 

pseudo-avg. 

pseudo-avg. 

minimax 

mmnnax 

Rl 

Rl 

R3 

R3 

before 

after 

before 

after 

61.3% 

98.9% 

72.4% 

100.0% 

59.8% 

74.9% 

64.1% 

72.4% 

pseudo-avg. 

pseudo-av~. 

R3 

R3 

before 

after 

71.3% 

99.8% 

64.9% 

74.0% 
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Table 2 lists the results for several different conditions. Regardless of the selection of 

the k-means clustering procedures, the difference in classification power between the initial 

situation and the after-training situation is obvious. Without doubt, the results illustrate the 

high superiority of our GPD-based training. In particular, a training achieved the 

significant reduction in recognition rates over the training data, ranging from 30% to 45%, 

as well as an almost perfect accuracy over the training data 

As we pointed out, the adjustment only for misclassification cases is enough to reduce 

misclassifications over the design samples. However, due to the finite number of design 

samples, the training, even correct classification cases would help increase the accuracy for 

future unknown data [20-21]. We then treat another space window; assuming p1 = -p2 

(See Figure 1 (b)). This implies that the adjustment could occur even if a training token is 

correctly but somehow insecurely classified. 

required, it would be expected that this symmetric window creates a robust class boundary 

for unknown data (e.g., [16]). 

Although further analysis is certainly 

Table 3 shows results for this new space window. 

results again show the superiority of the S-rule and also suggest the plausibility of the 

above discussion as concerns robustness. 

In parallel with our study, several high recognition rates on this E-set have also been 

reported in succession [8,10,12,14]. It should be pointed out here that GPD underlies each 

Table 3. Recognition rates on the E-set task using a symmetric space window. 

Initial Reference 

Clusterin~Method 

Number 

of Refs. 

Before/ After 

S-rule Trainin~ 

Results 

Trainin~ 

Results 

Testin五

.. 
m皿max Rl after 94.1% 75.4% 

The 

pseudo-avg. 

minimax 

Rl after 96.1% 74.9% 

I
I
 

.̀‘ー・
9

R3 after 96.8% 77.2% 

pseudo-av~. R3 after 98.1% 76.7% 

12 



of these promising approaches. 

4.2 P-set 

Although the above results have not reset the record on the E-set (e.g., see [8]), the 

improvement in recognition rates clearly demonstrated the effectiveness of the proposed 

algorithm. However, the E-set consisting of only the E-rhyme letters is very special from 

the view面ntof speech recognition tasks. We thus tested the algorithm on the second data 

set consisting of the possible Japanese phonemes, namely the P-set. 

The P-set is a set of phoneme segments extracted from the ATR 5240 Japanese 

common word data, using manually-selected acoustic-phonetic labels [22]. This set was 

split into two independent sets of roughly equal sizes: one for training and one for testing. 

Each word was spoken in a soundproof booth by one male professional announcer and was 

transformed to a sequence of 16-dimensional Mel-scale spectrum vectors using the 

parameters specified in Table 4. We then used a 112-dimensional acoustic feature vector, 

concatenating 7 adjacent Mel-scale spectrum vectors. This high-dimensional vector was 

also normalized so that the average of all the vector components was 0.0. 

The classifier was composed of 5 reference patterns per class, for 53 classes. Each of 

the background segments and contracted sounds such as / kj / was treated as one class. A 

word-initial vowel was categorized separately from a class of inside vowels and word-final 

vowels; e.g., a phoneme token / a / in the word beginning was treated as a different class 

token compared to a token/ a/ from the other segment positions. ・Moreover, a long vowel 

Table 4. Acoustic feature extraction conditions for P-sets. 

二：ニロニニnts(down-s~111p!ed from 256-point FFf coefficients) 
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such as / o: / in the word/ o:ki: / was categorized as different from a typical vowel class. It 

should, however, be noticed that, in the recognition phases, the classifier did not 

distinguish in the vowel position, either word-initial or other; this implies that classification 

was evaluated for only 41 classes. Table 5 lists the 41 phoneme categories used in 

recognition. Taking account of the experimental result in the previous section; here we 

used the minimax method and the robust version of space window (p1 = -p吐

We performed 10 epochs of training, and achieved 98.4% over training data and 

96.2% over testing data. This result shows that our discriminative training algorithm works 

well not only on small, special tasks such as E-sets, but also on ordinary tasks with a large 

number of classes. Although recognition rates by other algorithms have not been reported 

for the same class arrangement, namely 41 classes, our results can be considered rather 

high. Compare them with 95.3% by the shift-tolerant LVQ and 97.2% by LVQ-HMM, 

both of which were obtained in a 25-class condition using exactly the same database [6]. 

Consequently, the results here again demonstrated the very high discriminative power of the 

Table 5. Forty one phoneme categories of the P-set. 

consonants vowels back ound 

/pl /ti /kl /pj I /kj I /a/ /a:/ ／＊／ 

/b/ /d/ Jg/ I bj I I gj / I / i / / i: / 

Isl ／［／ /h/ / 9 / l<t>I I /u/ I u: I 

I tf I /ts/ /d豆 /dz/ I / e/ / e: / / ei/ 

Jr/ /w/ I j I /rj / I I of / o: / /OU/ 

/ml /n/ /NI /mj/ /!1.i/ 

Note 1: Each of/ h /, / c;: /and/¢/ denotes the initial phoneme of the Japanese syllable 

{ha, hi, he, ho}, {hya, hyu, hyo} and {hu} respectively. 

Note 2: / N /includes/ m /, / n /and/ 1J /, each corresponding to the Japanese kanaん．

Note 3: /*/denotes a background segment. 
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S-rule. 

5. Conclusion 

We presented the new GPD-based discriminative training algorithms, the G-rule and 

the S-rule, for a multi-reference distance classifier handling dynamic patterns. We also 

showed that the simpler S-rule could be viewed as a generalized L VQ for dynamic pattern 

classification. In other words, the S-rule is actually equivalent to a hybrid of the L VQ rule 

and the DP-based best path search. However, it should be stressed here that the DP search 

is not essential to the optimality pursued in our approach; the DP-search is merely used for 

simplification and its optimality in minimum operation is not crucial in our optimization 

based on the gradient search. This point is quite different from several algorithms where 

the DP-based optimality is used as a part of training optimality (e.g., see [3]). 

The simple and practical S-rule was evaluated in the two isolated-mode speech 

recognition tasks. The experimental results clearly demonstrated that the proposed 

algorithm contributes towards increasing the discriminative power of the traditional DP-

based speech recognizer. 

The experiments reported here were designed to show the fundamental effectiveness of 

our novel algorithms. The superiority of the S-rule was clearly demonstrated. However, 

the characteristics of our algorithms, particularly of the G-rule, must be studied further. 

Specifically, using finite values of classification parameters such as~in the G-rule would 

contribute toward increasing classifier robustness, which is an emerging ANN research 

topic, because the G-rule intrinsically possesses the promising property of smooth decision 

making based on multi-reference, multi-path, and multi-class measurement [12]. The 

proposed algorithms should also be studied in a more realistic task such as connected 

speech recognition. 

It is lastly worthwhile nothing that, without any serious modification, the main 

formulations in this paper are applicable to the so-called batch-type gradient search, e.g., 
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the steepest descent method, where all the training tokens are used at the same time for 

every adjustment. This point would be also tested. 
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